
Please cite the Published Version

Nawshin, Faria , Unal, Devrim , Hammoudeh, Mohammad and Suganthan, Ponnuthurai N
(2024) AI-powered malware detection with Differential Privacy for zero trust security in Internet

of Things networks. Ad Hoc Networks, 161. 103523 ISSN 1570-8705

DOI: https://doi.org/10.1016/j.adhoc.2024.103523

Publisher: Elsevier

Version: Published Version

Downloaded from: https://e-space.mmu.ac.uk/635043/

Usage rights: Creative Commons: Attribution-Noncommercial-No Deriva-
tive Works 4.0

Additional Information: This is an open access article which first appeared in Ad Hoc Networks

Data Access Statement: We used public datasets which are cited in the paper.

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0009-0006-4254-7196
https://orcid.org/0000-0003-3146-3502
https://orcid.org/0000-0003-1058-0996
https://orcid.org/0000-0003-0901-5105
https://doi.org/10.1016/j.adhoc.2024.103523
https://e-space.mmu.ac.uk/635043/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines

Ad Hoc Networks 161 (2024) 103523

Available online 25 April 2024
1570-8705/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Contents lists available at ScienceDirect

Ad Hoc Networks

journal homepage: www.elsevier.com/locate/adhoc

AI-powered malware detection with Differential Privacy for zero trust
security in Internet of Things networks
Faria Nawshin a,b, Devrim Unal a,∗, Mohammad Hammoudeh c, Ponnuthurai N. Suganthan a

a KINDI Computing Research Center, College of Engineering, Qatar University, Doha, Qatar
b Department of Computer Science & Engineering, College of Engineering, Qatar University, Doha, Qatar
c Information and Computer Science, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

A R T I C L E I N F O

Keywords:
Privacy-preserving machine learning
Zero trust
Android malware detection
Malware category classification
Differential Privacy
Privacy budget

A B S T R A C T

The widespread usage of Android-powered devices in the Internet of Things (IoT) makes them susceptible
to evolving cybersecurity threats. Most healthcare devices in IoT networks, such as smart watches, smart
thermometers, biosensors, and more, are powered by the Android operating system, where preserving the
privacy of user-sensitive data is of utmost importance. Detecting Android malware is thus vital for protecting
sensitive information and ensuring the reliability of IoT networks. This article focuses on AI-enabled Android
malware detection for improving zero trust security in IoT networks, which requires Android applications to
be verified and authenticated before providing access to network resources. The zero trust security model
requires strict identity verification for every entity trying to access resources on a private network, regardless
of whether they are inside or outside the network perimeter. Our proposed solution, DP-RFECV-FNN, an
innovative approach to Android malware detection that employs Differential Privacy (DP) within a Feedforward
Neural Network (FNN) designed for IoT networks under the zero trust model. By integrating DP, we ensure
the confidentiality of data during the detection process, setting a new standard for privacy in cybersecurity
solutions. By combining the strengths of DP and zero trust security with the powerful learning capacity of
the FNN, DP-RFECV-FNN demonstrates the ability to identify both known and novel malware types and
achieves higher accuracy while maintaining strict privacy controls compared with recent papers. DP-RFECV-
FNN achieves an accuracy ranging from 97.78% to 99.21% while utilizing static features and 93.49% to 94.36%
for dynamic features of Android applications to detect whether it is malware or benign. These results are
achieved under varying privacy budgets, ranging from 𝜖 = 0.1 to 𝜖 = 1.0. Furthermore, our proposed feature
selection pipeline enables us to outperform the state-of-the-art by significantly reducing the number of selected
features and training time while improving accuracy. To the best of our knowledge, this is the first work to
categorize Android malware based on both static and dynamic features through a privacy-preserving neural
network model.

1. Introduction

As the Internet of Things (IoT) continues to grow rapidly, the
security of IoT networks becomes a concern. IoT devices, e.g., smart
watches, that are controlled or powered by Android serve as key
components within interconnected IoT environments [1]. The use of
the Internet of Medical Things (IoMT) in e-healthcare has significantly
grown, enhancing patient monitoring and efficiency in medical care
through wireless and wearable technologies [2]. IoMT comprises a
variety of healthcare devices connected to the Internet, such as medical
scanners, smart thermometers, and biosensors that can be either worn
or implanted in the body. The Android operating system is widely used

∗ Corresponding author.
E-mail addresses: fnawshin@qu.edu.qa (F. Nawshin), dunal@qu.edu.qa (D. Unal), m.hammoudeh@kfupm.edu.sa (M. Hammoudeh),

p.n.suganthan@qu.edu.qa (P.N. Suganthan).

in these devices as the main operating system, making it crucial to
verify that the Android apps in use are safe and not malicious [3].
According to [4], around 70% of IoT devices employ the Android op-
erating system for data exchange and communication. Fig. 1 illustrates
various application areas that utilize Android applications within IoT
networks [5]. Consequently, malware attackers frequently attempt to
hack those applications to steal patient data, which could threaten the
security of the entire healthcare network. Ensuring the security of these
Android applications is crucial for keeping the network of healthcare
devices safe. Therefore, the detection of Android malware is of utmost
importance, as it directly impacts the protection of sensitive patient

https://doi.org/10.1016/j.adhoc.2024.103523
Received 13 February 2024; Received in revised form 4 April 2024; Accepted 21 April 2024

https://www.elsevier.com/locate/adhoc
https://www.elsevier.com/locate/adhoc
mailto:fnawshin@qu.edu.qa
mailto:dunal@qu.edu.qa
mailto:m.hammoudeh@kfupm.edu.sa
mailto:p.n.suganthan@qu.edu.qa
https://doi.org/10.1016/j.adhoc.2024.103523
https://doi.org/10.1016/j.adhoc.2024.103523
http://crossmark.crossref.org/dialog/?doi=10.1016/j.adhoc.2024.103523&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Ad Hoc Networks 161 (2024) 103523

2

F. Nawshin et al.

Fig. 1. Interconnection of Android devices and applications with IoT networks [5].

information and the overall integrity of the IoT networks in the medical
sector [6]. The healthcare applications include data containing medical
records, treatment plans, and health monitoring details. If this informa-
tion were exposed or compromised due to inadequate privacy measures
in malware detection processes, it could lead to significant privacy
violations. By implementing DP, the malware detection method can
effectively detect threats within Android applications while ensuring
that sensitive health information remains secure and private during the
training processes.

Android devices, which constitute a large percentage of the IoT
network, are susceptible to security threats and malware attacks. Sev-
eral machine learning (ML) and deep learning (DL) based algorithms
were developed by researchers for real-time analysis of the security
of Android IoT devices to identify malicious activities [1]. AI-powered
malware analysis can help IoT networks improve zero trust security.
Malware analysis is integral to enhancing zero trust security in IoT
networks as it provides insights that improve various aspects of their
security posture. Amin et al. [7] presented a deep learning system
designed to detect malware in IoMT and smartphone applications,
focusing on Android OS. It introduced a novel feature detector based on
deep learning that can be easily trained and utilized with various clas-
sifiers to assess an application’s behavior as benign or malicious. Their
proposed system achieved high accuracy and highlighted its potential
to significantly improve the security of IoT and smartphone ecosystems
against malware threats. However, this approach did not consider the
privacy of user-sensitive data, such as healthcare data, during the
training phases. There was no privacy-preserving approach used to
secure training data. Our DP-RFECV-FNN framework addresses this gap
by incorporating DP with an FNN to safeguard against data poisoning
attacks. By introducing noise into the training dataset, our model
prevents attackers from exploiting the data while maintaining high
performance metrics. Additionally, the feature selection method used
in our approach is particularly effective for managing large datasets.
Moreover, our model uniquely categorizes malware types which was
also not explored in the previous work.

The intersection between Android malware detection and AI-
enabled zero trust is related to malicious applications on an Android
device activating potential security measures that ultimately prevent
the spread of malware within the IoT network. The majority of the
state-of-the-art malware detection methods utilize centrally located
data samples for training, which can lead to the leakage of personal or
sensitive information. The attackers can obtain sensitive information
by analyzing the applications directly, which leads to the violation
of users’ privacy. Differential Privacy (DP) [8], Homomorphic Encryp-
tion (HE) [9], and Secure Multi-Party Computation (SMPC) [10] are
some of the approaches developed to integrate with ML and DL based
approaches to protect sensitive information and users’ privacy while
enabling effective model training and data analysis. This article utilizes
DP as a privacy-preserving approach in training the FNN model to

detect and classify Android malware using both static and dynamic
features to enhance zero trust security in IoT networks.

Our proposed approach is distinctive by its ability to be imple-
mented on-device, eliminating the need for centralized ML models
hosted on external servers or cloud platforms. This decentralized ap-
proach aligns seamlessly with the principles of zero trust architecture.
In traditional cybersecurity models, trust is often placed in external
entities, such as cloud providers, to conduct ML on sensitive data. In
contrast, our approach distributes the ML process across end-user de-
vices, ensuring that sensitive information remains localized. To ensure
that our approach follows zero trust security principles, each Android
application of the system is authenticated and verified before getting
access to the IoT network. Prior to this verification, it is also mandatory
to check the status of the application, i.e., whether it is benign or mali-
cious. Only the benign applications will proceed to the authentication
and verification step. The malicious applications are not granted access
to the system and will be investigated further to classify the malware
category. As every APK needs to be examined every time, considering
resource-constraints of IoT devices in the long run, the architecture
of our FNN model is optimized for IoT environments, ensuring that
it is lightweight enough to perform efficiently on power-constrained
devices. Furthermore, the feature selection method we used is capable
of identifying the most relevant features from a large feature vector
that reduces the number of features significantly without degrading the
model’s performance. This leads to speeding up the training time, which
ensures our model remains lightweight and efficient with limited power
resources. DP-RFECV-FNN employs both static and dynamic analysis to
detect malicious applications that try to look as benign. Static analysis
examines the code, permissions, and manifest files without running the
applications, while dynamic analysis analyzes the runtime behavior of
an application, such as network traffic and system calls, that helps
to find unusual behaviors. Because of utilizing dynamic analysis, our
solution is capable of identifying malware that tries to hide by giving
false information. Consequently, it ensures only benign applications
will be permitted to enter the system. Fig. 2 illustrates our proposed
framework featuring the zero trust security model.

The contributions of this article are summarized below.

1. We propose a privacy-preserving solution, called DP-RFECV-
FNN, which incorporates DP and a FNN model to detect and
classify Android malware using both static and dynamic features.
DP-RFECV-FNN is designed to meet and enforce zero trust in IoT
networks.

2. DP-RFECV-FNN is capable of working with large datasets char-
acterized by a large number of features. We combined three
feature selection methods: Feature Importance, Pearson Correla-
tion Coefficient (PCC), and Recursive Feature Elimination with
Cross-Validation (RFECV) techniques to select the most relevant
features, which helps reduce the time complexity of the model
significantly. We evaluated this feature selection procedure on
two different datasets, including static and dynamic features,
and obtained promising performances in both cases compared
with the methods employed in previous research papers.

3. Our work is the first to integrate both static and dynamic fea-
tures in Android malware detection and classification using
DP, while aligning with the principles of zero trust security.
Static features offer valuable insights into the structural aspects,
permissions, and other inherent characteristics of applications,
while dynamic analysis ensures a more robust and accurate de-
tection approach through real-time observations of application
behavior. DP-RFECV-FNN outperformed the privacy-preserving
method (within the same privacy budget) and surpassed the re-
sults of the non-privacy-preserving approach compared to [11].
The experiments were conducted on the CCCS-CIC-AndMal-2020
dataset for static features and the CICMalDroid 2020 dataset for
dynamic features, achieving an accuracy of 97.84% and 94.43%,

Ad Hoc Networks 161 (2024) 103523

3

F. Nawshin et al.

Fig. 2. Our proposed framework featuring zero trust security.

respectively, under a privacy budget of 𝜖 = 0.5 in detecting ma-
licious Android applications. Furthermore, our method achieved
an accuracy of 92.09% using static features and 89.54% using
dynamic features within the same privacy budget for classifying
malicious Android applications.

The remainder of the article is organized as follows. We briefly
explain the zero trust security architecture and DP Preliminaries in
Section 2. We present the related work in detecting IoT malware
and Android malware in Section 3. We describe the methodology of
DP-RFECV-FNN, in Section 4. We present the evaluation of the DP-
RFECV-FNN in Section 5. Discussion and future work are discussed in
Section 6. Finally, we conclude the paper in Section 7.

2. Zero trust security architecture and differential privacy

This section gives the necessary preliminaries of zero trust and
DP with the mathematical formulations. It aims to help the read-
ers understand how zero trust security and DP are integrated into
DP-RFECV-FNN.

2.1. Zero trust and Android malware analysis

Malware analysis on Android devices is critical for understanding
and countering malicious software targeting the Android operating
system. On the other hand, zero trust is a security model that chal-
lenges the traditional notion of trusting entities inside a network and
instead emphasizes continuous verification and validation of all de-
vices, users, and applications trying to access resources, regardless of
their location [12]. The link between malware analysis on Android
devices and zero trust security is rooted in their shared objective
of strengthening cybersecurity by continuously verifying, monitoring,
and adapting security measures based on the ever-expanding threat
vector and potential risks. Additionally, malware analysis contributes
to enhancing endpoint security on Android devices. In a zero trust en-
vironment, endpoints (IoT devices) are assumed untrusted, and robust
endpoint security is essential. Malware analysis insights help design and
implement security measures at the endpoint level. However, malware
analysis usually involves handling sensitive information, and zero trust
emphasizes data protection and privacy. Aligning both approaches
ensures that the analysis is conducted in a privacy-preserving manner,

critical in the context of evolving privacy regulations. Finally, zero
trust underscores the need for dynamic access controls based on real-
time security assessments. The insights from malware analysis into the
evolving threat landscape on Android devices, allow for the dynamic
optimization of access controls to prevent or mitigate potential risks.

The widespread adoption of Android operating system in IoT de-
vices has rendered them attractive targets for malicious actors. In
response to this rising threat landscape, researchers have continuously
proposed a multitude of solutions and algorithms employing ML and
DL to effectively identify these malicious applications. The mission
for robust detection mechanisms encompasses the integration of both
static and dynamic features in the analysis of Android applications.
Static features encompass a range of factors such as permissions sought
by applications, API calls, metrics detailing code structure and com-
plexity, meta data embedded in the Manifest file, as well as strings
and keywords present in the application’s code [13]. On the dynamic
front, features extend to network communications, runtime application
behavior, system calls, permissions requested during runtime, and the
interaction of applications with users [14]. This intensive effort towards
leveraging both static and dynamic features emphasizes the comprehen-
sive nature of contemporary approaches in identifying and mitigating
malicious applications on Android devices.

2.2. Differential privacy

Sensitive information can be protected via the application of Dif-
ferential Privacy (DP) [15], an approach that facilitates meaningful
data analysis while ensuring the confidentiality and privacy of sensitive
data. DP introduces a controlled level of noise to the data, achieving
a balance between extracting valuable insights and preventing the
disclosure of specific details about individual data points. This ap-
proach not only improves the security of sensitive information but also
enables organizations to gain actionable intelligence from their datasets
without compromising the privacy of the individuals contributing to the
dataset.

DP protects user privacy by obscuring the visibility of any single
data entry, ensuring individual data points are indistinguishable, yet
still allows for the collection of meaningful information from the overall
dataset. The inclusion or exclusion of any single data does not affect the
result of data analysis. In DP, a controlled and random noise is added
to the training data that prohibits attackers from inferring sensitive
information about individuals from the training dataset.

Ad Hoc Networks 161 (2024) 103523

4

F. Nawshin et al.

2.3. Privacy budget

Privacy Budget is often used to express the level of privacy protec-
tion and the amount of required noise that is to be added to the data.
𝜖 and 𝛿 are the two parameters to denote the privacy budget in DP.
The lower the value of 𝜖, the more noise needs to be added to the data,
which indicates a stronger privacy guarantee. It quantifies the impact
of a single individual’s data on the privacy of the overall computation.
𝛿 is another privacy parameter that denotes the amount of deviation
that a differentially private mechanism allows for. A smaller value of 𝛿
indicates a higher probability of maintaining privacy guarantee by the
mechanism [16]. The output 𝜓 of an arbitrary algorithm 𝑀 for any two
adjacent datasets 𝐷 and 𝐷′ satisfies

Pr[𝑀(𝐷) ∈ 𝜓] ≤ 𝑒𝜀 Pr[𝑀(𝐷′) ∈ 𝜓] + 𝛿 (1)

Eq. (1) ensures privacy by expressing that the probability of an
algorithm’s output on dataset 𝐷 being in a certain set 𝜓 is not much
higher than the probability on a slightly different dataset 𝐷′. It also
demonstrates a trade-off between privacy (𝜖) and flexibility (𝛿). A
smaller value of 𝜖 indicates stricter privacy, whereas a larger value of
𝛿 means more flexibility in the system. It is crucial to make a balance
between these two privacy parameters to implement DP as well as allow
useful data analysis.

Given a function 𝑓 ∶ 𝐷 → R𝑑 , for any two adjacent datasets 𝐷 and
𝐷′, define the global sensitivity of 𝑓 as

𝛥𝑓 = max
𝐷,𝐷′

‖𝑓 (𝐷) − 𝑓 (𝐷′)‖2 (2)

where R𝑑 represents a 𝑑-dimensional real vector, and ‖𝑓 (𝐷)−𝑓 (𝐷′)‖2 is
the L2 distance between 𝑓 (𝐷) and 𝑓 (𝐷′). 𝐷 and 𝐷′ are nearly identical
except for a minimal change in at most one data point [17].

For any two adjacent datasets, 𝐷 and 𝐷′, Eq. (2) calculates the
maximum L2 distance between the outputs of the functions. It measures
the maximum change in the output of the function when transitioning
between neighboring datasets which provides a computation on the
sensitivity of the function to changes in the input data.

2.4. Gaussian mechanism

The Gaussian mechanism, denoted as 𝑀(𝐷), is a privacy-preserving
mechanism applied to a function 𝑓 operating on dataset𝐷. It introduces
noise sampled from a Gaussian distribution to the output of 𝑓 to protect
the privacy of individual data points. The Gaussian mechanism with
parameter 𝛿 is defined as

𝑀(𝐷) = 𝑓 (𝐷) + Noise (3)

where Noise ∼ (0, 𝜎2𝐼) satisfies the Gaussian distribution.
The noise term, represented as Noise, follows a Gaussian distribu-

tion with mean 0 and covariance matrix 𝜎2𝐼 , where 𝐼 is the identity
matrix. The expression for 𝜎2 is given by

𝜎2 =
2𝛥2 log

(

1.25
𝛿

)

𝜀2
(4)

where 𝛥 is the sensitivity of the function. The parameter 𝜎2 determines
the variance of the added noise and is crucial for achieving DP. The
value is computed based on the sensitivity (𝛥) of the function and the
desired privacy parameters 𝜀 and 𝛿 [18].

3. Related work

While developing our research on employing the DP-RFECV-FNN
model for Android malware detection, we followed a comprehensive
review of relevant literature. This review focused on selecting papers
that were directly related to our research and emphasized papers that
used static and dynamic analyses for malware detection. Our selection
included papers addressing malware threats in both IoT and Android

environments, with an emphasis on those that utilized deep learning
approaches. Additionally, we prioritized papers that incorporated DP
within this domain so that we could compare them with our efforts.

Bendiab et al. [19] presented a novel approach to IoT malware
traffic classification using visual representation and DL. It focused on
detecting malicious network traffic at the package level, comprising a
dataset of 1000 .pcap files of normal and malware traffic. The method-
ology employed the Residual Neural Network (ResNet50) for analyzing
visual representations of network traffic. The results showed a 94.50%
accuracy rate in malware traffic detection. However, there is a need
to include extensive and diverse datasets to enhance the predictive
performance of the model. The experiment did not extensively cover
the performance of the system in a real-time environment, which is
crucial for practical deployment.

A DL-based method for detecting IoT malware through system calls
was presented in [20]. Utilizing the Recurrent Neural Network (RNN)
classified system calls into benign and malicious categories. The dataset
comprised IoT malware samples from IOTPOT and benign samples from
Ubuntu system files. Their method achieved an accuracy of 97.72%
in malware detection. However, they focused only on the detection of
IoT malware using system calls and did not include malware category
classification, which could have provided a more detailed analysis of
different malware types like viruses, trojans, worms, and botnets.

Ali et al. [21] proposed a multitask classification using an LSTM-
based DL model for IoT malware detection and identification. Their
approach aimed to enhance IoT security by classifying and identifying
various types of malware attacks. Their methodology used data from 18
different IoT devices divided into flow, flags, and packets for feature se-
lection. A time-series analysis of the traffic flows was performed during
the experiment, and the model achieved an accuracy between 88.45%
and 95.83%. However, they used only a laboratory-based dataset to
train and evaluate the performance of the model. They did not include
implementing and testing the model in real-world IoT networks to
evaluate its practical applicability.

In [22], Chaganti et al. introduced a DL-based Bidirectional-Gated
Recurrent Unit Convolutional Neural Network (Bi-GRU-CNN) model
for IoT malware detection and classification. This approach used Ex-
ecutable and Linkable Format (ELF) binary file byte sequences as input
features. However, their research only used ELF binary files, which
limited its applicability to other file formats prevalent in IoT devices.
They did not explore the adaptability of the model to other file formats
for comprehensive IoT security.

Many research efforts applied DL for malware detection on Android
devices. Lu et al. [23] used the combination of a Deep Belief Net-
work (DBN) and Gated Recurrent Unit (GRU) to develop a method for
Android malware detection. They used both static and dynamic fea-
tures where DBN processed static features and GRU processed dynamic
features extracted from Android applications. They compared their
model against state-of-the-art ML models and achieved an accuracy of
approximately 96%. However, the number of malicious samples they
used in the experiment was not enough. Besides, the time consumption
of their method was larger than that of traditional ML methods.

Zhang et al. [24] presented TC-Droid, a framework for Android
malware detection using text classification methods. The approach used
the convolutional neural network (CNN) to extract and select features
automatically, bypassing the need for manual feature engineering.
TC-Droid demonstrated better performance over existing models (NB,
LR, KNN, RF) in terms of accuracy and precision. However, they fo-
cused only on static analysis, excluding dynamic analysis, which could
provide additional insights into malware behavior. The exclusion of
dynamic analysis limits the comprehensiveness of malware detection.
Furthermore, they did not include how the proposed model might adapt
to new and emerging threats.

MAPAS [25] used CNN and API call graphs to analyze the behavior
of malicious Android applications. CNN was used only to identify
common features from Android applications, such as API call graphs.

Ad Hoc Networks 161 (2024) 103523

5

F. Nawshin et al.

Similarly, Elayan et al. [26] proposed another DL-based Android mal-
ware detection using a Gated Recurrent Unit. They used both API
calls and permissions from the applications as static features during
the experiment. They evaluated the model against the CICAndMal2017
dataset and achieved an accuracy of 98.2%. However, these papers
relied only on static analysis, which is not able to capture the complex
behaviors of advanced malware.

DL and the Rock Hyrax Swarm Optimization method, namely
RHSODL-AMD, were combined in [27] to detect Android malware.
They extracted API calls and the most significant permissions from
Android applications to differentiate between malware and benign ap-
plications. Besides, they used Attention Recurrent Autoencoder (ARAE)
and Adamax optimizer to detect Android malware. They evaluated the
proposed model only on the Andro-AutoPsy dataset and achieved an
accuracy of 99.05%. This is one of the shortcomings of their method
in that it used only one dataset, which limits the generalization of the
model to other types of malicious applications. Additionally, while the
model showed high accuracy, there was a lack of discussion on its
performance in terms of false positives and false negatives, which are
critical in malware detection.

Malware detection using privacy-preserving ML gained a lot of
attention in recent years. Gálvez et al. [28] developed a privacy-
preserving framework called LiM (‘Less is More’) for classifying Android
malware using Federated Learning with 200 users and 50 rounds of
federation where the information about the installed applications do
not leave the local devices. Their solution achieved a 95% F1 score
and used the MaMaDroid dataset for the experiment. However, they
did not explore the scalability of LiM in a real-world scenario with
an extensive number of clients and malware samples. While the paper
addressed privacy concerns, it did not extensively discuss the potential
trade-offs between privacy and detection accuracy.

Jiang et al. [29] proposed a framework for an Android malware
classifier using federated learning named FedHGCDroid. Their model
incorporated convolutional and graph neural networks for accurate
malware detection. They used the Androzoo dataset for the experiment
and achieved an accuracy of 91.3% in Android malware detection
and 83.39% in malware classification. However, it primarily focused on
static features only and did not include dynamic features in malware
detection and classification.

DNNdroid [30] is another federated learning solution for malware
detection to address the issues of free malicious applications of Android
and their reliance on permissions. In [30], input from all users was col-
lected simultaneously to enhance the model without revealing specific
user data. Their model achieved an F1 score of 97.8% with a client
recall rate exceeding 95% and a false positive rate below 0.95. Deng
et al. [11] proposed a malware detection framework, namely MDHE,
using another privacy preservation approach, DP, for IoT networks.
They used CapsNet as the learning model and only used static features
such as permission and API features for the experiment. In their ap-
proach, features were perturbed, meaning that noise was added to the
features of the training data before it was trained. This is one of the
drawbacks of this approach because an adversary can learn sensitive in-
formation by analyzing the perturbed features of individual data points,
which affects the privacy of the training data. The adversary refers to a
malicious entity or attacker whose target is to compromise privacy by
extracting sensitive information from the training dataset. The authors
only evaluated their model in detecting malware and did not consider
classifying malware types. In addition, their proposed solution did not
include dynamic features, which is another shortcoming of their model
because dynamic analysis is adaptable to new threats and allows for
real-time detection of malicious activities.

Our proposed framework addressed the drawbacks of these ap-
proaches and proposed a comprehensive solution of integrating DP and
FNN using both static and dynamic features of Android applications
aligned with the principles of the zero trust model. We evaluated our

model on multiple datasets and included an extensive analysis of trade-
offs between privacy and utility under different privacy budgets in both
malware detection and classification. Within the same privacy budget,
the DP-RFECV-FNN framework demonstrated superior performance in
malware detection compared to the approach outlined in [11].

Table 1 compares existing methods with our proposed framework
in Android malware detection and classification.

4. Methodology and implementation

DP-RFECV-FNN is initiated by loading a malware dataset contain-
ing static/dynamic features and labels. DP-RFECV-FNN comprises two
parts. The first part includes the detailed feature selection procedure.
The second part contains the design of the proposed model, including
designing the neural network model, and defining and incorporating
DP mechanisms in the training process. Fig. 3 demonstrates the flow
diagram of the proposed model.

4.1. Security assumptions and threat model

This section outlines the foundational security assumptions that
support our approach and details the threat model we have developed
to guide the implementation.

4.1.1. Security assumptions
Our approach to Android malware detection through the DP-RFECV-

FNN model within IoT networks is composed of several assumptions
that are essential for comprehending its operational effectiveness and
scope:

• Considering the inherent vulnerabilities within the IoT network,
the model employs a zero trust framework, which operates on the
principle of ‘‘never trust, always verify’’. This approach is appro-
priate given the heterogeneity and complexity of IoT networks,
which include a broad range of devices with varying capacities.

• The security perimeter is considered dynamic, evolving in re-
sponse to real-time threat assessments. Security policies and mea-
sures are reconfigured based on continuous monitoring of the
behavior of the devices and network interactions to incorporate
the zero trust principle and least privilege access.

• The model assumes the existence of sophisticated adversaries
capable of deploying advanced malware and evasion techniques
to avoid traditional security mechanisms.

• The model focuses on keeping user information safe and private.
It uses special privacy methods, DP, to make the data anonymous
by adding noise to the training data. DP makes it difficult for at-
tackers to infer training examples or introduce targeted poisoning
attacks.

4.1.2. Threat model
To strengthen these assumptions, the threat model for the DP-

RFECV-FNN describes the primary security risks and adversarial ac-
tions predicted in IoT environments, in alignment with zero trust
principles [37]:

• The foremost threat anticipated is the spread of malware across
the IoT network with a variety of malware categories such as
spyware, ransomware, and worms. Using zero trust principles, we
plan to block unauthorized access and stop malware from spread-
ing by imposing strict access control and constantly monitoring
the network.

• A serious threat involves outsiders getting unauthorized access
to sensitive data and possibly stealing out. By using the security
strategies of zero trust [37], our approach works to protect data,
whether it is stored or being sent, using encryption and strict
access rules that are based on real-time risk assessments.

Ad Hoc Networks 161 (2024) 103523

6

F. Nawshin et al.

Table 1
Comparison between malware detection and classification methods.

Method Category Feature Malware
detection

Malware
classification

Learning model Privacy
protection

[31] Dynamic analysis System calls ✓ ✗ DEEPMALWAR ✗

[32] Dynamic analysis Malware image features ✓ ✗ DPNSA ✗

[33] Dynamic analysis System calls, binders and composite behavior ✓ ✓ Stacked ensemble machine learning ✗

[34] Dynamic analysis API calls ✓ ✗ Bi-LSTM ✗

[35] Static analysis Intents, Permissions, API calls ✓ ✗ CNN ✗

[36] Static analysis Permissions, API calls ✓ ✗ SOMDROID ✗

[11] Static analysis Malicious subgraph ✓ ✗ CapsNet ✓

DP-RFECV-
FNN

Static analysis Activities, Intents, Services, Permissions, Meta data
✓ ✓ DP-RFECV-FNN ✓Dynamic analysis System calls, Binder calls and Composite behaviors

Fig. 3. Flow diagram of DP-RFECV-FNN.

• Given the resource-constrained characteristics of many IoT de-
vices, they are particularly susceptible to DoS attacks, whose
goal is to overwhelm the processing capabilities of the devices.
The model incorporates adaptive security policies that dynam-
ically allocate resources to essential services and functions for
maintaining operational integrity.

• Considering the risk of insider threats or the compromise of
previously trusted devices, the zero trust framework within the
model advocates for continuous verification of all devices and
network traffic. This requires regular re-assessment of trust levels
and access rights to ensure that only authorized entities can access
system resources.

4.2. Dataset details

We used the CCCS-CIC-AndMal-2020 dataset [38,39] for analyz-
ing the static features and the CICMalDroid 2020 dataset [40,41]
for dynamic features. AndroidManifest.xml file was analyzed, and the
static features such as Activities, Broadcast receivers and providers,
Permissions, and System features were extracted from this file. Cop-
perDroid [42], a VMI-based dynamic analysis system, was used to
analyze the dynamic features, and system calls, binder calls, and com-
posite behaviors were extracted from .apk files as dynamic features.
Table 2 displays the dataset details for static and dynamic analysis.
We compiled the static analysis dataset by gathering nearly 15,000
benign APK files and 15,000 malicious APK files that contain various
malware categories, including Adware, SMS, Ransomware, Riskware,
and Trojan. After that, we collected around 1800 benign APK files and
9800 malicious APK files for dynamic analysis, containing malware
categories such as Adware, Banker, SMS, and Riskware.

4.3. Feature selection

Learning models with too many features are more likely to over-
fit the training data because they capture the noise rather than the
true patterns of the training data, and eventually, this degrades the
performance of the learning model. During the process of feature
selection, we selected some baseline feature selection methods initially
used in malware detection, such as Mutual Information [43], Variance
Threshold [44], and Pearson Correlation Coefficient (PCC) [45], and
evaluated the performance of the model. The number of features was
also noted along with the performance metrics. Tables 3 and 4 show
the comparison of feature selection methods employed in DP-RFECV-
FNN with other existing methods using CCCS-CIC-AndMal-2020 and
CICMalDroid 2020 dataset respectively. The resulting data highlighted
that the feature selection technique used in DP-RFECV-FNN not only
yielded a higher accuracy but also achieved a high level of precision, re-
call, and F1 Score across both datasets. It achieved higher performance
metrics with a significantly smaller feature set, with only 19 features for
the CCCS-CIC-AndMal-2020 dataset and 33 for the CICMalDroid 2020
dataset. DP-RFECV-FNN combines three feature selection techniques
(Feature Importance Score, PCC and RFECV) described below to come
up with the most relevant features out of a large dataset. The feature
selection procedure is shown in Fig. 4. The top 15 selected features are
given in Table 5.

Feature importance score. The feature importance score was calculated
to quantify the contribution of each feature to the dataset. This score
plays a vital role in identifying the set of features that have a stronger
impact on the output of the model. In addition, the feature importance
score helps to select the relevant features and interpret and understand
the underlying patterns of the data. Feature importance score was

Ad Hoc Networks 161 (2024) 103523

7

F. Nawshin et al.

Table 2
Dataset details for static and dynamic analysis.

Analysis type Application type Dataset Features Samples Malware type Samples

Static
Malware CCCS-CIC-AndMal-2020 [38,39]

Activities,
Intents, Services,
Permissions,
Meta data

14,988

Adware 2988
SMS 3000
Ransomware 3000
Riskware 3000
Trojan 3000

Benign 14,943 Total 14,988
Total number of samples 29,931

Dynamic
Malware CICMalDroid 2020 [40,41]

System calls,
Binder calls,
Composite
behaviors

9803

Adware 1253
Banker 2100
SMS 3904
Riskware 2546

Benign 1795 Total 9803
Total number of samples 11,598

Table 3
Comparison with other feature selection method using CCCS-CIC-AndMal-2020 data-
set.

Accuracy Precision Recall F1-Score Number of
features

Mutual information 0.991 1 1 0.99 1283
Variance threshold 0.976 0.98 0.98 0.98 2326
PCC 0.987 0.99 0.99 0.99 2248
DP-RFECV-FNN 0.997 1 1 1 19

calculated for all the features and we removed the features that have a
feature importance score of 0 and retained the remaining features in the
first step of the feature selection method. The Random Forest classifier
was used in the experiment to measure the feature importance score by
calculating how much every feature within each tree in the forest helps
make a better decision and sums all this up to the total score [46].

Pearson Correlation Coefficient (PCC). During the second step of the
feature selection method, the PCC between each feature and the tar-
get variable (benign or malicious) was calculated on the feature set
obtained from the first step. This helps to determine the features that
have a strong correlation with the target variables. After applying PCC,
some features that had a weak correlation with the target variable
(𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.2) are eliminated [47], and the remaining features were
stored for the further step.

Recursive Feature Elimination with Cross-Validation (RFECV). To identify
the most relevant features from the remaining list obtained from the
second step, the RFECV technique was applied as a final step of the
feature selection process. RFECV starts performing on the selected
dataset by iteratively eliminating features one at a time, and then
the performance of the model is evaluated through cross-validation
at each step [48]. Random Forest was used as a classifier to select
the best features for a model. It uses many decision trees to rank the
importance of different features [49]. Finally, this optimal subset of
features is obtained and observed that the training time was potentially
improved. To address the class imbalance of the dynamic dataset,
the Synthetic Minority Over-sampling Technique (SMOTE) is applied
specifically to the training set, augmenting the minority class instances.
Furthermore, the features are standardized using the StandardScaler to
ensure uniform scaling and improve convergence during training.

4.4. Data preprocessing

Data preprocessing is applied to the raw dataset to address noisy
data such as missing values, outliers, and errors, which affects the
performance and accuracy of learning models. To ensure that the ML
model is trained on reliable and accurate data, The following steps are
followed to prepare and preprocess the dataset before feeding it into
the model.

Table 4
Comparison with other feature selection method using CICMalDroid 2020 dataset.

Accuracy Precision Recall F1-Score Number of
features

Mutual information 0.935 0.86 0.91 0.88 336
Variance threshold 0.947 0.91 0.88 0.90 470
PCC 0.95 0.95 0.95 0.95 428
DP-RFECV-FNN 0.958 0.96 0.96 0.96 33

Data cleaning. Tomek links [50] is used to identify the noisy and
borderline samples. It helps to address the samples that are close to
each other but belong to different classes. These ambiguous samples
are identified with the help of Tomek links and removed to eliminate
misclassification. This process results in a cleaner dataset, reducing
noise and improving class separation.

Data shuffling. Before splitting into training and testing data, the whole
dataset is shuffled to ensure that both sets have a representative mix of
samples. Data shuffling is a crucial step in working with ML models.
If the data is ordered, then the models can learn the patterns based
on the ordered dataset instead of learning the inherent properties of
the data, which affects the performance and accuracy of the model.
Data shuffling helps to get rid of over-fitting and ensures that the model
generalizes well to unseen data.

Feature normalization and scaling. The Min–Max scaling method is used
to scale all the features between 0 and 1. Large differences in fea-
ture values can lead to numerical instability, which causes issues like
overflow or underflow. Normalization helps to prevent these issues
and ensures numerical stability during computation. Regularization
techniques such as L1 and L2 regularization penalize large coefficients.
Scaling features help to maintain a balance on the impact of regular-
ization across all the features and prevent the model from unfairly
penalizing variables with larger values [51]. Fig. 4 shows the flow
diagram and Algorithm 1 demonstrates the feature selection procedure
and data preprocessing method employed during the experiment.

Dataset splitting. Various combinations of training, testing, and valida-
tion sets are carried out to determine the optimal combination. The
performance of the proposed model is observed in various combinations
of training, testing, and validation sets, and the performance was almost
the same for each variation. The dataset is partitioned into 70% for
training, 10% for validation, and 20% for testing purposes. While
training, the training set is used, and the validation set is used for
tuning the hyperparameters. Finally, the training and validation sets are
combined for training, and a test set is used to measure the performance
of the learning models.

Ad Hoc Networks 161 (2024) 103523

8

F. Nawshin et al.

Table 5
Top 15 static and dynamic features.
Static features Dynamic features

Dataset Name: CCCS-CIC-AndMal-2020 [38,39] Dataset Name: CICMalDroid2020 [40,41]

com.fb.iwidget.ActionReceiver getReceiverInfo
com.fb.iwidget.OverlayActivity getActivityInfo
com.batch.android.BatchActionService mprotect
android.permission.CALL_PHONE ftruncate64
com.fb.iwidget.MainService CREATE_FOLDER____
android.permission.ACCESS_NETWORK_STATE brk
com.fb.iwidget.action.SHOULD_REVIVE sigprocmask
android.intent.category.DEFAULT unlink
com.fb.iwidget.ExpandWidgetProvider FS_ACCESS(CREATE__READ__WRITE)
com.fb.iwidget.PreferencesActivity FS_ACCESS(CREATE__WRITE)__
com.fb.iwidget.MainActivity fdatasync
com.fb.iwidget.SnapAccessService stat64
android.intent.category.BROWSABLE rename
android.intent.action.VIEW pwrite64
android.permission.BIND_ACCESSIBILITY_SERVICE getApplicationRestrictions

Fig. 4. Flow diagram for feature selection and data preprocessing.

Algorithm 1 DP-RFECV-FNN Feature Selection and Data Preprocessing.
1: Load the malware dataset
2: Feature selection and data preprocessing:
3: Calculate the feature importance score for all the features:

Feature_Imp_Score = 𝑓 (All Features)
4: Remove features with an importance score of 0:

features_init = {feature ∣ Feature_Imp_Score(feature) > 0}
5: Apply PCC to select features with a strong linear correlation (𝜌)

with the target variable:
features_pred = {feature ∣ 𝜌(feature, target) > threshold}

where 𝜌 is calculated on features_init
6: Apply RFECV using Random Forest on the features list obtained

from step 5:
features_final = RFECV(features_pred)

7: Create a dataset with the selected features:
TempDataset = Original Dataset[∶, features_final]

8: Use SMOTE to address class imbalance in training data:
Balanced Dataset = SMOTE(TempDataset)

9: Standardize or scale the data using StandardScaler:
Final Dataset = StandardScaler(Balanced Dataset)

4.5. Integrating privacy and zero trust into the model

Privacy parameters. In this step, critical privacy parameters are defined.
Sensitivity (𝛥) denotes the maximum amount by which the output of
the model could change with the alteration of a single data point. Delta
(𝛿) represents the privacy parameter related to the probability of a
privacy breach and is calculated based on the size of the dataset. The
number of classes in the dataset (𝐶) is determined, and the total number
of training iterations is set to 30.

Epsilon (𝜖) values are explicitly defined to create a range of privacy
parameters for testing that controls the level of privacy protection. By
experimenting with different 𝜖 values, we explore the trade-off between
model accuracy and privacy preservation by the algorithm.

DP mechanisms. DP mechanism is introduced in this part. The amount
of noise is determined by the sensitivity of the gradients, privacy
parameters (𝜖) and 𝛿, for additional privacy control. The Gaussian
mechanism is used to add Gaussian noise to gradients, considering
sensitivity and privacy parameters. The Laplace Mechanism function
is used to insert Laplace noise into the count of the data. In this step,
the Gradient Function utilizes TensorFlow’s gradient tape mechanism
to record operations for automatic differentiation. Gradients of the pa-
rameters of the model are calculated concerning a defined loss function.
Then, another function, called the L2Clip function, is used to ensure
that the gradients do not exceed a specified L2 norm and contribute
to the privacy-preserving nature of the training process. Algorithm 2
states the functions for both Laplace and Gaussian mechanisms.

Neural network model. In this step, a neural network model is con-
structed using TensorFlow/Keras. The model architecture comprised an
input layer, two hidden layers with 64 and 32 neurons and Rectified
Linear Unit (ReLU) activation functions, and an output layer with
sigmoid and softmax activation for prediction and multi-class classifi-
cation, respectively. The model is compiled with the Adam optimizer
and sparse categorical cross-entropy loss function. In developing the
model, an iterative process is used for experimenting with various
combinations of input and output layers to optimize performance.
The DP-RFECV-FNN configuration was finalized after comprehensive
testing, and it showed an optimal balance between privacy preservation
and detection performance. Table 6 shows the performance of different
combinations of FNN architecture on malware detection while 𝜖 = 0.5
using CCCS-CIC-AndMal-2020 dataset.

Ad Hoc Networks 161 (2024) 103523

9

F. Nawshin et al.

Table 6
Performance comparison of FNN architectures with varying layers and neurons at 𝜖 = 0.5.

FNN configuration No. of layers Layer 1 neurons Layer 2 neurons Accuracy Precision Recall F1 Score

1 2 32 32 0.954 0.96 0.95 0.95
2 2 64 64 0.973 0.97 0.97 0.97
3 2 64 128 0.965 0.97 0.97 0.97
4 2 32 128 0.973 0.97 0.97 0.97
5 2 128 128 0.974 0.98 0.97 0.97
6 (DP-RFECV-FNN) 2 64 32 0.978 0.98 0.98 0.98

Algorithm 2 DP mechanisms: Laplace and Gaussian Noise
1: function LaplaceMechanism(sample_count, 𝛥, 𝜀)
2: scale ← 𝛥

𝜀
3: noise ← LaplaceNoise(0, scale)
4: return sample_count + noise
5: end function
6: function GaussianMechanism(gradients, 𝛥, 𝜀, 𝛿)
7: noisy_gradients ← []
8: num_samples ← length of gradients

9: scale ← 𝛥
𝜀

√

2 ln
(

1.25
𝛿

)

10: for gradient in gradients do
11: shape ← shape of gradient
12: noise ← GaussianNoise(0, scale, size = shape)
13: noisy_gradients.append(gradient + noise)
14: end for
15: return noisy_gradients
16: end function
17: function Gradient(model, inputs, targets)
18: loss ← SparseCategoricalCrossentropy(targets,model(inputs))
19: gradients ← TapeGradient(loss,model.trainable_variables)

gradients are computed using the TensorFlow function
tf.GradientTape to calculate the gradient of the loss with respect
to the trainable variables of the model.

20: return gradients
21: end function

Noisy gradient descent algorithm. The core of DP-RFECV-FNN is the
NoisyGradientDescent function, which encapsulates the DP mechanism
using noisy gradient descent. In each iteration, gradients are computed,
L2 Clipping is applied to enhance privacy, and then noisy gradients are
calculated. The function L2_Clipping is used within the NoisyGradient-
Descent function to enforce L2 norm clipping on individual data points
during the training of a model with DP. The model weights are updated
using these noisy gradients, ensuring that the training process incorpo-
rates privacy-preserving measures. This function is stated in Algorithm
3.

Training and evaluation. The final loop is iterated over different epsilon
values, representing various levels of privacy. For each epsilon, the
model is trained using the noisy gradient descent function, and the
performance is evaluated on the test set. Algorithm 4 outlines the
procedure for adding DP in the trained model.

Integration of zero trust security in DP-RFECV-FNN. According to the
principles of the zero trust model, all applications have to go through
a verification step before getting access to the system’s resources.
After determining whether an application is benign or malicious, we
integrated this step. The malicious applications will be rejected and
discarded for further verification. Only the benign applications will be
investigated further to check for verification and authentication to gain
access. The least privileged access will be provided only to the verified
APKs. Algorithm 5 states the integration of zero trust security with the
proposed framework.

Algorithm 3 Noisy gradient descent with DP
1: function NoisyGradientDescent(𝜀, 𝛿, 𝛥, 𝑇)
2: Initialize model weights: 𝜃 ← RandomInitialization()
3: noisy_count ← LaplaceMechanism(sample_count, 1, 𝜀)
4: for 𝑡 = 1 to 𝑇 do
5: grad_sum ← [zeros_like(var) for

var in model_trainable_variables]
6: for (𝑥𝑖, 𝑦𝑖) in zip(𝑋, 𝑦) do
7: clipped_x_i ← L2_Clipping(𝑥𝑖, 𝛥)
8: grad_sum += Gradient(model, clipped_x_i, 𝑦𝑖)
9: end for

10: noisy_grad_sum ← GaussianMechanism(grad_sum, 𝛥, 𝜀, 𝛿)
11: noisy_avg_grad ← [𝑔

noisy_count for g in noisy_grad_sum]
12: for 𝑗, grad in enumerate(noisy_avg_grad) do
13: noisy_avg_grad[𝑗] ← Cast(grad,dtype =

model.trainable_variables[𝑗].dtype)
14: model.trainable_variables[𝑗] −= noisy_avg_grad[𝑗]
15: end for
16: grad_zip ← zip(noisy_avg_grad,model.trainable_variables)
17: model_optimizer.apply_gradients(grad_zip)
18: end for
19: end function

Algorithm 4 Adding Differential Privacy to Trained Model
1: Set Privacy Parameters:
2: Set sensitivity (𝛥), delta (𝛿), number of classes (𝐶), and iterations

(𝑇)
3: Train Model with Differential Privacy:
4: Iterate over a range of epsilon (𝜀) values representing privacy levels
5: For each 𝜀, train the model with DP using the function

NoisyGradientDescent defined in Algorithm 3.
6: Evaluate Model Performance:
7: After training with each epsilon, evaluate the model on the test data

and observe the performance score.

5. Result analysis

5.1. Experimental setup

The experiments are conducted on a computer with an Intel Core i9-
7920X CPU @ 2.90 GHz, featuring 12 cores and 24 logical processors.
64-bit Linux Operating System is utilized. We use Python Programming
Language for the implementation.

5.2. Performance metrics

To evaluate the performance of DP-RFECV-FNN, in different privacy
scenarios while integrating DP mechanisms and the neural network
model, the following evaluation metrics are used: Accuracy, Recall,
Precision, F1-Score, True Positive Rate (TPR), and False Positive Rate
(FPR). These metrics are represented in Eqs. (5)–(10):

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

(5)

Ad Hoc Networks 161 (2024) 103523

10

F. Nawshin et al.

Table 7
Hyperparameter settings for different models.

LSTM CNN CapsNet DP-RFECV-FNN

Layers &
Architecture

Hidden Layers: 2 Neurons
per Hidden Layer: (128,
128)

Configuration: 4 layers (2 Conv1D
with 64 filters, kernel size 3; 2
MaxPooling1D, pool size 2),
followed by 2 Dense layers (128
neurons, output 1 neuron).

Configuration: 1 Input
layer, 2 Conv1D layers (30
filters, kernel size 3, stride
3), followed by a Capsule
layer with digit capsule
calculation.

Hidden Layers: 2 Neurons
per Hidden Layer: (64, 32)

Activation functions ReLu & Softmax ReLu & Softmax ReLu & Softmax ReLu & Softmax
Optimizer Adam Adam Adam Adam
Loss function categorical_crossentropy categorical_crossentropy categorical_crossentropy categorical_crossentropy
Learning rate 0.001 0.001 0.001 0.001
Batch size 64 64 64 64
Epochs 100 100 100 100

Algorithm 5 Integration of zero trust security in malware detection.
1: Input: Dataset of APK files
2: Output: Access decision for each APK file
3: Classify Applications:
4: for each APK file in the dataset do
5: Classify the APK as benign or malicious using the trained model
6: if APK is classified as malicious then
7: Reject the APK and prevent access
8: Continue
9: end if

10: Zero Trust Verification:
11: Perform authentication and verify the identity of the benign

APK
12: If APK fails verification, reject and prevent access
13: If APK passes verification, grant access with the least privilege
14: Logging:
15: Log the classification and verification results
16: end for

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(6)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(7)

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(8)

𝑇𝑃𝑅 =
∑𝑚
𝑖=1[𝑎(𝑥𝑖) = +1][𝑦𝑖 = +1]

∑𝑚
𝑖=1[𝑦𝑖 = +1]

(9)

𝐹𝑃𝑅 =
∑𝑚
𝑖=1[𝑎(𝑥𝑖) = +1][𝑦𝑖 = −1]

∑𝑚
𝑖=1[𝑦𝑖 = −1]

(10)

5.3. Detecting Android malware

We compared the performance of DP-RFECV-FNN with different
baseline models, including the Long Short-Term Memory (LSTM), Con-
volutional Neural Network (CNN), and Capsule Network (CapsNet) and
hyperparameters settings of each model is shown in Table 7. An exten-
sive comparative analysis of malware detection accuracy achieved by
DP-RFECV-FNN against these different baseline models are presented
in Table 8 using both static and dynamic features. The performance of
these models is measured under different privacy budgets, denoted by
𝜖 with values of 0.1, 0.5, and 1.0. Notably, DP-RFECV-FNN consistently
outperforms the baseline models across all privacy settings, demonstrat-
ing the proposed framework’s robustness and efficacy in achieving high
accuracy in a privacy-preserving manner.

In the experiment involving static features, DP-RFECV-FNN exhib-
ited remarkable accuracy, achieving up to 99.72% without privacy
preservation. It maintained a high accuracy of up to 97.84% even when

a privacy parameter (𝜖 = 0.5) was introduced. When considering dy-
namic features, DP-RFECV-FNN achieved an accuracy of up to 95.77%
without privacy preservation and a slightly lower accuracy of 94.43%
when 𝜖 = 0.5. The comparative analysis depicted in Fig. 5 illustrates
the F1-Score performance of the proposed framework against baseline
models under various privacy settings, encompassing both static and
dynamic features. DP-RFECV-FNN consistently outperformed the three
base models in both scenarios.

We then conducted an extensive evaluation of the proposed model
across different privacy parameter settings, ranging from 𝜖 = 0.1 to 𝜖 =
10, as depicted in Fig. 6. The figure indicates that, generally, an increase
in the 𝜖 value corresponds to an enhancement in performance metrics.
It is important to note that when the 𝜖 value exceeds 10, it represents
a scenario without privacy protection. Particularly noteworthy is the
fact that DP-RFECV-FNN achieved the highest recall in both static and
dynamic analyses at 𝜖 = 0.1, reflecting stringent privacy considerations.
A model with the highest recall is adept at minimizing false negatives,
ensuring the correct detection of a large number of actual positive
cases.

Table 9 shows the evaluation of model performance in relation to
resource consumption which is a vital consideration for IoT devices
with limited resources. This comprehensive comparison demonstrates
not only the accuracy of each model under static and dynamic analyses
but also quantifies their training times and memory usage. The DP-
RFECV-FNN shows a superior balance between high accuracy and low
resource consumption compared with other baseline models. These
compelling findings contribute significantly to the intersection of ML
and privacy, underscoring the practical viability of DP-RFECV-FNN in
real-world applications. This is particularly relevant in scenarios where
maintaining high accuracy is crucial alongside the imposition of strict
privacy requirements.

5.4. Classifying Android malware

We explored the performance of DP-RFECV-FNN in classifying mal-
ware categories using both static and dynamic features incorporating
DP mechanisms against the baseline models, including LSTM, CNN,
and CapsNet. Considering distinct privacy preservation levels denoted
by 𝜖 set to 0.1, 0.5, and 1.0, the accuracy achieved in each privacy
level was recorded in Table 10. Remarkably, DP-RFECV-FNN consis-
tently exhibits superior accuracy across various scenarios. It achieved
robust performance without privacy preservation, achieving an accu-
racy of 93.33%, surpassing the accuracy of LSTM, CNN, and CapsNet.
Even under heightened privacy constraints, 𝜖 = 0.5, DP-RFECV-FNN
maintains a comparable accuracy of 92.09% when considering static
features and accuracy of 89.54% when considering dynamic features
that outperform the baseline models.

To the best of our knowledge, this is the first work on designing
privacy-preserving neural networks in Android malware type classi-
fication using dynamic features. Fig. 7 shows the comparison of the
F1-Score of the proposed model against the baseline models under

Ad Hoc Networks 161 (2024) 103523

11

F. Nawshin et al.

Table 8
Accuracy of DP-RFECV-FNN vs. baseline models for malware detection.
Models Static analysis Dynamic analysis

No DP 𝜖 = 0.1 𝜖 = 0.5 𝜖 = 1.0 No DP 𝜖 = 0.1 𝜖 = 0.5 𝜖 = 1.0

LSTM 97.69% 93.63% 93.65% 93.66% 92.32% 82.37% 84.69% 89.74%
CNN 93.48% 89.46% 92.76% 93.62% 93.01% 79.65% 85% 87.71%
CapsNet 94.77% 78.65% 81.27% 86.22% 90.73% 78.96% 87.84% 89.65%
DP-RFECV-FNN 99.72% 97.78% 97.84% 99.21% 95.77% 93.49% 94.43% 94.36%

Fig. 5. Trade-offs between privacy and utility, performance comparison using F1 Score of DP-RFECV-FNN with other baseline models in malware detection.

Fig. 6. Trade-offs in Android malware detection: Balancing performance and privacy in DP-RFECV-FNN.

Table 9
Comparison of resource consumption of DP-RFECV-FNN with other baseline models.

Model Accuracy (%) Training time (s) Memory usage (MB)

Static analysis Dynamic analysis Static analysis Dynamic analysis Static analysis Dynamic analysis

LSTM 97.69 92.32 3.46 2.72 20.72 20.78
CNN 93.48 93.01 3.25 3.63 15.22 12.02
CapsNet 94.77 90.73 3.53 3.05 15.73 7.81
DP-RFECV-FNN 99.72 95.77 3.18 2.29 7.31 3.94

different privacy measures in classifying malware categories using both
static and dynamic features. Fig. 7 demonstrates that the proposed
model outperformed the base models in both cases.

We then assessed the performance of DP-RFECV-FNN under differ-
ent privacy scenarios starting from 𝜖 = 0.1 to 𝜖 = 10 using both static
and dynamic features and observed the trade-offs between privacy and
utility. Fig. 8 shows that in both cases, DP-RFECV-FNN achieved a
remarkable accuracy at 𝜖 = 0.4, successfully preserving strict privacy
considerations. These findings emphasize the efficacy of DP-RFECV-
FNN in malware category classification and demonstrate stability to
privacy-preserving measures while delivering significant accuracy.

We present the detailed performance analysis of DP-RFECV-FNN,
for Android malware classification based on static features in Table 11
and dynamic features in Table 12 while considering the trade-off
between privacy and utility. These tables demonstrate the effectiveness

of the proposed framework across various malware categories, namely
Adware, SMS, Ransomware, Riskware, and Trojan, while considering
static features and Adware, Banker, SMS, and Riskware while con-
sidering dynamic features under different privacy preservation levels
denoted by 𝜖 set to 0.2, 0.5, and 1.0 as well as without considering
privacy preservation. DP-RFECV-FNN consistently exhibits strong re-
call, precision, and F1 scores across all the malware categories, even
in the case of strict privacy preservation (𝜖 = 0.5). The trade-off is ev-
ident in the slight reduction of performance metrics with strengthened
privacy that emphasizes the balance between preserving user privacy
and maintaining accurate malware classification. The ability of DP-
RFECV-FNN to maintain high utility while considering both static and
dynamic features makes it a promising solution for Android malware
classification with consideration of preserving the privacy of the user
data.

Ad Hoc Networks 161 (2024) 103523

12

F. Nawshin et al.

Table 10
Accuracy of DP-RFECV-FNN vs. baseline models for malware classification.
Models Static analysis Dynamic analysis

No DP 𝜖 = 0.1 𝜖 = 0.5 𝜖 = 1.0 No DP 𝜖 = 0.1 𝜖 = 0.5 𝜖 = 1.0

LSTM 93.02% 70.38% 79.32% 82.59% 92.81% 63.38% 69.96% 73.74%
CNN 92.80% 61.94% 76.68% 80.45% 93.77% 58.54% 64.71% 70.88%
CapsNet 83.49% 56.37% 62.77% 66.31% 90.73% 54.46% 56.45% 59.30%
DP-RFECV-FNN 93.33% 85.72% 92.09% 92.73% 94.24% 79.5% 89.54% 91.59%

Fig. 7. Trade-offs between privacy and performance: Performance comparison (F1 Score) of DP-RFECV-FNN with other baseline models in malware classification.

Fig. 8. Trade-offs in Android malware classification: Balancing performance and privacy in DP-RFECV-FNN.

5.5. Training time evaluation

The feature selection method employed in DP-RFECV-FNN is com-
pared with other techniques found in the recent papers on Android
malware detection regarding training time, as shown in Fig. 9. The
comparison includes various feature selection methods such as Mutual
Information [43], Variance Threshold [44], and Pearson Correlation
Coefficient (PCC) [45] used in Android malware detection and we
deployed these methods in our implementation setup and datasets.
Fig. 9(a) presents the training duration for the CCCS-CIC-AndMal-2020
dataset, considering sample sizes from 2000 to 10 000. In contrast,
Fig. 9(b) displays the training time for the CICMalDroid 2020 dataset
with sample sizes ranging from 200 to 1000. DP-RFECV-FNN shows
a significant reduction in training time across both datasets. This
indicates that the DP-RFECV-FNN is more computationally efficient,
which can be advantageous for large datasets or when computational
resources are limited. To further explore the efficiency of the feature
selection method used in DP-RFECV-FNN, Fig. 10 shows the com-
parative analysis of accuracy vs. number of features using the above
two datasets. DP-RFECV-FNN outperforms others by achieving higher
accuracy with a notably smaller set of features. It reaches an ac-
curacy of 99.7% with only 19 features using the CCCS-CIC-AndMal-
2020 dataset and achieves 95.8% accuracy with 33 features using the
CICMalDroid 2020 dataset, whereas other methods, such as Mutual

Information and PCC require a larger set of features to reach slightly
lower accuracies. This substantial reduction in the number of features
without a loss in accuracy emphasizes the potential of DP-RFECV-
FNN for creating more interpretable models that are less complex and
computationally more efficient.

5.6. Testing data for zero trust

For testing the applications using DP-RFECV-FNN considering the
zero trust framework, we conduct both static and dynamic analyses
on each APK. For static analysis, we utilize DroidLysis [52], and
for dynamic analysis, we employ the Mobile Security Framework
(MobSF) [53]. Following the analysis of an APK, we assess whether it is
benign or malicious. Based on this assessment, the APK is either granted
access to the system or it will be blocked. Our approach does not check
if an APK has been previously analyzed because, according to the zero
trust principle, we must test every APK to finalize the authentication.
We have tested on multiple APKs, and due to space constraints, we
showed the result of two APKs in Tables 13 and 14. After selecting
the APK, Droidlysis extracts static features such as permissions, activ-
ities, receivers, services, and providers. The main functionality of an
APK is inferred from the Droidlysis report and by checking the main
activity and the permissions it requests. For APK 1, the main activity
listed is 𝑐𝑜𝑚.𝑏𝑎𝑛𝑡𝑢.𝑡𝑟𝑔𝑎𝑚𝑒.𝑊 𝑒𝑙𝑐𝑜𝑚𝑒𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦, which suggests that the app

Ad Hoc Networks 161 (2024) 103523

13

F. Nawshin et al.

Fig. 9. Training time comparison with other feature selection methods.

Fig. 10. Accuracy vs. Number of Features comparison with other feature selection methods.

Table 11
Trade-Off between privacy and utility by DP-RFECV-FNN in android malware
classification using static features.

Proposed Malware Performance 𝜖 No DP

framework category metric 0.2 0.5 1.0

DP-RFECV-
FNN

Adware

Recall 0.82 0.90 0.91 0.90
Precision 0.93 0.92 0.92 0.93
F1 Score 0.87 0.91 0.92 0.91
TPR 0.82 0.90 0.91 0.90
FPR 0.02 0.02 0.02 0.01

SMS

Recall 0.92 0.95 0.97 0.96
Precision 0.88 0.90 0.90 0.93
F1 Score 0.89 0.92 0.93 0.94
TPR 0.92 0.95 0.97 0.96
FPR 0.03 0.03 0.03 0.02

Ransomware

Recall 0.96 0.97 0.98 0.98
Precision 0.92 0.94 0.95 0.96
F1 Score 0.94 0.95 0.97 0.97
TPR 0.96 0.97 0.98 0.98
FPR 0.02 0.02 0.01 0.009

Riskware

Recall 0.91 0.92 0.93 0.92
Precision 0.90 0.93 0.92 0.95
F1 Score 0.90 0.92 0.92 0.93
TPR 0.91 0.92 0.93 0.92
FPR 0.02 0.02 0.02 0.01

Trojan

Recall 0.86 0.86 0.85 0.91
Precision 0.83 0.92 0.95 0.90
F1 Score 0.85 0.89 0.90 0.90
TPR 0.86 0.86 0.85 0.91
FPR 0.04 0.02 0.02 0.02

is a game application. The set of permissions like INTERNET, AC-
CESS_NETWORK_STATE, and WRITE_EXTERNAL_STORAGE, are com-
mon for games that require to save data, retrieve game assets, or show

Table 12
Trade-Off between privacy and performance using dynamic features.

Proposed Malware Performance 𝜖 No DP

framework category metric 0.2 0.5 1.0

DP-RFECV-FNN

Adware

Recall 0.77 0.70 0.76 0.92
Precision 0.76 0.89 0.87 0.87
F1 Score 0.77 0.79 0.81 0.89
TPR 0.77 0.70 0.76 0.92
FPR 0.03 0.01 0.01 0.01

Banker

Recall 0.85 0.90 0.91 0.92
Precision 0.77 0.79 0.85 0.91
F1 Score 0.81 0.84 0.88 0.92
TPR 0.85 0.90 0.91 0.92
FPR 0.06 0.06 0.04 0.02

SMS

Recall 0.95 0.96 0.97 0.98
Precision 0.91 0.97 0.97 0.99
F1 Score 0.93 0.97 0.97 0.99
TPR 0.95 0.96 0.97 0.98
FPR 0.06 0.02 0.02 0.007

Riskware

Recall 0.77 0.90 0.92 0.91
Precision 0.93 0.87 0.92 0.94
F1 Score 0.84 0.88 0.92 0.93
TPR 0.77 0.90 0.92 0.91
FPR 0.02 0.04 0.03 0.02

ads. However, READ_PHONE_STATE, CHANGE_NETWORK_STATE, RE-
ORDER_TASKS, MOUNT_UNMOUNT_FILESYSTEMS are some of the
dangerous permissions used by APK 1, which are out of its func-
tionality. After that, DP adds random noise to this data to protect it
from data-poisoning attacks by adversaries. Finally, the perturbed data
is fed into the model of DP-RFECV-FNN, and APK 1 is categorized
as malware. If an APK is categorized as malware from the static
analysis, we do not proceed with dynamic analysis and block this
APK from getting access to the system. For APK 2, the main activity

Ad Hoc Networks 161 (2024) 103523

14

F. Nawshin et al.

Table 13
Testing APK 1 for zero trust.

Sha256 00a3ecdc419616323cc2eee6d43fb65a9c058ede5abae9dab2a84c892974cd72

APK 1

Activities com.bantu.trgame.WelcomeActivity,com.bantu.trgame.TRGame,com.facebook.FacebookActivity,com.facebook.Custom
TabActivity,com.excelliance.assetsonly.base.ForwardActivity,com.excelliance.open.NextChapter,com.excelliance.open.
AssistActivity,com.excelliance.open.PromptActivity,com.google.android.gms.auth.api.signin.internal.SignInHubActivity
,com.android.billingclient.api.ProxyBillingActivity,com.google.android.gms.common.api.GoogleApiActivity,com.google
.android.gms.ads.AdActivity,com.facebook.CustomTabMainActivity

Permissions INTERNET, WRITE_EXTERNAL_STORAGE, ACCESS_WIFI_STATE, ACCESS_NETWORK_STATE,
READ_PHONE_STATE, GET_TASKS, READ_LOGS, SYSTEM_ALERT_WINDOW, CHANGE_NETWORK_STATE,
MOUNT_UNMOUNT_FILESYSTEMS, READ_EXTERNAL_STORAGE, WAKE_LOCK, FOREGROUND_SERVICE,
GET_DETAILED_TASKS, REORDER_TASKS, com.android.vending.BILLING,
com.google.android.c2dm.permission.RECEIVE

Providers com.excelliance.assetsonly.preferences.provider.LBContentProvider,com.google.firebase.provider.FirebaseInitProvider,c
om.facebook.internal.FacebookInitProvider

Receivers com.excellence.assetsonly.base.BGReceiver,com.google.firebase.iid.FirebaseInstanceIdReceiver,com.google.android.gms
.measurement.AppMeasurementReceiver,com.google.android.gms.measurement.AppMeasurementInstallReferrerReceiv
er,com.facebook.CurrentAccessTokenExpirationBroadcastReceiver

Services com.excelliance.assetsonly.debug.LBSdkCrashReportService,com.excelliance.assetsonly.base.AssistService,com.excellian
ce.assetsonly.base.BaseService,com.excelliance.assetsonly.main.BGService,com.google.android.gms.auth.api.signin.Rev
ocationBoundServic,com.google.firebase.components.ComponentDiscoveryService,com.google.firebase.iid.FirebaseInsta
nceIdService,com.google.android.gms.measurement.AppMeasurementService,com.google.android.gms.measurement.Ap
pMeasurementJobService

Main activity com.bantu.trgame.WelcomeActivity

Main functionality Game App

Excessive permissions READ_PHONE_STATE, CHANGE_NETWORK_STATE, REORDER_TASKS, MOUNT_UNMOUNT_FILESYSTEMS

Benign or Malware? Malware

Table 14
Testing APK 2 for zero trust.

Sha256 004ab23cec034b0aad323a963847d9b6cefde24c23cef9389f2c62f49650928b

APK 2

Activities com.radinelqaa.myphone.findphone.view.activities.RateUsAct,com.radinelqaa.myphone.findphone.More_Apps,com.goo
gle.android.gms.ads.AdActivity,com.radinelqaa.myphone.findphone.view.activities.SplashScreen,com.radinelqaa.myph
one.findphone.view.activities.DialogeActivity,com.radinelqaa.myphone.findphone.MainActivity,com.radinelqaa.mypho
ne.findphone.view.activities.ClapToFindPhone_ACT,com.radinelqaa.myphone.findphone.view.activities.StopBuzz

Permissions CAMERA, FLASHLIGHT, INTERNET, RECORD_AUDIO, FOREGROUND_SERVICE, VIBRATE,
READ_EXTERNAL_STORAGE, ACCESS_NETWORK_STATE, WAKE_LOCK

Providers com.google.android.gms.ads.MobileAdsInitProvider

Receivers com.google.android.gms.measurement.AppMeasurementReceiver,com.google.android.gms.measurement.AppMeasurem
entInstallReferrerReceiver

Services com.radinelqaa.myphone.findphone.model.service.VoiceDetectService,com.radinelqaa.myphone.findphone.model.servi
ce.SoundPlayService,com.radinelqaa.myphone.findphone.model.service.service,com.google.android.gms.measurement.
AppMeasurementService,com.google.android.gms.measurement.AppMeasurementJobService

Main activity com.radinelqaa.myphone.findphone.view.activities.SplashScreen

Main functionality Phone Finder App

Excessive permissions RECORD_AUDIO, READ_EXTERNAL_STORAGE

Least privileged permissions CAMERA, FLASHLIGHT, INTERNET, FOREGROUND_SERVICE, VIBRATE, ACCESS_NETWORK_STATE,
WAKE_LOCK

Benign or Malware? Benign

is 𝑐𝑜𝑚.𝑟𝑎𝑑𝑖𝑛𝑒𝑙𝑞𝑎𝑎.𝑚𝑦𝑝ℎ𝑜𝑛𝑒.𝑓 𝑖𝑛𝑑𝑝ℎ𝑜𝑛𝑒.𝑣𝑖𝑒𝑤.𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠.𝑆𝑝𝑙𝑎𝑠ℎ𝑆𝑐𝑟𝑒𝑒𝑛 was
found in the DroidLysis report. It is an app that helps to find the phone.
It wants to use the camera and flashlight, which helps to locate the
phone in the dark or take a picture of where it is. Like APK 1, static fea-
tures of APK 2 are extracted using DroidLysis. After adding noise by DP
to make the data anonymous, it is fed into the model of DP-RFECV-FNN,
and the model categorizes APK 2 as a benign app. After further analysis,
we found that despite being a benign app, there are some excessive per-
missions such as READ_PHONE_STATE, CHANGE_NETWORK_STATE,
REORDER_TASKS, MOUNT_UNMOUNT_FILESYSTEMS used by APK 2.
The least privileged permissions will be refined to exclude any excessive
permissions during system access. Before providing this APK 2 access to
the system, we do dynamic analysis also on it using MobSF. MobSF uses
an emulator where the app is installed, and the run-time behavior of the
app is examined, such as logs of all system calls and network traffic, and
records if there is any malicious activity found. APK 2 is categorized as

benign based on the dynamic analysis report, and finally, APK 2 will
get access to the system with the least privileged access rights.

Granting the least privileged access is determined through the pro-
cess of static and dynamic analysis of applications using tools like
DroidLysis and MobSF, respectively. The static analysis via DroidLysis
examines the manifest and code for declared permissions and activities
to determine its intended use. The dynamic analysis by MobSF observes
the app in execution, monitoring for runtime permissions and actual
behavior. If the permissions requested by the application are found
to be excessive for its stated purpose, they are flagged. These flagged
permissions will be blocked while accessing the system resources, and
only those permissions related to its functionalities will be granted. The
common permissions between the declared permissions and expected
permissions based on functionality are listed, which will be considered
for the least privileged access rights shown in Table 14. The least
privilege is ensured by allowing only the minimum access necessary
for the application to function as intended.

Ad Hoc Networks 161 (2024) 103523

15

F. Nawshin et al.

To ensure that applications maintain proper operation following
the modification of the access settings, our system incorporates a
testing mechanism. Initially, applications are analyzed using static and
dynamic methods to determine the minimal set of permissions they
require to function as intended. After identifying these least privileged
access settings, our system utilizes a monitoring strategy to observe the
application’s behavior in real-time. If any issue is detected during this
phase, trigger alerts that will require the controlled modification of the
access settings.

6. Discussion and future work

The evaluation of the DP-RFECV-FNN framework utilized the CCCS-
CIC-AndMal-2020 and CICMalDroid 2020 datasets, which may not
entirely encapsulate the vast diversity of Android malware that exists
in real-world scenarios that could affect the generalization of the
proposed solution across all malware types and scenarios. However,
the DP-RFECV-FNN detects new malware by incorporating a dynamic
analysis approach. Dynamic analysis also helps to counter evasion
attacks. Dynamic analysis runs the application in a controlled envi-
ronment (Sandbox) to observe its behavior. This approach can identify
malicious activities that occur during execution. It analyzes the run-
time behavior of the applications, such as network traffic, run-time
permissions, system calls. By observing the real-time behavior of the
applications, DP-RFECV-FNN identifies patterns and anomalies that
static analysis cannot perform and detects malicious activities. This
dynamic feature extraction plays a significant role in recognizing new
malware or countering evasion attacks, which can be bypassed by tra-
ditional detection methods. Additionally, by incorporating DP, we add
an additional layer of security, DP-RFECV-FNN prevents attackers from
inferring sensitive information from the output of the model to protect
against data exploitation and enhances the security of the detection
process. Our approach also relies on a zero trust model, which assumes
that no application is safe without thorough verification, which further
strengthens the defense mechanisms against novel malware attacks.

In the future, we will extend this research by incorporating diverse
datasets containing recent malware. In this article, we experimented
with only one approach to privacy preservation, namely Differential
Privacy. In the future, we will integrate other privacy-preservation
techniques such as Federated Learning, Homomorphic Encryption, and
Secure Multi-party Computation and make a comparative analysis. By
systematically assessing their performance, computational overhead,
and adaptability to different scenarios, we intend to offer insights
that will guide researchers in choosing the most suitable privacy-
preservation technique based on their specific requirements and con-
straints.

7. Conclusion

As Android plays a key component in device operations within the
expansive IoT framework, particularly in healthcare devices, securing
applications is compulsory for protecting user-sensitive data. The de-
tection and analysis of Android malware are thus essential measures
for preserving confidential information and ensuring the robustness of
IoT networks. In this article, we proposed DP-RFECV-FNN for securing
IoT networks against Android malware attacks. DP-RFECV-FNN incor-
porated the principles of the zero trust model and the strengths of the
DP mechanisms together with an FNN. DP-RFECV-FNN ensures that
no applications will be trusted automatically following the zero trust
model. Every application is tested, and only the benign applications
are verified and authenticated further to gain access to the system.
DP-RFECV-FNN achieves remarkable accuracy and a balance between
performance and user privacy. The experimental results show superior
performance metrics, exceeding the existing state-of-the-art solutions
in terms of accuracy while ensuring robust privacy guarantees. The
achieved accuracy, ranging from 97.78% to 99.21% for static features

and 93.49% to 94.36% for dynamic features while detecting benign
or malicious applications under various privacy budgets (𝜖 = 0.1 to
𝜖 = 1.0) which emphasizes the effectiveness of DP-RFECV-FNN. Further-
more, The DP-RFECV-FNN model remarkably balances high detection
accuracy with efficient use of resources which is proved by lower
memory consumption. In addition to the higher accuracy in malware
detection, the DP-RFECV-FNN model also stands out for the training
speed. The faster training process, compared to traditional approaches
is crucial for maintaining operational efficiency in IoT networks. This
research significantly contributes to the field of IoT networks in im-
proving zero trust security and offers a reliable and privacy-preserving
solution to prevent the existing and new threats posed by Android
malware in interconnected IoT networks.

CRediT authorship contribution statement

Faria Nawshin: Writing – original draft, Visualization, Validation,
Methodology, Investigation, Data curation, Conceptualization. Devrim
Unal: Writing – review & editing, Validation, Supervision, Resources,
Project administration, Funding acquisition, Formal analysis, Conceptu-
alization. Mohammad Hammoudeh: Writing – review & editing, Val-
idation, Methodology. Ponnuthurai N. Suganthan: Writing – review
& editing, Supervision, Methodology, Investigation, Formal analysis.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

We used public datasets which are cited in the paper.

Acknowledgment

Open Access funding provided by the Qatar National Library.

References

[1] Z. Ren, H. Wu, Q. Ning, I. Hussain, B. Chen, End-to-end malware detection for
android IoT devices using deep learning, Ad Hoc Netw. 101 (2020) 102098.

[2] D. Unal, S. Bennbaia, F.O. Catak, Machine learning for the security of healthcare
systems based on Internet of Things and edge computing, in: Cybersecurity and
Cognitive Science, Elsevier, 2022, pp. 299–320.

[3] G. Zhang, Y. Li, X. Bao, C. Chakarborty, J.J. Rodrigues, L. Zheng, X. Zhang,
L. Qi, M.R. Khosravi, TSDroid: A novel Android malware detection framework
based on temporal & spatial metrics in IoMT, ACM Trans. Sensor Netw. 19 (3)
(2023) 1–23.

[4] H.M. Alshahrani, Droid-iot: Detect android iot malicious applications using ml
and blockchain, Comput. Mater. Contin. 70 (1) (2021) 739–766.

[5] R. Kumar, X. Zhang, R.U. Khan, A. Sharif, Research on data mining of
permission-induced risk for android IoT devices, Appl. Sci. 9 (2) (2019) 277.

[6] Stfalcon LLC, Internet of medical things security, 2023, Accessed 31-
01-2024. URL https://www.linkedin.com/pulse/internet-medical-things-security-
stfalconcom-glkff/.

[7] M. Amin, D. Shehwar, A. Ullah, T. Guarda, T.A. Tanveer, S. Anwar, A deep
learning system for health care IoT and smartphone malware detection, Neural
Comput. Appl. (2020) 1–12.

[8] Z. Ji, Z.C. Lipton, C. Elkan, Differential privacy and machine learning: a survey
and review, 2014, arXiv preprint arXiv:1412.7584.

[9] J.-W. Lee, H. Kang, Y. Lee, W. Choi, J. Eom, M. Deryabin, E. Lee, J. Lee, D. Yoo,
Y.-S. Kim, et al., Privacy-preserving machine learning with fully homomorphic
encryption for deep neural network, IEEE Access 10 (2022) 30039–30054.

[10] B. Knott, S. Venkataraman, A. Hannun, S. Sengupta, M. Ibrahim, L. van der
Maaten, Crypten: Secure multi-party computation meets machine learning, Adv.
Neural Inf. Process. Syst. 34 (2021) 4961–4973.

[11] X. Deng, H. Tang, X. Pei, D. Li, K. Xue, MDHE: A malware detection system based
on trust hybrid user-edge evaluation in IoT network, IEEE Trans. Inf. Forensics
Secur. (2023).

http://refhub.elsevier.com/S1570-8705(24)00134-3/sb1
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb1
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb1
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb2
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb2
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb2
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb2
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb2
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb3
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb3
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb3
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb3
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb3
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb3
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb3
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb4
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb4
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb4
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb5
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb5
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb5
https://www.linkedin.com/pulse/internet-medical-things-security-stfalconcom-glkff/
https://www.linkedin.com/pulse/internet-medical-things-security-stfalconcom-glkff/
https://www.linkedin.com/pulse/internet-medical-things-security-stfalconcom-glkff/
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb7
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb7
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb7
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb7
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb7
http://arxiv.org/abs/1412.7584
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb9
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb9
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb9
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb9
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb9
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb10
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb10
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb10
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb10
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb10
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb11
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb11
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb11
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb11
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb11

Ad Hoc Networks 161 (2024) 103523

16

F. Nawshin et al.

[12] W. Huang, X. Xie, Z. Wang, J. Feng, G. Han, W. Zhang, ZT-Access: A com-
bining zero trust access control with attribute-based encryption scheme against
compromised devices in power IoT environments, Ad Hoc Netw. 145 (2023)
103161.

[13] H. Fereidooni, M. Conti, D. Yao, A. Sperduti, ANASTASIA: ANdroid mAlware
detection using STatic analySIs of Applications, in: 2016 8th IFIP International
Conference on New Technologies, Mobility and Security, NTMS, IEEE, 2016, pp.
1–5.

[14] V. Sihag, M. Vardhan, P. Singh, G. Choudhary, S. Son, De-LADY: Deep learning
based Android malware detection using Dynamic features, J. Internet Serv. Inf.
Secur. 11 (2) (2021) 34–45.

[15] C. Dwork, Differential privacy, in: International Colloquium on Automata,
Languages, and Programming, Springer, 2006, pp. 1–12.

[16] M. Abadi, A. Chu, I. Goodfellow, H.B. McMahan, I. Mironov, K. Talwar, L. Zhang,
Deep learning with differential privacy, in: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, 2016, pp. 308–318.

[17] L. Sun, S. Bao, S. Ci, X. Zheng, L. Guo, Y. Luo, Differential privacy-preserving
density peaks clustering based on shared near neighbors similarity, IEEE Access
7 (2019) 89427–89440.

[18] F. Liu, Generalized gaussian mechanism for differential privacy, IEEE Trans.
Knowl. Data Eng. 31 (4) (2018) 747–756.

[19] G. Bendiab, S. Shiaeles, A. Alruban, N. Kolokotronis, IoT malware network traffic
classification using visual representation and deep learning, in: 2020 6th IEEE
Conference on Network Softwarization, NetSoft, IEEE, 2020, pp. 444–449.

[20] M. Shobana, S. Poonkuzhali, A novel approach to detect IoT malware by system
calls using Deep learning techniques, in: 2020 International Conference on
Innovative Trends in Information Technology, ICITIIT, IEEE, 2020, pp. 1–5.

[21] S. Ali, O. Abusabha, F. Ali, M. Imran, T. ABUHMED, Effective multitask deep
learning for iot malware detection and identification using behavioral traffic
analysis, IEEE Trans. Netw. Serv. Manag. (2022).

[22] R. Chaganti, V. Ravi, T.D. Pham, Deep learning based cross architecture internet
of things malware detection and classification, Comput. Secur. 120 (2022)
102779.

[23] T. Lu, Y. Du, L. Ouyang, Q. Chen, X. Wang, Android malware detection based
on a hybrid deep learning model, Secur. Commun. Netw. 2020 (2020) 1–11.

[24] N. Zhang, Y.-a. Tan, C. Yang, Y. Li, Deep learning feature exploration for android
malware detection, Appl. Soft Comput. 102 (2021) 107069.

[25] J. Kim, Y. Ban, E. Ko, H. Cho, J.H. Yi, MAPAS: a practical deep learning-based
android malware detection system, Int. J. Inf. Secur. 21 (4) (2022) 725–738.

[26] O.N. Elayan, A.M. Mustafa, Android malware detection using deep learning,
Procedia Comput. Sci. 184 (2021) 847–852.

[27] A. Albakri, F. Alhayan, N. Alturki, S. Ahamed, S. Shamsudheen, Metaheuristics
with deep learning model for cybersecurity and Android malware detection and
classification, Appl. Sci. 13 (4) (2023) 2172.

[28] R. Gálvez, V. Moonsamy, C. Diaz, Less is More: A privacy-respecting Android
malware classifier using federated learning, 2020, arXiv preprint arXiv:2007.
08319.

[29] C. Jiang, K. Yin, C. Xia, W. Huang, FedHGCDroid: An adaptive multi-dimensional
federated learning for privacy-preserving android Malware classification, Entropy
24 (7) (2022) 919.

[30] A. Mahindru, H. Arora, Dnndroid: Android malware detection framework based
on federated learning and edge computing, in: International Conference on
Advancements in Smart Computing and Information Security, Springer, 2022,
pp. 96–107.

[31] R. Sun, X. Yuan, P. He, Q. Zhu, A. Chen, A. Gregio, D. Oliveira, X. Li, Learning
fast and slow: Propedeutica for real-time malware detection, IEEE Trans. Neural
Netw. Learn. Syst. 33 (6) (2021) 2518–2529.

[32] Y. Chai, L. Du, J. Qiu, L. Yin, Z. Tian, Dynamic prototype network based on
sample adaptation for few-shot malware detection, IEEE Trans. Knowl. Data Eng.
35 (5) (2022) 4754–4766.

[33] P. Bhat, S. Behal, K. Dutta, A system call-based android malware detection ap-
proach with homogeneous & heterogeneous ensemble machine learning, Comput.
Secur. 130 (2023) 103277.

[34] C. Li, Q. Lv, N. Li, Y. Wang, D. Sun, Y. Qiao, A novel deep framework for
dynamic malware detection based on API sequence intrinsic features, Comput.
Secur. 116 (2022) 102686.

[35] A.T. Kabakus, DroidMalwareDetector: A novel Android malware detection frame-
work based on convolutional neural network, Expert Syst. Appl. 206 (2022)
117833.

[36] A. Mahindru, A. Sangal, SOMDROID: Android malware detection by artificial
neural network trained using unsupervised learning, Evol. Intell. 15 (1) (2022)
407–437.

[37] E.B. Fernandez, A. Brazhuk, A critical analysis of Zero Trust Architecture (ZTA),
Comput. Stand. Interfaces 89 (2024) 103832.

[38] D.S. Keyes, B. Li, G. Kaur, A.H. Lashkari, F. Gagnon, F. Massicotte, EntropLyzer:
Android malware classification and characterization using entropy analysis
of dynamic characteristics, in: 2021 Reconciling Data Analytics, Automation,
Privacy, and Security: A Big Data Challenge, RDAAPS, IEEE, 2021, pp. 1–12.

[39] A. Rahali, A.H. Lashkari, G. Kaur, L. Taheri, F. Gagnon, F. Massicotte, Didroid:
Android malware classification and characterization using deep image learning,
in: 2020 the 10th International Conference on Communication and Network
Security, 2020, pp. 70–82.

[40] S. Mahdavifar, A.F.A. Kadir, R. Fatemi, D. Alhadidi, A.A. Ghorbani, Dynamic
android malware category classification using semi-supervised deep learning,
in: 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing,
Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and
Big Data Computing, Intl Conf on Cyber Science and Technology Congress,
DASC/PiCom/CBDCom/CyberSciTech, IEEE, 2020, pp. 515–522.

[41] S. Mahdavifar, D. Alhadidi, A.A. Ghorbani, Effective and efficient hybrid android
malware classification using pseudo-label stacked auto-encoder, J. Netw. Syst.
Manage. 30 (2022) 1–34.

[42] L. Cavallaro, CopperDroid: On the reconstruction of Android malware behaviors,
in: HackInBo 2014, Royal Holloway University of London, London, 2014,
Accessed: 03-01-2024. URL http://s2lab.isg.rhul.ac.uk/.

[43] C. Zhao, C. Wang, W. Zheng, Android malware detection based on sensitive
permissions and apis, in: International Conference on Security and Privacy in
New Computing Environments, Springer, 2019, pp. 105–113.

[44] S. Rawat, R. Phira, P. Natu, Use of machine learning algorithms for Android
app malware detection, in: 2021 5th International Conference on Electrical, Elec-
tronics, Communication, Computer Technologies and Optimization Techniques,
ICEECCOT, IEEE, 2021, pp. 448–454.

[45] L. Gong, Z. Li, H. Wang, H. Lin, X. Ma, Y. Liu, Overlay-based Android malware
detection at market scales: Systematically adapting to the new technological
landscape, IEEE Trans. Mob. Comput. 21 (12) (2021) 4488–4501.

[46] B.H. Menze, B.M. Kelm, R. Masuch, U. Himmelreich, P. Bachert, W. Petrich,
F.A. Hamprecht, A comparison of random forest and its Gini importance with
standard chemometric methods for the feature selection and classification of
spectral data, BMC Bioinform. 10 (2009) 1–16.

[47] Y. Liu, Y. Mu, K. Chen, Y. Li, J. Guo, Daily activity feature selection in smart
homes based on pearson correlation coefficient, Neural Process. Lett. 51 (2020)
1771–1787.

[48] A.Z. Mustaqim, S. Adi, Y. Pristyanto, Y. Astuti, The effect of recursive feature
elimination with cross-validation (RFECV) feature selection algorithm toward
classifier performance on credit card fraud detection, in: 2021 International
Conference on Artificial Intelligence and Computer Science Technology, ICAICST,
IEEE, 2021, pp. 270–275.

[49] J. Sung, S. Han, H. Park, S. Hwang, S.J. Lee, J.W. Park, I. Youn, Classification
of stroke severity using clinically relevant symmetric gait features based on
recursive feature elimination with cross-validation, IEEE Access 10 (2022)
119437–119447.

[50] M. Kamaladevi, V. Venkataraman, K.R. Sekar, Tomek link undersampling with
stacked ensemble classifier for imbalanced data classification, Ann. Rom. Soc.
Cell Biol. (2021) 2182–2190.

[51] M.M. Ahsan, M.P. Mahmud, P.K. Saha, K.D. Gupta, Z. Siddique, Effect of
data scaling methods on machine learning algorithms and model performance,
Technologies 9 (3) (2021) 52.

[52] Cryptax, Droidlysis: a tool to analyze android applications, 2023, https://github.
com/cryptax/droidlysis, Accessed 03-01-2024.

[53] MobSF, Mobile security framework (MobSF), 2023, https://github.com/MobSF/
Mobile-Security-Framework-MobSF, Accessed 08-01-2024.

Faria Nawshin is a Graduate Assistant at the KINDI Center
for Computing Research, College of Engineering, Qatar
University. She is currently pursuing a Ph.D. degree in
Computer Science at College of Engineering, Qatar Univer-
sity. She obtained her B.Sc degree in Computer Science &
Engineering and M.Sc degree in Computer Science from
American International University-Bangladesh (AIUB) in
2016 and 2017 respectively. Her research interests include
federated learning, deep neural network, mobile computing
and cyber security.

Devrim Unal, Ph.D., Senior Member, IEEE, is a Research
Associate Professor of Cyber Security at the KINDI Center
for Computing Research, College of Engineering, Qatar
University. He obtained his M.Sc. degree in Telematics from
Sheffield University, UK and Ph.D. degree in Computer
Engineering from Bogazici University, Turkey in 1998 and
2011, respectively. Dr. Unal’s research interests include
cyber–physical systems and IoT security, secure and ro-
bust artificial intelligence and security of next generation
networks.

http://refhub.elsevier.com/S1570-8705(24)00134-3/sb12
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb12
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb12
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb12
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb12
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb12
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb12
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb13
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb13
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb13
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb13
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb13
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb13
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb13
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb14
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb14
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb14
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb14
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb14
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb15
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb15
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb15
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb16
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb16
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb16
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb16
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb16
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb17
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb17
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb17
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb17
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb17
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb18
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb18
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb18
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb19
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb19
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb19
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb19
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb19
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb20
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb20
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb20
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb20
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb20
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb21
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb21
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb21
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb21
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb21
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb22
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb22
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb22
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb22
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb22
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb23
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb23
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb23
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb24
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb24
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb24
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb25
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb25
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb25
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb26
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb26
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb26
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb27
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb27
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb27
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb27
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb27
http://arxiv.org/abs/2007.08319
http://arxiv.org/abs/2007.08319
http://arxiv.org/abs/2007.08319
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb29
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb29
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb29
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb29
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb29
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb30
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb30
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb30
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb30
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb30
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb30
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb30
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb31
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb31
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb31
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb31
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb31
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb32
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb32
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb32
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb32
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb32
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb33
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb33
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb33
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb33
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb33
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb34
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb34
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb34
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb34
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb34
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb35
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb35
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb35
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb35
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb35
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb36
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb36
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb36
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb36
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb36
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb37
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb37
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb37
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb38
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb38
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb38
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb38
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb38
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb38
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb38
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb39
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb39
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb39
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb39
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb39
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb39
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb39
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb40
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb40
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb40
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb40
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb40
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb40
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb40
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb40
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb40
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb40
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb40
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb41
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb41
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb41
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb41
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb41
http://s2lab.isg.rhul.ac.uk/
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb43
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb43
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb43
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb43
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb43
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb44
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb44
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb44
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb44
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb44
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb44
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb44
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb45
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb45
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb45
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb45
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb45
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb46
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb46
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb46
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb46
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb46
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb46
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb46
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb47
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb47
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb47
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb47
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb47
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb48
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb48
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb48
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb48
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb48
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb48
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb48
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb48
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb48
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb49
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb49
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb49
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb49
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb49
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb49
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb49
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb50
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb50
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb50
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb50
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb50
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb51
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb51
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb51
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb51
http://refhub.elsevier.com/S1570-8705(24)00134-3/sb51
https://github.com/cryptax/droidlysis
https://github.com/cryptax/droidlysis
https://github.com/cryptax/droidlysis
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/MobSF/Mobile-Security-Framework-MobSF

Ad Hoc Networks 161 (2024) 103523

17

F. Nawshin et al.

Mohammad Hammoudeh is Saudi Aramco Cybersecurity
Chair Professor with the Information & Computer Science
Department, King Fahd University of Petroleum & Minerals,
Saudi Arabia. His research interests include the applications
of zero trust security to internet-connected critical national
infrastructures and blockchain.

Ponnuthurai Nagaratnam Suganthan received the B.A
degree and M.A degree in Electrical and Information Engi-
neering from the University of Cambridge, UK in 1990, 1992
and 1994, respectively. He received an honorary doctorate
(i.e. Doctor Honoris Causa) in 2020 from University of
Maribor, Slovenia. After completing his Ph.D. research in
1995, he served as a pre-doctoral Research Assistant in
the Dept of Electrical Engineering, University of Sydney in
1995–96 and a lecturer in the Dept of Computer Science and
Electrical Engineering, University of Queensland in 1996–
99. Since August 2022, he has been with KINDI Centre
for Computing Research, Qatar University, as a research

professor. He was an Editorial Board Member of the Evo-
lutionary Computation Journal, MIT Press (2013–2018). He
is/was an associate editor of the Applied Soft Computing
(Elsevier, 2018-), Neurocomputing (Elsevier, 2018-), IEEE
Trans on Cybernetics (2012–2018), IEEE Trans on Evo-
lutionary Computation (2005–2021), Information Sciences
(Elsevier) (2009 -), Pattern Recognition (Elsevier) (2001
-) and IEEE Trans on SMC: Systems (2020 -) Journals.
He is a founding co-editor-in-chief of Swarm and Evolu-
tionary Computation (2010 -), an SCI Indexed Elsevier
Journal. His co-authored SaDE paper (published in April
2009) won the ‘‘IEEE Trans. on Evolutionary Computation
outstanding paper award’’ in 2012. His research interests
include randomization-based learning methods, swarm and
evolutionary algorithms, pattern recognition, deep learning
and applications of swarm, evolutionary & machine learning
algorithms. He was selected as one of the highly cited
researchers by Thomson Reuters Science Citation yearly
from 2015 to 2022 in computer science. He served as the
General Chair of the IEEE SSCI 2013. He has been a member
of the IEEE (S’91, M’92, SM’00, Fellow 2015) since 1991
and an elected AdCom member of the IEEE Computational
Intelligence Society (CIS) in 2014–2016. He was an IEEE
CIS distinguished lecturer (DLP) in 2018–2021.

	AI-powered malware detection with Differential Privacy for zero trust security in Internet of Things networks
	Introduction
	Zero trust Security Architecture and Differential Privacy
	Zero Trust and Android Malware Analysis
	Differential Privacy
	Privacy Budget
	Gaussian Mechanism

	Related Work
	Methodology and Implementation
	Security Assumptions and Threat Model
	Security Assumptions
	Threat Model

	Dataset Details
	Feature Selection
	Data Preprocessing
	Integrating Privacy and Zero Trust into the Model

	Result Analysis
	Experimental Setup
	Performance Metrics
	Detecting Android Malware
	Classifying Android Malware
	Training Time Evaluation
	Testing Data for Zero Trust

	Discussion and Future Work
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgment
	References

