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A B S T R A C T

Virtual Reality (VR) is a key industry for the development of the digital economy in the future. Mobile VR has
advantages in terms of mobility, lightweight and cost-effectiveness, which has gradually become the mainstream
implementation of VR. In this paper, a mobile VR video adaptive transmission mechanism based on intelligent
caching and hierarchical buffering strategy in Mobile Edge Computing (MEC)-equipped 5G networks is proposed,
aiming at the low latency requirements of mobile VR services and flexible buffer management for VR video
adaptive transmission. To support VR content proactive caching and intelligent buffer management, users’
behavioral similarity and head movement trajectory are jointly used for viewpoint prediction. The tile-based
content is proactively cached in the MEC nodes based on the popularity of the VR content. Second, a hierar-
chical buffer-based adaptive update algorithm is presented, which jointly considers bandwidth, buffer, and
predicted viewpoint status to update the tile chunk in client buffer. Then, according to the decomposition of the
problem, the buffer update problem is modeled as an optimization problem, and the corresponding solution
algorithms are presented. Finally, the simulation results show that the adaptive caching algorithm based on 5G
intelligent edge and hierarchical buffer strategy can improve the user experience in the case of bandwidth
fluctuations, and the proposed viewpoint prediction method can significantly improve the accuracy of viewpoint
prediction by 15%.

1. Introduction

In recent years, Virtual Reality (VR) application has become a
cynosure, that attracts most of the public attention. Applications such as
VR sports, VR tourism, VR game, VR conference, VR live broadcast, etc.
have been widely popularized [1]. It is predicted that by 2025, the VR
application market will reach 30 billion US dollars [2]. Recently, the
Internet companies such as Apple, Google, Facebook, and YouTube have
also entered the VR market [3,4]. As the most popular application at
present, VR uses 360-degree video to build a three-dimensional virtual
world in a Head-Mounted Display (HMD), and its features such as im-
mersion, interaction and imagination bring people a new visual inter-
active experience [5]. However, it poses new challenges to the network

[6], as the cost of this new experience is higher transmission bandwidth,
higher video bit rate and lower latency requirements.

Compared to traditional video, the data volume of VR video is several
times larger due to its panoramic feature. On the one hand, in order to
provide an immersive panoramic experience, users need to download the
entire panoramic video, but only one-third of the panoramic video (usu-
ally the viewing angle of field of view is 90◦–120◦) is viewed by the user
through the HMD [7,8]. The number of pixels that the human eye can see
in one degree of viewing angle is called Pixels Per Degree (PPD) [9].
Generally speaking, when the PPD reaches 60 (the limit of the human
retina), the clarity of viewing is the highest. Taking a 4K VR video as an
example, the horizontal PPD is about 11 (3840/360 = 10.67), which is
much lower than 60. Therefore, the current 4K VR video and
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standard-definition ordinary video have the same clarity from the
viewers’ perspective. On the other hand, in order to prevent motion
sickness and provide a better Quality of Experience (QoE), the HMD must
maintain a high refresh rate (the refresh rate can reach 120 Hz). Similarly,
in order to maintain an immersive experience, the VR video frame rate
must be kept at a high level (typically 30–100 frames per second (fps)).
Therefore, 360-degree video requires a higher resolution (12K) and a
higher frame rate (100 fps) than traditional video. As a comparison, 8K
traditional video with frame rate of 60 fps uses High Efficiency Video
Coding (HEVC) for compression, the code rate is about 100 Mbps [10].
Obviously, the transmission of higher resolution and higher frame rate VR
videos is more difficult and challenging compared to traditional video.

Another important factor affecting the VR user experience is latency
[11]. In VR applications, VR latency specifically refers to
Motion-To-Photon (MTP) latency, which describes time from the start of
the user’s head movement to the corresponding screen display time. It
consists of four main parts: motion sensor delay, network delay,
rendering delay and display delay. Research [9] shows that the mini-
mum delay that ensures a high quality VR experience is between 17 and
20 ms. If the MTP delay is greater than 20 ms, it is easy to cause the
motion sickness, which leads to a poor VR experience. Although most
HMD manufacturers claim that their devices can support a MTP delay of
less than 20 ms, unless the network delay can reach several milliseconds
(according to the work [12], 80% of the current network delays in China
reach more than 90 ms), otherwise sending the whole 360-degree
panoramic video to the HMD to reduce the network latency will al-
ways be the last resort. Due to the interactive characteristics of VR, the
delay requirement is more stringent, so the current mainstream of 4K
360-degree video requires at least hundreds of megabits per second of
transmission rate to guarantee the user interaction experience [13].
Thus, to ensure the smooth interactive experience of VR users and the
quality of the video in the actual view of users, VR content should be
properly prefetched according to the different network conditions of
users, and this deserves further research [14,15]. At present, most VR
streaming platforms still use the traditional video transmission mecha-
nism, which affects the interactive experience of VR to some extent.
Therefore, it is also necessary to study a more suitable transmission
mechanism to provide a better VR experience.

The ultimate goal of VR is that the VR user cannot distinguish the
boundary between the synthesized virtual world and the real world [16,
17]. Therefore, continuously increasing the resolution of VR video to
reach the retinal limit of the human eye and eliminating the limitation of
wired connections are two important steps toward this ultimate goal.
Undoubtedly, mobile VR has extremely high requirements for large
bandwidth, ultra-reliability, and low latency: under the low latency
constraint, gigabits of data per second must be transmitted to the user
terminal [18]. As we all know, low latency and high reliability are two
contradictory requirements. Ultra-reliability requires to be allocated to
ensure the transmission success rate, while this will increase the delay of
other users. Obviously, to realize mobile VR, intelligent network design
is required to meet the requirements of reliability, latency and seamless
support for different network scenarios [11].

5G has the characteristics of bandwidth-intensive, low latency and
wide connectivity, which provides the infrastructure for the imple-
mentation of mobile VR [19,20]. Among the many application scenarios
of 5G, mobile VR is considered to be the first killer application of 5G, and
has received extensive attention from academia and industry. Mobile
Edge Computing (MEC) is an important paradigm of 5G. Its core idea is
to bring the services, content and resources closer to the end-user
through software-defined networking and network function virtualiza-
tion technology [21,22]. MEC offers a possible solution to the problems
faced by mobile VR transmission [23,24]. The main advantages of MEC
are: 1) Since the computational and storage resources of MEC are closer
to the users, the communication delay can be significantly reduced. 2)
Intensive computing tasks of users can be offloaded to MEC nodes to
solve the problem of insufficient computation of mobile terminals. 3)

The content can be cached on the MEC node through an efficient caching
strategy to improve the utilization of storage resources.

Proactive caching of VR content in MEC will improve the VR user’s
QoE in terms of latency to some extent, but buffer management in the
terminal is another key factor that directly affects the visual perception
[13]. Therefore, caching and buffer management should be optimized
together to provide a better experience for VR users. Therefore, in
response to the current problems of content caching and user terminal
buffer management in the 5G edge computing for mobile VR, this paper
studies the edge caching and buffer optimization problem. The main
contributions of this paper are summarized as follows.

● A mobile VR adaptive transmission mechanism based on 5G intelli-
gent edge is proposed. VR content is proactively cached to the MEC
nodes according to the popularity of VR tiles, and a buffer adaptive
update algorithm based on viewpoint prediction is implemented to
improve user experience.

● In order to improve the viewpoint prediction accuracy, the viewpoint
prediction method based on the user’s historical trajectory and the
motion similarity between users is proposed, thereby improving the
cache hit rate of edge nodes and optimizing the user buffer
management.

● An adaptive update algorithm for buffer management that jointly
considers user bandwidth, buffer status, and predicted viewpoint is
proposed based on a hierarchical buffer strategy. The problem
formulation and the corresponding algorithm are presented.

● Finally, the simulation shows that the proactive caching scheme
cooperates with the proposed adaptive update algorithm can guar-
antee better performance(QoE) with the bandwidth fluctuation,
meanwhile reduce the latency of VR users.

The rest of this paper is organized as follows. In Section 2, the related
work is outlined. In Section 3, the system model is described. In Section
4, the mobile VR adaptive transmission mechanism is proposed. In
Section 5, the performance evaluation and discussion are shown.
Finally, in Section 6, the paper is summarized.

2. Related work

MEC has brought hope to the implementation of mobile VR, but it has
not completely solved all the challenges of mobile VR content caching in
the MEC server and buffer management in the user terminal still need to
be carefully designed to achieve better QoE. On the one hand, the view-
point prediction based on the trajectory of the user’s head movement
significantly reduces the accuracy of the prediction over time, which in-
creases the difficulty of proactive content caching. On the other hand,
most VR streaming applications still use the traditional video buffer
management mechanism, which will degrade the interactive experience
of VR to some extent. Therefore, more accurate viewpoint prediction
methods and intelligent buffer management are needed to deal with the
aforementioned problems. The user viewpoint prediction methods based
on motion [15] and content [25] are two mainstream methods that are
widely used. The motion-based viewpoint prediction is mainly based on
the user’s historical trajectory to predict the future viewpoint, and its
accuracy drops sharply along with the prediction time. The content-based
viewpoint prediction is based on the video structure, saliency and other
characteristics of the content to predict the user’s viewpoint. However,
the effect mechanism on the user’s viewpoint is not very clear. Recently,
the work [26] tried to use the K-Nearest-Neighbors (KNN) method to
predict the user’s viewpoint based on the behavioral similarity between
users, and this method achieved good prediction results.

Caching in MEC will improve the VR user’s QoE to some extent in
terms of latency, but the buffer management in the terminal is another
key factor that directly affects the visual perception. Therefore, buffer
management still needs to be carefully designed. In terms of buffering
mechanism, the work [23,24] realized that the solution of transmitting
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the higher video quality from the current user’s point of view can save
bandwidth to some extent, but it increases the spatial dimension to
buffer future videos. Once rebuffering occurs, video freezing is likely to
occur, affecting the user’s QoE. In Ref. [27], an adaptive 360-degree
video transmission scheme based on scalable coding was proposed,
the main idea is to use the characteristics of the base layer and the
enhancement layer of scalable coding for adaptive buffering. In scalable
coding, the base layer of the video is required, which can be buffered
with a longer time granularity by ignoring the user’s viewpoint. Since
the user’s viewpoint changes quickly, the enhancement layer can buffer
a shorter time granularity to improve the user QoE. [28] also uses the
idea of scalable coding, the user’s viewpoint strategy based on scalable
coding can solve the rebuffering problem, but its coding complexity is
relatively high. In Ref. [29], a hierarchical buffering strategy was pro-
posed for adaptive transmission of VR video, but it lacked optimization
of the bitrate selection in the buffer management.

However, according to our research, neither proactive content caching
at the edge nor buffer content optimization at the client side can guarantee
a high quality of user experience under current network conditions.
Therefore, joint optimization of caching and buffer management is
probably the only way to meet the demanding latency and bandwidth
requirements of VR, and this is the main motivation of this paper.

3. System model

The system model of this paper is shown as Fig. 1, which includes
four components: content server, access network, edge node and user
terminal. In the following part, the function of each component is
described. The content server is responsible for storing video content
and responding to user requests. The access network uses a typical 5G
Centralized Radio Access Network (C-RAN) to provide transmission
services to users through a Remote Radio Unit (RRU). In the C-RAN
MEC, edge computing servers are deployed in the Base Band Unit (BBU)
to provide storage and computing resources. In this paper, a multi-level
edge computing architecture is considered, where network MEC is
deployed in other nodes of the core network and has the same function
as the C-RAN MEC. This paper takes mobile VR headsets as the main
research objects, which provide display, interaction, communication
and simple computation functions. An adaptive content update module
is deployed for the mobile VR terminal, which makes intelligent buffer

content management update decisions based on bandwidth status, user’s
predicted viewpoint, and current buffer status. Finally, the user terminal
performs the rendering of the corresponding viewpoint according to the
head movement. In addition, the content server records the user’s
viewpoint trajectory, performs viewpoint prediction based on the his-
torical motion trajectory and the viewpoint trajectory of similar users,
and feeds back the result to the viewpoint prediction for the adaptive
decision module of the user terminal in time.

In addition, we adapt tile based VR encoding for content delivery in
this paper. Fig. 2 shows an example of tile-based VR video encoding
based on Equi-Rectangular Projection (ERP) [30,31]. The VR video is
divided into N segments the temporal dimension, and the encoder di-
vides each video segment in the spatial dimension independently by
encoding as tiles, and each tile is encoded intoM bitrate versions. In this
paper, a particular code rate version of the nth segment is called a tile
chunk. Each tile produces multiple bitrate versions, i.e., Rt ∈

{
Rlt ,…RQt

}
,

where Rlt and R
Q
t represent the minimum and the maximum bitrates,

respectively. The segment temporal dimension is denoted as n ∈ N, and

Fig. 1. The system model.

Fig. 2. Tile-based VR video coding.
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the bitrate of the t-th tile of the n-th segment is denoted as Rn,t.

4. Methodology

The accuracy of user viewpoint prediction is an important factor
affecting the performance of the mobile VR. On the one hand, it im-
proves the cache hit rate of edge nodes for the edge caching. On the
other hand, the optimization of user-side buffer management is also
based on viewpoint prediction. In order to improve the accuracy of
viewpoint prediction, this paper proposes a cross user viewpoint pre-
diction method, which requires the viewpoint trajectories of similar
users and the trajectories of user motion together. The viewpoint pre-
diction is performed in the DASH server, and then the viewpoint pre-
diction result is fed back to the user terminal’s adaptive module in time.
The adaptive module makes a buffer adaptive update decision based on
the bandwidth status, the predicted viewpoint of the user, the status of
the current buffer, and the requested VR video chunks are proactively
buffered in the buffer of the user terminal. Finally, the user terminal
renders the video in the buffer according to the user’s current viewpoint.
In the following part, the proposed viewpoint prediction method and
buffer adaptive update algorithm are elaborated.

4.1. Edge caching of VR content based on tile popularity

The mobile network integrates the MEC, which provides computing
and storage functions and brings VR content closer to the users [32,33].
If the video content requested by the user is cached at the edge node
within its acceptable service range, the user can obtain the video content
directly from the edge node, without going through the core network or
obtaining the content from the remote video server, and the service
delay can be effectively reduced. On the one hand, the storage space of
edge nodes is limited, and it is extremely difficult to cache all VR video
content on edge nodes [34]. On the other hand, the service delay for
users can be significantly reduced, and the operation cost and energy
consumption of edge nodes can be reduced by improving the content
cache hit rate of edge nodes.

According to the characteristics of the VR content request based on the
user’s point of view, this paper adopts the cache based on the interest de-
gree and content popularity prediction with tile granularity, as shown in
Fig. 3. Our previous work has been confirmed that the user’s view is
concentrated in a region with strong video saliency [22], and the saliency
detection could be applied to obtain the τ segment of VR video n of tilem’s
saliency valuePn,τ,m. And the popularity ofVRvideo n in the edge node k Pkn

is defined as Equation (1). Finally, the saliency of the tile (i.e., the degree of
interest) and the popularity of the VR video are used to predict Pkn,τ,m the
popularity of the tile, which is defined as the weighted sum function, and
shown as Equation (2). In this paper, we adopt the edge caching based on
tile granularity to improve cache hit rate and storage efficiency.

pkn =

(
∑N

n

(
γ− α
n,k

))− 1

γ− α
n,k

(1)

pkn,τ,m = φ⋅pn,τ,m × λ⋅pkn (2)

Based on edge caching, deploying edge computing and edge caching
in the core network improves user experience quality while reducing
transmission delay. In addition, in-network caching has been proven in
NDN network to greatly reduce. In this paper, the VR video content are
cached at the core network edge and C-RAN edge cache, is referred to as
the multi-level cache, which is shown in Fig. 1. Multi-level caching has
the following advantages [35,36]: 1) Caching tile-granular VR video
content to edge nodes to reduce service delay. 2) Edge caching based on
viewpoint prediction greatly improves the caching efficiency of edge
nodes. 3) Caching based on tile granularity improves the edge nodes to
some extent and reduces edge storage cost. 4) Multi-level caching
further improves the cache hit rate.

4.2. Cross user viewpoint prediction

Tile-based adaptive transmission is an efficient way to transmit VR
video. However, because VR applications are sensitive to delay, and it is
impossible to deliver high-quality VR video to the user in time. The user
needs a large buffer to store the precached video content for a smooth
viewing experience. Therefore, if the user’s viewpoint can be predicted
in advance, then the quality of the viewpoint part of the tile can be
enhanced in advance, it can save bandwidth and improve the trans-
mission to a great extent. However, the accuracy of the viewpoint pre-
diction based on the trajectory of the user’s head movement decreases
significantly with time, so it is necessary to explore new viewpoint
prediction methods.

In the work [23], they use K viewpoints of other users that are closest
to the predicted viewpoint to correct the value of user motion based
prediction, but they ignored the similarity of behavior between users. In
their case, using the closest K user viewpoints to correct motion-based
prediction results is very likely to lead to larger deviations in the final
prediction results. On the other hand, the studies in Ref. [28] have

Fig. 3. Video popularity and user interest based tile ranking.

J. Yang et al. Digital Communications and Networks 10 (2024) 1234–1244 

1237 



pointed out that when watching the same VR video, the viewing
behavior of users in the virtual environment is similar to a certain extent.
Inspired by their work, this paper attempts to use the similarity of mo-
tion between users to improve the prediction accuracy of the user’s
viewpoint. Fig. 4 shows an illustration of the proposed viewpoint pre-
diction method. First, the user’s viewpoint is predicted based on the
user’s historical trajectory, then the predicted user’s viewpoint is cor-
rected by using the similarity of motion between users. The specific
method is described below.

First, we defined the motion similarity of two users as the ratio of the
number of tiles where the viewpoints of two users overlap in a period of
time, as shown in Equation (3).

Sim{v, j} =
∑D

nδ=0

2Ωnδ{v, j}
Θnδ{v} + Θnδ{j}

(3)

Where, nδ is the sampling index of the user’s viewpoint in nth segment. D
is the time window of the similarity measurement. Ωnδ{v, j} and Θnδ{v}
represent the number of tiles where the two user’s viewpoints overlap at
nδ time and the number of tiles within the user’s viewpoint, respectively.

It is assumed that the motion trajectories of all users are recorded by
the VR content server. Based on the similarity measurement between
users, the viewpoint prediction module selects Kmost similar users to the
predicted user viewpoint, and uses the motion trajectories of the K most
similar users to correct the predicted user viewpoint. Consider adopting a
comprehensive weight voting mechanism based on motion trajectory
prediction and K most similar user viewpoints. Among them, the Linear
Regression (LR) method based on motion trajectory prediction is used. A
linear regression model for predicting the user’s viewpoint in a video
chunks is shown in Equation (4). Among them, OLR(α, β, γ) represents the
viewpoint predicted by the linear regression method, α, β and γ are the
attitude angles of the X, Y, and Z axes, also called Euler angles; ωLR is the
regression coefficients of the linear regression; Equation (4) is for con-
verting the Euler angles of the viewpoint into 3D coordinates.
⎧
⎨

⎩

αLR(t0 + Γ) = ωαΓ + α(t0)
βLR(t0 + Γ) = ωβΓ + β(t0)
γLR(t0 + Γ) = ωγΓ + γ(t0)

(4)

⎧
⎨

⎩

x = sin(α)cos(β)
y = sin(β)
z = cos(α)cos(β)

(5)

ξt =WLR⋅Ft(OLR) +
∑K

k
WSM⋅Ft(OkSM) (6)

Tile’s vote ξt can be expressed as Equation (6), where WLR and WSM
represent the weight of the predicted viewpoint based on the linear

regression method and the weight of the similar user viewpoint, respec-
tively. F(O) represents the range covered by the viewpoint, which is a T-
dimensional vector, and T is the index of the tile in the raster scan order.
Ft(OLR) and Ft(OkSM) represent t-th tile are within the viewpoint range ac-
cording to the linear regression and the K most similar users methods,
respectively. F(O) = 1 means that the t-th tile is within the viewpoint
range, and is equal to 0 if the tile is outside the predicted viewpoint range.
OkSM means the viewpoint of the k-th most similar users. In addition, since
the accuracy of the linear regression predictionmethod based on historical
trajectory decreases with time, the weight of WLR the linear regression
method is inversely proportional to time, using the form of Equation (7),
andWSM is set as 1 since the summation of Ft(OkSM) denotes the ratio of the
tile in the viewpoint range for all the K similar user.

WLR =
1
Γ

(7)

Fig. 5 shows an illustration of the weight-based voting mechanism.
The dark dashed box is the viewpoint based on LR prediction, and the
other blue, green, and yellow boxes are the historical viewpoints of
similar users. According to our proposed mechanism, the weights of
each tile are calculated by Equation (6). Obviously, these weights are the
predicted probability that the user’s viewpoint is focused on these tiles.

Fig. 4. Illustration of cross user viewpoint prediction.

Fig. 5. An example of voting mechanism for cross user viewpoint prediction.

J. Yang et al. Digital Communications and Networks 10 (2024) 1234–1244 

1238 



4.3. Adaptive update algorithm based on hierarchical buffer

Pre-caching VR content at edge nodes significantly reduces network
transmission delay. However, the time-varying characteristics of mobile
network bandwidth and the randomness of users viewing VR content
determine the need for content caching at user terminals. For delay-
sensitive VR applications, user terminal caching can provide a smooth
user experience, but if the user’s bandwidth condition is good, if the low-
quality video chunks are buffered for a long time, the buffer overflow
will occur. If high-quality video is cached for a short period of time, the
video chunks cannot be downloaded in time, resulting in a freezing
phenomenon, both of which will degrade the user experience. Therefore,
based on viewpoint prediction, we propose an adaptive transmission
algorithm based on hierarchical buffering, which comprehensively
considers the user’s bandwidth status, the viewpoint prediction and the
state of the buffer region for adaptive transmission. Specifically, the
bandwidth status of the user adopts a linear regression method that uses
the status of the previous time period to predict the bandwidth of the
next time period. The linear regression model is shown in Equation (8),
where, BW(t0) represents the bandwidth status in the previous time
period, μLR represents the regression coefficient of linear regression, and
Γ is the time length of a video chunk. We used locally weighted LR for
bandwidth prediction. For the locally weighted linear regression algo-
rithm, the whole training data is required for each prediction (each
prediction yields a different parameter μLR).

BW(t0 + Γ) = μLRΓ + BW(t0) (8)

In this paper, we assume that the content server records the trajec-
tory of the user’s viewpoint, and performs viewpoint prediction based
on the historical trajectory and the viewpoint trajectory of similar users,
and then feeds back the result of the viewpoint prediction to the adap-
tive module of the user terminal in real-time.

The hierarchical buffer strategy proposed in Ref. [37], which divides
the entire buffer into two regions, namely [0, BTh] and [BTh, BMax],
where BTh and BMax represent the hierarchical threshold and maximum
buffer value, respectively. The hierarchical buffer is shown in Fig. 6,
where [0, BTh] is the first-level buffer region. If the user’s current buffer
state BCur is less than BTh that, it means that the content in the buffer is
being consumed quickly. If new video chunks are not downloaded in
time, video playback will be stuck, it is necessary to request more video
chunks in time to meet the needs of users. Therefore, the strategy
adopted is to update the [0, BCur] part of the tile based on the result of
the user’s viewpoint prediction, that is, the tile that brings greater utility
value gain to transmit a higher-quality version. For part of the [BCur,
BTh], by downloading the video to reach the buffer region threshold BTh.

Fig. 6. The illustration of hierarchical buffer.

Fig. 7. Content update of hierarchical buffer.
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For the downloading task of this part, the optimization of the utility
value in the whole buffer region is achieved by the selection of the tile
code rate in the video chunks. Content update of hierarchical buffer is
shown in Fig. 7, and the mathematical description of the problem is
formulated as follows:

P1 : Max
xn,t* ,R

re
n,t*

,Rdon,t

∑

n∈[0,BCur ]

∑T

t
xn,t*

(
Uren,t* − Un,t

)
pn,t +

∑

n∈[BCur ,BTh ]

∑T

t
Udon,tpn,t

s.t.
∑T

t
xn,t*Rren,t* +

∑T

t
Rdon,t ≤ R(tc), ∀n ∈ [0,BTh],∀t,

t* ∈ T(C1)

Rren,t* ,R
do
n,t ∈ {R1t , ..R

Q
t },∀n ∈ [0,BTh], ∀t, t* ∈ T(C2)

xn,t* ∈ {0,1}, ∀n ∈ [0,BTh],∀t, t* ∈ T(C3)

(9)

Among them, pn,t represents the probability that the t tile of the n video
chunks is viewed by the user. xn,t* indicates whether the t tile of the n
video chunks is updated with a higher quality version, and Rren,t* indicates

the updated quality version of the t tile of the n video chunks. Rdon,t rep-
resents the downloaded quality version of the t tile of the n video chunks.
Uren,t* ,Un,t andU

do
n,t represent the utility value of the new quality version of

the t tile of the n video chunks, the utility value of the t tile of the n video
chunks in the buffer region and the utility value of the new video chunks
that needs to be downloaded, respectively. R(tc) indicates the downloads
data rate of the user.

In this paper, the utility function is used to measure the quality of VR
video transmission. The utility value of the tile chunks can be expressed
as Equation (10), where Rn,t and RQn,t represent the bitrate of the t-th tile
chunks and the maximum bitrate of the t-th tile chunks of the n-th video
chunks, respectively. α and β are the coefficients of the utility function.
The utility function is a convex function of the video bitrate, and the
first-order derivative of the function decreases as the video bitrate in-
creases. These characteristics of the utility function can well model the
user’s viewing experience. For tile-based VR videos, the utility value of a
tile describes its contribution to the user’s overall viewing experience at
a given bitrate.

Un,t =

⎧
⎪⎪⎨

⎪⎪⎩

αlog
(

β
Rn,t
RQn,t

)

,RQn,t > 0

0,Rn,t = 0

(10)

If the current buffer status of the user BCur is greater than BTh, it
means that there are enough video chunks in the buffer for the user to
play, so the tile of the [0,BTh] part is updated; the video chunks of the
[BCur, BMax] part are downloaded, because the prediction accuracy of the
user’s viewpoint is low when downloading the video chunks of this part,
the tile selection will have a large deviation, and the uniform lowest
bitrate version of the video chunks in the [BCur, BMax] part is down-
loaded. Similar to problem P1, the mathematical description of the
problem is as follows.

P2 : Max
xn,t* ,R

re
n,t*

,Rdon,t

∑

n∈[0,BTh ]

∑T

t
xn,t*

(
Uren,t* − Un,t

)
pn,t +

∑

n∈[BCur ,BMax ]

∑T

t
Udon,t

s.t.
∑T

t
xn,t*Rren,t* +

∑T

t
Rdon,t ≤ R(tc),∀n ∈ [0,BMax], ∀t,

t* ∈ T(C1)

Rren,t* ,R
do
n,t ∈ {R1t , ..R

Q
t }, ∀n ∈ [0,BMax],∀t, t* ∈ T(C2)

xn,t* ∈ {0,1}, ∀n ∈ [0,BMax], ∀t, t* ∈ T(C3)

(11)

On the one hand, when the content of the buffer region is about to be
consumed, it is necessary to adopt a conservative strategy to update the
buffer region’s tile and download new video chunks. On the other hand,
when the buffer region is about to reach the maximum buffer value, a

more aggressive approach is needed. This strategy updates the tiles in
the buffer region and downloads new video chunks. Therefore, the
requested download rate R(tc) must be determined by combining the
current buffer state and the predicted bandwidth. The download rate R
(tc) is determined by Equation (12) [37], where κ is the proportional
coefficient.

R(tc) = κBMax − BCur ⋅BW(tc) (12)

Note that the problems P1 and P2 are both nonlinear mixed integer
optimization problems. Based on the above analysis, it can be concluded
that different download strategies BCur need to be adopted depending on
the current buffer state. Next, the corresponding solution algorithms for
P1 and P2 based on different download strategies are given.

4.3.1. Solution of problem P1
If the user’s current buffer state BCur is less than BTh, a conservative

strategy is needed to update the tiles in the buffer region and download
new video chunks to ensure the user’s experience. Enough video chunks
must be kept in the buffer region to accommodate changes in network
bandwidth. Therefore, downloading new video chunks has a higher
priority than updating the buffer tile task. The following strategy can be
adopted: first download the [BCur, BTh] video chunks according to the
weight of the viewpoint prediction, and then update the [0, BCur] part of
the tile according to the weight of the viewpoint prediction when
bandwidth resources are left. Therefore, the problem P1 can be
decomposed into two sub-problems P3 and P4 for solution, where P3 is
the optimization problem of downloading [BCur, BTh] part of the video
chunks based on the weight of the viewpoint prediction, and introduces
the proportion of the total bandwidth ρ of the downloaded video chunks,
where 0≤ ρ ≤ 1. In this paper, ρ is set to 0.7 based on experience; and P4
is the optimization problem of updating the [0, BCur] part of the tile
based on the weight of viewpoint prediction.

P3 : Max
Rdon,t

∑

n∈[0,BCur ,BTh ]

∑T

t
Udon,tpn,t

s.t.
∑T

t
Rdon,t ≤ ρR(tc), ∀n ∈ [0,BTh],∀t ∈ T(C1)

Rdon,t ∈
{
R1t , ..R

Q
t

}
,∀n ∈ [0,BTh], ∀t, t* ∈ T(C2)

(13)

Obviously, after relaxing condition C2 to R1t ≤ Rdon,t ≤ RQt , the optimiza-
tion problem P3 is a convex optimization problem, and the optimal so-
lution can be obtained by using a heuristic algorithm or by using convex
optimization tools after the condition is relaxed.

P4 : Max
xn,t* ,R

re
n,t*

∑

n∈[0,BCur ]

∑T

t
xn,t*

(
Uren,t* − Un,t

)
pn,t

s.t.
∑T

t
xn,t*Rren,t* ≤ R(tc) −

∑T

t
Rdon,t ,∀n ∈ [0,BTh], ∀t* ∈ T(C1)

Rren,t* ∈
{
R1t , ..R

Q
t
}
, ∀n ∈ [0,BTh],∀t* ∈ T(C2)

xn,t* ∈ {0,1},∀n ∈ [0,BTh], ∀t* ∈ T(C3)

(14)

Considering problem P4, the optimization objective maximizes the
utility value gain by updating the [0, BCur] part of the tile. Based on the
solution strategies for such problems in the works [17,34], the
utility-over-cost ratio function is defined to reflect the ratio of utility
value gain to bandwidth consumption, which is shown as follows.

Cn,t = pn,t
Uren,t* − Un,t
Rren,t*

(15)

By calculating the value of the utility to cost ratio of all the tiles in the
[0, BCur] part, and then sorting them, and sequentially selecting the tiles
with the largest utility-over-cost value to update until the available
bandwidth resources are allocated. The specific algorithm steps to solve
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the P4 problem are shown in Algorithm 1.

4.3.2. Solution of problem P2
If the user’s current buffer state BCur is greater than BTh, it means that

there are enough video chunks in the buffer for users to play. The buffer
overflow can occur if a conservative strategy is used. An aggressive
strategy is required to update the tiles in the buffer and download new
video chunks. On the other hand, a fraction of video chunks larger than
BTh, the accuracy of the viewpoint prediction decreases, and the rate
allocation based on the viewpoint prediction weight causes a waste of
resources. Based on the above considerations, an aggressive bitrate up-
date strategy is adopted for the [0,BTh] part of the tiles, and the [BCur,
BMax] part of the video chunks is downloaded using the unified lowest
bitrate version. In the case where the [BCur, BMax] part of the video
chunks rate has been determined, problem P2 can be rewritten as
follows.

P5 : Max
xn,t* ,R

re
n,t*

∑

n∈[0,BTh ]

∑T

t
xn,t*

(
Uren,t* − Un,t

)
pn,t

s.t.
∑T

t
xn,t*Rren,t* ≤ R(tc) −

∑T

t
Rdon,t ,∀n ∈ [0,BMax],

∀t* ∈ T(C1)

Rren,t* ∈
{
R1t , ..R

Q
t
}
, ∀n ∈ [0,BMax], ∀t* ∈ T(C2)

xn,t* ∈ {0,1},∀n ∈ [0,BMax],∀t* ∈ T(C3)

(16)

Note that problem P5 is similar to P4, so algorithm 1 can be used to solve
it, and the specific process will not be repeated here. At this point, the
tile rate selection problem for adaptive buffer update is solved.

Finally, based on the solution of the P1 and P2 problems, the user
terminal adapts an adaptive VR content request according to the band-
width situation, the state of the buffer region and the viewpoint pre-
diction. The proposed adaptive algorithm is shown in Algorithm 2.
When the user’s current buffer status BCur is less than BTh, the [0, BCur]
part of the tile is updated based on the result of viewpoint prediction, the
tile that brings greater utility value gains transmits a higher-quality
version; at the same time, for the [BCur, BTh] part, by downloading this
part of the video chunks to reach the threshold BTh of the buffer region in
time. If the user’s current buffer status BCur is greater than BTh, update
the [0, BTh] part of the tile; at the same time, download the [BCur, BMax]
part of the video chunks with the unified lowest bitrate version.

5. Simulation verification and performance analysis

5.1. Simulation settings

The video source of 4K resolution VR video (ie, Freestyle Skiing) in
the dataset provided by work [27] is adopted for the simulation, where
the number of tiles is 4 × 8, and the open source HEVC encoder Kvazaar
is used for tile-based compression encoding. Each tile generates 10
bitrate versions, which are 0.1, 0.3, 0.5, 0.7, 0.9, 1, 1.2, 1.5, 1.7, 2.0
Mbps. In addition, the work [38] provides the viewpoint trajectory of 48
users while watching the VR video. In the simulation, one user is
selected as the predicted user. The first half of the viewpoint trajectory is
used for prediction, and the second half is used to evaluate the perfor-
mance of viewpoint prediction. For a specific user, K similar viewpoint
motion users are first selected based on the similarity measure between
users; at the same time, based on the historical viewpoint trajectory,
linear regression is applied to predict the user viewpoint motion in the
next video chunks. Then, by integrating the viewpoint trajectories of K
users and the viewpoints predicted by the linear regression method, the
probability of the user’s viewpoint falling on each tile is obtained based
on the voting mechanism proposed in this paper. Finally, the real user
viewpoint trajectory is used in the second part to objectively evaluate
the user QoE by measuring the bitrate of the tile in the user’s real
viewpoint.

The user bandwidth data set is provided in the work [39], the
bandwidth changes with the movement of the user, and the peak
bandwidth can reach 95 Mbps. Since the length of the dataset varies
from 166 s to 758 s, two typical bandwidth changes and fluctuations are
selected, namely pedestrian bandwidth trace 1 (smaller bandwidth
change) and pedestrian bandwidth trace 5 (larger bandwidth change),
and take the first 50 s of records for simulation, respectively.

The maximum value of the user buffer region is set to 5 s, i.e., BMax=
5, and the hierarchical buffer threshold is set to 2 s, i.e., BTh = 2. In
addition, the Traditional Buffer (TB) strategy [40] and the Two-Tier
Buffer (TTB) strategy [13] are two typical buffer strategies that are
compared with the proposed adaptive Hierarchical Buffer (HB) strategy.
Among them, the traditional buffer strategy buffer size is set to 5 s; the
two-layer buffer strategy, the buffer threshold is set to 2 s to buffer the
enhancement layer video, 3 s to buffer the base layer video.

5.2. Performance analysis

First, the cross-user viewpoint prediction method proposed in this
paper is compared with other methods. Among them, the traditional
linear regression prediction method based on historical viewpoint tra-
jectory and the method based on K Nearest Neighbor (KNN) viewpoint
prediction in work [26] (KNN-based viewpoint prediction, KVP) are
selected for comparison. For a fair comparison, the K value in the
cross-user viewpoint prediction method proposed in this paper is
consistent with the K value in the work [26], that is, K = 5. Fig. 8 shows
the trend of the accuracy of different viewpoint prediction methods
along with the prediction time. It can be seen that the overall trend of the
prediction accuracy of three methods is gradually decreases along with
the time. The linear regression method performs the viewpoint predic-
tion only based on the historical trajectory of the viewpoint. However,
since the movement of the user’s viewpoint changes according to the
video content, the prediction accuracy based only on the historical
trajectory of the viewpoint is the lowest, especially when the prediction
time is long, the accuracy decreases faster. The KVP method can main-
tain a high accuracy rate when the prediction time is short. Similar to the
linear regression method, its prediction accuracy rate decreases rapidly
with time. Compared with the KVP method, the proposed method im-
proves the accuracy by at least 6% on average, and the prediction ac-
curacy can be maintained above 80%when the prediction time is long (i.
e., 5 s).

In the next step, the proposed cache strategy is evaluated withFig. 8. The accuracy of viewpoint prediction with different methods.
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different video sources. Note that in the evaluation, we only calculate
the cache hit rate of tile chunks for user requests in the evaluation, i.e., if
a cached tile chunk is requested, it is recorded as a cache hit. We
calculate the cache hit rate for different video sources (video1, video2,
and video3) with different caching strategies. As shown in Table 1, we
can see that our proposed caching strategy has the best cache hit rate for
all three video sources, and the highest cache hit rate can reach 56%,
which is remarkably helpful in improving the user experience.

Then, the proposed buffer management algorithm is evaluated with
different bandwidth situations. Fig. 9 shows the fluctuations of user
bandwidth records over time. It can be seen from the figure that the
bandwidth fluctuation of trace 1 is small, and the bandwidth of trace 5
fluctuates greatly. With two kinds of bandwidth situation, HB strategy,
TB strategy and TTB strategy are adopted for performance evaluation,
respectively. And the utility value of the user in each time period is
recorded. Fig. 10 shows the normalized average utility value of the users
using the adaptive transmission mechanism of different strategies under
two bandwidth fluctuations. It can be seen from Fig. 10 that under the
two different bandwidth fluctuations, the average utility value of the HB
strategy adaptive transmission is higher than the average utility value of
the TB and TTB strategies. For small bandwidth variations (Trace1), the
average utility of using HB strategy is approximately 18% and 12%
higher than TB strategy and TTB strategy, respectively. For large
bandwidth variations (Trace5), the average benefit of using HB strategy
is approximately 20% and 13% higher than that of TB strategy and TTB
strategy, respectively.

Fig. 11 shows the standard deviation of the normalized user utility
value based on different strategies. From the figure, it can be seen that in
general, the standard deviation of the user utility value of HB strategy is
larger than the standard deviation of the user utility value of TB strategy
and TTB strategy. In the case of small bandwidth fluctuations, the
standard deviation of the user utility value of HB strategy is about 34%
and 14% lower than the standard deviation of the user utility value of TB
and TTB strategy, respectively. In the case of large bandwidth fluctua-
tions, the standard deviation of the user utility value of HB strategy is
approximately 48% and 25% lower than the standard deviation of the
user utility of TB strategy and TTB strategy, respectively.

Fig. 12 shows the changes of normalized user utility values with
different strategies over time. Among them, the left sub-figure (a) is the
user utility value when the bandwidth fluctuation is small, and the right
sub-figure (b) is the bandwidth fluctuation in the larger case. The user
utility value, as can be seen from the figure, in the two kinds of band-
width fluctuations, HB strategy can maintain a higher utility value, and
its fluctuation is small. Based on the above analysis, it can be concluded
that compared with the traditional buffer strategy TB and TTB, HB can

improve the user’s utility value, and maintain a relatively stable utility
value fluctuation in the case of bandwidth fluctuations, that is, improve
the user’s QoE.

Furthermore, with different caching strategies and the proposed
buffer update algorithm, we evaluate the user latency, as shown in
Fig. 13, which shows the Cumulative Distribution Function (CDF) of
latency. From this figure, it can be seen that with our proposed caching
strategy, 90% of the user latency is within 20 ms, which basically meets

Table 1
Cache hit ratio with different video source.

Caching Strategy Video1(%) Video2(%) Video3(%)

Proposed caching 56 53 54
Popularity based caching 33 31 32
Viewpoint prediction based caching 40 43 38

Fig. 9. User bandwidth trace 1 and trace 5.

Fig. 10. Normalized average user utility value based on different strategies.

Fig. 11. Standard deviation of the normalized user utility.
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the VR latency requirements. In contrast, although the cache hit rate of
the viewpoint prediction-based caching strategy is only about 10%
lower than the hit rate of our proposed caching strategy, the total end-
user latency exceeds 20 ms due to the large viewpoint prediction la-
tency. In addition, we note that the popularity-based prediction,
although without the predicted latency, however, has the worst user
latency due to its lower cache hit ratio, where most content requests
require a remote server or other MEC to respond.

Finally, we evaluate the caching strategy with the buffer update al-
gorithm. In the simulation, we selected four different combinations of
caching strategy + buffer update algorithms with different bandwidth
condition, i.e., proposed caching + update algorithm, viewpoint pre-
diction based caching + update algorithm, popularity based caching +

update algorithm, proposed caching + traditional buffer algorithm.
From Fig. 14, we can see that the user’s QoE increases with the growth of
the user bandwidth. Among them, the caching strategy + buffer update
algorithm proposed in this paper achieves the highest user QoE. It is
worth noting that the traditional buffer with the proposed caching
strategy achieves the lowest QoE, which also verifies the importance of
buffer management in another aspect.

6. Conclusion

The low latency and intensive computing requirements of mobile VR
have brought new challenges to the development of 5G and its future
mobile networks. To meet the demanding latency and bandwidth re-
quirements of VR, the joint optimization of caching and buffer man-
agement is presented in this paper. First, a viewpoint prediction method

based on historical trajectories and motion similarity between users is
introduced, which significantly improves the viewpoint prediction ac-
curacy over time. Based on 5G intelligent edge computing, we propose a
tile popularity based on edge caching strategy, which VR content is
proactively cached with tile granularity. Furthermore, an adaptive up-
date algorithm based on hierarchical buffer is presented, which jointly
considers the status of bandwidth, buffer and predicted viewpoint to
update the tile chunk in the client’s buffer. And the buffer update
problem is modeled as an optimization problem, the corresponding so-
lution algorithms are presented according to the decomposition of the
problem. Finally, the simulation results show that the proposed proac-
tive caching strategy cooperates with the hierarchical buffer update
algorithm could achieve better QoE of mobile VR users.
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