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ABSTRACT Ensuring robustness against adversarial attacks is imperative for Machine Learning (ML)
systems within the critical infrastructures of the Industrial Internet of Things (IIoT). This paper addresses
vulnerabilities in IIoT systems, particularly in distributed environments like Federated Learning (FL) by
presenting a resilient framework - Secure Federated Learning (SFL) specifically designed to mitigate data
and model poisoning, as well as Sybil attacks within these networks. Sybil attacks, involving the creation
of multiple fake identities, and poisoning attacks significantly compromise the integrity and reliability of
ML models in FL environments. Our SFL framework leverages a Digital Twin (DT) as a critical aggregation
checkpoint to counteract data and model poisoning attacks in IIoT’s distributed settings. The DT serves as
a protective mechanism during the model update aggregation phase, substantially enhancing the system’s
resilience. To further secure IIoT infrastructures, SFL employs blockchain-based Non-Fungible Tokens
(NFTs) to authenticate participant identities, effectively preventing Sybil attacks by ensuring traceability
and accountability among distributed nodes. Experimental evaluation within IIoT scenarios demonstrates
that SFL substantially enhances defensive capabilities, maintaining the integrity and robustness of model
learning. Comparative results reveal that the SFL framework, when applied to IIoT federated environments,
achieves a commendable 97% accuracy, outperforming conventional FL approaches. SFL also demonstrates
a remarkable reduction in loss rate, recording just 0.07 compared to the 0.14 loss rate experienced by standard
FL systems. These findings highlight the efficiency and applicability of the SFL framework in enhancing
data security and traceability within the IIoT ecosystem.

INDEX TERMS Blockchain, data poisoning, decentralized federated learning, digital twin, industrial
internet of things, model poisoning, non-fungible tokens, Sybil attack.

The associate editor coordinating the review of this manuscript and

approving it for publication was Stefano Scanzio .

I. INTRODUCTION
Amidst the current era of data-centric technologies, Machine
Learning (ML) models are fundamental to extracting action-
able insights, and this is particularly evident in the Industrial
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Internet of Things (IIoT). Digital Twins (DTs), sensory
data, and interconnected systems form the backbone of IIoT,
where Federated Learning (FL) has emerged as a game-
changing architecture. FL’s decentralized nature ensures the
efficient processing of distributed IIoT data and addresses
some of the most pressing privacy concerns by allowing
numerous compute nodes to collaboratively hone a shared
global model without exposing individual datasets [1],
[2]. In addition, FL leverages distributed computational
resources to overcome the limitations of a central server,
thereby enhancing scalability and responsiveness in IIoT
environments [3], [4]. However, while FL is inherently more
privacy-preserving than centralized approaches, it is not
immune to security threats, such as model poisoning and
Sybil attacks, which jeopardize the integrity of collective
model training in the IIoT context [5], [6]. Such attacks pose
a significant threat to the collaborative learning paradigm,
potentially compromising the models integral to industrial
applications.

In the IIoT, model poisoning attacks are characterized by
malicious participants altering their model updates to degrade
the model’s performance, while data poisoning directly
manipulates the training dataset to skew the learning out-
come. Sybil attacks intensify these vulnerabilities, enabling
adversaries to fabricate numerous fictitious identities, thereby
disproportionately influencing the model training phase [7].

To address these persistent challenges within the IIoT,
we propose a comprehensive and robust FL framework,
named Secure Federated Learning (SFL). The SFL frame-
work employs blockchain technology to create an unalterable
ledger that serializes model updates, effectively deterring
unauthorizedmodifications and preserving the integrity of the
data [8], [9]. By incorporating Non-Fungible Tokens (NFTs),
which utilize the Edwards-curve Digital Signature Algorithm
(EdDSA) for unique identification, the framework thwarts
Sybil attacks, assuring the authenticity of each participant
in the FL network [10], [11]. The DTs [12], [13], which
serve as secure and immutable reference models within the
IIoT ecosystem, play an instrumental role in detecting and
remedying any incidents of model or data poisoning [14].

A. MOTIVATIONS
In the design of the SFL framework for IIoT environments,
significant emphasis was placed on selecting components
that bolster security, efficiency, and system integrity. The
incorporation of DTs, Blockchain technology, and NFTs was
driven by a meticulous evaluation of their functionalities
and the distinct advantages they offer. DTs are employed
within the SFL framework to serve as accurate and immutable
reference models. This strategic choice allows for the
benchmarking and integrity verification of the FL model,
enabling the detection and rectification of discrepancies that
may suggest data or model poisoning. Beyond security, DTs
offer the capability for simulation and prediction, facilitating
system optimization and proactive security measures by
allowing for the analysis of potential system behaviors

in a controlled environment. They also provide a reliable
foundation for system resilience and recovery, ensuring that,
in the event of a breach, the system can revert to a verified
and secure state.

Blockchain technology is integrated into the SFL frame-
work to leverage its immutability and traceability, offering
an unalterable ledger that records all transactions, including
model updates. This choice enhances the security and
transparency of the FL process, mitigating centralized points
of failure and promoting accountability among participants.
Furthermore, the decentralized nature of blockchain serves as
a robust defense mechanism against Sybil attacks, ensuring
participant authenticity and the legitimacy of contributions to
the federated model.

The deployment of NFTs within the SFL framework
introduces a novel approach to user authentication and
model update validation. NFTs, distinguished by their unique
cryptographic signatures, ensure the uniqueness of partici-
pant identities, preventing identity duplication and thereby
mitigating the risk of Sybil attacks. This not only enhances
the security framework but also introduces a mechanism for
recognizing and incentivizing contributions to the FL process,
fostering a more secure and collaborative environment.

These components—DTs, Blockchain technology, and
NFTs—are not mere additions to the SFL framework but are
foundational to its ability to address the complex security
challenges inherent in IIoT environments. Their integration
is based on a strategic consideration of the benefits they
bring, ensuring the framework’s robustness, reliability, and
resilience against a myriad of cyber threats.

B. ARCHITECTURE OF THE SECURE FEDERATED
LEARNING FRAMEWORK
Figure 1 presents the integrated architecture of the SFL
framework, specifically tailored for IIoT environments. This
architecture’s heart is the Central Server, which orchestrates
the entire FL process. It initiates the training by distributing
the global model to the Nodes—various connected devices or
computational resources scattered across the IIoT landscape.
These Nodes are responsible for conducting local training
with their unique datasets, after which they send their model
updates back to the Central Server. The Central Server’s
role extends beyond mere distribution and collection; it is
critical in aggregating the model updates from all Nodes.
This aggregation is a delicate process that synthesizes
distributed learning, updating the global model’s parameters
to better fit the collective data while ensuring the model’s
continuous improvement. Ensuring the integrity of this
iterative learning process, the Blockchain component is
introduced as a secure and immutable ledger. It records
each transaction of the model updates, which includes the
weights adjusted through local training. This immutability
serves a dual purpose: it not only guarantees the traceability
of each model’s evolution, critical for accountability and
auditability but also acts as a robust line of defense against
potential model or data inconsistencies that might arise.
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FIGURE 1. Architectural Diagram of Secured Federated Learning (SFL)
Framework.

Complementing the Blockchain is the concept of a DT,
a reliable replication of the global model that acts as a
reference point. By periodically benchmarking the updated
global model against this DT, any significant discrepancies
can be promptly identified. Such anomalies may suggest data
or model poisoning, prompting the system to revert to the
DT’s state to restore a verified model configuration. The
SFL framework’s architecture thus encapsulates a cyclical
and secure exchange of intelligence between the Nodes and
the Central Server, with the Blockchain underpinning the
system’s trustworthiness. This setup not only amplifies the
collaborative power of distributed learning but also fortifies
the system against the multifaceted security threats endemic
to IIoT domains.

To provide a visual overview of the SFL framework’s
architecture and design, an architectural diagram is pre-
sented in Fig. 1. This diagram illustrates the interconnected
components and their interactions, serving as a valuable
reference for understanding the structural aspects of the
framework.

The intended innovations are evident in the strategic
deployment of SFL, where DTs are instantiated and a
blockchain-based transaction system for model versioning
is established. The commitment to security is further
emphasized in the user authentication process, wherein NFTs
ensure uniqueness among participants using EdDSA. Finally,
a resilient model aggregation mechanism complemented by
DT benchmarking signifies a leap toward robust FL systems.
The primary contributions of this article are as follows:

• To fortify FL against malicious activities in IIoT,
we propose SFL, which combines blockchain and DT.

• In SFL, NFTs distinguished by their unique design
and metadata, function as a decentralized authentication
method, preventing identity duplication and mitigating
Sybil attacks.

• Blockchain integration in SFL ensures an unchangeable
record of transactions, facilitating the identification of
malicious nodes engaged in poisoning and thereby
enhancing overall security.

• DTs serve as a checkpoint in FL, detecting model
and data poisoning through efficiency comparison.
Discrepancies trigger rollbacks, enhancing security in
decentralized architectures.

We organize the paper as follows. Section II discusses the
related work and motivating factors for our proposed method.
Section III outlines the methodology, including blockchain
initialization with DTs, NFT-based user authentication, local
training protocols, smart contract-based validation, and the
aggregation of model updates against benchmarks with
custom algorithms. Section IV provides experimental results
and performance comparisons with legacy systems. Lastly,
Section V concludes with insights into the future work
inspired by the outcome of the current research.

II. RELATED WORKS
The proliferation of FL across distributed systems neces-
sitates robust security against adversarial attacks, particu-
larly model and data poisoning, along with Sybil attacks.
In addressing the vulnerabilities associated with model
performance and data privacy in FL systems, various research
efforts have been undertaken. For instance, a quality-based
aggregation method combined with local differential privacy
is proposed to preserve both model accuracy and data privacy
amid potential adversarial attacks on FL, as demonstrated
in [3]. A systematic analysis of secure FL applications
outlined in [5] highlights the significance of countering
security threats to uphold user privacy and model integrity.
To combat poisoning attacks, novel defense strategies
such as model analysis, byzantine robust aggregation, and
verification-based approaches have been categorized and
assessed for effectiveness [15].

Moreover, research has shown the susceptibility of FL
models to data poisoning attacks across networked nodes,
including Internet of Things (IoT) systems, emphasizing the
need for vigilant defense mechanisms [16]. In the context of
Zero TouchB5GNetworks, the design of automated detection
frameworks to identify malicious participants within the FL
process stands crucial to safeguard the collaborative learning
structure [17]. Additionally, the development of systems like
FoolsGold offers resilience against Sybil-based poisoning by
evaluating the diversity of node updates [18]. In the realm
of IIoT, the first-ever Sybil-based collusion attacks have
been proposed, enabling malicious participants to manipulate
model aggregation through local poisoning training [19].
The author in [20] utilizes a Markov chain and a

K-means clustering algorithm for effective visualization and
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mitigation of Sybil attackers in challenging IoT environ-
ments. Transitioning to blockchain technology, securing FL
involves integrating differential privacy and homomorphic
encryption, ensuring more robust data protection in IIoT [21].
Furthermore, enhancing participant privacy while achieving
verifiable aggregation results in FL is achieved through
additive homomorphic encryption combined with digital
signatures [22]. Lastly, the assimilation of FLwith blockchain
in the context of DT-empowered 6G networks addresses the
need for low-latency and reliable edge association, essential
for the advancement of IIoT [23].

In amalgamation with the outlined research and con-
sidering the persistence of the enumerated vulnerabilities,
our work introduces a novel framework employing NFTs
and DTs, integrated with blockchain technology, to provide
fortified security solutions. Unlike traditional models, SFL
utilizes the uniqueness of NFTs for robust user authentica-
tion, mitigating the risk of Sybil attacks. Simultaneously, the
use ofDTs in blockchain aids in benchmarking and efficiently
rolling back to secure states in the event of detected anomalies
or poisoning attempts. Our approach, thus, contributes to
a secure and reliable FL environment, capable of with-
standing sophisticated adversarial interferences establishing
a formidable defense system for the integrity of decentralized
learning.

III. SECURE FEDERATED LEARNING FRAMEWORK
Introducing a novel paradigm in the domain of IIoT, the
SFL framework is specifically designed to address the unique
security and traceability challenges that IIoT environments
face. As IIoT ecosystems incorporate a plethora of connected
devices and generate vast amounts of data, harnessing
insights securely through FL becomes paramount. The
proposed SFL framework unfolds through five key phases to
bolster the security and integrity of FL within these complex
networks.

The initialization phase sets the groundwork by deploying
a central server armed with a foundational global model G.
The Central Server orchestrates the FL process by distributing
and aggregating the global model G among nodes. It ensures
the model’s integrity during aggregation before redistributing
it for further iterations, which is critical for the scaffolding
of an SFL system in the multifaceted and heterogeneous
environment of IIoT. Nodes are the IIoT ecosystem’s devices
or resources that train on local data using the global model
G, contributing updates back to the server. This setup
enables diverse data learning while maintaining data privacy.
To counteract Sybil attacks, which are particularly of concern
in IIoT due to numerous nodes, the user authentication phase
employs a cryptographic solution, bestowing a unique NFT to
each authenticated participant. This measure not only secures
the network but also introduces a level of data provenance and
traceability which is indispensable in IIoT contexts.

Moving to the local training and update preparation phase,
post-authentication, participating nodes undertake localized
model training using their specific datasets. The resultant

FIGURE 2. Flowchart depicting the Sequential Process of SFL.

model updates are not directly integrated; instead, in the
submission of the block phase, they are transacted on the
blockchain B, establishing a persistent, immutable record of
model evolution. Herein lies the critical application of the
blockchain’s immutable property: each transaction on the
blockchain, once recorded, cannot be altered or deleted. This
immutability ensures that every model update, once submit-
ted to the blockchain, becomes a permanent, unchangeable
record of the model’s evolution. This systematic logging
not only facilitates a rigorous defense against potential
data poisoning but also enables the traceability of each
model modification back to its origin. The immutability of
blockchain is crucial in this context as it guarantees that
the integrity of the recorded model updates remains intact,
thwarting any attempts to tamper with or falsify the history
of model evolution. This systematic logging facilitates a
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rigorous defense against potential data poisoning, enabling
the traceability of each model modification to its origin.
Embedded within this blockchain infrastructure are smart
contracts, constituting an integral part of the submission
of the block phase, which autonomously scrutinizes each
model transaction. These contracts serve as an immediate
filtration mechanism, identifying and isolating potential
model poisoning attempts by detecting deviations from
established norms.

In the final phase ofmodel aggregation andDT benchmark,
the blocks in the blockchain B are periodically invoked by
the central server and aggregated with the global model G.
Discrepancies in performance between the aggregated global
model G and its digital counterpart signal potential data or
model inconsistencies. In such scenarios, the system reverts
to the pristine state represented by the DT, ensuring the
consistent and reliable performance of the federated model.
Through this structured approach, SFL aims to enhance
the robustness and security of FL systems, addressing and
mitigating prevalent vulnerabilities inherent in the domain.
Fig. 2 illustrates the detailed workflow of the SFL framework,
contextualizing it within the scope of IIoT.

A. INITIALIZATION PHASE
In this phase of deploying SFL, a series of systematic and
crucial steps are taken to ensure the robustness and security
of the system from the get-go. To commence, a centralized
server is designatedwith the responsibility of instantiating the
primary global model G. This global model G, constructed
based on diverse user data and ample insights, serves as the
baseline for all forthcoming collaborative training. As an
immediate auxiliary step, a DT of this global model G
is crafted. This DT precisely mirrors the architecture and
parameters of the original global model G at the point of
its inception. Contrary to real-time mirrors, this DT remains
static, preserving the initial state of the model. Static DT
is used so that only the endpoint of a global model G is
stored, which helps to avoid the overhead and increased costs
associated with constantly mirroring the whole model in a
dynamic DT.

The process begins by constructing the genesis block,
which acts as the cornerstone of the blockchainB. It is labeled
as the first block with a unique index and is timestamped with
‘‘creation time’’. The genesis block contains no transactions,
is denoted by an empty list, and is assigned an introductory
proof value. Its previous hash is set to 0, signifying the initial
block in the chain. Following the creation of the genesis
block, a blockchain B is initiated by appending this block
to an empty list, forming the foundational structure of the
blockchain B.

The CreateDigitalTwinTransaction algorithm of this phase
initiates by capturing the current timestamp and determining
the version of the DT. Subsequently, it constructs a DT
transaction dictionary, denoted as D, with specific keys for
essential information such as the reference model, hash,
location, timestamp, and version. The global model (G)

serves as the reference model, while the DT hash and twin
location are assigned to their respective keys. The timestamp
of the transaction is set to the captured timestamp, and
the version of the DT is specified as well. In essence, this
algorithm systematically organizes and encapsulates relevant
details into a structured dictionary, creating a DT transaction
for use in a blockchain system.

This phase facilitates a reliable point of reference, espe-
cially valuable in scenarios requiring model verification or
when a rollback to the original model becomes imperative.

B. USER AUTHENTICATION AND MODEL DISTRIBUTION
Following the initialization phase, the next critical phase
addresses user authentication, which is a pivotal element in
guaranteeing the integrity of FL processes by avoiding Sybil
attacks that pose a substantial threat to FL systems. Malicious
entities can overwhelm the network with numerous pseudo-
identities, attempting to skew aggregated model updates or
gain disproportionate influence. Additionally, our system is
designed to counter data poisoning attackers, who introduce
tainted or misleading data during local training sessions to
compromise the integrity of the global model. Lastly, wemust
consider the threat posed by model poisoning attackers, who
deliberately manipulate the model updates they submit in an
attempt to corrupt the aggregated global model and degrade
its performance

To mitigate the risk of such attacks, SFL utilizes the
unique and immutable properties of NFTs to ensure that each
participant in the FL network is represented by a single,
authenticated entity. Our methodology incorporates EdDSA
to authenticate the uniqueness of each participant’s digital
signature. EdDSA provides a deterministic alternative to
the Schnorr signature, essential for ensuring the authenticity
of the signature which will in turn set the authenticity of
NFT due to its efficiency and security. This signature, along
with their third-party data, is encapsulated within a block as
ed-NFT and added to the blockchain B.

EdDSA relies on the specification of public parameters
denoted as EdParams=(Ec,K ′,q,K , b,H ). Within this frame-
work, Ec represents a twisted elliptic curve, K ′ is indicative
of an additive cycle group featuring the generator K and
order q. b signifies the bit-length of confidential EdDSA
scalars, H : {0, 1}∗ → {0, 1}2b serves as a hash function
producing a 2b-bit output. HL(·) designates the initial half of
hash value as (h0,...,hb−1) and HR(·) corresponds to the latter
half expressed as (hb, . . . , h2b−1). The procedural outline of
EdDSA is elucidated in the Algorithm 1.
When a third-party entity wishes to enter the FL net-

work, SFL mints a tailored NFT (ed-NFT), as detailed in
Algorithm 2, that includes specific user details ui and a
timestamp ti captured. This process effectively prevents an
individual from presenting multiple identities, which is a
common scenario in Sybil attacks.

The ed-NFT serves as a means of authenticating users;
once minted, it assigns a private key to them. When a
node, authenticated through its ed-NFT, requests to join
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Algorithm 1 EdDSA
KeyProduce(EdParams):
1: Generate a private key pk←{0, 1}b randomly and

calculate the hash value H (pk) = (h0, h1 . . . , h2b−1)
2: Set h0, h1, h2, hb−1 as 0 and set hb−2 as 0. Subsequently,

utilize the modified vector (h0,...,hb−1) to establish a
secret scalar s∈Zq i.e., s

∑b−1
i=0 hi • 2

imod q
3: Compute the public key bk = [s]K .

EdDSA_Sign(pk , bk , M ):
4: Calculate a random nonce, denoted as r , by applying

the hash function to the latter half of H (pk)(which
is HR(pk) = (hb, . . . , h2b−1) ), combined with M, and
then take the result modulo q

5: Determine R by computing [r]K . Calculate the hashed
value c as the hash of the tuple (R, bk,M) and
subsequently, obtain S by computing (r + c ∗ s)mod q.

6: Assemble the digital signature, which is comprised of the
pair (R, S).
EdDSA Verify(bk, M, σ ):

7: Calculate the hashed value c′ as the hash of the tuple
(R, bk,M).

8: iff
[
23 • S

]
K =

[
23

]
R +

[
23 • c

′
]
bk holds output 1;

otherwise, output 0.

a training round, the central server validates the request
using the participant’s ed-NFT and the EdDSA verification
mechanism. If blockchain B contains ed-NFT and it is
not an already active ed-NFT and EdDSA_Verify(ed-NFT,
σi) returns ‘‘Authenticated’’ as the output then the node
is successfully verified. Upon successful verification, the
server dispatches the global model G to the authenticated
nodes. This verification process ensures that only legitimate,
authenticated nodes are allowed to contribute to the local
training.

C. LOCAL TRAINING AND UPDATE PREPARATION
Following the distribution of the global model G, the local
training phase gets underway. In this stage, each participating
node embarks on the task of training the model using
its proprietary dataset according to the traditional FedAvg
mechanism as follows [24].

Fj(w) =
∑
i∈Pj

fi(w)
nj

(1)

where the function fj(w) signifies the loss incurred in
predicting the output yj from input x and w represents the
weight vectors. The objective is to minimize this loss. The
variable j denotes the total number of participants involved in
the ongoing learning round, and Fj (w) characterizes the local
objective function specific to the jth participant. Within this
context, n represents the total number of samples across all
participants, and nj corresponds to the locally held samples by
the jth participant. Additionally, Pj, where nj= |Pj|, signifies

Algorithm 2 NFT-Minting With EdDSA for Third Party
Input: user details (ui) (A set of unique details for a user)
Output: ed-NFT
1: FunctionMintNFT(ui)
2: Capture the current timestamp (ti).
3: Initialize a list of raw data with ui and ti.
4: Generate unique token id (tid) with hash function for raw

data (Standard cryptographic hash, like SHA-256)
5: Construct the user metadata dictionary (M ) with keys

‘‘user details’’, ‘‘timestamp:
6: Set ui as the value of ‘‘user details’’.
7: Set ti as the value of ‘‘timestamp’’.
8: Generate signature (σ i) using EdDSA_sign() algorithm

for M .
9: Construct the ed-NFT with attributes ‘‘signature’’, ‘‘user

data’’ and ‘‘token id’’
10: Set si as the value of attribute ‘‘signature’’.
11: Set M as the value of attribute ‘‘user data’’.
12: Set tid as the value of attribute ‘‘token id’’.
13: Add ed-NFT to blockchain B
14: return ed-NFT
15: end function

the partition assigned to the jth participant from the entire
dataset P.

After each node completes its localized training, the
derived model updates or adjustments are consolidated.
These updates represent the unique learnings garnered from
individual datasets, ready to be merged into the global model
G. The model updates frommultiple nodes are combined into
a block. This block is then prepared for submission to the
smart contract for verification before being attached to the
blockchain B.

D. BLOCK SUBMISSION
After local training, nodes submit model updates that undergo
rigorous validation through a smart contract, serving as
the first line of defense against model and data poisoning
attacks. For our implementation, we employed the Ethereum
blockchain, specifically leveraging its smart contract capa-
bilities to enforce the integrity and validation processes of
the submitted model updates. The choice of Ethereum is
motivated by its widespread adoption, robust smart contract
functionality, and its ability to integrate with existing IIoT
platforms. This automated process ensures adherence to
predefined criteria, swiftly rejecting non-compliant or poten-
tially malicious updates. This proactive measure prevents
unnecessary overhead, as it mitigates the need to advance to
the stage where a DT is employed for recovery.

Upon successful validation by the smart contract, the
model update is encapsulated into a transaction T using the
CreateModelTransaction algorithm, which takes the sender’s
information, model hash, the function Fj(w), and the number
of data points nj as inputs to generate amodel transaction. The
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process begins by capturing the current timestamp, denoted
as ti. It then constructs a model transaction dictionary,
T , with keys including sender, datapoints, weight, and
hash. The sender’s identity is set as the value of the
sender, the number of data points as the value of data
points, the function Fj(w) as the value of the weight, and
the model hash as the value of the hash. The timestamp ti
is assigned to the time key in the dictionary. Ultimately, the
algorithm returns the model transaction dictionary T with
organized information necessary for recording model-related
transactions. This transaction is then methodically prepared
and positioned for addition to the blockchain B, symbolizing
the technical completion of the validation and submission
process.

Simultaneously, this architecture the integrity of blockchain
B as outlined in Algorithm 3. This mechanism, designed
to maintain blockchain B’s consistency, employs a custom
hashing function and checks every block’s integrity against
its predecessor. By comparing digests and credentials,
it ensures that the blockchain B remains tamper-proof. Any
inconsistency immediately flags the block as INVALID,
while consistent chains are marked VALID, ensuring the
trustworthiness of the entire blockchain B.

Algorithm 3 Chain Integrity Checking
Input: active block, Blockchain B
Output: Bool (VALID if blockchain B is consistent,
INVALID otherwise)
1: Function GenerateDigest(record)
2: Get the Record comprising Timestamp, preceding digest,

random value, and details (covering updates from local
trainers and DT logs)

3: digest output = CustomHashFunction(record)
4: return digest output
5: end function
6: Set base block to B’s genesis block
7: Set block tracker = 1
8: while Block tracker is below the total blocks in B do
9: active block = B [block tracker]
10: if active block.preceding digest != GenerateDigest(B

[block tracker - 1]) then
11: return INVALID
12: end if
13: prior verification = base block.credential
14: recent verification = active block.credential
15: hash mechanism = CustomHashFunction(recent veri-

fication – prior verification)
16: if leading segment of the hash mechanism isn’t

according to the predetermined pattern then
17: return INVALID
18: end if
19: base block = active block
20: block tracker = block tracker + 1
21: end while
22: return VALID

E. MODEL AGGREGATION AND DIGITAL TWIN
BENCHMARKING
Periodically, the global model G initiates a block extraction
procedure from the blockchain B. Each block embodies
a series of transactions (or) model updates, which is
the result of localized training computations. Through the
traditional FedAvg algorithm [24] equation, these updates
are methodically consolidated, updating the global model
G’s parameters f (w) to represent an integrated dataset while
ensuring data privacy as follows.

f (w) =

J∑
j=1

nj
n
Fj(w) (2)

After the aggregation, an evaluation procedure is triggered
as illustrated in Algorithm 4 wherein the performance
metrics, specifically accuracy and loss, of the refined global
model G are compared with those of the pre-existing
DT. We focus on accuracy and loss metrics as primary
performance parameters due to their critical importance in
assessing the efficacy and reliability of machine learning
models, especially in federated learning contexts. Accuracy
provides a straightforward measure of the model’s predictive
capability, directly impacting its practical utility in real-
world applications. Loss metrics offer insights into the
model’s learning process, highlighting how well the model
generalizes from the training data. This comparison serves
not only as a quality check but also as a safeguard
against anomalies. While we understand federated learning’s
inherently non-deterministic nature, significant deviations in
performance metrics, especially when they fall below estab-
lished thresholds without clear non-malicious explanations,
raise concerns that warrant further investigation. The DT,
a static representation of a previous optimal model state,
functions as a benchmark. Any deviations in performance are
analytically scrutinized.

Should the aggregatedmodel’s metrics φ be commensurate
with or superior to the DT’s φi metrics, the model is deemed
fit for adoption as the current global modelG. In this scenario,
a new DT is instantiated, mirroring this updated model
state.

Correspondingly, a blockchain B entry is recorded,
affording future traceability and auditing capabilities. Con-
versely, a significant and unexplained decline in performance
metrics prompts a closer review. This cautious approach
recognizes the possibility of legitimate variability in model
performance due to the diverse nature of local datasets
while remaining vigilant against potential security threats.
In addressing suspected poisoning, the immutability of
the blockchain B proves instrumental. As every model
update is chronologically and securely logged, anomalous
entries indicative of malicious intent can be identified and
isolated.

To counteract the effects of potential poisoning, the system
defaults to the DT, leveraging its preserved state to counteract
the detrimental effects of the poisoned updates.
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Algorithm 4 Benchmarking Aggregated Efficiency Against
Global Model
Input: φi : Efficiency of the central (global) model
φ: Aggregated efficiency computed from local models
Output: Decision (Update or No Update) based on the
comparison
1: Procedure BenchmarkAndUpdate (φi, 8):
2: if 8 > φi then
3: φi = 8 // Update the global model ’s efficiency
4: The DT of the least efficient model is discarded
5: DT of the updated model is stored and a transaction is

stored in blockchain B
6: return ‘‘Global model Efficiency Updated’’
7: else
8: The aggregated model is discarded and the DT of the

last model is Instantiated as the global model G.
9: end if

10: return ‘‘Review transactions for potential anomalies,
including indications of model or data tampering.’’

11: end procedure

Thus SFL maintains traceability and emphasizes resilience
against malicious attempts. It establishes a robust framework
for maintaining collaborative learning integrity.

F. ATTACKER MODEL AND SECURITY ANALYSIS FOR SFL
IN IIOT
In the domain of IIoT, the SFL framework is meticulously
designed to counteract a spectrum of sophisticated cyber
threats that uniquely challenge the security and integrity of
FL systems. Understanding the attacker model is paramount
for evaluating the resilience of the SFL framework against
potential security vulnerabilities.

Threat Actors and Capabilities:

• Sybil Attackers: Individuals or entities capable of
creating multiple fake identities (Sybil attacks) to
disrupt the FL process. These attackers aim to infiltrate
the network with pseudoidentities, potentially skewing
aggregated model updates or gaining undue influence
over the learning process.

• Data Poisoning Attackers: Malicious participants or
external adversaries may introduce tainted or misleading
data during local training, aiming to compromise the
global model’s integrity.

• Model PoisoningAttackers:Attackers whomanipulate
the model updates they submit, attempting to corrupt the
aggregated global model to degrade its performance or
introduce backdoors.

Attacker Objectives:

• Disruption of Learning Process: To degrade the
performance or reliability of the FL system, making it
ineffective or untrustworthy.

• Compromise of Data Integrity: To inject false data or
model updates, aiming to skew the learning outcomes to
the attacker’s advantage.

• System Infiltration: To gain unauthorized access or
influence within the FL network for long-term exploita-
tion or sabotage.

Attack Vectors and Methods:
• Sybil Attacks through Fake Identities: Leveraging the
creation of numerous pseudoidentities to gain influence
or disrupt the aggregation process.

• Data Poisoning via Tainted Local Updates: Submit-
ting manipulated data or model updates during local
training phases to corrupt the global model.

• Model Poisoning through Malicious Updates: Intro-
ducing subtle but malicious alterations to model updates
aimed at degrading the global model’s accuracy or
introducing vulnerabilities.

The SFL framework incorporates several defense mech-
anisms across its phases to address these threats directly.
During the Initialization Phase, the creation of a static
DT and the use of a secure blockchain for the genesis
block construction lay the groundwork for a traceable and
tamper-evident model lineage. The User Authentication and
Model Distribution Phase introduces unique and immutable
NFT-based authentication to combat Sybil attacks and
ensure that each participant in the FL network is a single,
authenticated entity. In the Local Training and Update
Preparation Phase, localized model training incorporates
mechanisms to detect and mitigate data poisoning attempts.
The Block Submission Phase utilizes smart contracts for
rigorous validation of model updates, serving as a robust
line of defense against model poisoning attacks. Finally, the
Model Aggregation and DT Benchmarking Phase leverages
the immutable ledger of blockchain to verify the integrity of
model updates, ensuring the system can revert to a known
good state in the event of detected inconsistencies.

IV. RESULTS
To evaluate the performance of SFL in an IIoT ecosystem,
the simulations were executed on a custom server equipped
with an AMD Ryzen 9 5900X CPU, 32 GB DDR4 RAM,
paired with a 1 TB NVMe SSD and 4 TB HDD. The
graphics processing was handled by an NVIDIA GeForce
RTX 3080 GPU. Throughout the simulations,1 the system’s
RAMusage peaked at 24GB during themost intensive phases
of model training and aggregation, demonstrating efficient
resource utilization given the dataset’s size and complexity.
The processing time for each epoch averaged 2 minutes,
underscoring the SFL framework’s computational efficiency.

For our dataset of choice, we used MNIST [25], with the
training involving 30 independent nodes. Unlike previous
approaches that often overlook the distribution variability’s
impact on model performance, we meticulously divided the
dataset into 30 equal parts, ensuring each node received a

1https://github.com/YeshwanthGovindarajan/SFL_Model
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FIGURE 3. The relationship between accuracy, and individual dataset
sizes for different numbers of nodes.

distinct subset, a method demonstrating our commitment to
evaluating FL under realistic conditions. The training was
programmed to run for 25 epochs at a fixed learning rate
of 0.01. The model updates, while maintaining user privacy,
were periodically aggregated from the different nodes
throughout the experiment. The aggregation process was
observed to consume less than 1 GB of RAM, highlighting
the SFL’s optimization in handling data across the network.

In assessing the impact of a node’s dataset size on
the accuracy of the model, our simulations demonstrate
that the variance of dataset sizes among nodes, ranging
from 500 to 4000, marginally influences the overall model
precision. This finding contrasts with common assumptions
in the existing literature that larger dataset sizes at individual
nodes significantly enhance model accuracy, underscoring
the efficiency of our SFL system in handling diverse data
sizes. As displayed in Fig. 3, varying the number of
participating nodes per epoch specifically, 10, 20, or 30 out
of a total of 30 reveals that the model’s accuracy, which spans
from 88% to 97%, is largely stable regardless of the number of
nodes included in each epoch. Notably, the accuracy figures
when considering either 20 or 30 nodes are quite similar,
underscoring SFL’s proficiency in maintaining high accuracy
without the necessity of encompassing an extensive number
of nodes. This stability, even with fewer nodes, sets our
SFL system apart from traditional FL systems that exhibit
marked accuracy decreases with reduced node participation.
Furthermore, an increase in the nodes’ dataset size correlates
positively with enhancements in model accuracy.

In Fig. 4 we assessed the robustness of the SFL model
against adversarial attacks, specifically focusing on threats
posed by Sybil attackers, data poisoning attackers, and
model poisoning attackers, as outlined in our attacker model.
We compared its performance with that of a standard FL
system under varying conditions. Three distinct scenarios
were considered to demonstrate the impact of malicious
nodes on system accuracy. Scenario 1 served as our baseline,
representing an SFL system with no malicious nodes, which

FIGURE 4. Performance of SFL under adversarial conditions.

achieved a high benchmark accuracy of 97%.This baseline
performance itself showcases the superior initial accuracy of
our system. In Scenarios 2 and 3, we introduced adversarial
elements into the standard FL framework and SFL to observe
their effect on model performance. In Scenario 2, a conven-
tional FL system was challenged by the presence of 1, 3, and
5 malicious nodes. The negligible accuracy decrease in our
SFL model under adversarial conditions starkly illustrates its
robustness, a testament to the effectiveness of our security
protocols which are absent in conventional FL systems.
The simulation of adversarial conditions revealed that the
SFL framework’s defensive mechanisms did not significantly
affect the system’s performance or resource usage, with only
a nominal increase in processing time (less than 10% across
scenarios) and no additional RAMusage. The accuracy of this
non-secure FL system was observed to decrease significantly
as the number of malicious nodes increased. Specifically,
the accuracy dropped to 87% in the presence of 1 malicious
node, 85% with 3 malicious nodes, and fell to 81% when
5 malicious nodes were introduced. These results indicated
a clear inverse relationship between the number of malicious
nodes and the accuracy of a standard FL model. In contrast,
Scenario 3 showcased the performance of our proposed
SFL framework under the same adversarial conditions.
Remarkably, the SFL model displayed a consistent accuracy,
with only a negligible decrease of 0.05% from the baseline,
despite the inclusion of up to 5 malicious nodes. This
performance stability, nearly paralleling the ideal unassailed
scenario, highlights the robustness and resilience of our
SFL model in adverse environments. These experimental
findings underscore the effectiveness of our SFL system in
maintaining data integrity and accuracy even when faced
with sophisticated adversarial attacks, thereby establishing
the SFL as a viable solution for enhancing the security of FL
networks.

In terms of scalability, the performance of SFL remained
consistent across different node counts, as illustrated in
Fig. 5. The graph depicts four distinct lines corresponding
to scenarios with a random number of nodes, 10 nodes,
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FIGURE 5. The relationship between accuracy, and epoch for different
numbers of nodes.

FIGURE 6. The relationship between loss and number of epochs of
various learning models.

20 nodes, and 30 nodes. It is noteworthy that the accuracy
across the 4 scenarios held steady and did not show any signs
of degradation, even with a growing number of nodes. In par-
ticular, the performance under a random number of nodes
showcased a robust efficiency, highlighting the adaptability
of the SFL system. The trajectories for the 20 and 30-node
scenarios are indistinguishable, indicating that the model
upholds its efficacy and learning capability regardless of the
number of nodes involved, a direct outcome of our novel
aggregation and synchronization protocols. This underpins
the scalability of the SFL framework, ensuring it delivers
consistent performance in various node configurations.

The scalability tests, depicted in Fig. 5, further emphasize
the SFL’s efficient use of computational resources. Despite
increasing the number of nodes from 10 to 30, the system’s
RAM usage and processing times remained largely unaf-
fected, illustrating the SFL framework’s capability to scale
without proportional increases in resource demand.

Fig. 6 and Fig. 7, provide substantial insights through
the quantitative analysis of model accuracy and loss metrics
over successive epochs. In the single-node ML scenario,
an accuracy of 0.90 is observed, which is likely due to limited

FIGURE 7. The relationship between accuracy and number of epochs of
various learning models.

data diversity exposure. This is considerably lower than the
standard FL approach, which leverages a more expansive
dataset and obtains an accuracy of 0.96 after 30 epochs.

SFL framework demonstrates a significant improvement
in accuracy, reaching 0.97, which closely approaches the
centralized ML benchmark of 0.98. This underscores the
effectiveness of our security protocols, illustrating that they
not only preserve data privacy and integrity but also enable
a learning efficiency that closely mirrors that of centralized
ML systems.

We compare loss trajectories across 20 epochs for four
training scenarios in Fig. 7. The single-node ML model
exhibits an increase in loss after 5 epochs, indicating limita-
tions in leveraging diverse data sources. Standard FL shows a
moderate loss decrease, stabilizing at 0.14 with collaborative
benefits. The centralized model serves as a baseline with
the lowest final loss of 0.07. Notably, the SFL framework
closely mirrors the convergence of the centralized model,
achieving a final loss of 0.08. Our findings, particularly the
high accuracy and low loss achieved by the SFL framework,
present clear evidence of its superiority over both traditional
FL and single-node ML models. This not only confirms the
effectiveness of our security and privacy-enhancing protocols
but also establishes SFL as a benchmark in FL efficiency.

To comprehensively evaluate the efficiency of our SFL
framework, we included an analysis of computational over-
head alongside accuracy and loss metrics. Fig. 8 illustrates
the computational overhead across four different models:
Centralized ML, Single-client ML, Standard FL, and our
Proposed SFL approach, over ten training iterations. Our
Proposed SFL demonstrates a slightly higher computational
overhead than Standard FL, attributable to the enhanced
security protocols it employs. Specifically, while Standard
FL exhibits a modest increase in CPU time, from 1.2 to
1.5 seconds per iteration, our SFL approach starts at
1.3 seconds and climbs to 1.7 seconds by the 10th iteration.
Centralized ML remains the most efficient, given its unified
computational environment, whereas Single-clientML incurs

VOLUME 12, 2024 68977



S. B. Prathiba et al.: Fortifying FL in IIoT: Leveraging Blockchain and DT Innovations

FIGURE 8. Computational Overhead Across Training Iterations for
Different ML Approaches.

FIGURE 9. Fautl Tolerance Comparison.

the highest overhead due to processing all tasks on a single
node.

This increase in computational time is a considered
trade-off for the significant improvements in security and
robustness that our SFL framework offers. The data suggests
that while SFL incurs a small efficiency cost, it considerably
strengthens the system’s resilience against adversarial threats,
as demonstrated by its consistent accuracy under attack
scenarios, previously shown in Fig. 4. Such a trade-off
is essential for practical IIoT applications where security
cannot be compromised. The scalability tests further support
the viability of our framework, showing that even with
the slight increase in computational overhead, the system
maintains consistent performance as the number of nodes
scales, a testament to the SFL’s design efficiency.

Our evaluation of the SFL framework’s performance
includes an examination of fault tolerance, an essential
characteristic of IIoT systems. Fig. 9 plots the fault tol-
erance of the SFL framework against three other models:
Centralized ML, Single-client ML, and Standard FL. Fault
tolerance is measured by the ability to complete training
iterations in the presence of node failures. The proposed

SFL framework shows a slight decrease in the percentage
of completed training iterations as the number of failed
nodes increases, starting at 95% completion without failures
and maintaining above 60% even with 50% node failure.
This performance is notably better than that of the Standard
FL, which starts at a similar completion rate but drops
more rapidly, highlighting the SFL’s enhanced resilience.
As expected, Centralized ML shows minimal impact from
node failures, sustaining near-complete training iterations,
While Single-client ML is significantly affected, with a
sharp decrease in completion rate as node failures rise. This
resilience of the SFL framework can be attributed to its design
features that collectively provide robustness against node
failures, ensuring that learning can proceed with minimal
disruption, a vital attribute for stable IIoT operations.

A. STRATEGIC TRADE-OFFS: BALANCING SECURITY,
SCALABILITY, AND PRIVACY IN SFL DEPLOYMENT
In the proposed SFL system, the acceptance of cer-
tain limitations—centralization in the initialization phase,
reliance on blockchain technology, and inherent challenges in
ensuring complete model and data privacy—serves as strate-
gic trade-offs, each carefully weighed to harness specific
advantages vital to the system’s overall design and objectives.
Centralization, while potentially limiting scalability, ensures
a secure and controlled deployment of the initial global
model, crucial for establishing a trusted foundation. The
system’s dependence on blockchain, despite introducing
computational overhead, is justified by the immutable and
transparent nature of blockchain transactions, enhancing
security and user authentication. This approach prioritizes
integrity and trust, fundamental in a FL context. Finally, while
absolute privacy remains challenging, the use of DTs and
NFT-based authentication strategically balances the need for
system integrity against privacy concerns, providing a robust
mechanism for identity verification and model validation.
Together, these trade-offs are consciously made to optimize
the system’s security, scalability, and privacy, reflecting a
nuanced understanding of the practical implications and
technological constraints inherent in deploying an SFL
framework.

Despite the inherently distributed nature of FL, the
comparable performance confirmed our security integrations’
efficacy, thus establishing the SFL framework as a prominent
contender that surpasses standard configurations and secures
the model’s proficiency against adversarial activities.

While the theoretical foundations of our proposed frame-
work are well-established, its practical implementation in
industrial settings may face challenges such as computational
overhead and cost-intensive processes. Careful deployment
and monitoring of DTs are essential to prevent excessive
creation, which could exacerbate computational burdens.
However, the SFL framework offers robust security measures
and leverages decentralized approaches for parallel com-
puting, mitigating these challenges. With ongoing research
and technical advancements, the computational overhead
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will be reduced, making the SFL framework increasingly
feasible. Ultimately, the exceptional security provided by
SFL suggests that, despite current limitations, continued
development could outweigh computational costs, paving the
way for widespread adoption in industrial applications.

V. CONCLUSION
This research paper presents an SFL framework that signif-
icantly enhances the security and robustness of distributed
ML systems within the IIoT landscape. In the current IIoT
ecosystem, achieving high data security and maintaining
operational traceability are paramount, yet traditional FL
approaches often fall short in these areas. To address these
challenges, our research introduces an SFL framework,
which incorporates DTs with blockchain technology to
enhance security measures. Additionally, we utilize NFTs as
a novel mechanism for authentication and update validation
within the distributed network. This integration has not only
mitigated the risks associated with adversarial attacks in IIoT
environments but has also led to substantial improvements
in model performance. Our SFL architecture achieves an
accuracy of 97% and a loss of just 0.08, rivaling centralized
ML systems and outperforming standard FL models. These
results are particularly pertinent for IIoT settings where
security, reliability, and traceability are crucial. Moving
forward, our focus will be on optimizing the transactional
efficiency associated with DTs to further enhance the SFL
framework for IIoT applications.
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