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A B S T R A C T   

Combining the metaverse and the Internet of Things (IoT) will lead to the development of diverse, 
virtual, and more advanced networks in the future. The integration of IoT networks with the 
metaverse will enable more meaningful connections between the ’real’ and ’virtual’ worlds, 
allowing for real-time data analysis, access, and processing. However, these metaverse-IoT net-
works will face numerous security and privacy threats. Intrusion Detection Systems (IDS) offer an 
effective means of early detection for such attacks. Nevertheless, the metaverse generates sub-
stantial volumes of data due to its interactive nature and the multitude of user interactions within 
virtual environments, posing a computational challenge for building an intrusion detection sys-
tem. To address this challenge, this paper introduces an innovative intrusion detection system 
model based on deep learning. This model aims to detect most attacks targeting metaverse-IoT 
communications and combines two techniques: KPCA (Kernel Principal Component Analysis 
which was used for attack feature extraction and CNN (Convolutional Neural Networks for attack 
recognition and classification. The efficiency of this proposed IDS model is assessed using two 
widely recognized benchmark datasets, BoT-IoT and ToN-IoT, which contain various IoT attacks 
potentially targeting IoT communications. Experimental results confirmed the effectiveness of the 
proposed IDS model in identifying 12 classes of attacks relevant to metaverse-IoT, achieving a 
remarkable accuracy of 99.8% and a False Negative Rate FNR less than 0.2. Furthermore, when 
compared with other models in the literature, our IDS model demonstrates superior performance 
in attack detection accuracy.   

* Corresponding author. 
E-mail address: t.m.a.gaber@salford.ac.uk (T. Gaber).  

Contents lists available at ScienceDirect 

Internet of Things 

journal homepage: www.sciencedirect.com/journal/internet-of-things 

https://doi.org/10.1016/j.iot.2023.100977    

mailto:t.m.a.gaber@salford.ac.uk
www.sciencedirect.com/science/journal/25426605
https://www.sciencedirect.com/journal/internet-of-things
https://doi.org/10.1016/j.iot.2023.100977
https://doi.org/10.1016/j.iot.2023.100977
http://crossmark.crossref.org/dialog/?doi=10.1016/j.iot.2023.100977&domain=pdf
https://doi.org/10.1016/j.iot.2023.100977
http://creativecommons.org/licenses/by-nc-nd/4.0/


Internet of Things 24 (2023) 100977

2

Introduction 

The metaverse represents a groundbreaking online environment for social interaction and communication, driven by cutting-edge 
technologies. It encompasses a fusion of various technologies, including network communication, the Internet of Things (IoT), Arti-
ficial Intelligence (AI), extended reality, Virtual Reality (VR), and blockchain [1] and [2]. Within the metaverse, users adopt digital 
personas to engage in social activities, leisure, and work. Moreover, it hosts a dynamic marketplace for trading both physical and 
virtual goods. IoT plays a crucial role in synchronizing the metaverse with the physical world. Mobile devices, VR headsets, and 
computers seamlessly bridge the gap between the physical realm and the virtual universe, forming the metaverse’s digital landscape. 
The creation platform leverages IoT data for model development, visual representation, and material rendering, while the application 
ecosystem generates virtual scenarios based on these operations. 

Incorporating IoT networks to connect real-world devices will enhance the communication and realism of objects, e.g., avatars, 
virtual buildings, landscapes, and vehicles, within the metaverse. This integration addresses the complex challenge of blending hybrid 
data with cloud or digital infrastructures, laying the foundation for advanced systems such as digital twins and virtual simulations. 
Consequently, IoT facilitates seamless interaction between virtual environments and the physical world, while the metaverse provides 
the essential 3D user interface for a cluster of IoT devices. This cooperative relationship between IoT and the metaverse holds the 
potential to revolutionize long-term planning across various sectors including healthcare, energy, and transportation. It empowers us 
to identify optimized designs and dynamically manage these systems in response to real-world changes. Additionally, the metaverse 
will incorporate scanned objects capable of engaging with the real world [3]. This amalgamation of IoT and the metaverse heralds a 
new era of interconnectedness and transformative potential for a wide range of industries. 

Consider donning a VR headset, allowing for a complete immersion into a digital environment within the metaverse. Here, IoT- 
enabled devices seamlessly interact with one’s virtual persona. As an illustration, a smartwatch has the potential to offer haptic 
feedback within the virtual environment, while intelligent appliances can be remotely controlled within the metaverse. Another 
example of metaverse-IoT networks could is IoT-enabled inventory management systems of virtual retail and commerce where such 
systems would have the capability to be connected to virtual stores within the metaverse. The users would also have the ability to 
explore, acquire, and even obtain physical products through their virtual engagements. 

In a typical metaverse-IoT network application scenario, IoT technology will manage communications between metaverse objects 
across various virtual spaces by sensing the real data in the metaverse environment. This would create “metaverse-IoT networks”. Such 
networks would be vulnerable to many security and privacy issues [4] and [5]. For instance, due to the immersive social cyberspace 
features of metaverse, it is more likely that the exchange of personal information (as in shown in the examples above) would increase 
which would also lead to increasing privacy and security attacks. Moreover, the advent of the metaverse may give rise to unprece-
dented challenges and complications. For example, malicious individuals may exploit vulnerabilities within a brain-computer interface 
that is interconnected with the metaverse, thereby gaining unauthorized access to a person’s physical body. Many cybersecurity at-
tacks such as NFTs (Non-Fineable Tokens), fake avatars, dark verse attacks, Cyber-physical attacks, virtual/augmented reality attacks, 
distributed denial of service, ransomware attacks, scanning, and Cross-Site Scripting (XSS) [4,6]. Hence, it is essential to incorporate 
extra security measures to protect these devices and the transmitted data within the metaverse-IoT networks. Deep Learning 
(DL)-driven security solutions, such as anomaly and intrusion detection systems, as well as network traffic monitoring, have the 
potential to significantly enhance the security of IoT devices. 

DL is a machine learning approach that employs artificial neural networks comprising multiple layers to acquire hierarchical 
representations of data. DL can achieve feature hierarchies by utilizing extensive quantities of unlabelled data, which renders it highly 
advantageous for the analysis of complex and high-dimensional datasets. DL was used for many intrusion detection systems [7–10], 
which gave a high performance. Nevertheless, a recent study [11] revealed that the improvement in performance, specifically ac-
curacy, is accompanied by a substantial computational burden that is necessary for the training and administration of deep-learning 
algorithms. In the metaverse-IoT networks, the rapid growth and utilization of the metaverse will result in data expansion, leading to 
the establishment of a comprehensive network of large-scale data. Consequently, this will impose significant computational costs on 
the virtual world [12]. One way of addressing this problem is the application of feature selection techniques [13]. The elimination of 
irrelevant features will result in a reduction in storage and computational expenses while also preventing substantial information loss 
or deterioration in learning performance [14–16]. 

In response to the above problems, this paper proposes a novel deep learning–based (CNN) intrusion detection system to recognize 
IoT attacks in a metaverse-IoT environment with the support of Kernel Principal Component Analysis (KPCA) for extracting attack 
features. Using the KPCA would help reduce the computational cost required by the DL algorithm, CNN, in the classification phase. 

The main contribution of this paper is as follows:  

• Proposing a novel hybrid machine and deep learning-based intrusion detection model that can identify twelve classes of IoT attacks 
in metaverse IoT networks. The power of the proposed IDS model is using KPCA for selecting discriminative attack features 
(minimizing processing time) and Convolution Neural Networks (CNN) for performing the attack recognition and classification. 
The use of KPCA was shown to not only minimize the processing time but also improve the attack detection rate. 

• Evaluating the efficacy of the developed deep learning-based intrusion detection model for metaverse-IoT networks. A compre-
hensive assessment was conducted utilizing eight performance metrics, namely Accuracy, Precision, Sensitivity, F1-score, True 
Positive (TP) Rate, False Negative Rate  (FNR), and ROC curve. This evaluation was performed on two publicly available datasets, 
the ToN-IoT [17] and BoT-IoT [18]. The proposed model exhibited superior performance compared to the most related work in 
both datasets. 
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The rest of this paper is organized as follows. Section 2 presents a discussion and analysis of the related works. Section 3 gives the 
proposed deep learning IDS model for metaverse IoT networks. Section 3 presents the experimental results and discussion while 
Section 4 offers a comparison with related. Finally, Section 5 concludes the article and outlines future work avenues. 

Literature review 

Different security techniques exist in the literature regarding recognizing IoT attack patterns in classical IoT networks [19,20]. 
However, a few of these studies investigated the detection of IoT attacks in metaverse IoT environments [21]. 

Convolutional neural network-based IDS models 

Yan D et al. [22] introduced an edge computing and data augmentation-based IDS model for detecting traffic anomalies of IoT 
networks. The detection methodology involves converting the network traffic to images which are then used to train a CNN to classify 
the network traffic patterns. The experimental results clarified the efficiency of the proposed IDS model in recognizing traffic 
anomalies with a precision rate reached 96%. Another deep learning-based CNN approach is proposed [7] to determine any possible 
abnormal traffic behaviour and intrusion. The detection performance of the developed IDS model was tested using two benchmark 
datasets. The experimental results clarified that the proposed IDS achieved an accuracy of 99.51% and 92.85% of the two used 
datasets, the NID Dataset and the BoT-IoT dataset, respectively. The focal loss function technique can also be used to develop efficient 
deep learning-based IDS models to detect intrusion and abnormal traffic in IoT networks [8]. 

Madhu B et al. [9] proposed a deep learning model called Device-based Intrusion Detection System (DIDS) to predict some patterns 
of unknown attacks in IoT networks. The experimental results clarified high sensitivity in detecting IoT attacks earlier than other 
standard algorithms, with detection accuracy reaching 99%. Mahadik S et al. [10] introduced an efficient intrusion detection model 
called HetIoT-CNN IDS, which utilized CNN to recognize various patterns of DDoS attacks in heterogeneous IoT networks. The 
experimental results proved that the HetIoT-CNN IDS successfully could identify various DDoS attacks with a detection accuracy of 
99.75% for binary classes, 99.95% for 8 classes, and 99.99% for 13 classes of DDoS attacks in the heterogeneous IoT (HetIoT) networks. 

Combined generative adversarial network-based IDS models 

He Y et al. [23] proposed an access control mechanism called a Wasserstein Distance-based Combined Generative Adversarial 
Network (WCGAN) for ensuring the communication security of IoT-based intelligent transportation systems in 5 G networks. The 
validation and verification results clarified that the proposed IoT-based intelligent transport system achieved an attack prediction 
accuracy of 86.3% and ensured data transmission confidentiality and integrity in Internet of Vehicle (IoV) networks. Another 
GAN-based IDS system is proposed by Lee J et al. [24] to recognize abnormal traffic data using a deep learning-based autoencoder (AE) 
model. The performance analysis of the proposed AE-CGAN (auto-encoder-conditional GAN) model using a benchmark dataset 
(CICIDS-2017) confirmed the efficiency of AE-CGAN model (recall = 93.29% and F1-Score= 95.38%) compared to other IDS models 
in the literature. 

On the contrary, Zaho S and colleagues [25] introduced an attack model known as AttackGAN, based on Generative Adversarial 
Networks, which demonstrated remarkable effectiveness in launching attacks against black-box intrusion detection systems, partic-
ularly in the context of identifying abnormal traffic data within IoT networks. The analysis of the results made it evident that the 
proposed AttackGAN outperformed other attack models, including the Fast Gradient Sign Method (FGSM) [26], Project Gradient 
Descent (PGD) [27], Carlini & Wagner attack (CW) [28], and various GAN-based algorithms [29], when it came to enhancing the 
success rate of adversarial attacks against black-box IDS models. This highlights the potency of AttackGAN in its ability to exploit 
vulnerabilities in intrusion detection systems, particularly within IoT environments, where the security landscape is increasingly 
complex. 

Other IDS models 

In their work, Yin C et al. [30] introduced an RNN-IDS model based on deep learning, specifically utilizing Recurrent Neural 
Networks (RNN). The primary objective of this model was to identify four distinct types of cyberattacks: R2L, U2), DoS, and Probing 
attacks (Probe). The outcomes of their experiments unmistakably demonstrated the superiority of the RNN-IDS over a range of other 
classification algorithms, including J48, naive Bayes, random forest, multi-layer perceptron, and various others. The numerical results, 
as presented in their study, shed light on the robust performance of the RNN-IDS model. It achieved an impressive accuracy rate of 
81.29% when tested on the KDDTest+ dataset and a notable 64.67% accuracy on the KDDTest− 21 dataset. These results notably 
outperformed the performance of the aforementioned algorithms, signifying the effectiveness of the RNN-IDS in accurately detecting 
and classifying different types of cyberattacks. This highlights the potential of deep learning, particularly RNNs, in enhancing the 
capabilities of intrusion detection systems, contributing to more robust cybersecurity practices. 

Verma A and Ranga V [31] conducted practical comparison results to assess the performance of five machine learning-based 
classifiers for developing an optimal intrusion detection system for IoT attacks. The comparison involved AdaBoost (AB), Random 
Forest (RF), Extreme Gradient Boosting (XGB), Extremely Randomized Trees (ETC), Regression Trees (RT), Multi-Layer Perceptron 
(MLP), and Gradient Boosted Machine (GBM). The experimental results and statistical analysis showed that classification, regression 
trees, and XGB classifiers show the best trade-off between prominent metrics and response time. Therefore, both are optimal for 
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building efficient IoT–based IDS Models. To enhance the detection methodology of novel IDS models, using semi-supervised lear-
ning-based Collaborative Intrusion Detection Systems (CIDSs) may be a promising solution [32–34] for solving the challenge of data 
labelling compared with traditional supervised classifiers. 

From the discussion of the above literature, it was identified that most of the research concentrated on exploring potential proposals 
related to IoT standards, technologies, architectural designs, IoT security concerns, diverse machine learning methodologies, available 
datasets, and the tools required for implementation. Nevertheless, to the best of the authors knowledge, no studies yet investigated into 
the realm of intrusion detection within the future landscape of metaverse-integrated IoT networks, all while taking into account the 
anticipated computational requirements. This highlights an evident research gap, offering an intriguing avenue for future in-
vestigations to explore. Such endeavours could lead to innovative solutions that enhance the security of IoT systems integrated with the 
metaverse, all the while efficiently managing computational resources. At the same time, identify and detect cyber-attacks from the 
extensive collected data from the rapid growth and utilization of the metaverse. As described in the section below, a DL-based IDS for 
metaverse-IoT networks is proposed to address these limitations. 

The proposed IDS for metaverse-IoT network 

In order to identify and mitigate common IoT attacks within metaverse environments, we present a novel deep learning-driven IDS. 
The overarching architectural framework of this IDS is illustrated in Fig. 1, which serves as a visual representation of its core com-
ponents. The detection process employed by this system unfolds in a structured manner, consisting of three fundamental stages. First, 
the initial stage encompasses a preprocessing step aimed at converting the features within the provided dataset from nominal to 
numeric representations. This step lays the foundation for subsequent analysis. In the second stage, we leverage the power of Kernel 
Principal Component Analysis (KPCA) to extract salient attack features. KPCA is helpful in capturing the key characteristics that 
differentiate malicious activities from benign ones, contributing to the system’s efficacy in detecting and addressing threats effectively. 
Finally, the third and pivotal stage involves the application of a CNN model for the purpose of classifying detected attacks. The CNN 
model serves as the brain of our IDS, utilizing the rich feature set obtained from the preceding stages to make informed decisions about 
the nature and severity of any potential security breaches. Detailed explanations of each of these three stages are given in the following 
subsections. 

Pre-processing 

The initial phase of pre-processing involves taking the dataset and performing two operations for the purpose of data cleansing, 
conversion, and normalization. The conversion step transforms categorical attributes into numerical ones. The normalization process 
aims to bring the attribute values within a more manageable range, reducing the significant differences between them. Specifically, we 
utilized the minimum-maximum scaling technique, as described in Eq. (1). 

Ynorm =
Y − min(Y)

max(Y) − min(Y)
(1) 

Here, Y represents the value of the feature within the dataset, and it falls within the interval [0, 1]. 

Fig. 1. The proposed CNN-based Metaverse-IDS model.  
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Feature extraction 

After the initial preprocessing phase, the dataset undergoes feature extraction, with KPCA emerging as the favoured technique for 
reducing data dimensions [49]. However, KPCA does not consider nonlinear data characteristics when dealing with complex struc-
tures. By employing KPCA, this limitation can be addressed. Eq. (2), below, represents the mapping of the feature space R within the 
function P. 

P : ∅ ϵ Rm →P(∅) ϵ R (2)  

where 
∑t

i=1P(∅i) = 0, The covariance matrix can be calculated as in Eqs. (3)-(5) 

Comtx =
1
t

∑t

i=1
(P(∅i) − mean)(P(∅i) − mean)T (3)  

Mean =
1
t
∑t

i=1
P(∅i) (4)  

Comtx =
1
t

∑t

i=1
P(∅i)P(∅i)

T (5)  

The terms Eigenvalue and Eigenvector, often used interchangeably, can be computed following the equations provided in 6, 7, and 8: 

ComtxI = λiI (6)  

Combining (5) and (6), we get 

1
t
∑t

i=1
P(∅i)IP(∅i)

T
= λiI (7)  

The expression for the eigenvector can be reformulated using the equation provided in Eq. (8) 

I =
1
t
∑t

i=1
(δiP(∅i)) (8)  

To compute the quotient, a kernel matrix W with dimensions t × t is established. The elements of this matrix are computed according 
to the formula outlined in Eq. (9). 

Wij = P(∅i)(P(∅i))
T
= P(∅i). P

(
∅j
)
= W

(
∅i, ∅j

)
(9)  

When the projected dataset P(∅i) does not contain a mean 

Attacks classification using CNN 

In this phase, the convolution layer was employed to train the feature map in the higher layer using a convolution kernel. This 
process results in a fresh feature map that encompasses multiple feature maps as inputs to the convolution core. By convoluting 
multiple feature maps, a new output layer is generated for each output feature map. Eq. (10) illustrates the calculation process of the 
convolution layer. 

Xl
j = f

(
∑

iϵMj

Xl− 1
i xKl

ij + bl
j

)

(10) 

In this equation, Xl
j represents the jth feature of layer map l, Kl

ij denotes the function of the CNN convolutional kernel, f is the 
activation function while Mj and bl

j stand for the input feature and the bias parameter, respectively. Each output feature is generated by 
combining an input feature along with a bias coefficient. The error signal for the layer, considering the weights of the feature, is 
determined based on the outcome of the previous step. The constant l is established in the lowermost sample layer as δ. This operation 
is iterated in the convolution layers to derive the error signal bl

j for each feature graph j. 

δl
j = βl+1

j

(
f ′
(

ul
j

)
.up
(

δl+1
j

))
(11)  

The layer can be utilized to aggregate the height values as described in Eq. (11). The computation for a sampling operation is detailed 
in Eq. (12). 
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δE
δbj

=
∑

u, v

(
δl

j

)

uv
(12)  

Ultimately, the weight gradient of the convolution kernel can be computed using the traditional Backpropagation (BP) method in 
CNNs, involving weighted values with diverse connections. This process begins by generating a gradient for each link linked to a 
specific weight, followed by combining these gradients as depicted in Eq. (13). 

δE
δKl

ij
=
∑

u, v

(
δl

j

)

uv

(
pl+1

i

)

uv (13)  

Here pl+1
i can be seen as a product of Kl

ijinvolving a small block element within the convolutional layer, where the output feature graph 
value at position (u, v) is considered. This multiplication can also involve a deconvolution element that results from a small block in the 
upper (u, v) position. The concept behind the lowest sampling layer relies on the idea that each resulting feature map serves as a 
compact representation of the convolution layer. 

Xl
j = f

(
βl

jdown
(

Xl− 1
j

)
+ bl

j

)
(14)  

To achieve scale invariance, the feature graph is reduced by a factor of n, where down (Xl− 1
j ) represents the sample frame, with a lower 

resolution by a factor of n ∗ n. Each resulting feature graph has its respective scaling offset variable and blending bias variable β. 

δl
j = f ′

(
ui

j

)
.conv2

(
δl+1

j , rot180
(

kl− 1
j

)
, ˝full˝

)
(15)  

To integrate the convolution function into the overall convolution process, it is necessary to perform a 180-degree rotation of the 
volume kernel before the computation. In addition, it can manage convolution at the border and handle any missing pixels within 
complement 0. Subsequently, this process will yield a result denoted as t0, see the equations below: 

δE
δbj

=
∑

u, v

(
δl

j

)

uv
(16)  

δE
δβj

=
∑

u, v

(
δl

j . down
(

Xl− 1
j

))

uv
(17)  

In the convolutional neural network, the rise in frequency from time t to time t + 1 can be likened to the BP approach. 

w(t+ 1) = w(t) + μδ(t)x(t) (18) 

In this context, δ(t) represents the error term, μ stands for the learning rate, and x(t) represents the neuron’s input. Fig. 2 illustrates 
the structure of the CNN model designed for the identification of 12 categories of IoT attacks. 

Fig. 2. The CNN architecture for recognizing 12 classes of IoT attacks.  
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Performance analysis 

We employed various performance metrics to assess the outcomes of the proposed algorithm and compared it with the performance 
of other recent systems utilizing both deep learning and hybrid rule-based techniques. The classification results, comprising correct 
and incorrect outputs, were aggregated and compared against benchmark results. Commonly utilized matrices in machine learning- 
based intrusion detection systems include Accuracy, Precision, Specificity, F1-score, True Positive Rate (TPR), and True Negative 
Rate (TNR). To refine the confusion matrix, numerical metrics such as True Positive (TP), True Negative (TN), False Positive (FP), and 
False Negative (FN) were calculated using Eqs. (19)-(25). 

Accuracy =
TP + TN

TP + FP + FN + TN
(19)  

Precision =
TP

TP + FP
(20)  

Recall =
TP

TP + FN
(21)  

Specificity =
TN

TN + FP
(22)  

F1 − Score =
2 ∗ Precision ∗ Recall

Precision + Recall
(23)  

TPR =
TP

TP + FN
(24)  

FPR =
FP

FP + TN
(25)  

Experimental results and discussion 

Two benchmark datasets were used to validate the efficiency of the proposed deep learning-based IDS model: ToN-IoT [17] and 

Table 1 
Analysis of the ToN-IoT dataset.  

Attack category Number of 
instances 

Description 

Normal Traffic 300,000 Common Non-Malicious Activities 
Password Attack 20,000 Employs various methods, such as sniffer and brute-force techniques, with the aim of acquiring login credentials. 
Ransomware 

Attack 
20,000 Refers to a type of attack where server data is ciphered, and a ransom is inquired in exchange for the cipher key. 

Scanning Attack 20,000 Unauthorized user or malicious software systematically scans a network or system for vulnerabilities, open ports, or 
potential points of entry. 

XSS Attack 20,000 XSS is a technique where a malicious actor injects harmful files into web applications, targeting end users. 
MITM Attack 1043 A Person/software in the Middle attack occurs when an attacker intercepts and listens in on communications between a 

target and the host they are communicating with. 
Backdoor Attack 20,000 A malicious actor gains unauthorized access to a computer system, network, or application by exploiting hidden or 

undocumented vulnerabilities or intentionally created weaknesses in the system’s security mechanisms. 
DoS Attack 20,000 A deliberate effort to overwhelm the resources of a node (e.g., sensor node, system), disrupting access to its data. 
DDoS Attack 20,000 Similar to a Denial of Service (DoS) attack but originates from multiple dispersed sources. 
Injection Attack 20,000 Injection attacks, like SQL and Command Injection, in which an attacker inserts or "injects" malicious code or data into 

an application or system with the intent of manipulating the behaviour of the target system.  

Table 2 
Analysis of BoT-IoT Dataset.  

Attack category Number of 
instances 

Description 

Benign 477 Typical non-malicious patterns 
DoS Attack 1650,260 This attack involves a deliberate effort to overwhelm the resources of a node (e.g., sensor node, system), disrupting 

access to its data. 
DDoS Attack 1926,624 Similar to a Denial of Service (DoS) attack but originates from multiple dispersed sources. 
Reconnaissance 

Attack 
91,082 Involves an attacker gathering information about a target system, network, or organization to gain insights into its 

vulnerabilities, weaknesses, and potential points of entry. 
Theft Attack 79 Is aimed at stealing sensitive information, assets, or data from individuals, organizations, or systems.  
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BoT-IoT [18]. The description of both datasets is summarized in Tables 1 and 2, respectively. The ToN-IoT dataset [17] collects and 
analyses heterogeneous IoT and IIoT data from connected devices, Windows and Linux system logs, and system network traffic. The 
ToN-IoT dataset connects multiple virtual machines, cloud layers, blur, edges, and physical systems to test AI-based cybersecurity 
technologies. It includes simultaneous legal and malicious events in IoT systems. The ToN-IoT dataset categorizes the traffic into 
normal behaviour and the attack subclass, which consists of nine types of attacks (XSS, DDoS, DoS, password cracking attacks, 
reconnaissance or verification, MITM, ransomware, backdoors, and injection attacks). A description of these attacks is given [17] and a 
brief is given in Table 1. In the context of metaverse-IoT applications, these attacks would behave as in the IoT environment (i.e., as 
described in [17]). For example, in backdoor attacks, malicious users can exploit vulnerabilities or create hidden access points in 
virtual environments to gain unauthorised access and control over the metaverse platform or users’ accounts with persistent access. 
This form of attack can cause metaverse data breaches, identity theft, and virtual space manipulation. Injection attacks involve 
injecting code, commands, or data with malicious intent into a virtual environment for the purpose of exploiting vulnerabilities and 
compromising the security or functionality of the metaverse. These attacks have the potential to target the user’s virtual objects/assets, 
giving attackers the ability to alter or gain control of virtual items, currency, or real estate, thus compromising the user’s privacy. 

The BoT-IoT [18] dataset was created to perform feature selection and accurately identify Bot attacks in the context of IoT net-
works. The database encompasses data including botnet attacks, amongst others, see Table 2. The development of this database, which 
includes valuable information features, is conducted in a practical testing environment. This enables accurate monitoring of traffic and 
the successful implementation of an efficient dataset. 

The complexity of the prediction 

The complexity of our proposed model is given as follows. The kernel size was 3 x 3, which helped us get fine-grained features. 8, 
16, and 32 neurons were tested, but the 16 neurons were found to be the best number to deal with the size of the datasets and to control 
the problem of overfitting during training and testing. A deeper network was used to help avoid overfitting, which increased the 
performance of the CNN-based model. 

Sigmoid, ReLU and SeLU functions were tested and the ReLU activation function was found the best as it introduced sparsity by 
setting negative values to zero. The sparsity makes the network more computationally efficient during both training and interpretation. 

Fig. 3. Accuracy of IDS model with/without feature selection using the TON-IoT dataset.  

Fig. 4. Accuracy of IDS model with/without feature selection using the BoT-IoT dataset.  
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This helps reduce the number of operations required to compute and store intermediate results. For the learning rate, 0.01, 0.001, and 
0.0001 were tried, and 0.001 learning rate was the best as it helped the model reach the minimum of the loss function, resulting in a 
more accurate and efficient model. 

Multiple epochs (20, 50, 100) were used to help reduce overfitting, a common problem in deep learning. The use of multiple epochs 
allows the model to learn to discriminate between signal and noise, thus making it less likely to overfit. Also, different batch sizes (8, 
16, and 32) were tested, and the 16 batch size performed better to afford intensive memory requirements and fit into the CPU memory. 
The batch size is generally better when it allows the model to see more diverse examples in each epoch and ensures stability during the 
training and testing of the proposed model. 

Scenario 1: impact of feature selection (KPCA) on the IDS performance 

Two experiments were conducted in this scenario which was designed to investigate the impact of employing the feature selection 
technique, KPCA, in our case, before the CNN classification phase. This investigation was done using two datasets ToN-IoT and BoN- 
IoT. The results of experiment one (using the ToN-IoT dataset) are summarized in Fig. 3 while the results of the 2nd experiment (using 
the BoT-IoT dataset) are given in Fig. 4. From Fig. 3, it can be noticed that employing KPCA in the ToN-IoT dataset has improved the 
detection accuracy for all attack classes compared to the results without using the KPCA. Nearly all attacks can be detected with an 
accuracy of 97 − 100 except the MITM attack. However, its detection rate was better with applying the KPCA. Similarly, Fig. 4 shows 
that employing the KPCA to BoN-IoT dataset improved the detection rate of all attack classes. The detection rate reached 100 % in 
DDoS, Reconnaissance, and Theft attacks. This can be attributed to the fact that the BoN-IoT dataset contains only four types of attacks 
compared to the NoT-IoT dataset, which contains nine types of attacks. In addition to improving the detection rate, as reported in [35] 
and [36], using KPCA to select the best set of features for the detection process will result in the elimination of these features, which 
then leads to a reduction in storage and computational costs, while also preventing substantial information loss or deterioration in 
learning performance. Such reduction in storage and computational is crucial in an IoT environment with limited resources. 

Fig. 3 depicts the performance analysis results of TPR, Precision, Recall/Sensitivity, F1-Score, and ROC metrics. The FNR can be 
derived from the TPR by subtracting it from 1, i.e., FNR = 1 − TPR. The accuracy of intrusion detection is directly affected by FNR 
which denotes the frequency at which an IDS fails to accurately detect and identify genuine instances of intrusions or attacks. A high 
FNR indicates a significant proportion of actual attacks remain undetected, hence raising concerns over the adequacy of security 
measures in place. Based on the findings presented in Fig. 3, it is evident that the FNR of our proposed IDS model is below 0.2. This 
indicates that our IDS model exhibits a high level of effectiveness in immediately detecting and addressing legitimate threats, hence 
mitigating the potential risks associated with unauthorised access, data breaches, and system compromises. 

Scenario 2: evaluating the proposed IDS performance 

The results of Scenario 1 suggested that applying KPCA would improve the detection rate of our proposed IDS. Then, Scenario 2, 
was aimed to further evaluate the quality of the proposed model under the most common intrusion detection metrics, i.e., Precision, 
Sensitivity, F1-score, and TPR. 

In this scenario, two main experiments were conducted: ToN-IoT and BoT-IoT datasets. Then a comparison between the results of 
each experiment was recorded, as given in Fig 5. From this figure, it can be noticed that the obtained results confirm the efficiency of 
the proposed deep learning-based IDS model in detecting the 12 classes of IoT attacks in the metaverse in both datasets, ToN-IoT and 
BoN-IoT. It can also be seen that the results in all metrics of the proposed IDS model using the BoT-IoT dataset are better than those 
using the IoN-IoT dataset. As explained above, this could be because the BoN-IoT dataset contains only four types of attacks compared 
to the NoT-IoT dataset, which contains nine types of attacks, i.e., the latter is more complex than the former. 

Fig. 5. The performance evaluation results of the proposed Metaverse-IDS model.  
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Comparison with the literature 

To assess the effectiveness of the suggested IDS model, we conducted a comprehensive comparative analysis. This evaluation aimed 
to scrutinize the detection capabilities of our proposed IDS model when pitted against other well-established IDS techniques 

Table 3 
Comparison results of IoT attacks-detection accuracy.   

Detection Performance 
Model Data AVG of Detection Accuracy 
Wrapper + neuro tree [35] KDDCUP 99 data set [41] 98.38% 
SVM+EML+K-Means [36] benchmark data set [36] 95.75% 
GA +SVM [37] KDD Cup 1999 data [41] 97.3% 
CNN+LSTM [38] NSL-KDD dataset [42] 94.12% 
Modified KNN [39] Malimg, Malheur, VirusShare, and Microsoft Kaggle datasets [39] 98.7% 
GA+RuleEval+ANN [40] NSL-KDD and UNSW-NB15 [40] 98.8% 
CNN-based IDS [7] NID Dataset and BoT-IoT datasets [7] 96.15% 
DIDS [9] Bench Mark datasets [9] 99% 
HetIoT-CNN IDS [10] CICDDoS2019 [43] 99.8% 
Proposed Model ToN-IoT and BoT-IoT [17,18] 99.8%  

Fig. 6. Comparison results of attack detection accuracy of the proposed IDS model against other techniques in the literature.  

Table 4 
The proposed CNN-based Metaverse-IDS Vs GAN -based IDS method.   

Dataset Feature Extraction Attack Classification Attack Types 

GAN-based IDS model [44] One dataset: 
SDN intrusion dataset 
[45] 

Deep auto-encoder 
algorithm 

GAN + Random Forest 
classifier 

Dos, DDos, Web Attacks, R2L, Malware, 
Probe and U2R attack 

The proposed 
CNN–based Metaverse- 
IDS model 

Two datasets: 
ToN-IoT [17] & 
BoT-IoT [18]. 

KPCA CNN Normal, MITM, Password, Injection, 
Backdoor, Ransomware, DoS, DDoS, Scanning, 
Reconnaissance, XSS, and 
Theft attack  

Fig. 7. Comparison results of multiple attack detection performance of the proposed CNN-based Metaverse IDS model against the GAN-based IDS 
model [44]. 
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documented in the literature. The summarized findings of this comparative analysis are presented in Table 3, which clearly highlights 
the superior attack detection accuracy achieved by our proposed IDS model. For a visual representation of the performance com-
parison, please refer to Fig. 6, which graphically illustrates how the detection accuracy of our proposed IDS outperforms that of other 
techniques found in existing literature. Although the accuracy of the model in HetIoT-CNN IDS [10] has the same accuracy as our 
proposed model, the latter is more reliable for two reasons. Firstly, HetIoT-CNN IDS [10] used a generic dataset CICDDoS2019 which 
not only contains IoT traffic. Secondly, our model used two datasets, ToN-IoT [17] and BoT-IoT [18], which are specifically designed 
for IoT environments. So, our model is more reliable than HetIoT-CNN IDS [10]. 

Before writing this study, there was only one research attempt to investigate the possibility of developing intrusion detection 
techniques for 5 G networks to establish metaverse-real-time communication [44]. Although the authors of this study used a different 
dataset [45] to validate their proposed IDS model, an interesting finding clarified better performance of our proposed deep 
learning-based IDS model compared to the use of a Generative Adversarial Network (GAN) for the IDS model in [44]. Table 4 sum-
marizes the comparison results between both two IDS models’ methodologies. Fig. 7 compares the detection performance results 
between both two IDS models. Although the GAN-based IDS model [44] achieved better true positive rate (i.e., recall) results than our 
proposed IDS model, the proposed IDS model performed the best attack detection accuracy and precision results. In addition, our 
proposed model was evaluated using two recent datasets collected from the IoT environment, i.e., more realistic for the evaluation of 
the IDS model for Metaverse-IoT neConverselyther side, the work in [44] used datasets generated from traditional SDN environments. 
IoT specifications were not considered in such an environment. Furthermore, as can be seen from Table 4, our proposed IDS model can 
successfully detect a higher number of attacks (12 classes) than the model in [44] (8 classes only). This proves that our proposed model 
is more efficient than most related work. 

One of the limitations of the proposed model is that its results must be interpreted with caution because the proposed IDS model 
was tested and evaluated using a benchmark IoT dataset which would be similar to that dataset which would be collected from the real 
metaverse-IoT network. The benchmark IoT datasets were used because there was no any public datasets from the integration of 
metaverse and IoT data. However, as explained above, the used datasets (ToN-IoT and BoN-IoT) contain attacks which would target the 
metaverse-IoT networks. In addition, using novel encryption techniques such as visual chaotic image/avatar encryption may represent 
the promising base for building more robust and secure IDS models in Metaverse networks [46–48]. 

Conclusion 

This study aimed to investigate the efficiency of a proposed deep learning-based intrusion detection system to recognise twelve 
classes of IoT attacks in the metaverse. The power of the proposed IDS model is based on two essential techniques: KPCA for performing 
the attack feature extraction step and CNN for performing the attack recognition and classification step.  Two benchmark datasets 
containing 12 types of IoT attacks, that will target IoT communications in metaverse spaces, were used to test how well the proposed 
IDS model works. The results of this investigation showed that the proposed IDS model is an efficient detection model for recognising 
IoT attacks in the metaverse, where it achieved a detection accuracy of 99.8%, a precision of 100%, a recall of 99.2%, and the FNR of 
0.2. The low FNR is a crucial feature of the IDS model, as it is necessary for the early identification of attacks. The comparison results of 
the attack detection accuracy of the proposed IDS model against other techniques in the literature also confirmed the superiority of the 
proposed IDS model compared to eight other IDS techniques. These findings suggest a role for deep learning technology in developing 
an intelligent IDS model for recognising various classes of IoT attacks in metaverse communications. Further research efforts might 
explore the efficiency of novel deep learning models for identifying other types of attacks in the metaverse, such as NFTs (Non-Fineable 
Tokens) attacks, fake avatar attacks, dark verse attacks, cyber-physical attacks, and virtual, augmented, or extended reality attacks. 
Another important future work could be the determination of whether to do the predictions in the cloud or at the edge. Both cloud 
computing and edge computing include specific advantages and disadvantages, requiring careful consideration of individual re-
quirements when selecting between the two options. These requirements would include maintenance, scalability, latency and cost. 
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