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Enhancing agriculture 
through real‑time grape leaf 
disease classification via an edge 
device with a lightweight CNN 
architecture and Grad‑CAM
Md. Jawadul Karim 1, Md. Omaer Faruq Goni 1, Md. Nahiduzzaman 1, Mominul Ahsan 2, 
Julfikar Haider 3 & Marcin Kowalski 4*

Crop diseases can significantly affect various aspects of crop cultivation, including crop yield, 
quality, production costs, and crop loss. The utilization of modern technologies such as image 
analysis via machine learning techniques enables early and precise detection of crop diseases, hence 
empowering farmers to effectively manage and avoid the occurrence of crop diseases. The proposed 
methodology involves the use of modified MobileNetV3Large model deployed on edge device for 
real‑time monitoring of grape leaf disease while reducing computational memory demands and 
ensuring satisfactory classification performance. To enhance applicability of MobileNetV3Large, 
custom layers consisting of two dense layers were added, each followed by a dropout layer, helped 
mitigate overfitting and ensured that the model remains efficient. Comparisons among other models 
showed that the proposed model outperformed those with an average train and test accuracy of 
99.66% and 99.42%, with a precision, recall, and F1 score of approximately 99.42%. The model was 
deployed on an edge device (Nvidia Jetson Nano) using a custom developed GUI app and predicted 
from both saved and real‑time data with high confidence values. Grad‑CAM visualization was used to 
identify and represent image areas that affect the convolutional neural network (CNN) classification 
decision‑making process with high accuracy. This research contributes to the development of plant 
disease classification technologies for edge devices, which have the potential to enhance the ability 
of autonomous farming for farmers, agronomists, and researchers to monitor and mitigate plant 
diseases efficiently and effectively, with a positive impact on global food security.

Keywords Grape leaf disease, Image processing, Lightweight CNN, Embedded system, Grad-CAM

Plants have crucial functions in supporting all living organisms on the planet. Given the significance of plants in 
supporting human survival, it is essential to exercise prudence and implement rigorous protocols when engag-
ing in the detection and study of plant diseases. To prevent the progression of the disease to a severe level, it is 
imperative to employ appropriate insecticides and genetic modification techniques on  crops1. Nonetheless, the 
delayed identification of viral, parasitic, or plague-induced plant diseases necessitates increased use of pesticides 
on the afflicted plant, hence diminishing the overall crop quality and  rate2. Accurate classification of plant diseases 
using artificial intelligence (AI) have multiple benefits in the agricultural industry. First, it improves the overall 
quality of agricultural goods. Additionally, this approach enables the reduction of excessive use of chemical 
sprays, such as fungicides and herbicides, contributing to sustainable agriculture. Considering that plants serve 
as the primary source of sustenance for all living organisms, including humans, it is crucial to conduct further 
investigations to progress in this domain.

OPEN

1Department of Electrical & Computer Engineering, Rajshahi University of Engineering & Technology, 
Rajshahi 6204, Bangladesh.  2Department of Computer Science, University of York, Deramore Lane, Heslington, 
York  YO10  5GH,  UK.  3Department of Engineering, Manchester Metropolitan University, Chester Street, 
Manchester M1  5GD, UK.  4Institute  of Optoelectronics, Military University  of Technology, Gen. S.  Kaliskiego  2, 
00-908 Warsaw, Poland. *email: marcin.kowalski@wat.edu.pl

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-66989-9&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2024) 14:16022  | https://doi.org/10.1038/s41598-024-66989-9

www.nature.com/scientificreports/

The convolutional neural network (CNN) has become a popular technique in the field of deep learning (DL) 
and has attracted considerable interest across other scientific domains, especially in the field of  agriculture3. 
CNNs have exhibited exceptional efficacy in extracting significant information from images, making them ideal 
for the assessment of plant  health4. It possesses the potential to learn complex patterns and subtle variations in 
leaf textures, colors, and shapes by being trained on large datasets that include both diseased and healthy  plants5.

The use of embedded edge computing devices improves the effectiveness of this system and enables real-time 
evaluation of plant health on  site6. The incorporation of this technology into self-governing rovers/drones rep-
resents a significant advancement in the domain of precision  agriculture7. When paired with advanced disease 
detection technology, these rovers/drones exhibit exceptional accuracy in navigating vineyards and  orchards8. 
These entities have the ability to collect high-resolution imagery and conduct real-time disease evaluations and 
mapping. This phenomenon not only leads to a reduction in the requirement for manual labor but also facilitates 
the timely identification and management of plant diseases, hence fostering enhanced crop well-being and overall 
heightened productivity. Nvidia Jetson Nano, a tiny and low-cost-effective edge device, has been utilized as a 
tool for disease classification owing to its notable efficiency and computing ability.

The main goal of this study is to create a lightweight CNN architecture from MobileNetV3Large and to 
engineer it for use on edge devices to create a real-time effective disease classification, categorization and visu-
alization system for grape plants.

This research is supported by the following major novel contributions.

1. Efficient Disease Classification: The main objective is to develop a system for quickly and accurately iden-
tifying diseases in grape leaves so that timely interventions are possible. By modifying MobileNetV3Large 
further, a lightweight CNN model is proposed to process images efficiently while maintaining high classifica-
tion accuracy. Utilization of the h-swish activation function and squeeze-and-excitation structures has also 
been proposed to efficient extract important features associated with diseases in grape leaves.

2. Deployment on Edge Devices: A CNN-based disease detection model was seamlessly incorporated into 
an edge device. These gadgets will be fixed to self-driving rovers/drones, enabling in-field real-time image 
capture and analysis. This deployment strategy ensures quick disease assessment with low latency since all 
the test are run locally. Also it comes with an advantage of bandwidth conservation and offline capability as 
there is no need for internet or cloud processing.

3. Real-Time Explainable AI (XAI) Representation with Grad-CAM: Unlike most of the research works that 
utilized Grad-CAM or any other heatmap visualization model for only testing, this research focus on imple-
menting it for real time operation for precise targeting treatment measures, like selective pruning or targeted 
pesticide application, by highlighting regions of interest linked to particular diseases.

Literature review
Several authors have implemented different CNN architectures for grape leaf disease classification in the last 
decade while most of these studies focused on developing models based on large architectures for classification. 
However, recent studies are beginning to focus more on lightweight-based models for classification. A literature 
review of each of these works is provided, starting with models consisting of large architectures requiring high 
computational requirements and followed by lightweight models developed for running on edge devices.

Transfer learning has been used in a number of studies with large CNN architectures, which are computation-
ally demanding despite their effectiveness. For instance, Paymode et al.9 classified grape and tomato leaf diseases 
using VGG16, and they did so with a high accuracy of 98.40%. In another similar work, AlexNet, VGG-19, and 
Inception v3 were evaluated by Morellos et al.10, with Inception v3 attaining up to 100% validation accuracy. 
AlexNet was also utilized by Aravind et al.11, who increased its accuracy to 99.23% by utilizing a multiclass sup-
port vector machine. With the help of Nagaraju et al.12, VGG-16 was improved to classify apple and grape leaf 
diseases with a 97.87% accuracy rate. A new method for detecting grape leaf diseases called the UnitedModel 
was introduced by Ji et al.13. This method utilizes a combined convolutional neural network (CNN) architecture 
that incorporates the advantages of both GoogLeNet and ResNet. The purpose of this model is to distinguish 
between healthy leaves and leaves damaged by common grape diseases, such as black rot, esca, and isariopsis 
leaf spot. The UnitedModel had exceptional performance on the PlantVillage dataset, with an average validation 
accuracy of 99.17% and a test accuracy of 98.57%. Liu et al.14 proposed a novel CNN-based model, the DICNN, 
from scratch. The original dataset was collected from the field and public dataset repository and was used to 
generate a total of 107,366 grape leaf images of 7 classes. Upon accuracy comparison with other models such as 
GoogleNet and ResNet34, the proposed model (97.22%) generated increased accuracies of 2.97% and 2.55%, 
respectively. Atila et al.15 used the EfficientNet architecture, specifically emphasizing the B4 and B5 models, for 
the purpose of categorizing plant leaf diseases. The dataset included 55,448 original and 61,486 enhanced photos, 
covering 39 categories of 14 distinct plant species. The B5 model achieved an impressive accuracy of 99.91% on 
the original dataset, while the B4 model achieved an even higher accuracy of 99.97% on the enhanced dataset. 
Shovon et al.16 proposed an ensemble learning method for the classification of rice and beetle leaf disease with 
the IRV2_EV2L_Xcep model. As suggested by Nagasubramanian et al.17, a 3D-CNN model was used to extract 
characteristics from 3D hyperspectral data that span both the spatial and spectral dimensions with a classifica-
tion accuracy of 95.57%, and an F1 score of 87% was obtained. Even after having high accuracies, these models 
are not suitable for real-time applications on edge devices due to their large number of parameters and high 
computational demands. Also many of  them9–12 lacked other performance metrics such as precision, recall, and 
F1-score, which are also important for checking the robustness of the model.

The focus of recent research has shifted to lightweight models that can be deployed on edge devices and oper-
ate at high accuracy. For a variety of plant leaves, Anari et al.18 developed a lightweight ResNet-18 model that 
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achieved high accuracies but lacked practical validation on edge devices. This method produced better results, 
but it required more computer power. Rao et al.19 used AlexNet as the transfer learning model and stochastic 
gradient descent (SGD) as the optimizer to achieve an accuracy of 98.85% for grape leaves and 90% for mango 
leaves. Tang et al.20 applied the SE module within the ShuffleNet network and proposed a lightweight convo-
lutional neural network. The network’s performance was assessed using publicly available data on four differ-
ent grape diseases, and the training set’s accuracy was 99.14%. In another work, plant disease detection using 
MobileNet architectures was enhanced by Parez et al.21 and Chen et al.22. On the PlantVillage dataset, Chen et al.’s 
MobileNet-Beta achieved remarkably high accuracy. But the evaluation of these studies’ practical applicability is 
limited by the absence of comprehensive performance metrics like precision, F1-score, or AUC. Novel models 
that integrate Inception and SE-blocks, as well as efficient channel attention techniques, were presented by Xie 
et al.23 and Wang et al.24. Peyal et al.25 used a lightweight 2D CNN model covering 12 infected and 2 healthy 
states to classify tomatoes and cotton crops into 14 categories. The model, which outperforms pretrained models 
with 97.36% average accuracy was incorporated into the "Plant Disease Classifier" Android app. Also, it provided 
insights into disease identification by utilizing Grad-CAM to provide visual explanations.

These models are claimed to be appropriate for real-world agricultural applications because they showed good 
detection accuracy. However, their effectiveness was only tested on particular datasets, which begs the question 
of how reliable they are in various environments. The works discussed here, as presented in  papers9–12,14,18,21,22, 
showed a common aim of achieving high accuracy by leveraging complex architectures or ensemble methods. 
Although the missing results on real-time validation of these models on real-world datasets and edge devices 
leave a significant gap in their studies. Most of these works suffer from overfitting by using limited and unbal-
anced datasets. Also, the absence of comprehensive performance metrics further limits the evaluation of model 
robustness. In order to cover these gaps, the following research focuses on developing an accurate and light-
weight model, for grape leaf disease classification that can be deployed on edge devices and has been validated 
on real-world tests.

Materials and methods
Overall architecture of the proposed system
For this research, a preplanned approach was developed for efficient and rapid development of the model and its 
testing. The complete process from data collection to preprocessing, from customizing the proposed model and 
training it to evaluating the test data, is explained in detail and shown according to the block diagram in Fig. 1.

Image acquisition
The dataset for this research was obtained from the “Grapevine Disease Dataset (Original)”26, which contains 
four classes with a total of 7222 images for the training part and 1805 images for the test part (Fig. 2). Each 
class contains approximately 1600–1900 training images with 400–450 test images (Table 1). The images were 
originally unbalanced RGB images of 256 × 256 each in size.

The  dataset26 for grape disease obtained from Kaggle consisted of a small amount of data, which is not 
suitable for proper model building. When a model is equipped with a large number of parameters but is given 
only a limited amount of data, its ability to effectively learn the underlying patterns is compromised, leading to 
vulnerability to  overfitting27. In addition to the presence of imbalanced data within each class, it is important to 
acknowledge that such data can lead to the development of a biased model.

Training – 19200 Images

Validation - 4800 Images

Testing – 3122 ImagesImage Acquisition (Grape
Leaf Disease, 4 Class)

Loading Pretrained
MobileNetV3Large

Freezing Base Model

Dataset
Pre-

processing

Removing Duplicates

Resizing (224 * 224)

Data Augmentation

Add Multiple Dense
and Dropout Layers

Adding Loss Function
& Optimizer

Performance
Comparison on Test

Data

Accuracy Precision,
Recall, F1-Score, ROC,
AUC, Confusion Matrix

XAI Test using Grad-CAM
Performance

Comparison on Edge
Device

Confidence Score,
Inference Time,

Power Consumption

Optimizer : Adam, Batch : 32,
Epochs:50, Learning rate: 0.0001

Training Model

Final Dataset - 27122 Images

Figure 1.  Block diagram of the proposed research framework.
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Preprocessing of image data
One of the most important steps in obtaining data ready for CNN model training is data preprocessing. Upon 
inspecting the dataset, there were duplicate/redundant images in every class, which resulted in increased training 
time and memory consumption. Additionally, few images were misclassified as the wrong class by the provider, 
which, upon initial training, resulted in poor accuracy and incorrect predictions. Therefore, duplicate and mis-
classified images were manually removed.

To remove duplicate images, an image hash algorithm (average hash) was used. This procedure normalized 
every image from the dataset to a consistent, compact dimension, usually an 8 × 8 pixel grid. A binary hash was 
created after each image that is transformed to grayscale and resized to a fixed size. The mean pixel intensity was 
calculated, and the image was then resized to its original size. Every bit in the hash encodes information about 
a pixel’s intensity greater or less than the mean  value28. Figure 3 presents an original image and its correspond-
ing hashed image. When two or more hashes were found to be the same, the duplicate image was found and 
removed permanently.

In addition to working with edge devices and lightweight models, the usual image sizes needed to be reduced. 
Most of the lightweight models support 224 × 224 pixels. The original dataset downloaded from Kaggle had an 
image dimension of 256 × 256, which was converted to 224 × 224 using the Pillow Library, The images were 
subjected to a conversion process that transformed them into RGB color mode, thereby guaranteeing a com-
prehensive representation of colors. Resizing an image was accomplished by utilizing the default antialiasing 
resampling filter. This filter effectively preserved the quality of the image while simultaneously reducing the 
occurrence of aliasing artifacts. A comparison between a normal image and a resized image is shown in Fig. 4.

An unbalanced dataset can lead to a number of problems during the process of training machine learn-
ing models, including biased model learning, poor generalization, imbalanced loss functions, and misleading 

Figure 2.  Four classes of grape leaves from the dataset. (a) Black rot, (b) ESCA, (c) healthy, (d) leaf blight.

Table 1.  Original downloaded dataset with distribution of grape leaf classes for training and testing.

Class type Train data Test data

Black rot 1888 472

ESCA 1920 480

Healthy 1692 423

Leaf blight 1722 430

Figure 3.  Image hash technique steps (average hash) from left to right.
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evaluation matrices. Dataset balancing was implemented using image augmentation techniques in which 5 
new augmented images were created from each image using width shift, height shift, rotation, flip, and zoom 
augmentation techniques. This approach contributed to improve the model’s performance in three primary 
ways: increasing the size of the dataset without requiring the collection of additional data, improving model 
generalization by exposing the dataset to a diverse range of data variations and enhancing model robustness to 
real-world variations such as lighting and orientation. Finally, for each class of the training dataset, 6000 images 
were obtained after removing duplicate images. Similar method was also applied to increase the size of the test 
dataset. It was ensured that under no circumstances, the training and test data had similar images. Figure 5 shows 
examples of image augmentation applied to create additional images, and Table 2 presents the final distribution 
of images in the dataset after augmentation.

Customizing pretrained CNN model
The CNNs have considerably revolutionized the fields of agriculture and image processing with their remarkable 
capability to accurately process through the visual input. Today, thanks to deep learning frameworks and vast 
labeled image datasets, it has become one of the go-to choices for a variety of image-related tasks. In the field 
of image classification, many networks like VGG16, ResNet, Inception have shown exceptional performance as 

Figure 4.  Resizing images from 256 × 256 to 224 × 224 pixels.

Figure 5.  Data augmentation to generate additional images from a single image.
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state-of-the-art (SOTA) approaches by using transfer learning. However, portability constraints encourage the 
development of lightweight CNN models of multiple layers that can capture rich image features and patterns.

Scalability and the resource constraint in different situations such as for a mobile device, edge computing 
platform, and any real-time application are the crucial concerns. Furthermore, energy is a major concern and we 
need to conserve battery life for longer reasons in portable devices and it is also essential to reduce the energy 
consumption especially in edge computing scenarios. Lightweight models largely help address these concerns by 
minimizing computational burden. We choose MobileNetV3Large as the model of interest for transfer learning, 
and this is the third version of the MobileNet class of models. To keep its design lightweight, MobileNetV3Large 
employs multiple techniques, including inverted residuals, expanded activation functions, network architecture 
search, squeeze-and-excitation blocks, and a light classification  head29. This characteristic renders it a very 
suitable option for integration into embedded systems, including Internet of Things (IoT) devices and mobile 
devices, which often possess constrained computational capabilities. Figure 6 shows the model architecture for 
Mobilenetv3 with its individual blocks.

The bottleneck component of MobileNetV3Large which enhanced input feature space with the help of 1 × 1 
convolution. Then, depthwise convolutions were applied with different kernel sizes. There is also an optional 
integration of a squeeze-and-excitation (SE) layer. Finally, the feature space was reduced back to the size of the 
original image with a pointwise convolution. Alternatively, the ResNet architecture includes a skip connection 
as a ResNet style skip connection. This skip connection is implemented when the shape of the input tensor is 
equal to the shape of the output tensor so as to increase the architectural robustness. This operation, called a 
convolutions, served to increase the depth of the feature map, thus increasing the capacity of the network to 
describe data. The expansion ratio, commonly represented as the ’expand ratio’, is a hyperparameter that controls 
the magnitude of the expansion. The 1 × 1 convolution layer provides the ability to exert flexible control over the 
quantity of output channels that are generated. The process of expansion plays a crucial role in the architecture 
of MobileNetV3Large, as it prepares the feature map for later activities.

Using SE layer (Fig. 7) required the dependency between the channels to be used and information from the 
feature map, which was dynamically calibrated. The feature maps from the previous convolutional layer were 
input into the SE block. The image was transformed in 3D tensor with dimensions such as 1 × 16 × 56 × 56. Here, 
16 stands for the number of channels and 56 × 56 is the spatial dimensions of feature maps. The first operation 
in the SE block, the adaptive average pooling took spatial dimensions (56 × 56) of each channel and compresses 
into a single number. As a result, a tensor of size 1 × 16 × 1 × 1 was obtained, which condenses the overall spatial 

Table 2.  Final dataset after augmentation.

Class type Train data Validation data Test data

Black rot 4800 1200 780

ESCA 4800 1200 781

Healthy 4800 1200 780

Leaf blight 4800 1200 781
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information of each channel into a single value. This stage aggregated the feature responses throughout the spatial 
domain, providing a comprehensive representation of the input characteristics on a global scale. The basic effect 
of reshape was to keep the content of the data the same as the input data and change the size so that it can be 
adapted to subsequent fully connected FC layers. After this, the overall information in the tensor was still there, 
except it was arranged in a 1 dimensional vector with 16 elements that had a fully linked layer whose dimensional-
ity had been reduced to 8 fed into the transformed tensor. This was a bottleneck layer, capable of picking up the 
most prevailing aspects of the channels. Then a Rectified Linear Unit (ReLU) was used as activation function, 
which introduced nonlinearity and allowed for the learning of complex functions. Another fully linked layer 
was used to restore the dimensionality of the features to their original number of channels, for instance, from 8 
to 16. Then an activation function ReLU6 was use which was similar to ReLU but it limits the top value to 6 to 
prevent over-activation.2. We reconverted the output of the fully connected (FC) layers into a three-dimensional 
tensor with only one spatial dimension (1 × 16 × 1 × 1). The values in this tensor were the learned weight that will 
be used to recalibrate the original feature maps. These adjusted weights were then multiplied with the original 
feature maps matching the calculation channel dimension-wise. Therefore, each single channel of the original 
input was multiplied by the scalar relating to the same channel of the recalibrated tensor. This process rescaled 
the feature maps, in order to enhance significant elements and suppress less important features. The result of the 
scaling operation was the output SE output, a tensor with the same dimensions as the SE input (1 × 16 × 56 × 56). 
As result of giving weights based on their importance decided by the SE block, the recalibrated feature maps now 
were a more refined set of features to extract. These processes were specifically designed to allow the network to 
learn which features to boost and which to suppress, allowing the optimization of network performance over a 
variety of tasks that rely on feature discrimination.

MobileNetV3Large has been specifically designed for CPUs by utilizing a combination of hardware-aware 
network architecture search (NAS) to enhance both the structure and selection of nonlinear functions. Neural 
architecture search automated the process of determining optimal layer configurations and connection topologies 
by evaluating their performance on a validation  dataset30. Additionally, the proposed model replaced the ReLU 
nonlinearity used in earlier versions with the Hard Swish activation function, which approximated the Swish 
function using piecewise linear segments.

In this study, six models were trained with different types of lightweight CNN architectures and deployed on 
an edge device to identify the best performing one based on changes in accuracy, visualization, inference speed 
(CPU), power consumption and confidence. The final selected models were NASNetMobile, MobileNetV3Large, 
MobileNetV3Small, DenseNet121, EfficientNetV2B1 and EfficientNetV2B2 in their customized forms. Figure 8 
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shows the relevant diagram of the customized model built upon the pretrained weights of MobileNetV3Large. 
After loading the image data, all the images were shuffled to reduce overfitting during training. They were then 
preprocessed using the corresponding model’s built-in preprocessing functions. Finally, the pretrained models 
were loaded with max pooling, and the top layers were removed because we used our own fully connected lay-
ers in this part. Subsequent weight parameters were initialized using pretrained values that were primed on 
the ImageNet dataset. On average, each synset was represented by approximately 1000 images sourced from 
ImageNet, which provides a substantial collection of meticulously labeled and organized images (10 million) 
for the majority of concepts within the WordNet  hierarchy30. All the pretrained layers of each model were frozen 
because they were fully utilized, allowing the models to run more efficiently during training. Once the input layer 
of the pretrained model was replaced, the custom layers underwent resizing and normalization. The fine-tuning 
process thus consisted of stacking a number of layers on top of the output of the pretrained model. First layer, a 
fully connected, dense layer with 128 neurons used by nonlinearity by ReLU activation. To combat the overfitting 
issue, a dropout layer with a dropout rate of 0.45 was added. During training, we did this by turning off some 
of the input units at random, which we zeroed out. Appropriately, the process was repeated with another dense 
layer of 256 neurons, followed by, once more, a dropping layer that uses the same dropping rate. The last layer 
in the series consisted of a dense layer with 4 neurons, with a softmax activation function used to represent the 
four classes. Using the softmax activation, the output values were turned into a probability distribution (ensuring 
normalization), when we have four classes. The loss function, “categorical_crossentropy”, was optimized using 
Adam with a learning rate equal to 0.0001. Overall, Adam is already well known to be effective and robust for 
optimizing complex, high dimensional  models31. The execution of the model during training was quantified by 
this, since it was assigned, hence serving as the objective to be optimized by the optimizer for it to be minimized. 
The model will thus make high-confidence predictions about inputs of the correct class by penalizing the incor-
rect predictions more  heavily32.

The end result is a personalized model that integrates the feature extraction skills of the pretrained model with 
supplementary layers designed for a particular classification job, showcasing a prevalent technique in transfer 
learning. Consequently, this process facilitates the development of deep learning models that are both efficient 
and tailored to specific  tasks33.

The following hyperparameters (Table 3) were kept the same while training all six models. The learning rate 
was kept low to avoid overfitting and poor generalization of the models. Since obtaining a higher accuracy of 
the model was the first goal, monitoring metrics were set to observe the training accuracy only and save it when 
the latest epoch reached a higher accuracy than the last epoch.

Model training, particularly for deep learning techniques, involves computationally intensive tasks such as 
matrix multiplication and gradient calculations. For quicker training, the models were trained on the Kaggle 
platform, where an Nvidia Tesla P100 GPU with 16 GB of memory was the key hardware. The system achieved a 
peak performance of 9.3 teraflops in double-precision calculations, which is a vital characteristic for executing 
model training. A comparison of the training times for different models is shown in Fig. 9.

Grad‑CAM visualization
The Gradient-weighted Class Activation Mapping (Grad-CAM) technique shows salient insight about why the 
DL models made a prediction visualizing the more relevant regions of the input image influencing the decision 
process. The process commences with the state-of-the-art deep neural network operation (forward pass) to 
produce raw prediction scores for every class as it was based on the incoming  image34. The initial scores are the 
biggest part, setting the stage for the other steps. In the next stage, backpropagation was started after forwarding 
pass was done. During the process of backpropagation, the gradients of the predicted class scores were calculated 
with respect to the feature maps originating from the final convolutional layer. The depicted gradients served as 
indicators of the model’s responsiveness to alterations in the feature maps. The significance-weighted gradients 
are frequently subjected to spatial averaging, leading to weighted aggregation that encompasses the essential 
regions accountable for the classification of the  network35.

Table 3.  Hyperparameter values for training the model.

Parameter name Applied value

Batch count 32

Image size 224 × 224

Image type RGB

Dropout 0.45

Activation function before output layer ReLU

Activation function at output layer Softmax

Monitoring metrics ‘accuracy’

Optimizer Adam

Learning rate 0.0001

Loss function Categorical crossentropy

Number of iterations 50
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For this research, Grad-CAM was implemented on bulk images from the test dataset as well as on single 
real-time leaf images. The goal was to differentiate diseased leaves from healthy leaves by highlighting them. The 
general Grad-CAM visualization technique (Fig. 10) was slightly modified in this work so that only diseased 
classes are marked while avoiding healthy classes, as they are not important for real-time visualization.

The procedure started with the importation of essential libraries for numerical computations, picture manipu-
lation, and deep learning capabilities.

It then imports the customized MobileNetV3Large model from a specified file directory. Subsequently, essen-
tial parameters such as picture dimensions and the last convolutional layer of the model were selected, which was 
necessary for the Grad-CAM approach. Finally, a picture was imported, scaled, and preprocessed to conform to 
the input specifications of the model.

The process prioritized the feature maps obtained from the final convolutional layer by using the gradients 
of a selected target class from the network’s output to allocate significance weights to each feature map. This 
process entailed generating a specific model that produces the output of the last convolutional layer (Conv_1 
for MobileNetv3_Large) and the final predictions. The code used TensorFlow’s gradient computation to identify 
the regions in the picture that have the most impact on the model’s prediction. These feature maps were merged 
using the weights, and a rectified linear unit (ReLU) function was used to retain only the features that had a 
favorable impact on the classification prediction. The gradients were computed and subsequently averaged to 
construct a heatmap.

The last step involved overlaying this heatmap over the original picture. The heatmap underwent colorization 
and resizing to align with the proportions of the source picture. The original picture was superimposed with 
a designated degree of transparency, yielding a composite image that graphically depicts the focal regions for 
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the model’s decision-making procedure. However, the transparency level of the heatmap before superimposing 
was increased to a certain level to focus only on diseased pixels and neglect healthy pixels. Several tests were 
performed to determine the perfect transparency of the proposed model. The overlay picture offered a clear and 
easy-to-understand visual representation of the model’s predictions of diseased areas only. This implementation 
serves as a tangible demonstration of improving the comprehensibility of deep learning models, facilitating a 
better understanding and reliance on their judgments.

Computational specification and evaluation metrics for model performance
The model was trained by NVIDIA Tesla P100 GPUs, along with an approximate GPU memory capacity of 16 
GB, under the complimentary GPU service extended by Kaggle. The Tesla P100 is outfitted with a collective sum 
of 3584 CUDA cores, which have been purposefully engineered to execute parallel computations. The custom-
ary arrangement of this product generally consists of 16 GB of High Bandwidth Memory (HBM2), which offers 
a significant memory bandwidth crucial for efficiently handling large datasets and complex neural networks.

To determine the best performance of the trained models, the test dataset was used to determine the evalu-
ation metrics. The accuracy, precision, recall, F1 score, and area under the curve (AUC) were calculated and 
furthermore, the model’s inference time for both .h5 and .tflite, Giga Floating Point Operations Per Second 
(GFLOPS) and the power consumption of each model were measured to identify the optimal model for clas-
sification in edge devices.

Accuracy calculation involved determining the proportion of accurately recognized leaves, including both 
infected and healthy leaves, out of the total number of leaves that were examined. Precision quantified the 
model’s ability to accurately forecast the presence of disease in leaves among all the leaves classified as diseased. 
The diseased leaf prediction accuracy was determined by the ratio of accurately predicted diseased leaves (true 
positives) to the total number of leaves identified as diseased (the sum of true positives and false positives). A 
high level of accuracy implies that when the model predicts that a leaf is unhealthy, there is a high probability 
that the leaf is truly infected. The recall quantified the model’s capacity to accurately detect all existing sick leave. 
The diseased leaf prediction accuracy was determined by the ratio of accurately predicted diseased leaves (true 
positives) to the total number of leaves that are truly diseased (the sum of true positives and false negatives). 
A high recall score suggests that the model is proficient at accurately detecting the majority of sick leaves. The 
power consumed by the CPU of the edge device during prediction was measured using the Jtop library. As the 
goal was to choose a suitable model for lightweight application, the computational complexity of each of the 
trained models was measured through GFLOPS measurements.

Analysis of experimental results
Comparison among the models
All six different models were trained with the same metrics and dataset. During the training of these models, 
the optimizer, training size, batch number, validation size, learning rate, and number of iterations were kept the 
same. An accuracy comparison of the chart shows that MobileNetV3Large outperformed the other models in 
terms of training (99.66%), testing (99.42%) and validation accuracy (99.17%). The closest performance to that 
of MobileNetV3Large was shown by DenseNet121, with 99.1% test accuracy, while NASNetMobile responded 
with a very poor test accuracy of 97.09%. The accuracy of all the models was stable throughout the training 
process, which demonstrated that the data contained less noise, avoided gradient overshooting and became 
stuck at local minima. The following graphs and bar charts in Figs. 11 and 12 show the training and validation 
accuracies of all six models.

In the confusion matrix, four distinct classes were established based on the dataset, with one class represent-
ing healthy and the remaining classes representing diseased (Fig. 13). A total of 780 authentic photos were allo-
cated to each class. The MobileNetV3Large, DenseNet121, and EfficientNetV2B2 models demonstrated superior 
performance based on their respective confusion matrices. DenseNt121 and EfficientNetV2B2 demonstrated 
marginally superior performance compared to MobileNetv3Large in the precise categorization of black rot. 
MobileNetV3Small had demonstrated improved classification performance for the ESCA class. Overall, Mobile-
netV3Larges yielded the most favorable results.

To conduct a more comprehensive assessment of the performance of each model and of their respective 
classes, metrics such as precision, recall, and F1 score were computed. MobileNetV3Large shown the most 
favorable outcomes for all the classes, achieving precision scores of 98.97%, 98.72%, 100%, and 100% for black 
rot, ESCA, healthy and leaf blight, respectively. Conversely, NASNetMobile had the lowest performance, particu-
larly for the black rot class (93.85%) and the ESCA class (96.1%). In contrast, the recall results yielded the same 
output as the precision results. The MobileNetv3Large model achieved a recall of 98.70% for the classification of 
black rot, whereas the NASNetMobile model achieved a recall of 95.89%. EfficientNetV2B2 had demonstrated 
comparable performance to that of MobileNetV3Large. When comparing the model accuracy for each class, it 
is observed that both MobilenetV3Large models exhibited higher F1 scores, which surpass the other models. 
The performance of NASNetMobile was suboptimal, with a score of 94.16% or less. The corresponding data in 
Table 4 shows the comparisons between the precision, recall and F1 score of the individual models.

From the obtained ROC curves in Fig. 14, Mobilenetv3Large demonstrated the best correlation between 
clinical specificity and sensitivity for every potential cutoff, with an AUC for each class very close to one. The 
trade-off between the true positive rate and the positive predictive value for each predictive model is summarized 
by precision-recall curves in Fig. 15, where again, MobilenetV3Large has shown better performance than other 
models, with average precision (AP) values of 99.94% and 100% for the four classes. Based on an analysis of all 
the performance metrics, MobileNetV3large and DenseNet121 exhibited superior performances. In relation to 
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the model size, performance and parameter count, it may be argued that MobilenetV3Large is more suitable as 
a lightweight model for execution on edge devices.

A comparison bar graph (Fig. 16) was constructed for all six models, where each of the models was used to 
analyze a random single picture from each of the classes. Based on the model’s performance, the models were 
provided with corresponding confidence scores for each class. The bar chart shows that the proposed Mobile-
NetV3Large model yielded better results than other models in terms of confidence scores during classification.

Figure 11.  Graph for training and validation accuracy of the models (a) MobileNetV3Large, (b) 
MobileNetV3Small, (c) DenseNet121, (d) NASNetMobile, (e) EfficientNetV2B1, and (f) EfficientNetV2B2.
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Grad‑CAM visualization
To determine the most important part of the model for neural network prediction, Grad-CAM was applied. A 
common image was taken on which all six models were used to find their corresponding Grad-CAM visualiza-
tion, as shown in Fig. 17. Compared with the diseased locations of RGB images, three models, MobileNetV-
3Large, DenseNet121 and EfficeintNetV2B1, were able to correctly locate those positions well using heatmaps.

Real‑time application of the model in an edge device
The primary aim of this research was to create a lightweight disease classification model that can run on port-
able edge devices. In addition to the lightweight model, a cost-effective and durable device was also chosen for 
real-time application.

The NVIDIA Jetson Nano B01 developer kit is a tiny and energy-efficient platform that is well suited for 
edge and embedded systems, as well as for lightweight CNN models. The device is furnished with a 128-core 
Maxwell Graphics Processing Unit (GPU) and a quad-core ARM Cortex-A57 Central Processing Unit (CPU), 
enabling the use of GPU acceleration within the realm of artificial intelligence (AI) and machine learning (ML) 
applications. The device’s minimal power usage and small size make it suitable for incorporation into embedded 
systems, especially in situations where conserving energy and having limited physical space are crucial factors. 
The device can function through the utilization of battery power and can be simply housed within small enclo-
sures, making it highly versatile for various edge computing  applications36.

Inference time
Each of the six models was trained by applying transfer learning, resulting in the acquisition of their respective 
.h5 models. Subsequently, the models were converted to .tflite format. A specialized memory allocator is used 
to optimize the execution latency and minimize the computational load. The new file format supported by flat 
buffers is also being elucidated. TensorFlow Lite is a framework that facilitates the conversion of preexisting 
models into a more efficient variant encapsulated within the .tflite file  format37. To enhance the assessment of the 
six models, both the .h5 and .tflite models were tested, and the resulting prediction performances are presented 
in Figs. 18 and 19. The results indicated that MobileNetV3Small exhibited the fastest prediction response for 
both the .h5 and .tflite models, with MobileNetV3Large following closely behind. Anomalies were observed in 
the performances of the DenseNet121 and EfficientNetV2B1 models, wherein the .tflite model exhibited longer 
prediction times than did the .h5 model. Despite the slightly faster prediction speed of Mobilenetv3Small, 
MobilenetV3Large is considered to be the best-performing model due to its superior prediction accuracy.

GFLOPS value on an edge device
Edge devices possess distinct limitations that necessitate the utilization of GFLOPS computations for CNN mod-
els on embedded systems with constrained computational capabilities. The measure of GFLOPS holds significant 
importance to a model for a variety of reasons. The GFLOPS is utilized to assess the computational capacity of 
a CNN model for the processing capabilities of the device. One can compare GFLOPS data to identify a model 
that aligns with the capabilities and performance requirements of edge devices. It serves as an indicator of the 
model’s ability to achieve the necessary frame rate or responsiveness for real-time or near-real-time inference 
applications without excessively burdening the  device38. The consideration of power consumption also holds 
significance. Edge devices are frequently operated on batteries or are subject to power limitations. Energy-efficient 
models such as our MobileNetV3Large (Fig. 20) possess a reduced number of GFLOPS, hence resulting in an 
extended battery life.
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Power consumption by the proposed model
Minimizing power consumption is advantageous because it enables devices to operate for extended durations 
with limited battery power or in remote locations with limited access to electricity sources. Furthermore, this 
advantage serves to mitigate the generation of excessive heat, thereby preventing potential thermal issues that 
could impede the overall performance and longevity of the system. A comparison of the power consumption of 
Jetson Nano during the standby and prediction modes is shown in Fig. 21.

Figure 13.  Confusion matrix for disease class from each of the models: (a) MobileNetV3Large, (b) 
MobileNetV3Small, (c) DenseNet121, (d) NASNetMobile, (e) EfficientNetV2B1, and (f) EfficientNetV2B2.
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The power consumption of the Jetson Nano was notably low when using MobileNetV3Large, with an average 
consumption of only 3.4 watts by the device during the prediction of multiple images. The statistics highlight the 
effectiveness and low resource consumption of the implemented model MobileNetv3Large. This guarantees an 
extended duration of device functionality, rendering it highly suitable for situations where power resources are 
limited or when an extended lifespan of the battery is crucial. Consequently, this leads to accelerated inference 
times, decreased latency, and enhanced real-time performance, which are essential characteristics for applica-
tions such as image classification that require prompt decision-making.

Interface application
The use of real-time image prediction facilitates the monitoring of crop growth, identification of optimal harvest-
ing periods, and efficient management of irrigation systems. To perform predictions on our edge device, a custom 
desktop app was built using Python and PyQt5. Real-time predictions of disease incidence were made available 
via the Jetson Nano platform. By loading the TensorFlow lite model, the onboard app can predict both real-time 
and previously saved data as well as use visualization method like Grad-CAM on them. The block diagram for 
the GUI app operation is shown in Fig. 22.

PyQt5 is a Python graphics library that offers a comprehensive range of resources for the development of 
desktop applications featuring graphical user interfaces (GUIs). This software facilitates the creation of interactive 
and visually captivating applications for diverse platforms, rendering it a widely favored option for developing 
cross-platform desktop  software39. The original trained .h5 model was subsequently transformed to the Tensor-
Flow lite model configuration to run on this edge device. The process optimizes models to optimize the efficiency 
of inference, thereby reducing the demands on memory and computational  resources40. For user flexibility, both 
saved image and real-time image classification were made possible using this app interface (Fig. 23). For real-time 
classification, a Xiaomi Vidlok W91 Webcam was connected to the Jetson Nano board, which allowed to capture 
live images upon request. The collected frames are then preprocessed, and classification is performed on the GUI 
app, along with class confidence and time taken for prediction. Before prediction, the sharpness of the collected 
frame was increased, and its brightness was reduced for better classification. The success of unknown disease 
classification from this experiment proves the model’s ability to predict unknown data for more practical use.

The use of the real-time Grad-CAM visualization technique is an effective method for enhancing the visual 
representation of the impacted region of plants. To assess the efficacy of our customized MobilenetV3Large 
model in generating heatmaps, a single image depicting a diseased condition was put together with several images 
portraying healthy conditions, as shown in Fig. 24. By increasing the transparency of the heatmap, the output 
image presented below demonstrates the model’s ability to accurately detect and delineate the affected region 
only, resulting in a corresponding modification of the color map within that specific area.

Comparison with previous work
The customized MobileNetV3Large has been compared with existing works in Table 5. Overall, every other 
study related to grape leaf disease classification claimed that their model was superior to those of previous 
works. However, upon closer and comprehensive analysis of past works, it was found that almost all of them 
have some degree of shortcomings. In terms of dataset size, several  methods9,14,18,23 used a very large number of 
datasets, which might be convenient. However, upon a detailed look at those datasets, it seems that they might 
contain duplicate image files, which increases the possibility of overfitting. In the proposed model, the dataset 
used was cleared of duplicate images using the hash method from both the training and test folders, reducing 
the chance of making a biased model. The works  in11,13,22 achieved accuracies of more than 99%, yet the authors 
did not provide any precision, recall, or F1 score, which raises question on the effectiveness of the model. On the 
other hand, some  works13,17 did show these values, but the extremely small size of their dataset proves that these 
obtained values are not as meaningful as they claimed to be. In this work, along with accuracy, all other important 
metrics were generated to prove the effectiveness and usability of the proposed method. Two previous  works21,24 
claimed to achieve a higher percentage of accuracy as well as precision, recall, and F1 score. However, upon closer 

Table 4.  Precision, recall and F1 score data for each of the six trained models.

Class name Model Precision Recall F1-score Model Precision Recall F1-score

Black rot 0.989717 0.987179 0.988447 0.938519 0.958974 0.948637

ESCA 0.987229 0.989757 0.988491 0.961792 0.934699 0.948052

Healthy MobileNetV3Large 1.000000 1.000000 1.000000 NASNetMobile 0.984848 1.000000 0.992366

Leaf blight 1.000000 1.000000 1.000000 0.998708 0.989757 0.994212

Black rot 0.990728 0.958974 0.974593 0.984293 0.964103 0.974093

ESCA 0.968789 0.993598 0.981037 0.966080 0.984635 0.975269

Healthy MobileNetV3Small 0.991105 1.000000 0.995533 EfficientNetBV2B1 0.998720 1.000000 0.999359

Leaf blight 0.996149 0.993598 0.994872 1.000000 1.000000 1.000000

Black rot 0.972396 0.993590 0.982879 0.966208 0.989744 0.977834

ESCA 0.992167 0.973111 0.982547 0.990874 0.973111 0.981912

Healthy DenseNet121 1.000000 0.998718 0.999359 EfficientNetBV2B2 0.994891 0.998718 0.996801

Leaf blight 1.000000 0.998720 0.999359 1.000000 0.989757 0.994852
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 inspection21, it was found that their model was severely biased due to duplication of data, and the high values 
of their evaluation metrics could be due to using the same data for both training and testing purposes.24 used a 
small dataset for six classes, which raises questions about its actual performance in practical usage. According 
to the authors of developing a lightweight model, the only criteria they presented was model parameter size. 
However, other factors, such as inference time (Figs. 18 and 19), computational complexity (Fig. 20), and power 
consumption (Fig. 21), were not discussed.

Figure 14.  ROC curves for each of the models: (a) MobileNetV3Large, (b) MobileNetV3Small, (c) 
DenseNet121, (d) NASNetMobile, (d) EfficientNetV2B1, and (f) EfficientNetV2B2.
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One of the most important steps in the proposed research was to apply Grad-CAM not only for model evalu-
ation but also for real-time use in disease localization in large fields. Some previous  works16,24,26 have provided 
evidence of Grad-CAM by demonstrating its ability to locate feature pixels of greater importance, but none of 
these tests include images from real vineyards or real-time visualizations. In this work, real images from webcam 
were fed directly to the model, and a very accurate heatmap was produced, which demonstrated the suitability 
of the model for practical application.

Figure 15.  Precision‒recall curves for the (a) MobileNetV3Large, (b) MobileNetV3Small, (c) DenseNet121, 
(d) NASNetMobile, (e) EfficientNetV2B1, and (f) EfficientNetV2B2 models.
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Figure 16.  All six model accuracy comparisons for each class prediction.

Figure 17.  Grad-CAM comparison among all six trained models.
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Figure 18.  Single image (1 random image) inference time (seconds).
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Discussion
In summary, the objective of the present study was to develop a disease classification system specifically designed 
for grape plants. The system was constructed through the deployment of a lightweight CNN model, wherein 
the pretrained model employed was MobileNetV3Large. An edge device, namely, the Jetson Nano, was utilized 
to deploy the system. Furthermore, the system’s capabilities were enhanced with the application of real-time 
Grad-CAM visualization. The motivation for this endeavor is rooted in the pressing need within the agricultural 
industry to promptly and accurately detect illnesses in grape plants.

The existing techniques utilized for disease identification in grape agriculture have exhibited certain draw-
backs in terms of time, power efficiency, and vulnerability to inaccuracies. Therefore, it is imperative to investigate 
the development of an automated solution that possesses high levels of accuracy and efficiency, as it can greatly 
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Figure 19.  Multiple image (for random and consecutive 500 images) inference time (seconds).
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Figure 22.  Flow chart for GUI functions.

Figure 23.  Single-image prediction by GUI. (a) Prediction from the saved image. (b) Prediction from a real-
time image.

Figure 24.  (a) input image and (b) real-time Grad-CAM visualization in an edge device (correctly identified 
diseased area is highlighted with dotted line).
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revolutionize existing methods of grape cultivation. This technological development facilitates the implementa-
tion of the system on the Jetson Nano, an edge device that facilitates immediate, on-site data processing without 
the requirement of uninterrupted internet connectivity. The adoption of this deployment arrangement signifies 
a notable progression, as it removes the need for labor-intensive manual checks. In contrast, it offers a swift, 
efficient, mechanized, and all-encompassing methodology for disease surveillance.

The integration of real-time Grad-CAM visualization boosted the functionality of the system, providing 
interpretable heatmaps that enhance the precision and dependability of disease identification. The integration 
successfully established a connection between artificial intelligence and human understanding, hence promoting 
increased confidence in the system’s results.

The practical implications of this study extend beyond the limitations of the laboratory, offering substantial 
benefits to the agricultural industry. The overall application concept for this research is presented in Fig. 25. The 
idea is to focus on a terrestrial rover or an aerial drone fitted with cameras traversing above grapevines, taking 
visual data from vineyard plants. The data gathered by both the robot and the drone will be sent to a centralized 
cloud server for storage and distribution. The central computer will identify diseases in grape leaves. Further-
more, Grad-CAM will provide visual information for judgments made by CNNs, emphasizing the specific regions 
in vineyard photos that are affected by diseases.

It should be noted that the data used for training the model were augmented using general augmentation 
techniques that sometimes lead to overfitting. Furthermore, both black rot and ESCA diseases look quite similar, 
which causes the models to slightly mismatch their class during prediction.

Conclusion
This paper proposed a lightweight customized CNN model that was developed using MobileNetV3Large through 
transfer learning for running on an edge device. Five other models (MobileNetV3Small, DenseNet121, NASNet-
Mobile, EfficientNetV2B1, and EfficientNetV2B2) were also tested and compared with the proposed MobileNet-
V3Large model. Based on the results, the optimal model was customized MobilenetV3Large. According to all 
the experimental results, several conclusions can be drawn.

1. With the same parameter values for all the models during training, the pretrained weights were frozen, and 
multiple additional dense layers along with dropout layers were included in the final layers of the models. 
Upon several tests with the values of these layers, dense neurons of 128 and 256 with dropout levels of 0.45 
generated the best possible outcome for the proposed classification model. A smaller learning rate and an 
ideal batch size of 32 also helped in achieving a less unstable training graph.

2. Upon individual inspection of all six models, MobileNetV3Large has the highest training and test accuracies 
of 99.66% and 99.42%, respectively.

3. The smaller model size, lower prediction time (90 ms), and lower computational resources of the proposed 
model make it highly suitable for operating on lightweight devices. Additionally, the low power (approxi-
mately 1.0 W) used during the prediction shows the potential for practical application.

4. In terms of Grad-CAM visualization, the model was successful at differentiating diseased areas from healthy 
areas. The heatmap threshold was reduced to a certain portion, making it only focused on greater diseased 
areas for better visual understanding between the healthy and diseased leaf.

Table 5.  Performance comparison with previous works. Significant values are in bold.

References Method Accuracy Precision Recall F1-score Dataset size (images) Class Plant
9 VGG16 98.40% – – – 62,286 14 Grapes & Tomatoes

10 AlexNet, VGG-19, and Incep-
tion v3, – – – 3800 4 Grape

11 AlexNet 99.23% – – – 4063 3 Grape
12 VGG-16 97.87% – – – 17,668 8 Apple & Grape

13 UnitedModel(GoogLeNet and 
ResNet) 99.17% 99.05% 98.88% 98.96% 1619 4 Grape

14 Inception structure DICNN 97.22% 97.23% 97.25% 97.40% 107,366 7 Grape
15 EfficientNetB5 99.91% 98.42% 98.31% – 61,486 39 Multicrop
17 3D-CNN 95.73% 82.00% 92% 87.00% 1090 2 Grape
18 dResNet-18 99.10% – – – 90,000 19 Multicrop
19 AlexNet 99.03% 98.90% 98.5% 98.88% 7,222 4 Grape

20 AlexNet- ShuffleNetV2 
backbone 99.01% – – – 4.062 4 Grape

21 MobileNetV3Small 99.00% 100% 100.0% 100.0% 58,807 2 Multicrop
22 MobileNet-Beta 99.11% – 92.92% – 54,306 38 Multicrop
23 Faster DR-IACNN(Detection) 81.80% 81.10% – – 62,286 4 Grape
24 ECA-sNET 99.66% 99.66% 99.66% 99.60% 6867 6 Grape

Proposed Model Custom MobileNetV3Large 99.42% 99.42% 99.42% 99.42% 27,122 4 Grape
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5. The custom user interface for using the model has proven to be user friendly and portable while working 
outdoors. Implementing this approach on any agriculture-based robot or drone is a notable improvement, 
enabling more efficient, accurate, and sustainable agricultural operations.

In future work, images from the dataset will be collected from native vineyards with suitable backgrounds. 
In addition, the dataset will be generated using generative adversarial networks (GANs) to obtain better model 
performance. This approach aims to introduce diversity into the dataset and improve the effectiveness of anomaly 
identification. Second, the implementation of an attention module on the existing CNN model helps enhance the 
model’s performance and assists in classifying black rot and ESCA with much precision. Third, the model will be 
deployed on unmanned aerial vehicles (UAVs) to locate disease-affected regions in vineyards using Grad-CAM 
for quicker monitoring and accurate localization.

Data availability
The datasets used and/or analyzed during the current study will be available from the corresponding author on 
reasonable request. The dataset is made available at the following link: https:// www. kaggle. com/ datas ets/ jawad 
ulkar im117/ grape- leaf- disea se-4- class.
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