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A B S T R A C T

The rising prevalence of gastrointestinal (GI) tract disorders worldwide highlights the urgent need for precise
diagnosis, as these diseases greatly affect human life and contribute to high mortality rates. Fast identification,
accurate classification, and efficient treatment approaches are essential for addressing this critical health issue.
Common side effects include abdominal pain, bloating, and discomfort, which can be chronic and debilitating.
Nausea and vomiting are also frequent, leading to difficulties in maintaining adequate nutrition and hydration.
The current study intends to develop a deep learning (DL)-based approach that automatically classifies GI tract
diseases. For the first time, a GastroVision dataset with 8000 images of 27 different GI diseases was utilized in
this work to design a computer-aided diagnosis (CAD) system. This study presents a novel lightweight feature
extractor with a compact size and minimum number of layers named Parallel Depthwise Separable Convolutional
Neural Network (PD-CNN) and a Pearson Correlation Coefficient (PCC) as the feature selector. Furthermore, a
robust classifier named the Ensemble Extreme Learning Machine (EELM), combined with pseudo inverse ELM
(ELM) and L1 Regularized ELM (RELM), has been proposed to identify diseases more precisely. A hybrid pre-
processing technique, including scaling, normalization, and image enhancement techniques such as erosion,
CLAHE, sharpening, and Gaussian filtering, are employed to enhance image representation and improve clas-
sification performance. The proposed approach consists of twenty-four layers and only 0.815 million parameters
with a 9.79 MB model size. The proposed PD-CNN-PCC-EELM extracts essential features, reduces computational
overhead, and achieves excellent classification performance on multiclass GI images. The PD-CNN-PCC-EELM
achieved the highest precision, recall, f1, accuracy, ROC-AUC, and AUC-PR values of 88.12 ± 0.332 %, 87.75
± 0.348 %, 87.12 ± 0.324 %, 87.75 %, 98.89 %, and 92 %, respectively, while maintaining a minimum testing
time of 0.000001 s. A comparative study utilizes 10-fold cross-validation, ablation study and various state-of-the-
art (SOTA) transfer learning (TL) models as feature extractors. Then, the PCC and EELM are integrated with TL to
generate predictions, notably in terms of performance and real-time processing capability; the proposed model
significantly outperforms the other models. Moreover, various explainable AI (XAI) methods, such as SHAP
(Shapley Additive Explanations), heatmap, guided heatmap, Grad-Cam (Gradient-weighted Class Activation
Mapping), guided Grad-CAM, and guided Saliency mapping, have been employed to explore the interpretability
and decision-making capability of the proposed model. Therefore, the model provides practical intelligence for
increasing confidence in diagnosing GI diseases in real-world scenarios.
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1. Introduction

The gastrointestinal (GI) system, which includes the organs associ-
ated with digestion and food absorption, is essential for sustaining good
health. This intricate system is susceptible to multiple disorders that can
significantly impact its daily functioning. GI diseases such as polyps,
esophageal disorders, colon cancer, and ulcerative colitis affect organs
such as the stomach, intestines, liver, and pancreas. Medical imaging
technology has made significant strides toward automatic diagnosis of
these diseases in the last 20 years. Early identification and accurate
diagnosis are essential for successful treatment of many diseases, but a
large number of healthcare experts are needed, which is costly, prone to
error, and time consuming. Moreover, rural areas often struggle to fulfill
the need for more skilled medical professionals (Sung et al., 2021).
Addressing these issues necessitates technological solutions that can
automatically and accurately detect and assess GI diseases.

Digestive diseases significantly increase mortality rates, indicating
an alarming phenomenon in public health recently. Colorectal cancer is
one of the most common GI illnesses. Since 2015, almost 132,000 new
cases of colorectal cancer have been reported in the USA, affecting 1.6
million individuals with bowel infections. Approximately 200,000 new
cases occur each year (Khan, Sarfraz, et al., 2020). In 2017, 135,430
cases of various GI diseases were documented in the USA (Khan, Khan,
et al., 2020). Additionally, 18 % of adults in Brazil, 11 % in China, 20 %
in the EU-5, 12 % in Russia, and 21 % in the US were diagnosed with GI
diseases (Sharif et al., 2021). In 2017, a worldwide survey reported
765,000 fatalities from stomach diseases, with colon cancer being
responsible for 525,000 deaths (Khan, Kadry, et al., 2020). Worldwide,
there were approximately 4.8 million new cases of GI malignancies and
3.4 million deaths related to these illnesses in 2018 (Arnold et al., 2020).
Approximately 3.6 million children are affected by stomach infections
each year (Khan, Sarfraz, et al., 2020). Esophageal cancer is the seventh
most prevalent cancer worldwide, whereas stomach cancer is the third
leading cause of cancer-related fatalities globally.

Accurate and early diagnosis of GI diseases plays a significant role in
reducing the mortality rate. Endoscopy, which includes esophagogas-
troduodenoscopy (EGD) and colonoscopy, is one of the best and most
effective ways to examine the upper and lower intestines for potential
health problems. Furthermore, capsule endoscopy, endoscopic ultraso-
nography (EUS), CT scan, magnetic resonance imaging (MRI), and
positron emission tomography (PET) scan are other important tech-
niques for the thorough diagnosis of GI disorders. These techniques
support medical personnel in observing the GI tract, evaluating organ
health, and detecting abnormalities quickly, which helps in timely
intervention and enhances the possibility of successful treatment out-
comes (Arnold et al., 2020).

The complicated structure of small bowls makes push gastroscopy
instruments unsuitable for the identification and analysis of GI in-
fections such as polyps, ulcers, and bleeding. The small bowel, or small
intestine, is a long, coiled tube where most of the digestion and ab-
sorption of nutrients occurs. Its intricate structure and length can make
it challenging to navigate certain endoscopic instruments, making it
difficult to identify and analyze gastrointestinal issues within this part of
the digestive tract. Standard endoscopy may fail to detect numerous
lesions because of the presence of secretions. During colon cleansing
operations intended for cancer or precursor lesion diagnosis, a signifi-
cant number of polyps remain undiscovered, with rates ranging from
21.4 % to 26.8 %, which poses significant challenges (Kim et al., 2017a).
Furthermore, as polyp growth may exhibit similarities among multiple
categories, accurate diagnosis can be challenging. In 2000, a new
technology called Wireless Capsule Endoscopy (WCE) was introduced to
resolve these issues to a certain extent (Iddan et al., 2000). During WCE,
a medical professional visually inspects the interior of the GI tract to
identify any diseases. The patient swallowed a capsule with a wireless
camera, light-emitting diodes, radio frequency emitter, and a battery
throughout this procedure. The system autonomously navigates through

the GI tract, and the camera captures thousands of images. The images
are stored on recorders and then transmitted to a computer with
specialized software that compiles them to form a video. The gastro-
enterologists evaluated those images and tracked the lesion. However,
the primary issue of this process is the longer time needed to classify
many types of GI diseases. Over 50,000 pictures are generated during a
WCE scan. Physicians need an average of two hours to analyze the im-
ages, and the risk of incorrect detection (25 % overall) is very high (Fan
et al., 2018).

Previous research has shown substantial progress in developing
various artificial intelligence (AI) models for classifying the GI tract.
These models utilize a variety of methodologies, such as rule-based
reasoning and neural networks (NNs) (Aruna et al., 2007; Awais &
Awan, 2011; Saraiva et al., 2016). Although significant progress has
been made, certain challenges need to be addressed. Previous research
has mostly concentrated on developing image diagnosis methods to
precisely classify precursor lesions associated with GI disorders
(Iakovidis & Koulaouzidis, 2014; Lee et al., 2019; Li & Meng, 2009;
Noya et al., 2017; Pan et al., 2011; Ye & Prince, 2016). Traditional
approaches in these studies included improving contrast, removing
noise, and segmenting regions. Several studies have also delved into
classifying diseases within the GI tract (Gunasekaran et al., 2023; Noor
et al., 2023; Nouman Noor et al., 2023). However, a significant draw-
back of these approaches is their focus on a limited number of diseases
and a limited number of samples, approximately 1650 to 4854, and lack
of models’ interpretability. Additionally, certain researchers have uti-
lized transfer learning (TL)-based methods that involve a significant
number of parameters and layers. However, these methods require
substantial processing time because of extracting irrelevant features,
which creates significant challenges for real-time applications.

The aim of this research is to mitigate the conventional problems of
previous studies by introducing a comprehensive disease classification
framework. The primary contributions of this research are outlined as
follows:

• For the first time, a DL model is employed to classify a large number
of GI tract diseases (27 classes) which contains a large number of
upper, lower, and combined GI samples.

• A hybrid preprocessing method (CLAHE, erosion, sharpening, and
Gaussian filtering) was introduced to enhance image quality on the
multi-class GastroVision dataset.

• A novel lightweight DL model called Parallel Depth-wise separable
CNN (PD-CNN) is proposed to perform feature extraction with
distinct characteristics and minimal parameters, resulting in a sig-
nificant decrease in model size, parameters, layers, and testing time.

• The Pearson correlation coefficient (PCC) has been utilized to reduce
irrelevant features by assessing the linear connection between the
features and target classes, which improves the effectiveness of the
proposed PD-CNN model.

• A novel Ensemble Extreme Learning Machine (EELM) classifier,
which is a combination of pseudo inverse-ELM (ELM) and L1-
regularized ELM (RELM), is designed to accelerate performance in
classifying GI tract diseases.

• This study evaluated the classification performance, parameters,
layers, and sizes of the proposed PD-CNN model with different
established transfer learning (TL) models to demonstrate the’super-
iority of the proposed model.

• The’interpretability of the framework is highlighted by the use of
various explainable AI (XAI) techniques, including Shapley Additive
exPlanations (SHAP), heatmap, guided heatmap, Grad-CAM, guided
Grad-CAM and guided Saliency mapping, which demonstrate sig-
nificant insights into the model’s decision-making capability.

Section 2 provides a detailed summary of the previous relevant
research. Section 3 outlines the suggested methodology, consisting of a
proposed framework and dataset, and section 4 demonstrates the
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detailed model architecture. Section 5 provides an elaborate overview of
complete classification outcomes, accompanied by interpretability of
the proposed model using XAI. Section 6 presents the key conclusions.

2. Related works

Multiple approaches have been explored in the field of medical
diagnosis and decision support for GI diseases (Fujii-Lau et al., 2023;
Gupta et al., 2022; Johannes et al., 2008; Jun et al., 2022; Kusano et al.,
2024; Nass et al., 2022; Parasa et al., 2023; Parsa et al., 2018). Re-
searchers have utilized several ML and DL approaches to detect and
analyze various GI diseases, including cancer and ulcer, from endoscopic
images [13–15]. Additionally, ongoing research is being conducted in
the field of multi-class classification but mostly encompasses a smaller
number of classes (Gunasekaran et al., 2023; Noor et al., 2023; Nouman
Noor et al., 2023; Rustam et al., 2021; Sivari et al., 2023).

A medical diagnosis decision support model for gastrointestinal
cancer was presented by Saraiva et al. (Saraiva et al., 2016) using a mix
of rule-based and case-based reasoning. Subsequently, Aruna et al.
(Aruna et al., 2007) presented an NN model for GI diagnosis that used
radial basis functions and backpropagation. The fuzzy inputs used in this
model were derived from patient interviews. Furthermore, Awais et al.
(Awais & Awan, 2011) presented a unique model for myocardial
infarction detection that was based on the defense mechanism of the
human digestive system. Additionally, a polyp detection method for
WCE images was presented by Li et al. (Li & Meng, 2012). Using a
support vector machine (SVM), classifier features were extracted
through the integration of wavelet transform and a uniform local binary
pattern. All these studies were carried out on comparable tract areas, yet
very few of these studies specifically addressed multiclass classification.

Researchers have also used different aspects of the human body, such
as cancer, blood, polyps, ulcer lesions, dyed-lifted-polyps, and ileocecal,
to detect problems in endoscopic images (Iakovidis & Koulaouzidis,
2014; Lee et al., 2019; Li & Meng, 2009; Noya et al., 2017; Pan et al.,
2011; Ye & Prince, 2016). Musha et al. (Musha et al., 2023) suggested a
method utilizing a chromaticity moment color feature and uniform local
binary pattern for bleeding region detection in endoscopy images.
Similarly, Pan et al. (Pan et al., 2011) used a probabilistic NN for
bleeding detection. On the other hand, Noya et al. (Noya et al., 2017)
applied a boosted decision tree (DT) classifier using a combination of
color-based, texture, statistical and morphological features for detecting
angiodysplasia lesions. Li et al. (Li & Meng, 2009) introduced a texture
extraction process curvelet-based local binary pattern for the detection
of ulcer regions in capsule endoscopy images. Using multilayer per-
ceptron NN and SVM, they classified ulcer regions. Most of these studies
have emphasized extracting many features overachieving a balanced
real-time benchmark. Morphological operations and statistical analysis
were conducted to produce the data.

Yeh et al. (Yeh et al., 2014) proposed a method for detecting ulcers
and bleeding in images acquired using WCE. Color features have been
used to evaluate the condition of the small intestine, and various feature
selection approaches and classifiers have been utilized, with the DT
demonstrating the highest accuracy in detecting bleeding. In a separate
study, Lee et al. (Lee et al., 2019) evaluated TLmodels such as ResNet50,
Inceptionv3, and VGG16 to classify stomach endoscopic images and
distinguish between normal and benign ulcers. The results showed high
accuracy, with ResNet50 consistently performing better than the other
methods. Yuan et al. (Yuan et al., 2015) generated a computer-aided
technique for detecting ulcers. The approach effectively identified
ulcer regions through a multi-level super-pixel representation. The
method utilized Locality-Constrained Linear Coding (LLC) and saliency
max-pooling to save visual features. Furthermore, Pogorelov et al.
(Pogorelov et al., 2017) created Kvasir, a multi-class image dataset
designed for computer-aided identification of GI diseases, with anno-
tated images from the GI tract. The collection contains anatomical
landmarks, pathological observations (such as esophagitis, polyps, and

ulcerative colitis), and images associated with endoscopic polyp
removal. Jain et al. (Jain et al., 2021) developed WCENet, a deep CNN
model for detecting and locating anomalies in WCE images. Their pro-
posed model worked in two stages: an initial stage utilizing an attention-
based CNN to categorize images into certain groups (polyp, vascular,
inflammatory, or normal), followed by a phase that combines Grad-
CAM++ with a customized SegNet for locating anomalies in images.

As mentioned before, very little work has been done recently on the
multi-class classification of GI tract diseases. Nouman et al. (Nouman
Noor et al., 2023) proposed a method for classifying GI tract diseases
using the Kvasir (Pogorelov et al., 2017) and Hyper-Kvasir (Borgli et al.,
2020) datasets, which contain 4854 images of five different classes. The
process included contrast optimization using a genetic algorithm (GA),
utilizing MobileNetV2 for feature extraction, and applying the machine
learning classifier SoftMax. Similarly, Noor et al. (Noor et al., 2023)
suggested a computer-aided diagnosis system for GI diseases with a
lightweight MobileNetV2 feature extractor and SoftMax classifier. They
also have integrated attention mechanisms and a cosine similarity-based
feature selection technique to reduce the number of features to improve
the effectiveness of the classification. Using 810 key features, the
framework achieved high accuracy (97.68 %) in classifying GI tract
images into 5 different classes of the Kvasir dataset (Pogorelov et al.,
2017). Gunasekaran et al. (Gunasekaran et al., 2023) presented GIT-
NET, an ensemble model that uses the pretrained models Dense-
Net201, InceptionV3, and ResNet50 to classify GI diseases accurately.
The Kvasir v2 (Pogorelov et al., 2017) dataset, which has 8000 photos
from 8 classes, was utilized in this study. With an accuracy of 95 %, the
proposed weighted average ensemble method outperforms individual
models. Sivari et al. (Sivari et al., 2023) also utilized the Kvasir v2 and
Hyper-Kvasir datasets to develop a DL-based hybrid stacking ensemble
model for the detection and classification of the GI tract from endoscopic
images. Themodels were trained using a two-level stacking architecture.
The second level includes logistic regression, linear SVM, multi-layer
perceptron, and k-nearest neighbor algorithms. Rustam et al. (Rustam
et al., 2021) introduced a bleedy image recognizer (BIR) combining
MobileNet and a custom-built CNNmodel for automatic analysis of WCE
images. With a dataset of 1650 images, BIR achieved impressive per-
formance, demonstrating a high accuracy of 99.3%. Lan et al. (Lan& Ye,
2021) carried out a study that introduced a hybrid unsupervised DL
technique to summarize videos within a weakly supervised cross-modal
embedding framework. They used networks such as long short-term
memory (LSTM) and autoencoder to help healthcare professionals
analyze WCE videos in detail. In (Alhajlah et al., 2023), a method that
integrates Mask R-CNN, fine-tuned ResNet models, and an Enhanced Ant
Colony Optimization algorithm was proposed. The ResNet-50 and
ResNet-152 models achieved an impressive classification accuracy of
96.43 %. Another study (Mohapatra et al., 2023) utilized discrete
wavelength transformation (WT) and CNN approaches to categorize
polyp and esophagitis classes. The method achieved an impressive ac-
curacy rate of 96.65 %.

Several researchers achieved a higher level of accuracy ranging from
93 % to 98 % in their research. However, it is important to note that
these researchers utilized datasets with a limited number of classes
(ranging from 5 to 8) and a small number of image samples (ranging
from 4000 to 8000) to demonstrate the performance of their proposed
models. Furthermore, most researchers have employed TL- and DL-
based models, including GIT-NET, MobileNetV2, ResNet-50, ResNet-
152, and a hybrid stacking ensemble model. Nevertheless, a major
problem arises regarding the computational requirements (parameter,
size, layer) that lead to longer processing times, which makes it difficult
to use the classification model effectively. Furthermore, certain
advanced techniques require high-resolution images to achieve precise
classification, which is crucial for real-world applications, especially in
embedded systems (Alhajlah et al., 2023; Aruna et al., 2007; Iakovidis&
Koulaouzidis, 2014; Khan, Sarfraz, et al., 2020; Kim et al., 2017b; Lee
et al., 2019; Li & Meng, 2009; Noor et al., 2023; Nouman Noor et al.,
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2023; Noya et al., 2017; Pan et al., 2011; Saraiva et al., 2016). To
accelerate the widespread use of the GI disease classification model, it is
crucial to improve existing models by reducing parameter counts, size,
and layers; minimizing processing times; and boosting classification
accuracy. In addition, certain studies have demonstrated the application
of XAI techniques such as heatmaps and Grad-CAM. However, most of
the SOTA research has not focused much on assessing the impact of
individual features. This study acknowledges these challenges and sug-
gests a novel and efficient solution.

3. Methodology

3.1. Proposed framework

A novel methodology utilizing the DL approach has been developed
to address the complicated issues linked to identifying a large number of
GI disorders. The procedural phases involved in this research are illus-
trated in Fig. 1. Initially, the annotated dataset was divided into twenty-
seven unique disease categories at a 90:10 ratio for the training and
testing sets. Several data preprocessing steps were executed to enhance
the model’s learning ability. These procedures included implementing
data normalization, CLAHE, erosion, sharpening, Gaussian filtering, and
resizing images from the training set to 124 × 124 pixels. Next, a

Fig. 1. Proposed working framework for multi-class classification of GI diseases.

Table 1
Dataset distribution in twenty-seven classes and data split into training and testing sets.

Testing phase GI Position labeled areas Disease Types Class No. Training Testing

GI tract Diseases (27-classes) Upper GI Normal findings Normal stomach 20 872 97
Normal esophagus 18 126 14

Anatomical Landmarks Gastroesophageal_junction_normal z-line 15 297 33
Duodenal bulb 8 185 20
Pylorus 21 354 39

Pathological Findings Barrett’s esophagus 2 86 9
Esophagitis 13 96 11
Gastric polyps 14 59 6
Ulcer 26 5 1
Esophageal varices 12 6 1

Lower GI Normal Findings Normal mucosa and vascular pattern in the large bowel 19 1320 147
Anatomical Landmarks Cecum 4 102 11

Colon diverticula 5 26 3
Ileocecal valve 16 180 20
Retroflex rectum 24 60 7
Small bowel_terminal ileum 25 761 85

Pathological Findings Angioectasia 1 15 2
Mucosal inflammation large bowel 17 26 3
Colon polyps 6 738 82
Colorectal cancer 7 125 14

Therapeutic interventions Dyed-lifted-polyps 9 127 14
Dyed-resection-margins 10 221 25
Resected polyps 22 83 9
Resected margins 23 23 2

Upper & Lower GI Pathological findings Blood in lumen 3 154 17
Erythema 11 14 1

Therapeutic interventions Accessory tools 0 1139 127
Total 7200 800

Md.F. Ahamed et al.
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lightweight novel Parallel Depthwise separable CNN (PD-CNN) archi-
tecture was constructed in conjunction with a parallel CNN (Pr-CNN) in
which traditional convolutional layers were used. This architecture was
utilized to test multiple TL models simultaneously and extract 200 fea-
tures. Thirty-nine significant features were identified by eradicating 161
irrelevant features via the PCC algorithm and t-distributed stochastic
neighbor embedding (t-SNE) visualization of the feature distribution.
Subsequently, Z score normalization was applied to achieve standardi-
zation. An ensemble extreme learning machine (ELM) classifier was
designed to improve the model’s classification performance from the
PCC features. This classifier incorporated the ELM and RELM ap-
proaches. The model weights that yielded the most accurate predictions
were maintained after a comparative analysis. Moreover, by employing
various XAI techniques, the decision-making capabilities of the pro-
posed models were graphically presented.

3.2. Dataset description

A comprehensive multi-center dataset developed for GI endoscopy
applications, denoted GastroVision, was used in this study (Jha et al.,
2024). The objective of GastroVision is to aid in the advancement and
assessment of AI-driven algorithms utilized for the identification and
categorization of gastrointestinal disorders. With a total of 27 unique
classes representing different GI tract diseases, the dataset contains a
broad variety of anatomical landmarks, clinical abnormalities, normal
results, and instances of polyp removal. A combined group of images
representing both normal variations and GI pathology is available in
addition to the upper GI and lower GI categories, which are based on the
digestive tract. The data collection process for GastroVision involved a
collaborative effort between Bærum Hospital in Norway and Karolinska

University Hospital in Sweden. Skilled GI endoscopists meticulously
conducted endoscopic procedures, capturing high-resolution images of
diverse GI tract regions, including the esophagus, stomach, small in-
testine, colon, rectum, and terminal ileum. Following data acquisition,
expert GI endoscopists meticulously annotated and verified the images.
The dataset comprised a comprehensive collection of 8,000 high-
resolution endoscopic images from various GI regions on the human
body. Moreover, the dataset is thoughtfully distributed across different
areas of the GI tract, ensuring comprehensive coverage of GI pathology
and normal variations. Comprehensive details of the dataset, along with
sample images of the model training and testing sets, are provided in
Table 1 and Fig. 2. Notably, the KvasirV2 dataset was also utilized with
the proposed model to justify the comparative performances (Pogorelov
et al., 2017).

3.3. GI tract diseases

Understanding the various disease classes is crucial for accurate
diagnosis and treatment. Table 2 presents a brief description of 27 GI
tract diseases (Jha et al., 2024).

3.4. Data preprocessing

The image processing step is vital for optimizing the performance of
deep learning models. GastroVision contains images of varying sizes,
with the following distributions: 2,647 samples at 576 × 720 pixels,
3,890 samples at 576× 768 pixels, 976 samples at 1024× 1280 pixels, 8
samples at 1048 × 1232 pixels, 67 samples at 1064 × 1350 pixels, 347
samples at 1072 × 1920 pixels, and 65 samples at 1080 × 1350 pixels.
Each image was scaled to a consistent resolution of 124 × 124 pixels,

Fig. 2. GastroVision dataset include (A) Accessory tools, (B) Angiectasia, (C) Barrett’s esophagus, (D) Blood in lumen, (E) Cecum, (F) Colon diverticula, (G) Colon
polyps, (H) Colorectal cancer, (I) Erythema, (J) Dyed-lifted-polyps, (K) Dyed-resection-margins, (L) Erythema, (M) Esophageal varices, (N) Esophagitis, (O) Gastric
polyps, (P) Gastroesophageal_junction_normal z-line, (Q) Ileocecal valve, (R) Mucosal inflammation large bowel, (S) Normal esophagus, (T) Normal mucosa and
vascular pattern in the large bowel, (U) Normal stomach, (V) Pylorus, (W) Resected polyps, (X) Resection margins, (Y) Retroflex rectum, (Z) Small bowel_terminal
ileum, and (AA) Ulcer multi-classes.
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and z score normalization procedures were performed to ensure con-
sistency and optimal data representation for model training. Addition-
ally, using a slightly smaller size helps avoid issues with padding or
borders that might arise during convolution operations within the
network (Hesse et al., 2023). Furthermore, pretrained models might
have been trained with non-standard input sizes, and to maintain
compatibility and benefit from transfer learning, a 124 × 124 input size
was used. A random splitting technique was used to divide the dataset,
allocating 90 % of the images for training and 10 % for testing. This
method was crucial due to the limited number of images in certain
classes, ensuring that a sufficient number of training samples remained
to effectively train the model across all classes.

Sequential preprocessing steps significantly enhance the robustness
and performance of the model across diverse datasets (Li et al., 2022). It
includes a series of image enhancement techniques, such as scaling,
normalization, erosion, CLAHE, sharpening, and Gaussian filters.
Erosion reduces noise and sharpens image boundaries, while CLAHE
enhances contrast, particularly in regions with varying illumination.
Sharpening techniques emphasize edge detection and overall image
clarity, while Gaussian filters effectively reduce noise and improve
image characteristics. The sequential integration of these preprocessing
methods ensures that the model receives refined and standardized input
data, leading to improved performance and accuracy in classification
tasks. Examples demonstrating the enhancement of the original images
through each preprocessing step are illustrated in Fig. 3. No augmen-
tation methods were used to address the dataset’s class imbalance,
influenced by the limited number of samples in classes such as “Mucosal
inflammation large bowel”, “Resected margins”, “Colon diverticula”,
“Ulcer”, “Esophageal varices”, “Angioectasia”, and “Erythema,” which
contained only 29, 25, 29, 6, 7, 17, and 15 samples, respectively,
compared to classes with a larger number of images. Balancing the
dataset across these classes presented significant challenges due to their
uneven distribution (Xu et al., 2023).

4. Architecture

The dataset is ready for training after successfully performing the
preprocessing stage. In the current research era, the most challenging
term is to build a robust, lightweight model that can provide the best
performance while maintaining minimum testing time, parameters,
layers, and sizes. Next, a novel lightweight PD-CNN feature extractor
was proposed, and for fundamental feature selection, the PCC was
concurrently utilized. Furthermore, a novel classifier, the EELM, has
been proposed to improve the model’s decision-making capability.

4.1. Feature extraction

The primary objective of this research was to construct a custom CNN
design that can extract critical features while simultaneously reducing
both parameters and network depth. The configuration of layers in a
CNN is of the utmost importance. An overabundance of parameters and
layers may impede the model’s ability to differentiate distinctive attri-
butes, thus imposing a performance constraint. Conversely, an over-
abundance of parameters and layers increases the demand for
computational resources and lengthens processing times due to the
chance of overfitting. Therefore, it is crucial to achieve an ideal equi-
librium to guarantee precise feature extraction and feasible
implementation.

Fig. 4 presents the proposed PD-CNN model architecture adept at
managing layer complexities and adhering to parameter constraints to
fulfill its objective effectively. The model incorporates convolution
layers (CLs) and fully connected layers (FCs) to find an optimal balance.
Instead of relying on a single CL model, five parallel CL models were
employed to identify the essential features. This challenge was
addressed by concurrently running the initial parallelly connected five
depth-wise separable CLs instead of employing five consecutive CLs,

Table 2
Definitions of GI tract diseases.

GI tract Diseases Description

Normal Stomach A healthy stomach with no disease or
abnormalities, showing a smooth mucosal
lining.

Normal Esophagus A healthy esophagus that appears pink and soft
without any signs of inflammation or lesions

Gastroesophageal Junction
Normal Z-Line

The area where the esophagus meets the
stomach, marked by a normal Z-line indicating
no abnormal tissue growth.

Duodenal Bulb The first part of the small intestine just beyond
the stomach, appearing healthy and free of
ulcers or inflammation.

Pylorus The opening from the stomach into the
duodenum, functioning normally without
obstruction or thickening

Barrett’s Esophagus A condition where the lining of the esophagus
changes, becoming similar to the lining of the
intestine, often due to acid reflux.

Esophagitis Inflammation of the esophagus, usually caused
by acid reflux, infections, or medications,
resulting in pain and difficulty swallowing

Gastric Polyps Small growths on the lining of the stomach,
which can be benign or precancerous,
requiring monitoring or removal.

Ulcer A sore on the lining of the stomach or
duodenum, often caused by Helicobacter pylori
infection or the use of NSAIDs, leading to pain
and bleeding.

Esophageal Varices Swollen veins in the esophagus, usually due to
liver disease, posing a risk of bleeding.

Normal Mucosa and Vascular
Pattern in the Large Bowel

Healthy large bowel tissue with no signs of
disease, showing a normal vascular pattern.

Cecum he beginning of the large intestine, appearing
healthy and free of inflammation or polyps.

T Colon Diverticula Small pouches that can form in the colon wall,
which can become inflamed or infected,
causing diverticulitis.

Ileocecal Valve The valve between the small intestine and
large intestine, functioning normally without
signs of disease or obstruction.

Retroflex Rectum A technique used to view the rectum from a
different angle during endoscopy, showing
normal tissue.

Small Bowel Terminal Ileum The last part of the small intestine, appearing
healthy without signs of Crohn’s disease or
other conditions.

Angioectasia Abnormal blood vessels in the GI tract, which
can cause bleeding and anemia.

Mucosal Inflammation Large
Bowel

Inflammation of the lining of the large
intestine, often due to conditions like
ulcerative colitis or Crohn’s disease.

Colon Polyps Growths on the lining of the colon, which can
be benign, precancerous, or cancerous,
requiring removal and monitoring.

Colorectal Cancer Cancerous growths in the colon or rectum,
often detected through screening methods like
colonoscopy.

Dyed-Lifted Polyps Polyps that have been lifted using a dye during
endoscopy to aid in removal and visualization.

Dyed-Resection Margins Margins of tissue that have been dyed during
polyp removal to ensure complete resection.

Resected Polyps Polyps that have been surgically removed from
the colon or rectum.

Resected Margins: The edges of tissue that have been removed
along with a polyp, are checked to ensure no
cancerous cells remain.

Blood in Lumen Presence of blood in the lumen of the GI tract,
indicating bleeding from a lesion, ulcer, or
varices.

Erythema Redness of the mucosa, often a sign of
inflammation or irritation.

Accessory Tools Instruments used during endoscopic
procedures to aid in diagnosis and treatment,
such as biopsy forceps, snares, and injection
needles.
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which would amplify network depth and complexity (Kaiser et al.,
2017). Their selection was determined through a systematic trial-and-
error process.

The model begins with an input layer that accommodates images of
variable dimensions. Subsequently, a series of parallel CLs with varying
kernel sizes (11 × 11, 9 × 9, 7 × 7, 5 × 5, and 3 × 3) are applied to
capture spatial hierarchies and diverse patterns within the input data.
For this research, the kernel size selection method suggested by Kriz-
hevsky et al. was implemented (Krizhevsky et al., 2017). This method
entails the utilization of 11 × 11 kernel sizes, which have been found to
yield satisfactory classification performance. Acknowledging the
importance of the diverse proportions of kernels, we undertook a
comprehensive examination and synthesis of various kernels to identify
critical characteristics and enhance the efficacy of classification. This
methodology recognizes the distinct feature maps produced by various
kernels. To optimize the results obtained from extracting critical data
from the frame features of GI images, it is crucial to ensure that the
initial five CLs have a consistent buffer size. The feature maps acquired
from these concurrent CLs must be error-free and seamlessly integrated

into a sequential CL to preserve the integrity of the classification process.
The concatenated feature maps are then fed into subsequent layers

comprising standard separable convolutions, each followed by batch
normalization and rectified linear unit (ReLU) activation functions. This
hierarchical architecture enables the model to progressively distil and
abstract high-level features from the input data while mitigating the risk
of overfitting through regularization techniques. An updated feature
map with fewer channels is produced by applying a 1 × 1 convolutional
kernel separately to each channel during the pointwise convolution
process. This emphasizes the pivotal significance of Depthwise Sepa-
rable Convolution (DSC), as it substantially reduces the computational
complexity. During the concluding stage, three CLs were incorporated in
addition to implementing BN and MP using a 2 × 2 kernel. The
respective filter values for these CLs were 128, 64, 32, and 16; each filter
utilized 3 × 3 kernels and VALID padding. Integrating the BN enhances
the model’s efficiency by recalibrating each layer’s input mean and
standard deviation, improving the execution speed and stability. Further
details of the convolution block are presented in Fig. 5.

The ReLU activation function was used for each CL. In addition to

Fig. 3. Image pre-processing include: (A) original images, (B) eroded images, (C) CLAHE images, (D) sharpened images, and (E) Gaussian filtered images.

Fig. 4. Proposed PD-CNN-EELM architecture.
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two FC layers, dropout was used to mitigate overfitting and enhance the
efficiency of the training process. In every training cycle, random
deactivation was applied to 50 % of all nodes, which helped enhance

generalization and accelerate convergence. The final FC layer retrieved
200 features. After that, the PCC algorithm is employed to achieve sig-
nificant features (39 features) from the final layer of 200 features.
Furthermore, the EELM classifier is integrated to determine the final
classification performance among 27 classes (Fig. 6). Table 3 provides a
comprehensive overview of the model summary.

The z score normalization was applied to the 1-dimensional feature
vector obtained from feature extraction, specifically to the 200 extracted
features Xi = {x1, x2,⋯, x200} (Singh & Singh, 2020). Z-score normali-
zation transforms each extracted feature Xi into its z-score Zi using the
following formula:

Zi =
Xi − μi

σi
(1)

where μi is the mean of feature Xi across the dataset and σi is the stan-
dard deviation of feature Xi across the dataset. This normalization
standardizes the data by ensuring that each feature has a mean of zero
and a standard deviation of one, facilitating easier interpretation of
feature importance and enabling comparisons across different features.
It also helps in stabilizing the learning process of machine learning
models, leading to improved performance and robustness.

4.2. Ensemble Extreme learning Machine (EELM)

The pseudo-inverse Extreme Learning Machine (ELM) is a well-
recognized approach for single-hidden layer feedforward neural net-
works (SLFNs) (Ding et al., 2014). In contrast to traditional NN training
methods, the ELM utilizes a unique strategy of randomizing and fixing
the parameters that connect the input layer to the hidden layer by using
the pseudo-inverse technique. This allows for the exclusive training of

Fig. 5. Detailed overview of the convolution block.

Fig. 6. Integration of EELM architecture with PCC from PD-CNN model’s last layer.

Table 3
Summary of proposed PD-CNN model.

Layer Type Output Shape Parameters

Model input layer (None, 124, 124, 3) 0
Functional model (None, 124, 124, 1280) 5975
Separable conv2d layer (None, 122, 122, 128) 175,488
Batch normalization (None, 122, 122, 128) 512
Activation (None, 122, 122, 128) 0
Max pooling (None, 61, 61, 128) 0
Separable conv2d layer (None, 59, 59, 64) 9408
Batch normalization (None, 59, 59, 64) 256
Activation (None, 59, 59, 64) 0
Max pooling (None, 29, 29, 64) 0
Separable conv2d layer (None, 27, 27, 32) 2656
Batch normalization (None, 27, 27, 32) 128
Activation (None, 27, 27, 32) 0
Max pooling (None, 13, 13, 32) 0
Last convolution layer (None, 11, 11, 16) 816
Batch normalization (None, 11, 11, 16) 64
Activation (None, 11, 11, 16) 0
Max pooling (None, 5, 5, 16) 0
Dropout (None, 5, 5, 16) 0
Flatten (None, 400) 0
Dense (None, 1024) 410,624
Batch normalization (None, 1024) 4096
Dropout (None, 1024) 0
Dense Last (None, 200) 205,000
Total Parameters: 815,023
Trainable Parameters: 812,495
Non-Trainable Parameters: 2,528
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the parameters that link the hidden layer to the output layer. Random-
ized initialization accelerates training processes and enhances general-
ization capacities. A useful feature selection and regularization
procedure is introduced into the ELM framework by including L1 reg-
ularization, often known as Lasso regularization (Shi et al., 2022). L1
regularization encourages sparsity in feature representations by adding
a penalty term to the loss function, which effectively pushes many
feature weights toward zero. By incorporating L1 regularization into
ELM (RELM), the ability to distinguish features is improved, and the
chance of overfitting is reduced, resulting in a stronger performance of

the model in generalizing.
A novel ensemble method that combines ELM and RELM classifiers

has been proposed. Ensemble learning is a method that integrates many
classifiers to enhance accuracy and resilience. However, the proposed
methodology distinguishes itself by including ELM and L1 Regularized
ELM models in this strategy. The ensemble operation combines pre-
dictions from individual ELM and RELM classifiers, each trained on
separate subsets or with various initializations. This integration com-
bines the ELM’s efficiency with the RELM’s feature selection, improving
the classification performance. The ELM has shown remarkable
competence in handling large-scale multi-class classification tasks,
outperforming current machine learning models. However, this work
enhances the complexity by substituting the pseudoinverse method and
L1 Regularized methodology with an ensemble approach. This
augmentation greatly enhances the model’s ability to learn and control
features, improving its potential for generalization and obtaining un-
matched accuracy compared to each approach. In the classifier’s design,
39 nodes are in the input layer after employing the PCC, and a staggering
900 nodes are in the hidden layer. In addition, the EELM algorithm
produces twenty-seven nodes crucial for categorizing different samples
from GI tract images. The ELM, RELM and proposed EELM are described

Fig. 7. The modified TL architecture with PCC and EELM to classify GI diseases.

Table 4
Hyper-parameter settings for the experimental approach.

Name Parameters

Learning Rate 0.001
Batch Size 32
epochs 200
Optimizer Adam
Activation Function ReLU
Loss Function Sparse categorical cross-entropy

Table 5
Comparative performance among the baseline models with proposed model.

Method Precision Recall F1-score Accuracy ROC-AUC Testing Time

Pr-CNN-ELM 82.8 ± 0.476 81.8 ± 0.321 80.7 ± 0.224 81.8 97.87 0.00078
Pr-CNN-RELM 83.1 ± 0.471 82.6 ± 0.322 81.3 ± 0.248 82.6 98.36 0.00094
Pr-CNN-EELM 83.1 ± 0.314 82.1 ± 0.342 80.9 ± 0.315 82.1 98.32 0.00143
Pr-CNN-PCC-ELM 82.6 ± 0.489 83.0 ± 0.378 81.9 ± 0.274 83.0 98.03 0.00006
Pr-CNN-PCC-RELM 81.2 ± 0.541 81.0 ± 0.374 79.7 ± 0.233 81.0 97.97 0.00008
Pr-CNN- PCC-EELM 81.7 ± 0.521 82.1 ± 0.368 81.1 ± 0.285 82.12 98.23 0.00007
PD-CNN-ELM 87.59 ± 0.333 87.62 ± 0.343 87 ± 0.321 87.62 98.88 0.01562
PD-CNN-RELM 87.31 ± 0.33 87.25 ± 0.338 86.54 ± 0.316 87.25 98.50 0.0156
PD-CNN-EELM 88.11 ± 0.3 87.75 ± 0.316 87.12 ± 0.285 87.75 98.92 0.00001
PD-CNN-PCC-ELM 87.59 ± 0.334 87.62 ± 0.339 87.04 ± 0.318 87.62 98.91 0.00006
PD-CNN- PCC-RELM 87.31 ± 0.329 87.25 ± 0.3387 86.54 ± 0.314 87.25 98.43 0.00004
PD-CNN-PCC-EELM (proposed) 88.12 ± 0.332 87.75 ± 0.348 87.12 ± 0.324 87.75 98.89 0.000001

*Bold values indicate the best results.
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in Algorithm 1.
The explanation of the EELM algorithm is given below:

Algorithm 1: Proposed EELM Classifier algorithm.
1. Feature sample is ‘S’, and output is ′O′.

S(n,m) =

⎡

⎢
⎢
⎢
⎢
⎣

s(1,1) s(1,2) ⋯ s(1,m)

s(2,1) s(2,2) ⋯ s(2,m)

s(3,1) s(3,2) ⋯ s(3,m)

⋮ ⋮ ⋱ ⋮
s(n,1) s(n,2) ⋯ s(n,m)

⎤

⎥
⎥
⎥
⎥
⎦
O(n,t) =

⎡

⎢
⎢
⎢
⎢
⎣

o(1,1) o(1,2) ⋯ o(1,t)
o(2,1) o(2,2) ⋯ o(2,t)
o(3,1) o(3,2) ⋯ o(3,t)

⋮ ⋮ ⋱ ⋮
o(n,1) o(n,2) ⋯ o(n,t)

⎤

⎥
⎥
⎥
⎥
⎦

2. Input weight and bias metrics is presented as Wm,N, and B(1,N).

W(m,N) =

⎡

⎢
⎢
⎢
⎢
⎣

w(1,1) w(1,2) ⋯ w(1,N)
w(2,1) w(2,2) ⋯ w(2,N)
w(3,1) w(3,2) ⋯ w(3,N)

⋮ ⋮ ⋱ ⋮
w(m,1) w(m,2) ⋯ w(m,N)

⎤

⎥
⎥
⎥
⎥
⎦
B(1,N) =

[
b(1,1) b(1,2) ⋯ b(1,N)

]

3. Hidden layer H(n,N) is used to generate the output.

H(n,N) =

⎡

⎢
⎢
⎢
⎢
⎣

h(1,1) h(1,2) ⋯ h(1,N)
h(2,1) h(2,2) ⋯ h(2,N)
h(3,1) h(3,2) ⋯ h(3,N)

⋮ ⋮ ⋱ ⋮
h(n,1) h(n,2) ⋯ h(n,N)

⎤

⎥
⎥
⎥
⎥
⎦
H(n,N) = G

(
S(n,m)⋅W(m,N) + B(1,N)

)
Where, ′G′

denotes activation function
4. In ELM, output weight metric is presented as β(N,t) ,•β(N,t) = Hɟ

(N,n) • T(n,t)

5. In RELM, output weight metric is presented as β́ (N,t) , where the ELM equations are
replaced as follows:
A(N,N)=H(N,n)T•H(n,N)b(N,t)=H(N,n)T•T(n,t)C(N,N)=A(N,N)+ α•I(N,

N)β’(N,t)=C(N,N)-1•b(N,t)Here, ά́ is called regularization parameter.
6. The following formula denotes the proposed Ensemble operation:

E(N,t)=β(N,t)+β’(N,t)2E(N,t) =
Hɟ

(N,n)⋅T(n,t) + C− 1
(N,N)⋅b(N,t)

2
7. The generated prediction, E(N,t) .

4.3. Transfer learning (TL)

The ability to diagnose GI diseases across many classes can be greatly
improved by using transfer learning models such as DenseNet201 (Zhao
et al., 2021), EffiecientNetB6 (Tan & Le, 2019), InceptionResNetV2
(Bhatia et al., 2019), MobileNetV2 (Sandler et al., 2018), ResNet152V2

(He et al., 2016), VGG16 (Simonyan & Zisserman, 2014), and Xception
(Chollet, 2017). These models extract large numbers of features from
images due to their extensive pre-training on large datasets. Fine-tuning
them on limited data for a specific task enables the effective capture of
intricate patterns and subtle details associated with GI diseases. The pre-
trained models were trained using more than 14 million classifications
from 1,000 categories (ImageNet). We integrated the training of TL
models with the PCC to reduce unnecessary features and the EELM
classifier to attain accurate classification outcomes and compared the
PD-CNN model to TL approaches in terms of classification results and
computational resources, as there is no previous research on this dataset.
This comparison encompasses performance metrics, model parameters,
layer, sizes, and the duration of testing. After initializing the TL models,
two FC layers were added with 1024 and 200 nodes each to improve the
detection of GI diseases. PCC was employed simultaneously to reduce
200 features to only 39. Fig. 7 shows a comprehensive illustration of the
TL models with the PCC and EELM classifier.

DenseNet is a CNN architecture that utilizes dense connectivity,
allowing each layer to receive input from all preceding layers (Zhao
et al., 2021). This promotes effective information transmission and im-
proves overall performance. The variants of DenseNet, including
DenseNet-121, DenseNet-169, DenseNet-201, and DenseNet-264, differ
in the number of layers they contain, with DenseNet-121 having 121
layers and DenseNet-201 having 201 layers. The EfficientNetB6 archi-
tecture employs compound scaling, which involves scaling the net-
work’s depth, width, and resolution (Tan & Le, 2019). This model is
trained using the ImageNet dataset and comprises 87 million parame-
ters. It has been used for several kinds of TL applications, such as se-
mantic segmentation, object detection, and image categorization. The
InceptionResNetV2 (Bhatia et al., 2019) model combines the Inception
and ResNet architectures, utilizing inception modules and residual
connections to extract features effectively. MobileNetV2 (Sandler et al.,
2018) is another CNN architecture introduced by Sandler et al., which is
based on an inverted residual structure. It employs lightweight depth-

Table 6
Class-wise performance of PD-CNN model without PCC on test set.

GI Disease
classes

Precision Recall F1-score Accuracy (%) ROC-AUC (%)

ELM RELM EELM ELM RELM EELM ELM RELM EELM ELM RELM EELM ELM RELM EELM

0 0.95 0.94 0.95 0.99 1 1 0.97 0.97 0.97 87.62 87.25 87.75 98.88 98.50 98.92
1 1 0 1 0.5 0 0.5 0.67 0 0.67
2 0.73 0.7 0.73 0.89 0.78 0.89 0.8 0.74 0.8
3 0.94 1 1 0.88 0.88 0.88 0.91 0.94 0.94
4 1 0.9 0.91 0.91 0.82 0.91 0.95 0.86 0.91
5 1 1 1 1 0.67 0.67 1 0.8 0.8
6 0.74 0.74 0.76 0.88 0.9 0.91 0.8 0.81 0.83
7 0.83 0.83 0.91 0.71 0.71 0.71 0.77 0.77 0.8
8 0.77 0.74 0.74 0.85 0.85 0.85 0.81 0.79 0.79
9 0.92 0.92 0.91 0.79 0.79 0.71 0.85 0.85 0.8
10 0.92 0.88 0.85 0.92 0.92 0.92 0.92 0.9 0.88
11 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0
13 1 0.83 1 0.45 0.45 0.45 0.62 0.59 0.62
14 0.67 0.67 0.67 0.33 0.33 0.33 0.44 0.44 0.44
15 0.82 0.79 0.82 0.94 0.94 0.94 0.87 0.86 0.87
16 0.85 0.92 0.91 0.55 0.55 0.5 0.67 0.69 0.65
17 1 1 1 0.33 0.33 0.33 0.5 0.5 0.5
18 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86
19 0.88 0.88 0.88 0.91 0.91 0.91 0.89 0.9 0.9
20 0.9 0.9 0.89 0.94 0.94 0.95 0.92 0.92 0.92
21 0.83 0.83 0.83 0.87 0.87 0.87 0.85 0.85 0.85
22 1 1 1 0.67 0.33 0.44 0.8 0.5 0.62
23 0 1 1 0 0.5 0.5 0 0.67 0.67
24 0.78 0.88 0.88 1 1 1 0.88 0.93 0.93
25 0.95 0.96 0.96 0.84 0.84 0.84 0.89 0.89 0.89
26 0 0 0 0 0 0 0 0 0
Average (µ)

± SD (σ)
(%)

87.59
± 0.333

87.31
± 0.33

88.11
± 0.3

87.62
± 0.343

87.25
± 0.338

87.75
± 0.316

87 ±

0.321
86.54
± 0.316

87.12
± 0.285

*Bold values indicate the best results.
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wise convolutions and bottleneck layers to achieve better performance
while being computationally efficient, so this architecture is particularly
efficient for mobile devices. In 2017, He et al. (He et al., 2016) presented

ResNet152V2, an NN model that utilizes residual learning by incorpo-
rating shortcut connections across layers to enhance learning efficiency.
ResNet152V2 contains 60 million parameters. The Visual Geometry

Fig. 8. Confusion metrics of (A) PD-CNN-ELM, (B) PD-CNN-RELM, and (C) PD-CNN-EELM models for GI tract disease classification.

Fig. 9. Performance of the PD-CNN model without PCC based on (A) ROC-AUC and (A) AUC-PR.
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Group (VGG) is characterized by multiple CLs and filters (Simonyan &
Zisserman, 2014). After each CL, feature extraction is enhanced with a
Max Pooling (MP) layer and a Rectified Linear Unit (ReLU) function.
Google developed Xception, an architecture based on the Inception
framework, in 2016 (Chollet, 2017). The system employs pointwise
convolutions and DSCs to filter each channel of the input feature map
separately. This approach preserves precision while significantly
decreasing memory consumption and processing requirements. Xcep-
tion is commonly utilized for various computer vision tasks due to its
high efficiency, especially in situations with limited computational
resources.

4.4. Feature selection with PCC

In the current era of ML, where data are paramount, it is critical to
emphasize the importance of identifying pertinent features. Pattern
recognition systems are based on features, measured parts of things that
help identify patterns. However, of the many characteristics that may be
provided, only a specific subset is significantly relevant to the final
output. The extensive feature space of ML methods causes many prob-
lems, such as slow learning and complicated computations. Therefore,
finding the best group of features, which can be achieved by carefully
choosing which features to use, becomes important for overcoming
these problems. The Pearson Correlation Coefficient (PCC)-based
method stands out among the many feature selection procedures as a
potential way to isolate essential characteristics from various possibil-
ities (Benesty et al., 2009). Using the PCC, this method aims to reduce
complexity and improve efficiency and processing speed by selecting the
most relevant feature subset from those recovered by CNNs. By
computing correlation values across all features, finding pairs with
correlations more robust than certain limits is easier. This reduces the
number of features that are not needed and improves the feature space.
Additionally, the correlation coefficient is calculated by dividing the
product of the standard deviations of two variables by the covariance

between them. This ensures that its output remains within the interval of
− 1 to 1. Standardization approaches, such as the ordinary score equa-
tion for a sample, focus on data pretreatment, which is essential for
achieving effective machine learning outcomes. This thorough proced-
ure of selecting features and standardizing them emphasizes the crucial
significance of precise data pretreatment techniques in fully harnessing
the capabilities of machine learning algorithms. Algorithm 2 presents
the working steps of the PCC.
Algorithm 2: Feature selection utilizing PCC

1. BEGIN
2. Define data,X = [x1, x2, ..., xn ],andY =

[
y1,y2, ...,yn

]

3. CorrMat = features.corr()
a) Calculate the mean of each dataset:

μX =

(
1
n

)

*
∑n

i xi, and μy =

(
1
n

)

*
∑n

i yi

b) Calculate the standardized values for each data point:
zi = xi - μXwi = yi − μY

c) Calculate the covariance:covX,Y =

(
1
n

)

*
∑n

i zi*wi

d) Calculate the standard deviation:

σX =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[(
1
n

)

*Σn
i (zi)

2
]√

, and σX =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[(
1
n

)

*Σn
i (wi)

2
]√

e) Calculate PCC, corr():PCC =
covX,Y
(σX*σY)

4. for i ≤ CorrMat.col:
5. for j ≤ i:
6. If CorrMat.iloc[i, j] > threshold:
7. ColName = CorrMat.col[i]
8. CorrCol.add(ColName)
9. Dropped.features(CorrCol)
10. END

4.5. Explainable artificial intelligence (XAI)

In the realm of DL, XAI refers to understanding and clarifying the
decision-making process of a deep neural network (Tjoa & Guan, 2020).

Table 7
Class-wise performance using PD-CNN-PCC on test set.

GI Disease
classes

Precision Recall F1-score Accuracy (%) ROC-AUC (%)

ELM RELM EELM ELM RELM EELM ELM RELM EELM ELM RELM EELM ELM RELM EELM

0 0.95 0.94 0.94 0.99 0.99 0.99 0.97 0.97 0.97 87.62 87.25 87.75 98.91 98.43 98.89
1 0 1 0 0 0.5 0 0 0.67 0
2 0.73 0.67 0.73 0.89 0.89 0.89 0.8 0.76 0.8
3 0.88 0.83 0.94 0.88 0.88 0.88 0.88 0.86 0.91
4 1 0.91 1 0.91 0.91 0.91 0.95 0.91 0.95
5 1 0.67 1 0.67 0.67 1 0.8 0.67 1
6 0.76 0.76 0.75 0.9 0.87 0.9 0.83 0.81 0.82
7 0.91 0.83 0.83 0.71 0.71 0.71 0.8 0.77 0.77
8 0.74 0.74 0.74 0.85 0.85 0.85 0.79 0.79 0.79
9 1 1 1 0.71 0.71 0.71 0.83 0.83 0.83
10 0.89 0.89 0.89 0.96 0.96 0.96 0.92 0.92 0.92
11 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0
13 0.83 1 0.83 0.45 0.45 0.45 0.59 0.62 0.59
14 0.67 0.67 0.67 0.33 0.33 0.33 0.44 0.44 0.44
15 0.84 0.84 0.84 0.94 0.94 0.94 0.89 0.89 0.89
16 0.92 0.85 0.85 0.55 0.55 0.55 0.69 0.67 0.67
17 1 1 1 0.33 0.33 0.33 0.5 0.5 0.5
18 0.87 0.87 0.87 0.93 0.93 0.93 0.9 0.9 0.9
19 0.87 0.89 0.9 0.93 0.93 0.93 0.9 0.91 0.91
20 0.91 0.91 0.91 0.93 0.94 0.94 0.92 0.92 0.92
21 0.83 0.81 0.83 0.87 0.87 0.87 0.85 0.84 0.85
22 1 1 1 0.56 0.56 0.44 0.71 0.71 0.62
23 1 0 1 0.5 0 0.5 0.67 0 0.67
24 0.88 0.88 0.88 1 1 1 0.93 0.93 0.93
25 0.95 0.96 0.95 0.82 0.81 0.81 0.88 0.88 0.87
26 0 0 0 0 0 0 0 0 0
Average (µ)

± SD (σ)
(%)

87.59
±

0.334

87.31
±

0.329

88.12
±
0.332

87.62
±

0.339

87.25
±

0.3387

87.75
±
0.348

87.04
±

0.318

86.54
±

0.314

87.12
±
0.324

*Bold values indicate the best results.
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Fig. 10. Confusion metrics of (A) PD-CNN-PCC-ELM, (B) PD-CNN-PCC-RELM, and (C) PD-CNN-PCC-EELM models for GI tract disease classification.

Fig. 11. Performance of the PD-CNN model with respect to the PCC based on (A) ROC-AUC and (A) AUC-PR.
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This is essential due to the model’s complexity and difficulty in under-
standing. XAI was used in this study to diagnose GI illnesses across 27
different categories to verify its accuracy. SHAP, heatmap, guided
heatmap, Grad-CAM, guided Grad-CAM, and saliency mapping were
employed to address the “black box” character of the DL models, which
can hinder their usefulness. The goal was to enhance the transparency
and interpretability of the proposed PD-CNN model by utilizing XAI. By
combining the PD-CNN model with XAI for disease classification,
endoscopists can make more accurate and confident decisions when
diagnosing diseases more efficiently. This approach will help healthcare
professionals confirm the model’s predictions, identify errors, and
reduce biases and missing data by providing accurate diagnoses. This
advancement creates new opportunities for better disease management
techniques and more efficient therapies for GI issues.

4.5.1. Shapley Additive explanations (SHAP)
This study utilized Shapley values to determine the importance of

individual pixels, which exhibited a clear pattern. Red pixels enhance
accurate class recognition, but blue pixels hinder it by reducing the
likelihood of successful categorization (Bhandari et al., 2022). The
Shapley values were computed using Eq. (1).

∅k =
∑

M⊆N\k

M|!(A − |M| − 1 )!
A!

[fx(M ∪ k) − fx(M)] (2)

fx indicates the impact on the output resulting from the Shapley values of
a specific feature, k. The subset M includes all features coming from
feature N, excluding feature k. M|!(A− |M|− 1 )!

A! represents the weighted factor
of the subsetM permutations. Eq. (2) gives the predicted result, denoted
by the sign fx(M).

fx(M) = P[f(x)|xM] (3)

The SHAP method involves the substitution of every initial identifiable
(xk) with a binary value (b́k) that denotes the presence or absence of xk,
as illustrated in Eq. (3).

l(bʹ) = ∅0 +
∑A

k=1

∅kbʹ
k (4)

The contribution of the feature is represented by ∅kb́k in the proposed
framework f(x), where l(b́ ) is the substitute model for the framework.
The bias is indicated by ∅0. A crucial component that helps comprehend
the fundamental workings of the model is the contribution of feature k to
the result and the function of ∅k.

4.5.2. Heatmap visualization
A heatmap was generated to display the regions of the original image

that had the greatest impact on the ultimate classification outcome. This
heatmap is generated by computing the gradient of the last convolu-
tional layer’s output class score with respect to the feature maps (Jin
et al., 2023).

Heatmap(x) = Σi
∂Scorec

∂Featurei
(5)

Here, Heatmap(x) represents the heatmap for a given input image x,
Scorec represents the class score, and Featurei corresponds to the ith

feature map.

4.5.3. Guided heatmap visualization
The heatmap from the previous phase was refined using guided

visualization techniques. Gradients are calculated via guided back-
propagation and then scaled by the ReLU activation of the correspond-
ing feature map (Jin et al., 2023).
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4.5.4. Gradient-weighted class Activation mapping (Grad-CAM)
Grad-CAM merges class discrimination with location. It creates a

heatmap after computing the weights for each feature map based on the
gradient of the class score compared to the feature maps (Selvaraju et al.,
2017).

αc
k =

1
z

ΣiΣj
∂yC

∂Ak
ij

(6)

LcGradCAM = ReLU(Σkαc
k.A

k) (7)

Here, yC indicate score for class c with respect to feature map Ak, αc
k

indicates calculated weight for every neuron, 1
zΣiΣj defines a global

average pooling over the width (i) and height (j).

4.5.5. Guided Grad-CAM
Guided Grad-CAM visualization is an interpretability technique that

merges guided backpropagation and Grad-CAM principles. This tech-
nique enhances the heatmap produced by Grad-CAM by including
guided backpropagation gradients and highlighting the most significant
features in the ultimate classification determination (Chen et al., 2020).

GuidedGrad − CAMc(x, y) = ReLU(Σkαk
c .A

k(x, y)).*Gc(x, y) (8)

Here, c indicates the class of interest, (x, y) is the co-ordinates of a pixel
in the input image, αk

c indicates important weights for each feature map,
Ak is the activation of feature map k at pixel (x,y), and Gc(x, y) indicates
the refined gradient map obtained through guided backpropagation for
class c.

Fig. 12. ROC-AUC curves for (A) DensNet201, (B) EfficientNetB6, (C) InceptionResNetV2, (D) MobileNetV2, (E) ResNet152V2, (F) VGG16, and (G) Xception with
PCC and ELM (Pseudo-Inverse), RELM (L1-Regularized), EELM (Ensemble) classifier on test-set.

Md.F. Ahamed et al.



Expert Systems With Applications 256 (2024) 124908

16

4.5.6. Guided saliency mapping
Saliency mapping assesses the spatial support of a class. It facilitates

interpretability in neural networks by presenting an image that em-
phasizes the region of interest. The saliency map is generated using
backpropagation. This method enhances comprehension of the model’s
judgments by locating pixels that have minimal influence on the score
and calculating the derivative of the class score regarding the image
(Yang & Berdine, 2023).

First, the distance of each pixel to the remaining pixels in the same

frame is calculated:

SALS(Ik) =
∑N

i=1
|Ik − Ii| (9)

Ii is the value of pixel i. The following equation is an expanded form
of Eq. (9)

SALS(Ik) = |Ik − I1| + |Ik − I2| +⋯+ |Ik − IN| (10)

Fig. 12. (continued).

Fig. 13. AUC-PR curves for (A) DensNet201, (B) EfficientNetB6, (C) InceptionResNetV2, (D) MobileNetV2, (E) ResNet152V2, (F) VGG16, and (G) Xception with PCC
and ELM (Pseudo-Inverse), RELM (L1-Regularized), EELM (Ensemble) classifier on test-set.

Md.F. Ahamed et al.
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where N represents all the pixels in the present frame. After that, for-
mula 8 is refined. The values that have the same I are combined.

SALS(Ik) = ΣFn × |Ik − IN| (11)

where Fn is the frequency of IN. The value of n is in the range [0, 255].

4.6. Hyperparameter settings and classification matrices

The optimal hyperparameters were selected based on a trial-and-
error approach during the experimental work. Once the best parame-
ters were identified, both the proposed and transfer learning models
were trained under similar conditions. Table 4 provides a detailed
overview of the training hyperparameters.

To assess the classification effectiveness of the proposed model,
various metrics, such as accuracy, precision, recall, F1-score, and area
under the curve (AUC), were computed (Powers, 2020). The cross-
entropy formula evaluates the correspondence between the integer-
based actual class label and the probability distribution generated by
the model. It calculates the difference between the real and predicted
labels to reduce cross-entropy loss to the greatest extent possible. The
sparse categorical cross-entropy loss is commonly utilized in deep
learning scenarios such as image classification, particularly when
dealing with numerous classes (Chaithanya et al., 2021).

5. Results and discussions

This section presents a quantitative performance analysis of the
proposed PD-CNN-PCC-EELM framework, evaluated using the

GastroVision test set. Prior to this, the results of an ablation study
involving the following baseline models—Pr-CNN, Pr-CNN-PCC, PD-
CNN, and PD-CNN-PCC—each paired with ELM, RELM, and EELM
classifiers—have been presented, followed by classwise performance
metrics for the PD-CNN and PD-CNN-PCC models. In addition, the per-
formances of the SOTA-TL models were compared against those of the
best-performing frameworks in terms of the classification accuracy,
number of parameters, number of layers, model size, and computational
cost. To determine the optimal PCC threshold, a comprehensive analysis.
For qualitative assessment of model interpretability, XAI visualizations
are presented. Furthermore, the versatility of the model’s performance
was validated using K-fold cross-validation, and a comparative perfor-
mance analysis was performed using the KvasirV2 dataset.

5.1. Ablation study

Table 5 presents the results of an ablation study comparing the
proposed PD-CNN-PCC-EELM model with several baseline models,
focusing on the impact of the PCC for feature selection, the Parallel CNN
(Pr-CNN) as a feature extractor and the ELM, RELM, and EELM as
classifiers.

In terms of Precision, the proposed PD-CNN-PCC-EELM model ach-
ieved the highest value of 88.12 ± 0.332. This represents a notable
improvement of 6.03 % over the Pr-CNN-ELMmodel (82.8± 0.476) and
a 0.601 % improvement over the PD-CNN-ELM model (87.59 ± 0.333).
For recall, the PD-CNN-PCC-EELM model also achieved a score of 87.75
± 0.348, indicating a 6.78 % enhancement compared to that of the Pr-
CNN-ELM model (81.8 ± 0.321) and a slight improvement over that

Fig. 13. (continued).
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of the PD-CNN-ELM model (87.62 ± 0.343). Similarly, the F1-score for
the PD-CNN-PCC-EELM model was the highest at 87.12 ± 0.324,
reflecting a 7.36 % improvement over that of the Pr-CNN-ELM model
(80.7 ± 0.224) and a marginal increase over that of the PD-CNN-ELM
model (87.0 ± 0.321).

The PD-CNN-PCC-EELM model achieved the highest accuracy at
87.75 %, marking a 6.78 % enhancement over that of the Pr-CNN-ELM
model (81.8) and a slight improvement over that of the PD-CNN-ELM
model (87.62). Additionally, the proposed model demonstrated an
excellent ROC-AUC of 98.89, indicating superior classification perfor-
mance. This represents a 1.02 % improvement over the Pr-CNN-ELM
model (97.87) and is on par with the PD-CNN-ELM model (98.88).
Notably, the PD-CNN-PCC-EELM model exhibited the fastest testing
time at 0.000001 s, a significant improvement over both the Pr-CNN-
ELM model (0.00078 s) and the PD-CNN-ELM model (0.01562 s),
underscoring its efficiency.

The incorporation of the PCC feature extractor improved the overall
performance in terms of precision, recall, F1-score, and accuracy
compared to models without PCC. For instance, comparing the Pr-CNN-
PCC-EELM to the Pr-CNN-EELM, the precision improved from 83.1 ±

0.314 to 81.7 ± 0.521, and the F1-score increased from 80.9 ± 0.315 to
81.1 ± 0.285, although the accuracy slightly decreased from 82.1 to
82.12. Similarly, comparing the PD-CNN-PCC-EELM to the PD-CNN-
EELM, both models performed equally well in terms of the recall
(87.75), with the precision slightly increasing from 88.11± 0.3 to 88.12
± 0.332, and the F1-score remained consistent (87.12), while the ROC-
AUC showed a minor decrease from 98.92 to 98.89.

In conclusion, the proposed PD-CNN-PCC-EELM model significantly
outperformed the other models across all the key metrics, including the
precision, recall, F1-score, accuracy, and testing time. The inclusion of
the PCC enhances feature selection, contributing to superior perfor-
mance metrics, particularly when combined with the PD-CNN archi-
tecture. These results confirmed the model’s efficiency and effectivenessTa
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Fig. 14. Number of features with various threshold values.

Fig. 15. Performance scores for various threshold values for the PD-CNN-PCC-
EELM model.
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in processing and classifying data with high accuracy and speed,
underscoring its robustness and suitability for practical applications.

5.2. Depth-wise Separable CNN without PCC

Table 6 presents the performance metrics, including precision, recall,
F1-score, accuracy, and AUC, for various GI disease classes using the PD-
CNN model without the PCC approach. Across the board, the EELM
classifier consistently outperforms both the ELM and RELM classifiers
within the PD-CNN framework. The EELM demonstrates superior per-
formance across all disease classes. The confusion matrices among the
ELM, RELM, and EELM classifiers are displayed in Fig. 8, providing
essential insights into the classification outcomes. According to the
analysis, EELMwas identified as the most precise classifier. For instance,
in disease class 7, the EELM achieved a precision of 0.91, a recall of 0.71,
and an F1-score of 0.80, surpassing the performances of the ELM and
RELM. Notably, in disease class 24, EELM exhibited competitive im-
provements in precision, recall, and F1-scores, with values of 0.88, 1.00,
and 0.93, respectively, outscoring both ELM and RELM. For disease class
25, ELM and RELM exhibited competitive precision, recall, and F1-
scores of 0.96, 0.84, and 0.89, respectively. Additionally, the model
could not identify classes 11, 12, and 26 due to a lack of training data,

and only one sample was available for testing, as shown in Table 1.
In comparison to ELM (average precision of 87.59 %, recall of 87.62

%, and F1-score of 87 %), and RELM (average precision of 87.31 %,
recall of 87.25 %, and F1-score of 87.12 %), the EELM demonstrated
considerable improvements, with the highest average precision of 88.11
%, recall of 87.75 %, and F1-score of 87.12 %. Among the examined GI
diseases, the EELM achieves an estimated 0.594 % improvement in
precision, 0.15 % in recall, and 0.14 % in F1-score compared to the ELM.
This significant improvement highlights how EELM effectively addresses
the categorization issues presented by certain classes.

With respect to accuracy, the EELM achieved a competitive score of
87.75 %, which was 0.15 % greater than that of the ELM (87.62 %) and
0.57 % greater than that of the RELM (87.25 %). The reason for the
lower EELM scores for some classes is that combining multiple base
learners (ELM and RELM) improved the overall predictive performance
(precision, recall, F1 score); however, in specific scenarios, insufficient
data diversity among the base learners prevented the ensemble from
harnessing distinct perspectives and patterns to greatly enhance the
predictive accuracy. Another performance measure with the AUC
showed that the EELM had a better area coverage of 98.92 % (Fig. 9A).
This represents an increase of approximately 0.2 % in comparison to
ELM (98.88 %) and RELM (98.50 %). Fig. 9B presents the AUC-PR

Fig. 16. T-SNE visualization in a 2D space of testing samples after training the models (A) PD-CNN, (B) PD-CNN-PCC, (C) Pr-CNN-PCC, (D) DensNet201-PCC, (E)
EfficientNetB6-PCC, (F) InceptionResNetV2-PCC, (G) MobileNetV2-PCC, (H) ResNet152V2-PCC, (I) VGG16-PCC, and (J) Xception-PCC with EELM for twenty-seven
test-set classification.
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curves, where the EELM achieved a maximum area coverage of 92.10 %.
It is evident from the performance study that using the EELM classifier
improves average precision, recall, and F1-scores, underscoring the
classifier’s potential application in a variety of contexts, particularly in
the fields of predictive modeling and medical diagnostics.

5.3. Depth-wise Separable CNN with PCC

The performance of the proposed feature extractor, PD-CNN, after
incorporating the PCC with three different classifiers, ELM, RELM, and
EELM, is shown in Table 7. Fig. 10 illustrates the confusion matrices
among the EELM, RELM, and ELM classifiers. These matrices offer

Fig. 16. (continued).
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crucial insights into the outcomes of the classification process. The novel
PD-CNN model extracted an excess of 200 features. Unnecessary and
insignificant features were subsequently eliminated to reduce the pre-
dictive complexity of the classification. Upon completion of the feature
extraction process, the PCC algorithm was implemented to eliminate
161 redundant features, resulting in the retention of only 39 of the most
salient features. The classification was then performed using the PD-
CNN-PCC-EELM framework and displayed by employing a test set.

The EELM classifier frequently outperforms the ELM and RELM
classifiers in terms of the maximum number of evaluated metrics. The
EELM consistently outperforms the other methods. In class 5, the EELM
achieved perfect precision, recall, and F1 scores (1.00), but without the
PCC, it performed inadequately (Tables 6 and 7).

The performance enhancement of EELM compared to that of ELM
and RELM is substantial. The EELM obtained the highest average ac-
curacies of 87.75 %, 0.15 % greater than the ELM’s accuracy of 87.62 %,
and 0.57 % greater than the RELM’s accuracy of 87.25 %.

The EELM classifier accurately identifies and classifies GI disorders
within the PD-CNN-PCC model, demonstrating its outstanding capabil-
ities. Reducing superfluous features is a crucial benefit of the PCC,
substantially improving the PD-CNNmodel’s performance. Compared to
the PD-CNN-EELM model, the PD-CNN-PCC-EELM model achieves
competitive ROC-AUC (98.89 %) and AUC-PR (98.89 %) scores
(Fig. 11).

In summary, the proposed configuration emerges as the optimal se-
lection, amalgamating the robust feature extraction capabilities
inherent to the PCC. This synergy yields exceptional performance,
rendering PD-CNN-PCC-EELM the most efficacious solution for precise
and dependable GI disease classification tasks.

5.4. Performance comparison with TL models

The PCC was incorporated with the TL models for comparative
study, as shown in Table 8. Compared to regular CL, DSC layers per-
formed better in the suggested architecture.

Among the models, the Pr-CNN, Pr-CNN-PCC, PD-CNN, and pro-
posed PD-CNN-PCC models demonstrate substantial improvements. For
every metric, the PD-CNN-PCC model outperformed the Pr-CNN-PCC
model. Similarly, PD-CNN-PCC achieved a recall of 0.863, 4.87 %
higher than that of Pr-CNN-PCC (0.821). An analysis of the F1-score
revealed that it increased by 5.26 %, from 0.811 for the Pr-CNN-PCC
to 0.856 for the PD-CNN-PCC. The computational time was seven
times faster than that of the Pr-CNN-PCC technique.

The PD-CNN-PCC-EELM outperformed EfficientNetB6-PCC in terms
of accuracy, with an impressive 0.866 score, which is well above 0.11
and represents an enormous improvement of 87.29 %. The recall metric
also showed significant improvement, reaching 0.863, which was better
than that of ResNet152V2, the second-best transfer model, which scored
0.838. The recall improved by an impressive 2.9 %. The F1-score, which
stands at 0.856 and surpasses the transfer models’ range of 0.672 to
0.828, further demonstrates the superiority of the PD-CNN-PCC model.
The model performance increased by 21.5 % with Xception and 85.3 %
with EfficientNetB6. Overall, the accuracy of the PD-CNN-PCC model
exceeded that of the Xception and VGG16 models, reaching an impres-
sive score of 86.13 %. There is a noticeable improvement of 1.66 %
compared to the best performing VGG16. Compared to traditional TL
approaches, the PD-CNN approach—which involves integrated PCC
thresholding—has produced significant detection capabilities ranging
from 2.9 to 87.29 % across major standards. This highlights the critical
need for domain-specific model design and training.

The PD-CNN-PCC-EELM model was 1,410 times faster than the
VGG16-PCC model, which took 0.0141 s to test. It is 120 times faster
than Pr-CNN, 14 times faster than PD-CNN, and 7–8 times faster than
other TL models, with processing durations ranging from 0.00007 to
0.00009 s. The substantial decrease in testing time demonstrates the
efficiency advantages of the PD-CNN-PCC method. The computational
load is reduced while testing by condensing the CNN model into a
compact feature vector before implementing PCC thresholding. When
real-time or low-latency forecasts are crucial, producing findings in 10
microseconds instead of multiple milliseconds can be very beneficial.
The PD-CNN-PCC model demonstrates superior testing efficiency
compared to the conventional deep TL methods.

The ROC-AUCs of DensNet201, EfficientNetB6, InceptionResNetV2,
MobileNetV2, ResNet152V2, VGG16, and Xception with the PCC-EELM
were 98.51 %, 82.39 %, 98.45 %, 98.84 %, 97.68 %, 98.83 %, and 97.69
%, respectively (Fig. 12). Furthermore, the AUC-PRs of these models
reached 93.68 %, 15.56 %, 88.25 %, 91.46 %, 90.07 %, 94.20 %, and
84.29 %, respectively (Fig. 13).

Fig. 17. Computational resource (A) parameters, (B) number of layers and (C)
size comparisons among the proposed PD-CNN-EELM with TL models.
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5.5. Optimization of PCC threshold

Once the feature extraction was completed, a total of 200 features
were found; subsequently, the PCC was used to eliminate unnecessary
features and select the most important ones, and the suggested EELM

classifier was applied for classification. This led to the creation of the
PD-CNN-PCC-EELM model. Table 9 displays the PCC values and their
performance metrics for different schemes. The PCC threshold value was
determined through trial and error.

The selection of significant features by employing the PCC is based

Table 10
Comparative resource analysis among the trained models on test set.

Performance Criteria Pr-CNN-
PCC

PD-CNN-
PCC

DenseNet201-
PCC

EfficientNetB6-
PCC

Inception
ResNetV2-
PCC

MobileNet
V2-PCC

ResNet
152 V2-
PCC

VGG16-
PCC

Xception-
PCC

Total Parameters
(Million)

2.095 0.815 36.22 78.91 60.83 23.44 92.09 19.64 54.62

Trainable Parameters
(Million)

2.093 0.812 17.9 37.95 6.5 21.18 33.76 4.92 33.76

Number of Layers 41 24 710 669 783 157 567 22 135
Size (Megabytes) 28.49 9.79 111 606.6 283.32 257.54 625.07 115.35 477.6
Testing Time (Seconds)-
EELM

0.00005 0.000001 0.000098 0.000099 0.000085 0.000076 0.000086 0.0141 0.000069

*Bold values indicate the best score.

Fig. 18. Grad-CAM visualization demonstrating the most accurate prediction utilizing the proposed model, where the red circles on the original images indicate the
region responsible for the specific diseases. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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on empirical methods known to optimize classification performance.
The determination of significant features depends on their correlations
and a specified threshold value in the PCC (refer to Algorithm 2, step 6).
To achieve optimal performance, different threshold levels were sys-
tematically varied, and model performance metrics were assessed
accordingly. It is evident that an increase in the number of features re-
sults from the lower threshold values, whereas a decrease in the number
of features occurs from higher thresholds. However, the performance
assessments are heavily impacted by these differences in feature values.
Most importantly, when combined with the suggested EELM classifier, a
PCC value of 0.78 produced the best results out of all the tested PCC
values, outperforming both the lower and higher thresholds. Moreover,
a threshold value of 0.78 for incrementing or decrementing diminishes
the detection capabilities. A greater value (≥0.79) will decrease the
number of relevant aspects, resulting in less accurate findings with re-
ductions of 1.017 % in recall and accuracy, 0.863 % in precision, and
1.104 % in the F1-score. Correspondingly, if the PCC value falls below
the threshold (≤0.77), it results in a reduction in discriminant features,
thereby yielding unsatisfactory outcomes. Upon conducting time–cost
analyses, the optimal processing efficiency was observed at a threshold

value of 0.78. With the PD-CNN-PCC model integrated into the EELM
framework, the test score was 0.00001 s, which is five times faster than
that achieved with thresholds greater than 0.79 and six times faster than
that achieved with thresholds less than or equal to 0.77. Notably, both
the ELM and RELM classifier models exhibited superior performance
compared to the other threshold levels. Consequently, based on this
comprehensive examination, the threshold value of 0.78 emerged as the
optimal choice for the PCC in this research endeavor. Figs. 14 and 15
present the visualization of the feature numbers and performances on
various threshold levels.

5.6. Data distribution with PCC

T-SNE is a method used to decrease nonlinear dimensions and
display complicated information (Arora et al., 2018). Data visualization
is achieved by transforming data from higher dimensions into two or
three dimensions, highlighting the proximity of close spots and the
uniqueness of distant ones. The t-SNE method works in two steps. It first
creates a probability distribution for pairs of high-dimensional objects,
assigning greater probabilities to comparable pairings and lower

Fig. 19. Grad-CAM visualization demonstrates less accurate prediction utilizing the proposed model, where the red circles on the original images indicate the region
responsible for the specific diseases. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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probabilities to dissimilar pairs. Subsequently, it establishes a corre-
sponding probability distribution in lower dimensions, minimizing the
Kullback–Leibler divergence (KL divergence) between the two distri-
butions concerning the positions of the points on the map. Evaluating

the model’s effectiveness involves visualizing its learned insights. The
widely used t-SNE method aids in representing learning within the
embedded space of a trained model. This analysis indicates that 27 class
classifications exhibit reduced 2D representations for the testing

Fig. 20. SHapley Additive exPlanations (SHAP) accurately predicted images for the proposed model (C indicates the selected class).

Fig. 21. SHapley Additive exPlanations (SHAP) less accurate predicted images for the proposed model (C indicates the selected class).
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datasets. In Fig. 16, the embedded space segregates sample points at the
testing phase among the multiclass classification datasets.

For a comprehensive analysis, a two-dimensional t-SNE embedding
was utilized on PD-CNN-PCC, as shown in Fig. 16A. Significantly distinct
categories, such as “Normal esophagus (class 18)” and “Small bowel_-
terminal ileum (class 25)”, demonstrated a reduced occurrence of
misclassification in the t-SNE embedding. The high F1 scores of 0.90 and
0.87 for the “Normal esophagus (class 18)” and “Small bowel_terminal
ileum (class 25)” classes are likely attributable to these distinct sepa-
rations. Conversely, certain classes, such as “Ileocecal valve” (class 16),
“Erythema” (class 11), “Esophageal varices” (class 12) and “Angioec-
tasia” (class 1), overlap, making them susceptible to misclassification
due to the absence of well-defined boundaries and limited data diversity
with other classes. Additionally, t-SNE visualizations with the PCC were
generated for the remaining TL models.

5.7. Computational time and resource comparison

Fig. 17 illustrates the comparison of resources among the models.
The PD-CNN-PCC model stands out among the evaluated models across
various performance measures. Compared with the other models, the
PD-CNN-PCC has a notable reduction in architectural complexity, con-
sisting of a mere 0.815 million total parameters. On the other hand, Pr-
CNN-PCC required a 1.57 times greater number of parameters. With
only 0.812 million trainable parameters, it is the most parameter-
efficient model compared to Pr-CNN by 1.58 % and other TL models
by 5.06 to 45.74 % (Table 10). Furthermore, compared to DensNet201-
PCCmodels, which have 710 layers and are more difficult to analyze, the
proposed model’s 24-layer design features a streamlined architecture
and a 28.58 % decrease in the number of layers. The compactness of PD-
CNN-PCC is evident in its size, which is only 9.79 megabytes, positioning
it as one of the smallest models in comparison. The model’s compact size
and fewer layers enhance its efficiency for deployment on embedded
devices, enabling real-time processing. PD-CNN-PCC is approximately 5
times faster than Pr-CNN-PCC, 10 times faster than EfficientNetB6-PCC,
and nearly 140 times faster than VGG16-PCC when considering testing
time with EELM. In summary, this computational time analysis dem-
onstrates the remarkable speed and efficiency of PD-CNN-PCC compared
to the other models. These characteristics enable faster processing and
better outcomes on hardware devices. It should be noted that no
embedded system was used to test the model in real-world applications.
Future work will focus on employing the proposed model for clinical
application. Additionally, general-purpose computing systems can pro-
vide significant utility due to the model’s low computational overhead.

5.8. Interpretability with XAI

The proposed framework enhances transparency and interpretability
in decision-making processes by employing multiple XAI approaches.
For reliability, widely used XAI methods such as heatmap, Grad-CAM,
Guided Heatmap, Guided Grad-CAM, Guided Saliency Mapping, and
SHAP were utilized because they are effective for predicting image data.
Specifically, the heatmap, Grad-CAM, Guided Heatmap, Guided Grad-
CAM, and Guided Saliency Mapping provide feature-capturing expla-
nations, while SHAP offers class-wise feature representation (Abusitta
et al., 2024). This comprehensive quantification ensures the trustwor-
thiness of the proposed model.

Several test samples of images were randomly selected to generate
the XAI predictions, as depicted in Fig. 18. For instance, in the first row,
the sample image belongs to the resection margin class. The heatmap
visualizes the affected area crucial for class identification, whereas the
guided heatmap highlights this region more precisely. Remarkably, the
Guided Grad-CAM integrates the original image as a background,
revealing specific features relevant to the class prediction. The sixth
column shows that the model predominantly focuses on the center of the
resection margin regions, while the last column’s guided saliency mapTa
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indicates the affected pixels with greater precision, eliminating irrele-
vant background noise. Similarly, in the third row, a sample image of a
colon polyp is shown. The visualizations demonstrate that the guided
heatmap identifies the polyp area more accurately than does the heat-
map, and the Guided Grad-CAM focuses on the polyp with greater pre-
cision. Additionally, the brighter pixels in the guided saliency map
accurately highlight the affected pixels. Furthermore, Fig. 19 presents
some examples of less accurate predictions for similar classes of data, as
shown in Fig. 18. The primary reason for these misclassifications is the
complexity and similarity of specific data features across different
classes.

In the SHAP explanation, random samples were selected to generate
predictions and test the interpretability performance of the proposed
method. An exhaustive analysis of several GI features led to the gener-
ation of Shapley values, resulting in pixelated visualizations. The anal-
ysis demonstrated a clear pattern: red pixels effectively indicated

specific classes, while blue pixels indicated a lower probability of
belonging to the target class. To obtain the SHAP results, a set of test
samples was randomly selected for prediction. Fig. 20 displays the SHAP
results using faint gray backgrounds combined with the original images.
The red pixels in the SHAP explanation images in the top row represent
the presence of Accessory tools (C-0). Conversely, the lack of blue pixels
and the reduced number of red pixels accurately removed other class
groupings. The second row shows a clear pattern where red pixels in the
SHAP explanation images represent the Colon polyps (C-6) class, with an
excess of red pixels correctly indicating class membership. Subse-
quently, blue pixels in the SHAP explanation graphics for other classes
indicated a lower probability. The red pixels in the third row of the
SHAP explanation images suggested strong evidence of Gastric polyps
(C-16) class GI disease. Significantly, C-19 exhibited a very competitive
XAI prediction compared to C-26 and C-19, with red pixels depicted in
both classes. However, a significant presence of blue pixels in the C-26

Fig. 22. ROC-AUC performances of the PDCNN-PCC model on the K-fold scheme.
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projection resulted in an increased false projection for C-26. Addition-
ally, rows 4, 5, 6, and 7 correctly recognized disease classifications by
emphasizing red pixels in specific areas.

Finally, SHAP visualizations were generated for specific classes with
less accurate model predictions, as shown in Fig. 21. Due to fewer
training samples, the model struggled to learn specific class features
perfectly. However, in the 2nd, 3rd, 5th, and 6th rows (C-5, 11, 22, 23),
the model showed competitive feature extraction visibility, with red
pixels found in accurate classes as well. These visual SHAP explanations
validated the model’s outcomes, offering doctors a deeper understand-
ing of specific disease categories.

5.9. K-fold cross-validation performances

Table 11 presents the comparative performance metrics of the pro-
posed PD-CNN-PCC architecture using three classifiers, ELM, RELM, and
EELM, evaluated on the GastroVision dataset through a 10-fold cross-
validation scheme. Across all folds, the EELM consistently outperforms
the ELM and RELM. Specifically, the EELM achieved the highest average
Precision (87.943 ± 0.3445), Recall (87.422 ± 0.2126), F1-score
(87.681 ± 0.1874), Accuracy (87.699 ± 0.5506), and ROC-AUC
(98.785 ± 0.1026). Beyond superior classification metrics, the EELM
model exhibited a notable improvement in computational efficiency.
The average testing time for the EELM was significantly lower
(0.00000114 s) than that for the ELM (0.0046883 s) and RELM
(0.0050097 s). This reduction in testing time underscores the efficiency
of the EELM model in rapidly processing data, which is critical for
practical applications. Furthermore, the average performance metrics
across the 10 folds were consistent with the class-wise average perfor-
mance metrics. The ROC-AUC curves for each fold are presented in
Fig. 22. This consistency affirms the robustness and reliability of the
proposed model across various dataset configurations.

5.10. Validation on KvasirV2 dataset

Table 12 presents the class-wise performance of the proposed PD-
CNN-PCC-EELM model on the KvasirV2 test set and compares it with
that of the ELM and RELM classifiers. The proposed model was trained
on the KvasirV2 dataset in a similar way as the GastroVision dataset. The
EELM model trained on the KvasirV2 dataset achieved an accuracy of
98.01 %, while the ELM and RELM models achieved accuracies of 97.87
% and 97.37 %, respectively. Additionally, the EELM model demon-
strated superior computational efficiency, with an average testing time
of 0.00000005 s, which is significantly faster than that of the ELM
(0.0000023 s) and RELM (0.0000041 s). Similar improvement trends
were also found for other performance parameters, such as precision,
recall and F1-score. Furthermore, the ROC-AUC and AUC-PR curves,
shown in Fig. 23, indicate that the EELM model outperforms the RELM
model in both metrics and demonstrates competitive performance with
the ELM model. These results further validated the effectiveness and
efficiency of the proposed PD-CNN-PCC-EELM model on a new dataset.

5.11. Discussion, Limitations, and Future work

While numerous studies have focused on GI disease diagnosis,
identification, and segmentation, more research on multi-class classifi-
cation encompassing a broad spectrum of GI diseases is needed. This
discussion presents a thorough review of the experimental results ach-
ieved using the proposed method, which effectively categorizes 27 types
of GI tract issues for the first time. The proposed approach comprises
four main steps: dataset preprocessing, feature extraction, feature se-
lection, and classification with interpretability. The preprocessing step
ensures the use of refined and standardized input data, enhancing the
performance and accuracy of classification tasks. The PD-CNN extracted
200 features, but the feature selection stage retained only 39 features
using the PCC. The EELM outperforms the other classifiers in terms ofTa
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precision, recall, F1 score, accuracy, ROC-AUC and AUC-PR
performance.

Table 13 compares previous classification models with the proposed
PD-CNN-PCC-EELM model. Noor et al. (Noor et al., 2023) show that
MobileNetV2, with 3.4 million parameters and 154 layers, achieved an
accuracy of 97.68 % for five classes. Nouman et al. (Nouman Noor et al.,
2023) also employed MobileNetV2 for the 5-class classification task,
utilizing 3.4 million parameters and 1210 extracted features. Gunase-
karan et al. (Gunasekaran et al., 2023) obtained a 95 % accuracy rate for
eight classes by employing the ensemble TL model, which comprised
66.94 million features. Öztürk et al. (Öztürk& Özkaya, 2021) combined
a ResNet50 TL model with a residual LSTM classifier to achieve 98.05 %
accuracy in an eight-class classification task using the Kvasir dataset.
Other researchers (Khan et al., 2024; Lonseko et al., 2021; Ramzan et al.,
2023; Thomas Abraham et al., 2023; Yogapriya et al., 2021) have uti-
lized TL-based models for classifying gastrointestinal disorders. As pre-
viously stated, all these models contained many parameters, ranging
from 5.3 to 138 million. Most of these models prioritize extracting a
large number of features (943–1000), which leads to higher computa-
tional requirements for both training and inference. Large feature sets in
models can result in slower inference times, making them unsuitable for
practical use.

On the other hand, the PD-CNN-PCC-EELM model achieved a com-
parable accuracy of 86.13 % across 27 classes with only 0.815 million
parameters, 24 layers, and 39 features. The proposed model, which is a
lightweight NN, attained notable accuracy for all 27 classes within a
testing time of 0.00001 s. The design of the model is optimized by
simultaneously running the first five CLs to improve feature extraction.
The model succeeds in terms of classification performance and compu-
tational requirements compared to the SOTA-TL models, as shown in
Tables 8 and 10. This approach reduces the number of parameters,
layers, and testing time while maintaining acceptable accuracy. The use
of SHAP, heatmap, Grad-CAM, guided Grad-CAM and guided saliency
map has improved the interpretability of the proposed model by
showing that it focuses on relevant image regions to extract useful
features.

A few datasets, such as Kvasir, HyperKvasir, Kvasir-Capsule and KID,
provide multiple GI findings. However, Kvasir-Capsule and KID are
video capsule endoscopy datasets that contain a minimum number of
classes. Most previous studies have demonstrated their proposed models
using these datasets, classifying 5 to 8 types of GI diseases. For the first
time, the GastroVision dataset contained 27 classes (highest) and
included more labeled classes of anatomical landmarks, pathological
findings, and normal findings. Additionally, baseline results have been

established on this dataset for GI disease detection and classification of
the upper, lower, and combined GI tract, offering valuable research
resources for advancing GI endoscopy studies.

Although the suggested method yields outcomes comparable to those
of a lightweight model, it has several drawbacks. The model’s classifi-
cation accuracy is inferior to that of other existing studies. The primary
cause of this lower classification accuracy is that the current study
worked on a large dataset with 27 different classes. Additionally, the
GastroVision dataset has diverse types of images of different GI diseases.
Another issue affecting the classification accuracy is the resizing of
images during the preprocessing stage, which results in a significant loss
of resolution. Moreover, some classes of the dataset contain very few
sample images, such as ulcer (class 26), which has only 6 sample images,
and esophageal varices (class 12), which has 7 sample images. There-
fore, there is still potential for additional improvement in the model.
Future endeavors of the authors will focus on improving the model’s
efficiency by balancing the GastroVision dataset. The researchers plan to
gather and create a more evenly distributed dataset to enhance classi-
fication results.

For the KvasirV2 dataset, the proposed model achieved an accuracy
of 98.01 %, maintaining a significantly low testing time of 0.00000005 s
and utilizing only 39 essential features. This performance surpasses that
of other SOTA works (Nouman Noor et al., 2023; Noor et al., 2023;
Gunasekaran et al., 2023; Yogapriya et al., 2021; Lonseko et al., 2021;
Khan et al., 2024).

Additionally, as a future avenue of exploration, implementing a real-
world hardware-based design is envisioned to provide enhanced visu-
alization capabilities for the proposed model, thus improving its prac-
tical utility.

6. Conclusion

This study presented a novel method for precisely categorizing
gastrointestinal (GI) tract disorders by integrating the parallel Depth-
wise Separable CNN (PD-CNN) feature extractor and PCC feature
selector with the Ensemble ELM (EELM) classifier. The proposed model,
consisting of 24 layers and 0.815 million parameters, effectively cate-
gorizes twenty-seven types of different anatomical positions of GI dis-
eases while decreasing the computational burden. The testing duration
of the EELM model was only 0.0001 s after integrating the PCC, which
reduced irrelevant features. The hybrid EELM classifier improves the
classification performance by combining the ELM and RELM algorithms.
The proposed approach has shown excellent classification performance,
with precision, recall, f1, accuracy, ROC-AUC, and AUC-PR values of

Fig. 23. Performance of the PD-CNN-PCC-ELM (Pseudo-Inverse)/RELM (L1-Regularized)/EELM (Ensemble) models on the KvasirV2 test set: (A) ROC-AUC and (A)
AUC-PR performances.

Md.F. Ahamed et al.



Expert Systems With Applications 256 (2024) 124908

29

Ta
bl
e
13

Re
su
lts

of
pr
ev
io
us

st
ud

ie
s
co
m
pa
re
d
w
ith

th
os
e
of

th
e
pr
op
os
ed

PD
-C
N
N
-P
CC

-E
EL
M

m
od
el
.

R
ef
.

D
at
as
et

N
um

be
r
of

Sa
m
pl
e

Im
ag
es

N
um

be
r

of
Cl
as
s

Fe
at
ur
e
Ex
tr
ac
to
r

Pa
ra
m
et
er
s

(M
ill
io
n)

N
um

be
r

of
La
ye
rs

M
od
el

Si
ze

(M
B)

N
um

be
ro
f

Fe
at
ur
es

Be
st
Cl
as
si
fi
er

Te
st
in
g

A
cc
ur
ac
y

(%
)

Te
st
in
g

Ti
m
e

(S
ec
on
ds
)

R
ea
l-t
im
e
XA

I

N
ou
m
an

et
al
.(

N
ou
m
an

N
oo
r

et
al
.,
20

23
)

Kv
as
ir
V-
2
an
d

H
yp
er
-K
va
si
r

48
54

5
M
ob
ile
N
et
V2

3.
4

15
4

−
12

10
So
ftm

ax
96

.4
0

−
–

N
o

N
oo
r
et

al
.(
N
oo
r

et
al
.,
20

23
)

Kv
as
ir
V-
2
an
d

H
yp
er
-K
va
si
r

48
54

5
M
ob
ile
N
et
V2

3.
4

15
4

−
81

0
So
ftm

ax
97

.6
8

−
–

Ye
s
(G
ra
d-
CA

M
)

G
un

as
ek
ar
an

et
al
.(

G
un

as
ek
ar
an

et
al
.,

20
23

)

Kv
as
ir
V-
2

80
00

8
En

se
m
bl
e
M
od
el

(I
nc
ep
tio

nV
3,

D
en
se
N
et
20

1,
Re

sN
et
20

1)

66
.9
4

−
–

−
−
–

−
–

95
−
–

N
o

Ö
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Ö
zt
ür
k

&
Ö
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88.12 ± 0.332 %, 87.75 ± 0.348 %, 87.12 ± 0.324 %, 87.75 %, 98.89
%, and 92 %, respectively. Additionally, the proposed model is compact,
with a size of only 9.79 MB, which makes it suitable for practical use.
Moreover, its low computational requirements (parameters, layer, size)
would enable its deployment on cost-effective edge devices quite easily.
Furthermore, combining real-time explainable (XAI) helps medical ex-
perts by offering a reliable explanation of the model’s results in
revealing the right type of GI disorder. In conclusion, the PD-CNN-PCC-
EELM technique greatly enhances the accuracy of classifying 27 types of
GI tract diseases and is easy to implement and evaluate in real-world
scenarios. However, there is still room for further improvement in
accuracy.
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