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Experimental and probabilistic 
model validation of ultrasonic 
MEMS transceiver for blood 
glucose sensing
Hara Prasada Tripathy 1,3, Priyabrata Pattanaik 1,3, Dilip Kumar Mishra 1, 
Sushanta Kumar Kamilla 1 & William Holderbaum 2*

In contrast to traditional laboratory glucose monitoring, recent developments have focused on blood 
glucose self-monitoring and providing patients with a self-monitoring device. This paper proposes a 
system based on ultrasound principles for quantifying glucose levels in blood by conducting an in-vitro 
experiment with goat blood before human blood. The ultrasonic transceiver is powered by a frequency 
generator that operates at 40 kHz and 1.6 V, and variations in glucose level affect the ultrasonic 
transceiver readings. The RVM probabilistic model is used to determine the variation in glucose levels 
in a blood sample. Blood glucose levels are measured simultaneously using a commercial glucose 
metre for confirmation. The experimental data values proposed are highly correlated with commercial 
glucose metre readings. The proposed ultrasonic MEMS-based blood glucometer measures a glucose 
level of 257± 21 mg/dl. In the near future, the miniature version of the experimental model may be 
useful to human society.

Chronic disease diabetes, commonly known as ‘Diabetes Mellitus (DM)’ is increasing exponentially and expected 
to exceed 552 million patients by 2030. This is the prediction of world health organization (WHO)1,2. This causes 
the mortality of age group from 20 to 70 years. Due to this growing incident, the WHO has declared the DM as a 
world epidemic. Precaution is better than cure and cure in the case of diabetes is a critical aspect to achieve. The 
global health-care expenditure on diabetes management has annually expected to be exceeded from 376 billion 
USD to 490 billion USD by  20303. Hence, precaution can be possibly taken by frequent glucose monitoring and 
maintaining the physical glucose level for which it is necessary to fabricate/design the best glucose monitoring 
system having low-cost, simple fabrication process, continuous monitoring and robust.

The commercial non-invasive or minimally invasive glucose meters generally quantify the glucose levels from 
the blood samples. These methods are expensive due to high-cost test strips and painful each time when prick-
ing into fingertip is conducted for taking blood samples. Non-invasive glucose meters are being researched for 
continuous painless measurement in an ongoing  way4. The present non-invasive glucose monitoring methods are 
the fluorescence, the transdermal extraction, the electromagnetic variations, the polarimetry, the  spectroscopy5–8. 
The accuracy and cost of these methods are the prime concern including method simplicity. The availed com-
mercial blood glucose meters (BGM) reach an accuracy of 96%9,10. To achieve better accuracy more than the 
adopted range, new methods are on the verse of searching. These methods are mostly based on non-invasive 
systems. Some of the combined techniques are present for the quantification of glucose from glucose  solutions11 
and also from intralipid phantom  medium12.

The goal of many developers and researchers worldwide is to create non-invasive blood glucose monitor-
ing technologies that will improve the lives of millions of individuals with diabetes. However, it is challenging 
to make these procedures as accurate as conventional test strips. The Google Contact Lens is one cutting-edge 
device whose development has terminated in 2018 because its approach of sensing glucose levels in tears is not 
reliable  enough13.The German company DiaMonTech created the D-Base blood sugar monitor, which is the 
size of a shoebox. By passing an infrared laser through the skin of a finger and forcing the glucose in the skin 
to convert the light to heat, the device detects blood sugar levels. The system then determines the glucose levels 
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based on how much the skin heats up, however the increase in temperature is too slight for the person to detect. 
D-Base is permitted for use by medical professionals in clinical trials and diabetic centres in the EU as of 2019. 
The business is now creating D-Base for the US market. Additionally, DiaMonTech is developing scaled-down 
versions of the technology, such as the D-Pocket, a handheld gadget, and a tiny sensor for wearable  devices14.
Eversense is a subcutaneous implant that continuously measures blood glucose levels and has created by the US 
business senseonics. Although a doctor must first implant the sensor beneath the skin, it can last for up to three 
months before needing to be replaced. Using a polymer that fluoresces in reaction to blood sugar levels, Eversense 
detects glucose in the interstitial fluid beneath the skin of the upper arm. The transmitter uses the data to show 
the blood glucose levels in real  time15. Integrity Applications, a US-Israeli business, developed GlucoTrack, a 
device that uses a combination of ultrasonic, electromagnetic, and thermal waves to monitor blood sugar levels. 
To provide a reading, the sensor is attached to the ear. The device targets people with type 2 diabetes and is mar-
keted in Europe. In order to enter the US market, Integrity Applications is developing the second iteration of 
GlucoTrack, which consists of a wireless ear clip sensor connected to a  smartphone16. A sensor called GlucoWise 
is currently being developed that could check blood sugar levels by just touching the skin between the thumb 
and forefinger. A smartphone app might then receive the real-time measurements. According to the designers, 
the device ought to be more precise than previous wireless glucose monitors because it measures blood glucose 
levels using a particular frequency of radio  waves17. An under eyelid blood sugar monitor that can wirelessly 
transmit glucose readings to a smartphone is being developed by a Dutch business called NovioSense. A flexible 
metal coil with nanosensors inside that is only two centimetres long makes up the device. A soft hydrogel layer 
of protection is then placed over the coil. Using the same enzyme technology as standard glucose strip testing, 
the coil could measure minute variations in the glucose levels of tear fluid. The device’s accuracy is comparable 
to the FreeStyle Libre, according to findings from a clinical research that has released last  year17. The phrase “the 
eyes are windows to the soul” is taken literally by Occuity Indigo as an eye-focused blood glucose metre. The 
UK developer Occuity instead examines within the eyeball since it is a transparent, stable environment whose 
glucose levels correlate with those of the blood, as opposed to detecting tear fluid, as did the Google Contact 
Lens. The Occuity Indigo measures the light that reflects back into the gadget after sending a weak beam of light 
into the eye. Based on the refraction of the light returned, it can deduce the amount of glucose present in the 
 eye18. A changeable skin patch with a transmitter is called SugarBEAT, and it was created by the British biotech 
company Nemaura Medical. By applying a little electric current to the skin and drawing out a sample of the 
interstitial fluid, which is located immediately below the skin, it monitors blood glucose levels non-invasively. 
Every 5 mins, the rechargeable transmitter delivers data over Bluetooth to the user’s phone, where the readings 
may be seen using a companion  app19.

Several attempts have been undertaken in optical techniques using visible, near, and mid infrared (NIR and 
MIR)  light20,21 and as well as in non-optical techniques to measure the blood glucose density. However, the scat-
tering phenomenon and the lower bandwidth has a poor correlation with glucose in the blood. Again, the fun-
damental limitation of MIR is that it can only be used in reflectance mode because of limited penetration depth 
in the human tissue for which it is unable to estimate glucose concentrations in blood vessels. The considerable 
scattering of light and other physiological factors limits the use of optical polarimetry for the measurement of 
blood glucose through  skin22,23. Microwave devices, particularly planar resonant ones, have several advantages, 
such as simplicity of fabrication and integration, low dimension, competitive cost, and intriguing penetration 
depths, particularly for non-invasive measurements with minimal tissue  scattering24,25. The fundamentals and 
convenience of planar resonant based measurements are deeply  studied26 in an operating frequency range from 
0.64 to 18.63 GHz and designed 3D printable GHz ranged  devices27 on account of glucose sensing. However, 
the only disadvantage of using the high frequency range in GHz region is that it creates damage to tissues if 
used continuously for a prolonged period to sense the glucose in non-invasive way. For which in our research 
work, we have chosen low frequency range in the order of kHz. So our proposed research work is carried out at 
40 kHz ultrasonic MEMS transceiver for blood glucose sensing. Ultrasonic technique is used as an alternate to 
microwave technique. WZT40 and WZR40 pair is a low powered unidirectional ultrasonic transceiver procured 
from electronics − store4u with a sensitivity of −63±−3dB at 40 kHz Sine wave. The recent focus is to design 
hassle free painless device to measure the blood glucose. But all the devices are in developing stage and thus the 
rectification including the clinical trials are in continuous  process28.

Insulin resistance is linked to an increase in serum albumin levels. However, serum albumin had no influence 
on the development of diabetes on its own. Although extremely low quantities of protein in urine are normal, 
large levels of albumin are one of numerous markers of chronic kidney disease (CKD), a frequent consequence of 
both type 1 and type 2  diabetes29. Previously, ultrasonic principle-based MEMS glucose sensors based on various 
bio-friendly piezoelectric materials were  proposed30,31. Prior to conducting experimental practises, simulations 
are performed using leading piezoelectric materials to test the principle’s  reliability32. Transceivers based on 
piezoelectric materials are used to generate and receive directional ultrasonic waves that are passed through 
the blood sample medium. With the commercial blood glucose metre, the received signal quantifies the glucose 
level of the blood medium in a simulation environment and achieves an accuracy level of 99% (CBGM)33.In 
the research, we have considered immovable blood obtained from healthy goats for our experiment in a test-
ing beaker and have focused to track the glucose density only. The concentration of some proteins rather than 
glucose in blood changes, which may change the blood density so as the measurement and thus limits the device 
measurement. The current work is a proposed experimental system to mimic the previous simulative  approach33 
with the addition of a probabilistic model for the quantification of the result values into glucose level by mapping 
CBGM data values. The rest of this research paper is organised as follows: Section II describes the experimental 
system setup. Section III covered the probabilistic model analysis with error grid analysis. Section IV illustrates 
the results and discussion of the proposed system, and Section V summarises the significance of our research.
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Experimental system setup
This article section proposes an experimental discourse of designing a system based on an ultrasonic MEMS 
transceiver setup for blood glucose level sensing. Flow chat representation of the blood glucose level measurement 
approach can be clearly seen from the Fig. 1a. The work flow process consists of a pair of ultrasonic transceiver 
(WZT40 and WZR40), sample holding glass beaker (10 ml), a function generator (SDG1025, 25 MHz, 125 
MSa/s Sample Rate), digital storage oscilloscope (Scientech 403, 100 MHz, 1 GSa/s), Arduino micro-controller 
kit, OLED Display with SSD1306 Driver IC (Geekcreit 0.91 Inch 128 × 32 IIC I2C) and RVM model. A pair 
of ultrasonic transceiver (WZT40 and WZR40) (Fig 1b) is procured from market and thus affixed in the glass 
beaker by making a circular cut on the wall. The sample holder (beaker) with ultrasonic transceiver is represented 
in Fig. 1c. Blood density is related to hematocrit, or more precisely, to total protein content in blood. Osmotic 
pressure, immunity, and coagulation of blood fluctuate due to the variation in  proteins29. However, other plasma 
solutes like sodium, potassium, chloride, bicarbonate, magnesium, calcium amino acids, vitamins, organic acids, 
pigments, and enzymes have only a minimal impact on blood density, which is not given importance in our 
study. In the research, we have considered immovable blood obtained from healthy goats for our experiment in 
a testing beaker and have focused to track the glucose density only.

In our study, we have considered the animal blood. The choice of the animal blood is undertaken as there 
is no difference in composition of the blood in consideration to mammals and human. However, the percent-
age of protein is different by which any two of the species can be identified from each other. Blood samples 
are collected in blood collection tubes (IVD, VAKU-8) from a registered slaughter house. The collection tube 
contains additives like sodium fluoride and ethylene-diamine-tetra-acetic acid (NaF+EDTA). The additive is an 
anticoagulation agent intended to use for glucose detection. The blood medium is considered as a medium of 
ultrasonic wave propagation. To generate an ultrasonic wave, a function generator of optimized frequency 40 
kHz and 1.6 V voltage peak to peak (vpp) is applied. A digital storage oscilloscope is used to trace the voltage 
values from the ultrasonic receiver. The variation in glucose levels (0–450 mg/dl) in the blood medium is traced 
distinctly from the receiving voltage values.

For commercial data value reading on parallel with the proposed method of blood glucose sensing, an 
Accu-check Aviva glucometer is used. When an ACCU-CHEK®Aviva Plus test strip is inserted into the ACCU-
CHEK®Aviva meter, a small alternating current (AC) is applied until the application of blood on the test strip 
causes a closed circuit between both the standard and measurement electrodes. Both are used to assure an 
adequate sample has been applied. The meter then applies a series of AC voltages at four frequencies and reads 
the AC responses. These carry information about the sample type and environmental temperature; they also allow 
the system to perform various internal quality checks. After the AC measures are completed, a small (DC) voltage 

Figure 1.  (a) Flowchart representation of blood glucose level measurement setup; (b) Procured ultrasonic 
transceiver (WZT40 and WZR40) pair; and (c) Sample holder with ultrasonic transceiver (WZT40 and WZR40) 
pair.
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is applied and current is observed which is proportionate to the glucose. The AC and DC information are then 
combined to provide a hematocrit and temperature compensated glucose result. The enzyme on the test strip, 
a variant of glucose dehydrogenase, converts the glucose in the blood sample to gluconolactone. This reaction 
creates a harmless DC electrical current that the meter interprets for the blood glucose result. The sample and 
environmental conditions are also evaluated using small AC signal.

The entire observation is carried out in a controlled environmental condition. The Arduino micro-controller 
kit with the serial-port terminal application (coolTerm 1.5.0.572) is used to store the receiving voltage values from 
the receiver continuously. For quantification, RVM model is used and result is displayed on the OLED display.

Probabilistic model and error grid analysis
Prediction analysis. The probabilistic model in which the output is evaluated based on the Bayesian para-
digm and the weights as hyper-priors is termed as RVM. As like our previous  work34,we have implemented 
RVM probabilistic model to predict glucose level from added glucose variation and ultrasonic transducer data. 
RVM based block diagram is depicted in Fig. 2. The model is designed in such a way, that the model takes input 
parameters as the added glucose variation ( GAdd ), the ultrasonic transducer voltage output ( vu ) and gives rise to 
the output which is proposed blood glucose meter level ( PBGML).

The RVM model consists of three layers such as the layer-1 (input layer feature vector for ith instance, layer-2 
(hidden layer or higher dimension space layer) and layer-3 (output layer with the predicted blood glucose 
values). The input layer ith instance is denoted as mi =

[

GAdd vu
]

 ). The RVM model is used to predict glucose 
level from added glucose variation ˜GAdd and ultrasonic transducer data ṽu . In the model,φ corresponds to the 
design matrix and the K specifies the kernel function which maps the input features to high dimensional feature 
space just alike as SVM. The output layer which is layer 3 and it generates the glucose level named as proposed 
glucose meter reading PBGML respectively. To evaluate glucose level, the concerned mathematical formulation 
of the RVM model is as follows

where the actual and predicted glucose levels for ith exemplar are ˜PBGML and PBGML(mi ,w) . The glucose level 
data values for the model are the values, which have been taken simultaneously at the time of experiments by 
accu-check instant (commercial glucometer). The weight vector between the layer-2 and layer-3 of probabilistic 
model is s =

[

s1, s2, . . . sN
]T . The noise of the zero-mean Gaussian process with a variance of σ 235 termed as εi 

in Eq. (1). Similarly, the training set is evaluted by using the below given Eq. (2)36.

The φ tends to the design matrix. This has termed as φ = [φ(m1),φ(m2), . . . φ(mN )]
T . The non-linear basis 

f u n c t i o n  f o r  i t h  e x e m p l a r  i s  φ(mi) a n d  e v a l u a t e d  b y  t h e  k e r n e l  f u n c t i o n 
φ(mi) = [1,K(m,m1),K(m,m2), . . . , k(m,mN )] . The prior weight distribution for the RVM model is 
P(w | a) =

∏N
i=1 N

(

wi | 0,α
−1
i

)

 , where w is weight vector between layer-2 and 3 of the model and is a set of 
hyperparameter. In order to avoid the over fitting in the estimation of w and σ 2 , a set of hyperparameter has 
been introduced in RVM. This means the weight vector is sparse and thus, the RVM model is named as sparse 
Bayesian model. The posterior probability distribution P

(

w,α, σ 2 | P̃BGML

)

 can be evaluated as 
P
(

w,α, σ 2 | P̃BGML

)

= P
(

w | P̃BGML,α, σ
2
)

× P
(

α, σ 2 | P̃BGML

)

 . The first term of the posterior distribu-
tion over weight is computed as Eq. (3)

(1)˜PBGML = PBGML(mi ,w)+ ǫi

(2)

P( ˜PBGML | w, σ 2) =

N
∏

i=1

P(PBGMLi | w, σ
2)

=

N
∏

i=1

1

(2πσ 2)
N
2

exp

{

−
1

2σ 2
� PBGMLi − φ(mi)w �2

}

(3)P
(

w | P̃BGML,α, σ
2
)

= 2π− (N+1)
2 C− 1

2 × exp

(

−
1

2
(w − µ−1)C−1(w − µ)

)

Figure 2.  Schematic diagram of the RVM based prediction analysis.
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The mean and convergence matrix computed from the above equation are given by C = (σ−2φ́φ + A)−1 and 
µ = σ−2CφP̃BGML , respectively. Where A, is a diagonal matrix with entries as (α0,α1 . . . αN ) . The second term 
of the posterior equation can be written as, P

(

α, σ 2 | P̃BGML

)

= P
(

P̃BGML | α, σ 2
)

P(a)P
(

σ 2
)

 . Thus, the 
distribution can be evaluated by Eq. (5) as

The iterative estimation of the hyperparameter and variance are given by αnew
i =

γi
µ2
i
 and 

(σ 2)new = �
´̃

PBGML−µφ�
N−

∑

i γi
 i ), where µi corresponds to ith posterior average weight andγi = 1− αiCii . The Cii is the 

diagonal element of posterior covariance matrix. The RVM prediction for a new feature vector z∗t  is given by Eq. 
(6)

where optimal parameters such as αmp and σ 2
mp are computed iteratively using the hyper-parameter and variance. 

In order to avoid the over-fitting in the estimation of w and σ 2 , a set of hyperparameter (α) has been introduced 
in RVM which means the weight vector is sparse and this RVM model also called as the sparse Bayesian  model37. 
After the data prediction from RVM model, the normalized correlation coefficient (NCC) is used to estimate 
the similarity with CBGM data values.

Error grid analysis between CBGM and PBGM. Clarke‘s error grid analysis. The delimitation between 
CBGM and PBGM is a much needed analysis for medical importance. The Clarke error grid analysis provides a 
platform for blood glucose meter (BGM) developers inducing researchers working in this domain. Though the 
analytical model provided by Clarke et al.38,39 release 35 years (in 1987) back but still it has merit and adopted 
widely. This approach includes a graphical cartesian plot with designated nomenclatures for the identification 
of glucose levels. For identification of blood glucose level, if CBGM value is 120 mg/dL where PBGM value 123 
mg/dL then the graph denotes for this particular level value as (120,123) in the XY cartesian domain. The clarke‘s 
error grid has five specific zones which denote from A to E. The zones are denotes as the clinically correct deci-
sions (Zone:A), the clinically uncritical decisions (Zone:B), overcorrection (Zone:C), skip a necessary correction 
(Zone:D) and performing the opposite/wrong correction respectively (Zone:E). This analysis does not specify 
the type of diabetes (type-1 or 2) and direct transition from zone B to E skipping C and D zones is not possible. 
Despite of wide acceptance and usefulness of this analysis, it carries the above limitations/criticisms.

Parke‘s error grid analysis. The drawbacks of Clarke’s error grid analysis have been solved in Parke‘s error grid 
analysis. Parke‘s error grid analysis tool is developed in June 1994, within 1 year after the publication of the 
Diabetes Control and Complications Trial study (DCCTS). The insulin therapy has not been widely accepted at 
that time so as analog insulins were not  available40. The continuous transitions between zones, differentiation 
between type-1 and type-2 diabetes and the range from 0 to 550 mg/dl level are present in Parke‘s error grid 
analysis with no lower E zone.

Surveillance error grid analysis. The surveillance error grid (SEG) analysis is a tool for analysis and visuali-
zation of BGMs errors and has been certified by 206 diabetes clinicians and 28 non-clinicians for 4 different 
rated treatment  scenarios41. The SEG is a tool to assess the degree of clinical risk from inaccurate BGMs. This 
is developed by Diabetes Technology Society (DTS) together with representatives from the Food and Drug 
Administration (FDA), the American Diabetes Association, the Endocrine Society, and the Association for the 
Advancement of Medical Instrumentation (AAMI), and representatives of academia, industry, and government.

Experimental results with model validation and discussion
In this section, the glucose level data values obtained from the PBGM and CBGM at different glucose concen-
trations in the blood medium are shown. In the blood sample, glucose has been added 4 mg/dl at each batch 
manually and accordingly, the transceiver reading has been taken to observe the variation. In the same time, the 
commercial glucometer is used to take the readings. The correlation between glucose level values of the PBGM 
and the CBGM are depicted in Figs. 3 and 4. To quantify the glucose levels in the proposed system, the ultrasonic 
readings pass through the RVM probabilistic model. Figure 5 depicts the corroboration between CBGML and 
PBGML . In the Fig. 5, we have taken the tested data sets after rigorous training of the RVM probabilistic model. 
All the data sets are trained by the model randomly to generate proposed glucose levels from the inputs (trans-
ducer voltage and glucose variation). After the model has been trained, it generates testing data sets. The no of 
testing data sets are 32 and they depicted in Fig. 5. This clearly indicates that the RVM model is able to quantify 
the glucose level inside the blood sample. The nonlinear correlation coefficient of 0.9859 with the commercial 
blood glucose meter level depicts the probabilistic ability of the model. It is evident that the glucose level values 
evaluated from PBGM are well correlated with the CBGM with a NCC value of 0.9859.

(4)P
(

α, σ 2 | P̃BGML

)

= P
(

P̃BGML | α, σ 2
)

P(w | a)

(5)P
(

α, σ 2 | P̃BGML

)

= 2π− N
2

(

σ 2I + φA−1φ́

)− 1
2
× exp

(

−
1

2

´̃
PBGML

(

σ 2I + φA−1φ́

)−1
P̃BGML

)

(6)P
(

P̃BGML | z∗t ,αmp, σ
2
mp

)

=

∫

P
(

P̃BGML | w, σ 2
mp

)

P
(

w | αmp, σ
2
mp

)

dw
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The observations from the previous works reveal that the proposed ultrasonic MEMS based transceiver has 
the ability to senses the glucose levels in the blood medium and is well correlated with the glucometer readings. 
The blood glucose level determined by electrochemical glucose sensor is 356.0± 116mg/dl , and the glucose level 
quantify by the commercial blood glucometer is 424.8± 59mg/dl . The comparison of these two earlier reported 
devices have no statistically significant difference (p value) greater than 0.0542. However, the average blood 
glucose level determined by proposed simulated result is 280.4± 1450mg/dl , and the glucose level measured 
by the commercial glucose meter is 282.3± 149mg/dl33. The glucose level measured by PBGML and CBGML 
are 257.2± 131mg/dl and 259.2± 109mg/dl respectively. The box-plot between CBGM and PBGM is depicted 
in Fig. 6. A boxplot is a standardised method of depicting data distribution based on a five-number summary 
(“minimum, first quartile [Q1], median, third quartile [Q3], and maximum”). It can provide information about 
your outliers and their values. B boxplot refers to the symmetric structure and closely packed data. Because it is 
unaffected by outliers, the IQR (Interquartile Range) is typically regarded as a better measure of dispersion than 
the range. We utilized our data sets in the study to examine their distribution throughout sensing range, and it 
is symmetrical. A significant standard deviation shows that the observed data is very variable around the mean. 
In Fig. 6, we present the first quartile, second quartile, and interquartile range for Accu-check Aviva similarly 
and suggested blood glucose meter as Q1A, Q3A, IQR A and Q1B, Q3B, and IQR B. The comparison of above 
two devices shows no statistically significant difference (p value > 0.05). Figure 7 denotes the clarke‘s error grid 

Figure 3.  The variation in the receiving ultrasonic transceiver readings due to the fluctuation in blood glucose 
level.

Figure 4.  Mapping between the glucose variation in blood and the commercial glucose meter readings.
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analysis. Above 96.8% out of 125 numbers of tested samples lies in the clinically correct decision range where as 
less than 3.2% in the clinically uncritical decision region. Figure 8 depicts Parke‘s error grid analysis by testing 
the CBGM and the PBGM values into the analytic model. This analysis depicts the result values are mostly in A 
(clinically correct decisions) and a very-few ( > 5 ) in B (clinically uncritical decisions).

As per recent development, the surveillance error grid analysis (SEG) including modified Bland–Altman plot 
for the system surveillance is carried out. Figure 9 denotes the SEG analysis, where the total no of 125 samples 
are taken for SEG testing. Out of 125 number of samples, 121 (96.8%) samples are in green zone (risk factor 
range: 0–0.5%, no risk) and 4 (3.2%) samples are in light green zone (risk factor range: > 0.5–1.0%, slight lower 
risk). The modified Bland–Altman plot analyzes regression quality by comparing the difference between two 
measures to their average. The modified Bland–Altman plot is also named as ‘Tukey mean-difference plot’. The 
deviation of tested data values from the reference point is plotted in Fig. 10 and found very less marginal error. 
The mean relative difference (Bias), mean absolute relative difference (MARD) and standard relative difference 
between CBGM and PBGM are 2.2%, 5.3% and 8.3% respectively.

The classification of the blood glucose levels are predominantly described worldwide. Number of tested sam-
ples ( ∗ n) from CBGM and PBGM are chosen as per noraml, prediabetes and diabetes level condition. Table 1 
describes the mean ( µ ) and standard deviations ( σ ) of their individual classified ranges. The individual NCC 

Figure 5.  Corroboration between commercial and proposed blood glucose meter level.

Figure 6.  Glucose measured by (A) Accu-ckeck Aviva commercial glucose meter ( 259.23± 109.37mg/dl ) and 
(B) Proposed glucose meter ( 257.23± 131.33mg/dl ) (no statistically difference with p > 0.05).
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of the sample pairs (17, 39, 16, 14, 95 and 71) are 0.9691, 0.9835, 0.9662, 0.9673, 0.9758 and 0.9665, where as 
the overall NCC of the samples (125 nos) is 0.9859. Thus indicates the accuracy of individual classifications lie 
above 96% where as the total accuracy of the PBGM is 98%. Before taking blood inside the testing chamber, the 
chamber has been cleaned by distilled water. After that by considering distilled water in the chamber, the test 
run has been carried out for approximately 60 to 90 s and output voltage has been noted. Such type of cleaning 
and repeating the test run using distilled water has been continued till output voltage reading of 19± 0.5 mV is 
achieved. Once the system achieved the base reading of 19± 0.5 mV, the system is now ready for blood glucose 
level measurement. From the above experimental observation it is concluded that, the proposed system holds 
good for periodically measurement of blood glucose in animal (goat) blood. This will help us to carry out further 
research in in-vivo condition and on suitability, this measurement system will be applied to human blood to 
obtain the glucose variation periodically with a short span of time.

Conclusion
To quantify the glucose levels in the blood medium, a system based on ultrasonic MEMS transceivers and the 
RVM probabilistic model has been proposed. This is a type of in-vitro experiment. This low-cost system can 
measure the patient’s glucose level on a regular basis as needed. The experimental result values, which include 
various error grid analysis reports, depict the system’s robustness. CBGM is used to validate the system. The 

Figure 7.  Clarke‘s error grid analysis for PBGM.

Figure 8.  Parke‘s error grid analysis for PBGM.
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NCC of 0.9859 indicates that there is no statistically significant difference greater than 0.05 between CBGM and 
PBGM. The proposed system can detect glucose levels as high as 450 mg/dl.

Data availability
All data generated or analysed during this study are included in this version of the manuscript.

Received: 30 June 2022; Accepted: 5 December 2022

Figure 9.  Surveillance error grid analysis for PBGM.

Figure 10.  Modified Bland–Altman plot for blood glucometer error surveillance.

Table 1.  Blood glucose level classification with mean ( µ ), standard deviation ( σ ) of CBGM and PBGM.

Blood glucose 
classification

Fasting blood glucose 
levels (mg/dl)43

µ± σ Post meal blood glucose 
levels (mg/dl)43

µ± σ

CBGM PBGM CBGM PBGM

Normal 70–100
(n = 17) 87.9 ± 8 88.7 ± 6 70–140

(n = 39) 108.0 ± 20 108.1 ± 18

Prediabetes 101–125
(n  = 16) 119.7 ± 10 119.5 ± 6 141–200

(n = 14) 159.9 ± 15 168.6 ± 16

Diabetes 125–above
(n = 95) 261.5 ± 91 265.3 ± 86 200–above

(n = 71) 300.0 ± 72 303.8 ± 63
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