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Abstract

Virtual Reality (VR) is a key industry for the development of the digital economy in the future. Mobile VR has advantages
in terms of mobility, lightweight and cost-effectiveness, which has gradually become the mainstream implementation of VR.
In this paper, a mobile VR video adaptive transmission mechanism based on intelligent caching and hierarchical buffering
strategy in Mobile Edge Computing (MEC)-equipped 5G networks is proposed, aiming at the low latency requirements of
mobile VR services and flexible buffer management for VR video adaptive transmission. To support VR content proactive
caching and intelligent buffer management, users’ behavioral similarity and users’ head movement trajectory are jointly used
for viewpoint prediction. The tile-based content is proactively cached in the MEC nodes based on the popularity of the VR
content. Second, a hierarchical buffer-based adaptive update algorithm is presented, which jointly considers bandwidth, buffer,
and predicted viewpoint status to update the tile chunk in client buffer. Then, according to the decomposition of the problem,
the buffer update problem is modeled as an optimization problem, and the corresponding solution algorithms are presented.
Finally, the simulation results show that the adaptive caching algorithm based on 5G intelligent edge and hierarchical buffer
strategy can improve the user experience in the case of bandwidth fluctuations, and the proposed viewpoint prediction method
can significantly improve the accuracy of viewpoint prediction by 15%.

© 2022 Published by Elsevier Ltd.
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1. Introduction

In recent years, Virtual Reality (VR) application has
become a cynosure, that attracts most of the public at-
tention. Applications such as VR sports, VR tourism,
VR game, VR conference, VR live broadcast, etc.
have been widely popularized [1]. It is predicted that

∗Corresponding author. email: yangjc@ctbu.edu.cn (Jun-
chao Yang); dr.alikashif.b@ieee.org (Ali Kashif Bashir);
zwguo@ctbu.edu.cn (Zhiwei Guo); keping.yu@ieee.org (Keping
Yu); mguizani@ieee.org (Mohsen Guizani)

by 2025, the VR application market will reach 30 bil-
lion US dollars [2]. Recently, the Internet companies
such as Apple, Google, Facebook, and YouTube have
also entered the VR market [3, 4]. As the most pop-
ular application at present, VR uses 360-degree video
to build a three-dimensional virtual world in a Head-
Mounted Display (HMD), and its features such as im-
mersion, interaction and imagination bring people a
new visual interactive experience [5]. However, it
poses new challenges to the network [6], as the cost of
this new experience is higher transmission bandwidth,
higher video bit rate and lower latency requirements.
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2 Junchao Yang, et al.

Fig. 1. The system model.

Compared to traditional video, the data volume of
VR video is several times larger due to its panoramic
feature. On the one hand, in order to provide an im-
mersive panoramic experience, users need to down-
load the entire panoramic video, but only one-third
of the panoramic video (usually the viewing angle of
field of view is 90 degrees to 120 degrees) is viewed by
the user through the HMD [7, 8]. The number of pixels
that the human eye can see in one degree of viewing
angle is called Pixels Per Degree (PPD) [9]. Generally
speaking, when the PPD reaches 60 (the limit of the
human retina), the clarity of viewing is the highest.
Taking a 4K VR video as an example, the horizon-
tal PPD is about 11 (3840/360=10.67), which is much
lower than 60. Therefore, the current 4K VR video
and standard-definition ordinary video have the same
clarity from the viewers’ perspective. On the other
hand, in order to prevent motion sickness and provide
a better Quality of Experience (QoE), the HMD must
maintain a high refresh rate (the refresh rate can reach
120 Hz). Similarly, in order to maintain an immersive
experience, the VR video frame rate must be kept at a
high level (typically 30-100 frames per second (fps)).
Therefore, 360-degree video requires a higher reso-
lution (12K) and a higher frame rate (100 fps) than
traditional video. As a comparison, 8K traditional
video with frame rate of 60 fps uses High Efficiency
Video Coding (HEVC) for compression, the code rate
is about 100 Mbps [10]. Obviously, the transmission
of higher resolution and higher frame rate VR videos
is more difficult and challenging compared to tradi-
tional video.

Another important factor affecting the VR user ex-
perience is latency [11]. In VR applications, VR la-
tency specifically refers to Motion-To-Photon (MTP)
latency, which describes time from the start of the
user’s head movement to the corresponding screen dis-
play time. It consists of four main parts: motion sensor
delay, network delay, rendering delay and display de-
lay. Research [9] shows that the minimum delay that
ensures a high quality VR experience is between 17-20
ms. If the MTP delay is greater than 20 ms, it is easy
to cause the motion sickness, which leads to a poor
VR experience. Although most HMD manufacturers
claim that their devices can support a MTP delay of
less than 20 ms, unless the network delay can reach
several milliseconds (according to the work [12], 80%
of the current network delays in China reach more than
90 milliseconds), otherwise sending the whole 360-
degree panoramic video to the HMD to reduce the
network latency will always be the last resort. Due
to the interactive characteristics of VR, the delay re-
quirement is more stringent, so the current mainstream
of 4K 360-degree video requires at least hundreds of
megabits per second of transmission rate to guarantee
the user interaction experience [13]. Thus, to ensure
the smooth interactive experience of VR users and
the quality of the video in the actual view of users,
VR content should be properly prefetched according
to the different network conditions of users, and this
deserves further research [14, 15]. At present, most
VR streaming platforms still use the traditional video
transmission mechanism, which affects the interactive
experience of VR to some extent. Therefore, it is also
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Cache and buffer optimization for mobile VR adaptive transmission 3

necessary to study a more suitable transmission mech-
anism to provide a better VR experience.

The ultimate goal of VR is that the VR user can-
not distinguish the boundary between the synthesized
virtual world and the real world [16, 17]. Therefore,
continuously increasing the resolution of VR video to
reach the retinal limit of the human eye and eliminat-
ing the limitation of wired connections are two im-
portant steps toward this ultimate goal. Undoubtedly,
mobile VR has extremely high requirements for large
bandwidth, ultra-reliability, and low latency: under
the low latency constraint, gigabits of data per sec-
ond must be transmitted to the user terminal [18]. As
we all know, low latency and high reliability are two
contradictory requirements. Ultra-reliability requires
to be allocated to be allocated to ensure the transmis-
sion success rate, while this will increase the delay of
other users. Obviously, to realize mobile VR, intelli-
gent network design is required to meet the require-
ments of reliability, latency and seamless support for
different network scenarios [11].

5G has the characteristics of bandwidth-intensive,
low latency and wide connectivity, which provides
the infrastructure for the implementation of mobile
VR [19, 20]. Among the many application scenar-
ios of 5G, mobile VR is considered to be the first
killer application of 5G, and has received extensive
attention from academia and industry. Mobile Edge
Computing is an important paradigm of 5G. Its core
idea is to bring the services, content and resources
closer to the end-user through software-defined net-
working and network function virtualization technol-
ogy [21, 22]. MEC offers a possible solution to the
problems faced by mobile VR transmission [23, 24].
The main advantages of MEC are: 1) Since the com-
putational and storage resources of MEC are closer
to the users, the communication delay can be signif-
icantly reduced. 2) Intensive computing tasks of users
can be offloaded to MEC nodes to solve the problem of
insufficient computation of mobile terminals. 3) The
content can be cached on the MEC node through an
efficient caching strategy to improve the utilization of
storage resources.

Proactive caching of VR content in MEC will im-
prove the VR user’s QoE in terms of latency to some
extent, but buffer management in the terminal is an-
other key factor that directly affects the visual percep-
tion [13]. Therefore, caching and buffer management
should be optimized together to provide a better ex-
perience for VR users. Therefore, in response to the
current problems of content caching and user terminal
buffer management in the 5G edge computing for mo-
bile VR, this paper studies the edge caching and buffer
optimization problem, the main contributions of this
paper are summarized as follows:

• A mobile VR adaptive transmission mechanism
based on 5G intelligent edge is proposed. VR
content is proactively cached to the MEC nodes

Fig. 2. Tile-based VR video coding.

according to the popularity of VR tiles, and a
buffer adaptive update algorithm based on view-
point prediction is implemented to improve user
experience.

• In order to improve the viewpoint prediction ac-
curacy, the viewpoint prediction method based
on the user’s historical trajectory and the motion
similarity between users is proposed, thereby im-
proving the cache hit rate of edge nodes and op-
timizing the user buffer management.

• An adaptive update algorithm for buffer manage-
ment that jointly considers user bandwidth, buffer
status, and predicted viewpoint is proposed based
on a hierarchical buffer strategy. The problem
formulation and the corresponding algorithm are
presented.

• Finally, the simulation shows that the proactive
caching scheme cooperates with the proposed
adaptive update algorithm can guarantee better
performance(QoE) with the bandwidth fluctua-
tion, meanwhile reduce the latency of VR users
.

Fig. 3. Video popularity and user interest based tile ranking.

The rest of this paper is organized as follows. In
Section 2, the related work is outlined. In Section
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4 Junchao Yang, et al.

3, the system model is described. In Section 4, the
mobile VR adaptive transmission mechanism is pro-
posed. In Section 5,the performance evaluation and
discussion are shown. Finally, in Section 6, the paper
is summarized.

2. Related work

Mobile edge computing has brought hope to the
implementation of mobile VR, but it has not com-
pletely solved all the challenges of mobile VR con-
tent caching in the MEC server and buffer manage-
ment in the user terminal still need to be carefully de-
signed to achieve better QoE. On the one hand, the
viewpoint prediction based on the trajectory of the
user’s head movement significantly reduces the accu-
racy of the prediction over time, which increases the
difficulty of proactive content caching. On the other
hand, most VR streaming applications still use the tra-
ditional video buffer management mechanism, which
will degrade the interactive experience of VR to some
extent. Therefore, more accurate viewpoint prediction
methods and intelligent buffer management are needed
to deal with the aforementioned problems. The user
viewpoint prediction methods based on motion [15]
and content [25] are two mainstream methods that are
widely used. The motion-based viewpoint prediction
is mainly based on the user’s historical trajectory to
predict the future viewpoint, and its accuracy drops
sharply along with the prediction time. The content-
based viewpoint prediction is based on the video struc-
ture, saliency and other characteristics of the content
to predict the user’s viewpoint. However, the effect
mechanism on the user’s viewpoint is not very clear.
Recently, the work [26] tried to use the K-Nearest-
Neighbors (KNN) method to predict the user’s view-
point based on the behavioral similarity between users,
and this method achieved good prediction results.

Caching in MEC will improve the VR user’s QoE
to some extent in terms of latency, but the buffer man-
agement in the terminal is another key factor that di-
rectly affects the visual perception. Therefore, buffer
management still needs to be carefully designed. In
terms of buffering mechanism, the work [23, 24] real-
ized that the solution of transmitting the higher video
quality from the current user’s point of view can save
bandwidth to some extent, but it increases the spatial
dimension to buffer future videos. rebuffering occurs,
video freezing is likely to occur, affecting the user’s
QoE. In [27], an adaptive 360-degree video transmis-
sion scheme based on scalable coding was proposed,
the main idea is to use the characteristics of the base
layer and the enhancement layer of scalable coding for
adaptive buffering. In scalable coding, the base layer
of the video is required, which can be buffered with
a longer time granularity by ignoring the user’s view-
point. Since the user’s viewpoint changes quickly, the
enhancement layer can buffer a shorter time granular-

Fig. 4. Illustration of cross user viewpoint prediction.

ity to improve the user QoE. [28] also uses the idea of
scalable coding, the user’s viewpoint strategy based on
scalable coding can solve the rebuffering problem, but
its coding complexity is relatively high. In [29], a hier-
archical buffering strategy was proposed for adaptive
transmission of VR video, but it lacked optimization
of the bitrate selection in the buffer management.

However, according to our research, neither proac-
tive content caching at the edge nor buffer content op-
timization at the client side can guarantee a high qual-
ity of user experience under current network condi-
tions. Therefore, joint optimization of caching and
buffer management is probably the only way to meet
the demanding latency and bandwidth requirements of
VR, and this is the main motivation of this paper.

3. System model

The system model of this paper is shown as Fig.
1, which includes four components: content server,
access network, edge node and user terminal. In the
following part, the function of each component is de-
scribed. The content server is responsible for stor-
ing video content and responding to user requests.
The access network uses a typical 5G Centralized Ra-
dio Access Network (C-RAN) to provide transmis-
sion services to users through a Remote Radio Unit
(RRU). In the C-RAN MEC, edge computing servers
are deployed in the Base Band Unit (BBU) to pro-
vide storage and computing resources. In this paper,
a multi-level edge computing architecture is consid-
ered, where network MEC is deployed in other nodes
of the core network and has the same function as the
C-RAN MEC. This paper takes mobile VR headsets
as the main research objects, which provide display,
interaction, communication and simple computation
functions. An adaptive content update module is de-
ployed for the mobile VR terminal, which makes in-
telligent buffer content management update decisions
based on bandwidth status, user’s predicted viewpoint,
and current buffer status. Finally, the user terminal
performs the rendering of the corresponding viewpoint
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Cache and buffer optimization for mobile VR adaptive transmission 5

Fig. 5. An example of voting mechanism for cross user viewpoint
prediction.

according to the head movement. In addition, the con-
tent server records the user’s viewpoint trajectory, per-
forms viewpoint prediction based on the historical mo-
tion trajectory and the viewpoint trajectory of similar
users, and feeds back the result to the viewpoint pre-
diction for the adaptive decision module of the user
terminal in time.

In addition, we adapt tile based VR encoding for
content delivery in this paper, Fig. 2 shows an exam-
ple of tile-based VR video encoding based on Equi-
Rectangular Projection (ERP) [30, 31]. The VR video
is divided into N segments the temporal dimension,
and the encoder divides each video segment in the spa-
tial dimension independently by encoding as tiles, and
each tile is encoded into M bitrate versions. In this pa-
per, a particular code rate version of the n th segment is
called a tile chunk. Each tile produces multiple bitrate
versions, i.e., Rt ∈

{
Rl

t, . . .R
Q
t

}
, where Rl

t and RQ
t re-

spectively represent the minimum and the maximum
bitrates, respectively. The segment temporal dimen-
sion is denoted as n ∈ N, and the bitrate of the t-th tile
of the n-th segment is denoted as Rn,t.

4. Methodology

The accuracy of user viewpoint prediction is an im-
portant factor affecting the performance of the mo-
bile VR. On the one hand, it improves the cache hit
rate of edge nodes for the edge caching. On the other
hand, the optimization of user-side buffer management
is also based on viewpoint prediction. In order to im-
prove the accuracy of viewpoint prediction, this paper
proposes a cross user viewpoint prediction method,
which requires the viewpoint trajectories of similar
users and the trajectories of user motion together. The
viewpoint prediction is performed in the DASH server,
and then the viewpoint prediction result is fed back to
the user terminal’s adaptive module in time. The adap-
tive module makes a buffer adaptive update decision
based on the bandwidth status, the predicted viewpoint

of the user, the status of the current buffer, and the
requested VR video chunks are proactively buffered
in the buffer of the user terminal. Finally, the user
terminal renders the video in the buffer according to
the user’s current viewpoint. In the following part,
the proposed viewpoint prediction method and buffer
adaptive update algorithm are elaborated.

4.1. Edge caching of VR content based on tile popu-
larity

The mobile network integrates the MEC, which pro-
vides computing and storage functions and brings VR
content closer to the users [32, 33]. If the video con-
tent requested by the user is cached at the edge node
within its acceptable service range, the user can obtain
the video content directly from the edge node, with-
out going through the core network or obtaining the
content from the remote video server, and the service
delay can be effectively reduced. On the one hand,
the storage space of edge nodes is limited, and it is
extremely difficult to cache all VR video content on
edge nodes [34]. On the other hand, the service delay
for users can be significantly reduced, and the opera-
tion cost and energy consumption of edge nodes can
be reduced by improving the content cache hit rate of
edge nodes.

According to the characteristics of the VR content
request based on the user’s point of view, this pa-
per adopts the cache based on the interest degree and
content popularity prediction with tile granularity, as
shown in Fig.3. Our previous work has been con-
firmed that the user’s view is concentrated in a region
with strong video saliency [22], and the saliency de-
tection could be applied to obtain the τ segment of VR
video n of tile m’s saliency value Pn,τ,m. And the popu-
larity of VR video n in the edge node k Pk

n is defined as
Equation 1. Finally, the saliency of the tile (i.e., the de-
gree of interest) and the popularity of the VR video are
used to predict Pk

n,τ,m the popularity of the tile, which
is defined as the weighted sum function, and shown as
Equation 2. In this paper,we adopt the edge caching
based on tile granularity to improve cache hit rate and
storage efficiency.

pk
n =

(
N∑
n

(
γ−αn,k

))−1

γ−αn,k
(1)

pk
n,τ,m = φ · pn,τ,m × λ · pk

n (2)

Based on edge caching, deploying edge computing
and edge caching in the core network improves user
experience quality while reducing transmission delay.
In addition, in-network caching has been proven in
NDN network to greatly reduce. In this paper, the VR
video content are cached at the core network edge and
C-RAN edge cache, is referred to as the multi-level
cache, which is shown in Fig. 1. Multi-level caching
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6 Junchao Yang, et al.

Fig. 6. The illustration of hierarchical buffer.

has the following advantages [35, 36]: 1) Caching tile-
granular VR video content to edge nodes to reduce ser-
vice delay. 2) Edge caching based on viewpoint pre-
diction greatly improves the caching efficiency of edge
nodes. 3) Caching based on tile granularity improves
the edge nodes to some extent and reduces edge stor-
age cost. 4) Multi-level caching further improves the
cache hit rate.

4.2. Cross user viewpoint prediction

Tile-based adaptive transmission is an efficient way
to transmit VR video. However, because VR appli-
cations are sensitive to delay, and it is impossible to
deliver high-quality VR video to the user in time. The
user needs a large buffer to store the precached video
content for a smooth viewing experience. Therefore,
if the user’s viewpoint can be predicted in advance,
then the quality of the viewpoint part of the tile can
be enhanced in advance, it can save bandwidth and
improve the transmission to a great extent. However,
the accuracy of the viewpoint prediction based on the
trajectory of the user’s head movement decreases sig-
nificantly with time, so it is necessary to explore new
viewpoint prediction methods.

In the work [23], they use K viewpoints of other
users that are closest to the predicted viewpoint to cor-
rect the value of user motion based prediction, but they
ignored the similarity of behavior between users. In
their case, using the closest K user viewpoints to cor-
rect motion-based prediction results is very likely to
lead to larger deviations in the final prediction results.
On the other hand, the studies in [28] have pointed out
that when watching the same VR video, the viewing
behavior of users in the virtual environment is similar
to a certain extent. Inspired by their work, this paper
attempts to use the similarity of motion between users

to improve the prediction accuracy of the user’s view-
point. Fig. 4 shows an illustration of the proposed
viewpoint prediction method. First, the user’s view-
point is predicted based on the user’s historical trajec-
tory, then the predicted user’s viewpoint is corrected
by using the similarity of motion between users. The
specific method is described below.

First, we defined the motion similarity of two users
as the ratio of the number of tiles where the viewpoints
of two users overlap in a period of time, as shown in
Equation 3.

S im{v, j} =
D∑

nδ=0

2Ωnδ {v, j}
Θnδ {v} + Θnδ { j}

(3)

Where, nδ is the sampling index of the user’s view-
point in n th segment. D is the time window of the
similarity measurement. Ωnδ {v, j} and Θnδ {v} respec-
tively represent the number of tiles where the two
user’s viewpoints overlap at nδ time and the number
of tiles within the user’s viewpoint, respectively.

It is assumed that the motion trajectories of all users
are recorded by the VR content server. Based on the
similarity measurement between users, the viewpoint
prediction module selects K most similar users to the
predicted user viewpoint, and uses the motion trajec-
tories of the K most similar users to correct the pre-
dicted user viewpoint. Consider adopting a compre-
hensive weight voting mechanism based on motion
trajectory prediction and K most similar user view-
points. Among them, the Linear Regression (LR)
method based on motion trajectory prediction is used.
A linear regression model for predicting the user’s
viewpoint in a video chunks is shown in Equation
4. Among them, OLR(α, β, γ) represents the viewpoint
predicted by the linear regression method, α, β and
γ are the attitude angles of the X, Y, and Z axes, also
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Cache and buffer optimization for mobile VR adaptive transmission 7

Fig. 7. Content update of hierarchical buffer.

called Euler angles; ωLR are the regression coefficients
of the linear regression; The Equation (4) is for con-
verting the Euler angles of the viewpoint into 3D co-
ordinates. 

αLR(t0+Γ) = ωαΓ + α(t0)
βLR(t0+Γ) = ωβΓ + β(t0)
γLR(t0+Γ) = ωγΓ + γ(t0)

(4)


x = sin(α) cos(β)

y = sin(β)
z = cos(α) cos(β)

(5)

ξt = WLR · Ft(OLR) +
K∑
k

WS M · Ft(Ok
S M) (6)

Tile’s vote ξt can be expressed as Equation 6, where
WLR and WS M represent the weight of the predicted
viewpoint based on the linear regression method and
the weight of the similar user viewpoint, respectively.
F(O) represents the range covered by the viewpoint,
which is a T-dimensional vector, and T is the index of
the tile in the raster scan order. Ft(OLR) and Ft(Ok

S M)
represent t-th tile is within the viewpoint range accord-
ing to the linear regression and the K most similar
users methods, respectively. F(O)=1 means that the
t-th tile is within the viewpoint range, and is equal to
0 if the tile is outside the predicted viewpoint range.
Ok

S M which means the viewpoint of the k-th most sim-
ilar users. In addition, since the accuracy of the lin-
ear regression prediction method based on historical
trajectory decreases with time, the weight of WLR the
linear regression method is inversely proportional to
time, using the form of Equation 7, and WS M is set as
1 since the summation of Ft(Ok

S M) denotes the ratio
of the tile in the viewpoint range for all the K similar
user.

WLR=
1/Γ (7)

Algorithm 1 P4 solving algorithm

INPUT: The bitrate of tile in the downloaded video
chunks Rdo

n,t, The bitrate of the existing tiles in the
buffer Rn,t, minimum and maximum tile bitrate Rl

t,
RQ

t
OUTPUT: The index of the updated tile xn,t∗ and
the bitrate of the updated tile Rre

n,t∗
1 : for all tile in [0,BCur] do
2 : for all tile code rate versions do
3 : Calculate all tile utility over cost ratio accord-
ing to Equation (15)
4 : Arrange in descending order
5 : end for
6 : end for
7 : Initialization sum = 0

8 : While sum ≤ R (tc) −
T∑
t

Rdo
n,t do

9 : Mark the tile with maximum utility over cost
ratio in the assign queue and assign it, i.e.xn,t∗ = 1
10 : Update sum = sum +

∑
n∈[0,BCur],t∗∈T

xn,t∗Rre
n,t∗

11 : end while

Fig. 5 shows an illustration of the weight-based vot-
ing mechanism. The dark dashed box is the viewpoint
based on LR prediction, and the other blue, green,
and yellow boxes are the historical viewpoints of sim-
ilar users. According to our proposed mechanism,
the weights of each tile are calculated by Equation 6.
Obviously, these weights are the predicted probability
that the user’s viewpoint is focused on these tiles.

4.3. Adaptive update algorithm based on hierarchi-
cal Buffer

Pre-caching VR content at edge nodes significantly
reduces network transmission delay. However, the
time-varying characteristics of mobile network band-
width and the randomness of users viewing VR con-
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8 Junchao Yang, et al.

Algorithm 2 Adaptive algorithm

INPUT: Maximum buffer BMax, buffer region
threshold BTh, predicted bandwidth BW (tc), cur-
rent buffer state BCur, tile bitrate of the downloaded
video chunks Rdo

n,t
OUTPUT: Update tile index xn,t∗, and bitrate of up-
date tile Rre

n,t∗
1 : if BCur ≤ BTh

2 : Only download video content in [0,BTh]
3 : According to P1 solution xn,t∗ and Rre

n,t∗ , update
tile content in [0,BCur]
4 : According to P1 solution Rdo

n,t, download new
content in [BCur, BTh]
5 : else when BCur ≥ BTh

6 : Based on P2 solution xn,t∗ and xn,t∗ , update tile
content in [0,BTh]
7 : Based on P2 solution Rdo

n,t, download new con-
tent in [BCur, BMax]
8 : end if

tent determine the need for content caching at user
terminals. For delay-sensitive VR applications, user
terminal caching can provide a smooth user experi-
ence, but if the user’s bandwidth condition is good,
if the low-quality video chunks are buffered for a long
time, the buffer overflow will occur. If high-quality
video is cached for a short period of time, the video
chunks cannot be downloaded in time, resulting in
a freezing phenomenon, both of which will degrade
the user experience. Therefore, based on viewpoint
prediction, we propose an adaptive transmission algo-
rithm based on hierarchical buffering, which compre-
hensively considers the user’s bandwidth status, the
viewpoint prediction and the state of the buffer region
for adaptive transmission. Specifically, the bandwidth
status of the user adopts a linear regression method
that uses the status of the previous time period to pre-
dict the bandwidth of the next time period. The lin-
ear regression model is shown in Equation 8, where,
BW(t0) represents the bandwidth status in the previous
time period, µLR represents the regression coefficient
of linear regression, and Γ is the time length of a video
chunk. We used locally weighted LR for bandwidth
prediction. For the locally weighted linear regression
algorithm, the whole training data is required for each
prediction (each prediction yields a different parame-
ter µLR).

BW(t0+Γ) = µLRΓ + BW(t0) (8)

In this paper, we assume that the content server
records the trajectory of the user’s viewpoint, and per-
forms viewpoint prediction based on the historical tra-
jectory and the viewpoint trajectory of similar users,
and then feeds back the result of the viewpoint pre-
diction to the adaptive module of the user terminal in
real-time.

The hierarchical buffer strategy proposed in [37],

which divides the entire buffer into two regions,
namely [0,BTh] and [BTh,BMax], where BTh and BMax

respectively represent the hierarchical threshold and
maximum buffer value, respectively. The hierarchical
buffer is shown in Fig. 6, where [0,BTh] is the first-
level buffer region. If the user’s current buffer state
BCur is less than BTh that, it means that the content in
the buffer is being consumed quickly. If new video
chunks are not downloaded in time, video playback
will be stuck, it is necessary to request more video
chunks in time to meet the needs of users. Therefore,
the strategy adopted is to update the [0,BCur] part of
the tile based on the result of the user’s viewpoint pre-
diction, that is, the tile that brings greater utility value
gain to transmit a higher-quality version. For part of
the [BCur,BTh], by downloading the video to reach the
buffer region threshold BTh. For the downloading task
of this part, the optimization of the utility value in the
whole buffer region is achieved by the selection of the
tile code rate in the video chunks. The mathematical
description of the problem is formulated as follows.

P1 : Max
xn,t∗ ,Rre

n,t∗ ,R
do
n,t

∑
n∈[0,BCur]

T∑
t

xn,t∗
(
Ure

n,t∗ − Un,t

)
pn,t

+
∑

n∈[BCur ,BTh]

T∑
t

Udo
n,t pn,t

s.t.
T∑
t

xn,t∗Rre
n,t∗ +

T∑
t

Rdo
n,t ≤ R(tc),∀n ∈ [0, BTh],∀t,

t∗ ∈ T (C1)
Rre

n,t∗ ,R
do
n,t ∈ {R

1
t , ..R

Q
t },∀n ∈ [0, BTh],∀t, t∗ ∈ T (C2)

xn,t∗ ∈ {0, 1},∀n ∈ [0, BTh],∀t, t∗ ∈ T (C3)
(9)

Among them, pn,t represents the probability that the t
tile of the n video chunks is viewed by the user. xn,t∗

indicates whether the t tile of the n video chunks is
updated with a higher quality version, and Rre

n,t∗ indi-
cates the updated quality version of the t tile of the n
video chunks. Rdo

n,t represents the downloaded quality
version of the t tile of the n video chunks. Ure

n,t∗ , Un,t

and Udo
n,t represent the utility value of the new quality

version of the t tile of the n video chunks, the utility
value of the t tile of the n video chunks in the buffer re-
gion and the utility value of the new video chunks that
needs to be downloaded, respectively. R(tc) indicates
the downloads data rate of the user.

In this paper, the utility function is used to mea-
sure the quality of VR video transmission. The utility
value of the tile chunks can be expressed as Equation
10, where Rn,t and RQ

n,t represent the bitrate of the t-
th tile chunks and the maximum bitrate of the t-th tile
chunks of the n-th video chunks, respectively. α and
β are the coefficients of the utility function. The util-
ity function is a convex function of the video bitrate,
and the first-order derivative of the function decreases
as the video bitrate increases. These characteristics of
the utility function can well model the user’s viewing
experience. For tile-based VR videos, the utility value
of a tile describes its contribution to the user’s overall
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viewing experience at a given bitrate.

Un,t =

 α log(βRn,t

RQ
n,t

),RQ
n,t > 0

0,Rn,t = 0
(10)

If the current buffer status of the user BCur is
greater than BTh, it means that there are enough video
chunks in the buffer for the user to play, so the tile
of the [0,BTh] part is updated; the video chunks of
the [BCur,BMax] part are downloaded, because the pre-
diction accuracy of the user’s viewpoint is low when
downloading the video chunks of this part, the tile
selection will have a large deviation, and the uni-
form lowest bitrate version of the video chunks in the
[BCur,BMax] part is downloaded. Similar to problem
P1, the mathematical description of the problem is as
follows.

P2 : Max
xn,t∗ ,Rre

n,t∗ ,R
do
n,t

∑
n∈[0,BTh]

T∑
t

xn,t∗
(
Ure

n,t∗ − Un,t

)
pn,t

+
∑

n∈[BCur ,BMax]

T∑
t

Udo
n,t

s.t.
T∑
t

xn,t∗Rre
n,t∗ +

T∑
t

Rdo
n,t ≤ R(tc),∀n ∈ [0, BMax],∀t,

t∗ ∈ T (C1)
Rre

n,t∗ ,R
do
n,t ∈ {R

1
t , ..R

Q
t },∀n ∈ [0, BMax],∀t, t∗ ∈ T (C2)

xn,t∗ ∈ {0, 1},∀n ∈ [0, BMax],∀t, t∗ ∈ T (C3)
(11)

On the one hand, when the content of the buffer re-
gion is about to be consumed, it is necessary to adopt
a conservative strategy to update the buffer region’s
tile and download new video chunks. On the other
hand, when the buffer region is about to reach the
maximum buffer value, a more aggressive approach
is needed. This strategy updates the tiles in the buffer
region and downloads new video chunks. Therefore,
the requested download rate R(tc) must be determined
by combining the current buffer state and the predicted
bandwidth. The download rate R(tc) is determined by
Equation 12 [37], where κ is the proportional coeffi-
cient.

R (tc) = κBMax−BCur · BW (tc) (12)

Note that the problems P1 and P2 are both nonlin-
ear mixed integer optimization problems. Based on
the above analysis, it can be concluded that different
download strategies BCur need to be adopted depend-
ing on the current buffer state. Next, the corresponding
solution algorithms for P1 and P2 based on different
download strategies are given.

4.3.1. Solution of problem P1
If the user’s current buffer state BCur is less than

BTh, a conservative strategy is needed to update the
tiles in the buffer region and download new video
chunks to ensure the user’s experience. Enough video
chunks must be kept in the buffer region to accommo-
date changes in network bandwidth. Therefore, down-
loading new video chunks has a higher priority than

updating the buffer tile task. The following strategy
can be adopted: first download the [BCur,BTh] video
chunks according to the weight of the viewpoint pre-
diction, and then update the [0,BCur] part of the tile ac-
cording to the weight of the viewpoint prediction when
bandwidth resources are left. Therefore, the problem
P1 can be decomposed into two sub-problems P3 and
P4 for solution, where P3 is the optimization problem
of downloading [BCur,BTh] part of the video chunks
based on the weight of the viewpoint prediction, and
introduces the proportion of the total bandwidth ρ of
the downloaded video chunks, where 0 ≤ ρ ≤ 1 . In
this paper, ρ is set to 0.7 based on experience; and P4
is the optimization problem of updating the [0,BCur]
part of the tile based on the weight of viewpoint pre-
diction.

P3 : Max
Rdo

n,t

∑
n∈[0,BCur ,BTh]

T∑
t

Udo
n,t pn,t

s.t.
T∑
t

Rdo
n,t ≤ ρR(tc),∀n ∈ [0, BTh],∀t ∈ T (C1)

Rdo
n,t ∈ {R

1
t , ..R

Q
t },∀n ∈ [0, BTh],∀t, t∗ ∈ T (C2)

(13)
Obviously, after relaxing condition C2 to R1

t ≤ Rdo
n,t ≤

RQ
t , the optimization problem P3 is a convex optimiza-

tion problem, and the optimal solution can be obtained
by using a heuristic algorithm or by using convex op-
timization tools after the condition is relaxed.

P4 : Max
xn,t∗ ,Rre

n,t∗

∑
n∈[0,BCur]

T∑
t

xn,t∗
(
Ure

n,t∗ − Un,t

)
pn,t

s.t.
T∑
t

xn,t∗Rre
n,t∗ ≤ R(tc)−

T∑
t

Rdo
n,t,∀n ∈ [0, BTh],∀t∗ ∈ T (C1)

Rre
n,t∗ ∈ {R

1
t , ..R

Q
t },∀n ∈ [0, BTh],∀t∗ ∈ T (C2)

xn,t∗ ∈ {0, 1},∀n ∈ [0, BTh],∀t∗ ∈ T (C3)
(14)

Considering problem P4, the optimization objective
maximizes the utility value gain by updating the
[0,BCur] part of the tile. Based on the solution strate-
gies for such problems in the works [17, 34], the
utility-over-cost ratio function is defined to reflect the
ratio of utility value gain to bandwidth consumption,
which is shown as follows.

Cn,t = pn,t
Ure

n,t∗ − Un,t

Rre
n,t∗

(15)

By calculating the value of the utility to cost ra-
tio of all the tiles in the [0,BCur] part, and then sort-
ing them, and sequentially selecting the tiles with the
largest utility-over-cost value to update until the avail-
able bandwidth resources are allocated. The specific
algorithm steps to solve the P4 problem are shown in
Algorithm 1.

4.3.2. Solution of problem P2
If the user’s current buffer state BCur is greater than

BTh, it means that there are enough video chunks in
the buffer for users to play. The buffer overflow can
occur if a conservative strategy is used. An aggressive
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10 Junchao Yang, et al.

Table 1

Cache hit ratio with different video source

Caching Strategy Video1 Video2 Video3

Proposed caching 56% 53% 54%
Popularity based caching 33% 31% 32%

Viewpoint prediction based caching 40% 43% 38%

Fig. 8. The accuracy of viewpoint prediction with different methods.

strategy is required to update the tiles in the buffer and
download new video chunks. On the other hand, a
fraction of video chunks larger than BTh, the accuracy
of the viewpoint prediction decreases, and the rate
allocation based on the viewpoint prediction weight
causes a waste of resources. Based on the above
considerations, an aggressive bitrate update strategy
is adopted for the [0,BTh] part of the tiles, and the
[BCur,BMax] part of the video chunks is downloaded
using the unified lowest bitrate version. In the case
where the [BCur,BMax] part of the video chunks rate
has been determined, problem P2 can be rewritten as
follows.

P5 : Max
xn,t∗ ,Rre

n,t∗

∑
n∈[0,BTh]

T∑
t

xn,t∗
(
Ure

n,t∗ − Un,t

)
pn,t

s.t.
T∑
t

xn,t∗Rre
n,t∗ ≤ R(tc) −

T∑
t

Rdo
n,t,∀n ∈ [0, BMax],

∀t∗ ∈ T (C1)
Rre

n,t∗ ∈ {R
1
t , ..R

Q
t },∀n ∈ [0, BMax],∀t∗ ∈ T (C2)

xn,t∗ ∈ {0, 1},∀n ∈ [0, BMax],∀t∗ ∈ T (C3)
(16)

Note that problem P5 is similar to P4, so algorithm 1
can be used to solve it, and the specific process will not
be repeated here. At this point, the tile rate selection
problem for adaptive buffer update is solved.

Finally, based on the solution of the P1 and P2
problems, the user terminal adapts an adaptive VR
content request according to the bandwidth situation,
the state of the buffer region and the viewpoint pre-
diction. The proposed adaptive algorithm is shown
in Algorithm 2. When the user’s current buffer sta-

tus BCur is less than BTh, the [0,BCur] part of the tile is
updated based on the result of viewpoint prediction,
the tile that brings greater utility value gains trans-
mits a higher-quality version; at the same time,for the
[BCur,BTh] part, by downloading this part of the video
chunks to reach the threshold BTh of the buffer re-
gion in time. If the user’s current buffer status BCur

is greater than BTh, update the [0,BTh] part of the tile;
at the same time, download the [BCur,BMax] part of the
video chunks with the unified lowest bitrate version.

5. Simulation verification and performance anal-
ysis

5.1. Simulation settings

The video source of 4K resolution VR video (ie,
Freestyle Skiing) in the dataset provided by work [27]
is adopted for the simulation, where the number of
tiles is 4 × 8, and the open source HEVC encoder
Kvazaar is used for tile-based compression encoding.
Each tile generates 10 bitrate versions, which are: 0.1,
0.3, 0.5, 0.7, 0.9, 1, 1.2, 1.5, 1.7, 2.0 Mbps. In addi-
tion, the work [38] provides the viewpoint trajectory
of 48 users while watching the VR video. In the sim-
ulation, one user is selected as the predicted user. The
first half of the viewpoint trajectory is used for predic-
tion, and the second half is used to evaluate the perfor-
mance of viewpoint prediction. For a specific user, K
similar viewpoint motion users are first selected based
on the similarity measure between users; at the same
time, based on the historical viewpoint trajectory, lin-
ear regression is applied to predict the user viewpoint
motion in the next video chunks. Then, by integrat-
ing the viewpoint trajectories of K users and the view-
points predicted by the linear regression method, the
probability of the user’s viewpoint falling on each tile
is obtained based on the voting mechanism proposed
in this paper. Finally, the real user viewpoint trajec-
tory is used in the second part to objectively evaluate
the user QoE by measuring the bitrate of the tile in the
user’s real viewpoint.

The user bandwidth data set is provided in the work
[39], the bandwidth changes with the movement of
the user, and the peak bandwidth can reach 95 Mbps.
Since the length of the dataset varies from 166 sec-
onds to 758 seconds, two typical bandwidth changes
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(a) User bandwidth trace 1 (b) User bandwidth trace 5

Fig. 9. User bandwidth trace 1 and trace 5

Fig. 10. Normalized average user utility value based on different
strategies.

Fig. 11. Standard deviation of the normalized user utility.

and fluctuations are selected, namely pedestrian band-
width trace 1 (smaller bandwidth change) and pedes-
trian bandwidth trace 5 (larger bandwidth change),
and take the first 50 seconds of records for simulation,
respectively.

The maximum value of the user buffer region is set
to 5 seconds, i.e., BMax=5, and the hierarchical buffer
threshold is set to 2 seconds, i.e., BTh=2. In addition,
the Traditional Buffer (TB) strategy [40] and the Two-
Tier Buffer (TTB) strategy [13] are two typical buffer
strategies that are compared with the proposed adap-
tive Hierarchical Buffer (HB) strategy. Among them,
the traditional buffer strategy buffer size is set to 5 sec-
onds; the two-layer buffer strategy, the buffer thresh-
old is set to 2 seconds to buffer the enhancement layer
video, 3 seconds to buffer the base layer video.

5.2. Performance analysis

First, the cross-user viewpoint prediction method
proposed in this paper is compared with other meth-
ods. Among them, the traditional linear regression
prediction method based on historical viewpoint tra-
jectory and the method based on K Nearest Neigh-
bor (KNN) viewpoint prediction in work [26] (KNN-
based viewpoint prediction, KVP) are selected for
comparison. For a fair comparison, the K value in
the cross-user viewpoint prediction method proposed
in this paper is consistent with the K value in the
work[26], that is, K = 5. Fig.8 shows the trend of
the accuracy of different viewpoint prediction meth-
ods along with the prediction time. It can be seen that
the overall trend of the prediction accuracy of three
methods is gradually decreases along with the time.
The linear regression method performs the viewpoint
prediction only based on the historical trajectory of the
viewpoint. However, since the movement of the user’s
viewpoint changes according to the video content, the
prediction accuracy based only on the historical trajec-
tory of the viewpoint is the lowest, especially when the
prediction time is long, the accuracy decreases faster.
The KVP method can maintain a high accuracy rate
when the prediction time is short. Similar to the lin-
ear regression method, its prediction accuracy rate de-
creases rapidly with time. Compared with the KVP
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(a) User normalized utility value with small bandwidth fluctua-
tions

(b) User normalized utility value with large bandwidth fluctua-
tions

Fig. 12. User normalized utility value based on different strategies

method, the proposed method improves the accuracy
by at least 6% on average, and the prediction accu-
racy can be maintained above 80% when the predic-
tion time is long (i.e., 5 seconds).

In the next step, the proposed cache strategy is eval-
uated with different video sources. Note that in the
evaluation, we only calculate the cache hit rate of tile
chunks for user requests in the evaluation , i.e., if a
cached tile chunk is requested, it is recorded as a cache
hit. We calculate the cache hit rate for different video
sources (video1, video2, and video3) with different
caching strategies. As shown in Table 1, from which
we can see that our proposed caching strategy has the
best cache hit rate for all three video sources, and the
highest cache hit rate can reach 56%, which is remark-
ably helpful in improving the user experience.

Then, the proposed buffer management algorithm is
evaluated with different bandwidth situations. Fig.9
shows the fluctuations of user bandwidth records over
time. It can be seen from the figure that the bandwidth
fluctuation of trace 1 is small, and the bandwidth of
trace 5 fluctuates greatly. With two kinds of band-
width situation, HB strategy, TB strategy and TTB
strategy are adopted for performance evaluation, re-
spectively. And the utility value of the user in each
time period is recorded. Fig.10 shows the normalized
average utility value of the users using the adaptive
transmission mechanism of different strategies under
two bandwidth fluctuations. It can be seen from Fig.10
that under the two different bandwidth fluctuations,
the average utility value of the HB strategy adaptive
transmission is higher than the average utility value of
the TB and TTB strategies. For small bandwidth varia-
tions (Trace1), the average utility of using HB strategy
is approximately 18% and 12% higher than TB strat-
egy and TTB strategy, respectively. For large band-
width variations (Trace5), the average benefit of using
HB strategy is approximately 20% and 13% higher
than that of TB strategy and TTB strategy, respec-
tively.

Fig.11 shows the standard deviation of the normal-
ized user utility value based on different strategies.
From the figure, it can be seen that in general, the stan-
dard deviation of the user utility value of HB strategy
is larger than the standard deviation of the user utility
value of TB strategy and TTB strategy. In the case of
small bandwidth fluctuations, the standard deviation
of the user utility value of HB strategy is about 34%
and 14% lower than the standard deviation of the user
utility value of TB and TTB strategy, respectively. In
the case of large bandwidth fluctuations, the standard
deviation of the user utility value of HB strategy is
approximately 48% and 25% lower than the standard
deviation of the user utility of TB strategy and TTB
strategy, respectively.

Fig.12 shows the changes of normalized user util-
ity values with different strategies over time. Among
them, the left sub-figure (a) is the user utility value
when the bandwidth fluctuation is small, and the right
sub-figure (b) is the bandwidth fluctuation In the larger
case, the user utility value, as can be seen from the fig-
ure, in the two kinds of bandwidth fluctuations, HB
strategy can maintain a higher utility value, and its
fluctuation is small. Based on the above analysis, it
can be concluded that compared with the traditional
buffer strategy TB strategy and the TTB strategy, HB
can improve the user’s utility value, and can maintain
a relatively stable utility value fluctuation in the case
of bandwidth fluctuations, that is, improve the user’s
QoE.

Furthermore, with different caching strategies and
the proposed buffer update algorithm, we evaluate the
user latency, as shown in Fig. 13, which shows the
Cumulative Distribution Function (CDF) of latency.
From this figure, it can be seen that with our pro-
posed caching strategy, 90% of the user latency is
within 20ms, which basically meets the VR latency
requirements. In contrast, although the cache hit rate
of the viewpoint prediction-based caching strategy is
only about 10% lower than the hit rate of our proposed
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caching strategy, the total end-user latency exceeds
20ms due to the large viewpoint prediction latency. In
addition, we note that the popularity-based prediction,
although without the predicted latency, however, has
the worst user latency due to its lower cache hit ratio,
where most content requests require a remote server
or other MEC to respond.

Finally, we evaluate the caching strategy with the
buffer update algorithm. In the simulation, we se-
lected four different combinations of caching strategy
+ buffer update algorithms with different bandwidth
condition, i.e., proposed caching + update algorithm,
viewpoint prediction based caching + update algo-
rithm, popularity based caching + update algorithm,
proposed caching + traditional buffer algorithm. From
Fig.14, we can see that the user’s QoE increases with
the growth of the user bandwidth. Among them, the
caching strategy + buffer update algorithm proposed
in this paper achieves the highest user QoE. It is worth
noting that the traditional buffer with the proposed
caching strategy achieves the lowest QoE, which also
verifies the importance of buffer management in an-
other aspect.

Fig. 13. The CDF of latency with different caching strategies.

Fig. 14. QoE VS. User bandwidth with caching strategies and buffer
update algorithms

6. Conclusion

The low latency and intensive computing require-
ments of mobile VR have brought new challenges
to the development of 5G and its future mobile net-
works. To meet the demanding latency and band-
width requirements of VR, the joint optimization of
caching and buffer management is presented in this
paper. First, a viewpoint prediction method based on
historical trajectories and motion similarity between
users is introduced, which significantly improves the
viewpoint prediction accuracy over time. Based on 5G
intelligent edge computing, we propose a tile popular-
ity based on edge caching strategy, which VR content
is proactively cached with tile granularity. Further-
more, an adaptive update algorithm based on hierar-
chical buffer is presented, which jointly considers the
status of bandwidth, buffer and predicted viewpoint
to update the tile chunk in the client’s buffer. And
the buffer update problem is modeled as an optimiza-
tion problem, the corresponding solution algorithms
are presented according to the decomposition of the
problem. Finally, the simulation results show that the
proposed proactive caching strategy cooperates with
the hierarchical buffer update algorithm could achieve
better QoE of mobile VR users.

Acknowledgements

This work is supported in part by the Chongqing
Municipal Education Commission projects un-
der Grant No. KJCX2020035, KJQN202200829,
Chongqing Science and Technology Commission
projects under grant No. CSTB2022BSXM-JCX0117
and cstc2020jcyj-msxmX0339, and is also supported
in part by National Natural Science Foundation
of China under Grant No. (62171072, 62172064,
62003067, 61901067), and is also supported in part
by Chongqing Technology and Business University
projects under GRANT No. (2156004, 212017).

References

[1] S. Xia, Z. Yao, Y. Li, S. Mao, Online distributed offloading and
computing resource management with energy harvesting for
heterogeneous mec-enabled iot, IEEE Trans. Wirel. Commun.
20 (10) (2021) 6743–6757.

[2] J. Yang, F. Lin, C. Chakraborty, K. Yu, Z. Guo, A. Nguyen,
J. J. P. C. Rodrigues, A parallel intelligence-driven resource
scheduling scheme for digital twins-based intelligent vehicu-
lar systems, IEEE Trans. Intell. Veh. 8 (4) (2023) 2770–2785.

[3] Z. Zhou, X. Dong, Z. Li, K. Yu, C. Ding, Y. Yang,
Spatio-temporal feature encoding for traffic accident detec-
tion in VANET environment, IEEE Trans. Intell. Transp. Syst.
23 (10) (2022) 19772–19781.

[4] K. Yu, L. Tan, C. Yang, K. R. Choo, A. K. Bashir, J. J. P. C.
Rodrigues, T. Sato, A blockchain-based shamir’s threshold
cryptography scheme for data protection in industrial inter-
net of things settings, IEEE Internet Things J. 9 (11) (2022)
8154–8167.

Jo
urn

al 
Pre-

pro
of



14 Junchao Yang, et al.

[5] Z. Guo, K. Yu, Z. Lv, K. R. Choo, P. Shi, J. J. P. C. Rodrigues,
Deep federated learning enhanced secure POI microservices
for cyber-physical systems, IEEE Wirel. Commun. 29 (2)
(2022) 22–29.

[6] Z. Guo, K. Yu, N. Kumar, W. Wei, S. Mumtaz, M. Guizani,
Deep-distributed-learning-based POI recommendation under
mobile-edge networks, IEEE Internet Things J. 10 (1) (2023)
303–317.

[7] B. Zhu, K. Chi, J. Liu, K. Yu, S. Mumtaz, Efficient offloading
for minimizing task computation delay of noma-based mul-
tiaccess edge computing, IEEE Transactions on Communica-
tions 70 (5) (2022) 3186–3203.

[8] C. Chen, Z. Liao, Y. Ju, C. He, K. Yu, S. Wan, Hierarchi-
cal domain-based multi-controller deployment strategy in sdn-
enabled space-air-ground integrated network, IEEE Transac-
tions on Aerospace and Electronic Systems 58 (6) (2022)
4864–4879.

[9] M. Chen, K. Hu, I. Chung, C. Chou, Towards VR/AR multi-
media content multicast over wireless LAN, in: Proceedings
of the 16th IEEE Annual Consumer Communications & Net-
working Conference, CCNC, 2019, IEEE, 2019, pp. 1–6.

[10] F. Duanmu, E. Kurdoglu, S. A. Hosseini, Y. Liu, Y. Wang,
Prioritized buffer control in two-tier 360 video streaming,
in: Proceedings of the Workshop on Virtual Reality and
Augmented Reality Network, VR/AR Network@SIGCOMM
2017, ACM, 2017, pp. 13–18.

[11] M. Chen, W. Saad, C. Yin, Virtual reality over wireless net-
works: Quality-of-service model and learning-based resource
management, IEEE Trans. Commun. 66 (11) (2018) 5621–
5635.

[12] M. Almquist, V. Almquist, V. Krishnamoorthi, N. Carlsson,
D. L. Eager, The prefetch aggressiveness tradeoff in 360°
video streaming, in: Proceedings of the 9th ACM Multime-
dia Systems Conference, MMSys 2018, ACM, 2018, pp. 258–
269.

[13] F. Duanmu, E. Kurdoglu, S. A. Hosseini, Y. Liu, Y. Wang,
Prioritized buffer control in two-tier 360 video streaming,
in: Proceedings of the Workshop on Virtual Reality and
Augmented Reality Network, VR/AR Network@SIGCOMM
2017, ACM, 2017, pp. 13–18.

[14] M. Budagavi, J. Furton, G. Jin, A. Saxena, J. Wilkinson,
A. Dickerson, 360 degrees video coding using region adap-
tive smoothing, in: 2015 IEEE International Conference on
Image Processing, ICIP 2015, IEEE, 2015, pp. 750–754.

[15] V. Sitzmann, A. Serrano, A. Pavel, M. Agrawala, D. Gutier-
rez, B. Masiá, G. Wetzstein, Saliency in VR: how do peo-
ple explore virtual environments?, IEEE Trans. Vis. Comput.
Graph. 24 (4) (2018) 1633–1642.

[16] P. Rondao-Alface, J. Macq, N. Verzijp, Interactive omnidirec-
tional video delivery: A bandwidth-effective approach, Bell
Labs Tech. J. 16 (4) (2012) 135–147.

[17] A. T. Nasrabadi, A. Mahzari, J. D. Beshay, R. Prakash, Adap-
tive 360-degree video streaming using scalable video coding,
in: Proceedings of the 2017 ACM on Multimedia Conference,
MM 2017, ACM, 2017, pp. 1689–1697.

[18] L. Feng, Z. Yang, Y. Yang, X. Que, K. Zhang, Smart mode
selection using online reinforcement learning for VR broad-
band broadcasting in D2D assisted 5g hetnets, IEEE Trans.
Broadcast. 66 (2) (2020) 600–611.

[19] J. Yang, J. Luo, D. Meng, J. Hwang, Qoe-driven resource
allocation optimized for delay-sensitive VR video uploading
over cellular network, in: Proceedings of the 2019 IEEE
Symposium on Computers and Communications, ISCC 2019,
Barcelona, Spain, June 29 - July 3, 2019, IEEE, 2019, pp. 1–6.

[20] Y. Li, H. Ma, L. Wang, S. Mao, G. Wang, Optimized content
caching and user association for edge computing in densely
deployed heterogeneous networks, IEEE Trans. Mob. Com-
put. 21 (6) (2022) 2130–2142.

[21] M. Abdelrahman, M. Elbamby, V. Räisänen, Proactive
scheduling and caching for wireless VR viewport streaming,
in: IEEE Globecom 2021 Workshops, 2021, IEEE, 2021, pp.
1–6.

[22] J. Yang, J. Luo, J. Wang, S. Guo, CMU-VP: cooperative

multicast and unicast with viewport prediction for VR video
streaming in 5g H-CRAN, IEEE Access 7 (2019) 134187–
134197.

[23] Y. Ban, L. Xie, Z. Xu, X. Zhang, Z. Guo, Y. Wang, CUB360:
exploiting cross-users behaviors for viewport prediction in
360 video adaptive streaming, in: Proceedings of the 2018
IEEE International Conference on Multimedia and Expo,
ICME 2018, IEEE Computer Society, 2018, pp. 1–6.

[24] A. D. Abreu, C. Ozcinar, A. Smolic, Look around you:
Saliency maps for omnidirectional images in VR applica-
tions, in: Proceedings of the Ninth International Conference
on Quality of Multimedia Experience, QoMEX 2017, IEEE,
2017, pp. 1–6.

[25] G. Ravindra, W. T. Ooi, On tile assignment for region-of-
interest video streaming in a wireless LAN, in: Proceedings of
the 2012 Network and Operating System Support for Digital
Audio and Video Workshop, NOSSDAV 2012, ACM, 2012,
pp. 59–64.

[26] S. Liao, J. Wu, J. Li, K. Konstantin, Information-centric mas-
sive iot-based ubiquitous connected VR/AR in 6g: A proposed
caching consensus approach, IEEE Internet Things J. 8 (7)
(2021) 5172–5184.

[27] C. Wu, Z. Tan, Z. Wang, S. Yang, A dataset for exploring user
behaviors in VR spherical video streaming, in: Proceedings
of the 8th ACM on Multimedia Systems Conference, MMSys
2017, ACM, 2017, pp. 193–198.

[28] Q. Cheng, H. Shan, W. Zhuang, L. Yu, Z. Zhang, T. Q. S.
Quek, Design and analysis of MEC- and proactive caching-
based 360° mobile VR video streaming, IEEE Trans. Multim.
24 (2022) 1529–1544.

[29] J. Park, J. Hwang, H. Wei, Cross-layer optimization for
VR video multicast systems, in: Proceedings of the IEEE
Global Communications Conference, GLOBECOM 2018,
IEEE, 2018, pp. 206–212.

[30] Y. Jin, J. Liu, F. Wang, Ebublio: Edge assisted multi-user 360-
degree video streaming, in: Proceedings of the 2022 IEEE
Conference on Virtual Reality and 3D User Interfaces Ab-
stracts and Workshops, VR Workshops, IEEE, 2022, pp. 600–
601.

[31] K. Liu, Y. Liu, J. Liu, A. Argyriou, Tile caching for scalable
VR video streaming over 5g mobile networks, J. Vis. Com-
mun. Image Represent. 79 (2021) 103210.

[32] J. Dai, Z. Zhang, S. Mao, D. Liu, A view synthesis-based 360°
VR caching system over mec-enabled C-RAN, IEEE Trans.
Circuits Syst. Video Technol. 30 (10) (2020) 3843–3855.

[33] M. Peng, T. Q. S. Quek, G. Mao, Z. Ding, C. Wang, Artificial-
intelligence-driven fog radio access networks: Recent ad-
vances and future trends, IEEE Wirel. Commun. 27 (2) (2020)
12–13.

[34] P. Maniotis, E. Bourtsoulatze, N. Thomos, Tile-based joint
caching and delivery of 360° videos in heterogeneous net-
works, IEEE Trans. Multim. 22 (9) (2020) 2382–2395.

[35] Y. Liu, J. Liu, A. Argyriou, L. Wang, Z. Xu, Rendering-aware
VR video caching over multi-cell MEC networks, IEEE Trans.
Veh. Technol. 70 (3) (2021) 2728–2742.

[36] F. Guo, F. R. Yu, H. Zhang, H. Ji, V. C. M. Leung, X. Li, An
adaptive wireless virtual reality framework in future wireless
networks: A distributed learning approach, IEEE Trans. Veh.
Technol. 69 (8) (2020) 8514–8528.

[37] S. Zehtabian, M. Razghandi, L. Bölöni, D. Turgut, Predictive
caching for AR/VR experiences in a household scenario, in:
Proceedings of the 2020 International Conference on Com-
puting, Networking and Communications, ICNC 2020, IEEE,
2020, pp. 591–595.

[38] H. Xiao, C. Xu, Z. Feng, R. Ding, S. Yang, L. Zhong, J. Liang,
G. Muntean, A transcoding-enabled 360° VR video caching
and delivery framework for edge-enhanced next-generation
wireless networks, IEEE J. Sel. Areas Commun. 40 (5) (2022)
1615–1631.

[39] H. Ahmadi, O. Eltobgy, M. Hefeeda, Adaptive multicast
streaming of virtual reality content to mobile users, in: Pro-
ceedings of the on Thematic Workshops of ACM Multimedia
2017, ACM, 2017, pp. 170–178.

Jo
urn

al 
Pre-

pro
of



Cache and buffer optimization for mobile VR adaptive transmission 15

[40] G. Papaioannou, I. Koutsopoulos, Tile-based caching opti-
mization for 360° videos, in: Proceedings of the Twentieth
ACM International Symposium on Mobile Ad Hoc Network-
ing and Computing, Mobihoc 2019, ACM, 2019, pp. 171–180.

Jo
urn

al 
Pre-

pro
of



Declaration of interests 
 

☒ The authors declare that they have no known competing financial interests or personal relationships 
that could have appeared to influence the work reported in this paper. 
 

☐The authors declare the following financial interests/personal relationships which may be considered 
as potential competing interests:  
 

 

 

 
 

 

Jo
urn

al 
Pre-

pro
of


