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Abstract

Skin lesion image datasets gained popularity in recent
years with the successes of ISIC datasets and challenges.
While the users of these datasets are growing, the Dark Cor-
ner Artifact (DCA) phenomenon is under explored. This
paper provides a better understanding of how and why
DCA occurs, the types of DCAs and investigates the DCA
within a curated ISIC image dataset. We introduce new
labels of image artifacts on a curated balanced dataset
of 9,810 images and identified 2,631 images with differ-
ent intensities of DCA. Then, we improve the quality of this
dataset by introducing automated DCA detection and re-
moval methods. We evaluate the performance of our meth-
ods with image quality metrics on an unseen dataset (Der-
mofit), and achieved better SSIM score in every DCA inten-
sity level. Further, we study the effects of DCA removal on
a binary classification task (melanoma vs non-melanoma).
Although deep learning performances in this task show
marginal differences, we demonstrate that with DCA re-
moval, it can help to shift the network activations to the
skin lesions. All the artifact labels and codes are available
at: https://github.com/mmu-dermatology-
research/dark_corner_artifact_removal.

1. Introduction
Deep learning has had a lot of movement in medicine

in recent years. Binary classification on dermatoscopic im-
ages of skin lesions validate the effectiveness of deep learn-
ing algorithms in this sector [8]. Dermatoscopy generates
highly detailed images of malignant and non-malignant skin
lesions [4]. Dermatologists then use these images to di-
agnose a skin lesion as being cancerous or not. The ac-
curacy of clinical diagnosis with the unaided eye is only
about 60%, whilst with the use of a dermatoscope an expert
dermatologist can correctly diagnose approximately 80% of
the time [10]. Artificial intelligence and machine learning
has been of high interest in efforts to improve this diagno-
sis accuracy to aid dermatologists in the diagnosis of skin

Figure 1. Illustration of different DCA Intensities. From left
to right: No DCA, Small DCA (covers 7% of the image area),
Medium DCA (covers 25% of the image area) and Large DCA
(covers 50% of the image area) according to [17].

cancer [1, 7].
Due to the nature of dermatoscopic images, a variety

of different artifacts can occur. For example, hair strands,
air bubbles, ruler measurements and dark tubular periph-
ery (more commonly known as dark corner artifact (DCA)
or black frame). Figure 1 illustrates DCA of different in-
tensities. These artifacts make segmentation and classifi-
cation more complex [18]. Although DCA are commonly
acknowledged in other research, they are less-recognised
in efforts to understand its effect on skin lesions classifi-
cation. DCA have a large potential to skew a CNN classi-
fications, ultimately effecting the accuracy of the proposed
deep learning models [17]. Since the role of DCA is less
recognised in classification, there are limited efforts to re-
move this artifact from dermatoscopic images.

The most related study was conducted by [17], where the
authors investigated the effect of DCA on the performance
of skin lesion classification. The idea behind the study was
to superimpose the DCA onto all images in the dataset with
varying intensities (small, medium and large). [17] high-
lighted a handful of limitations encountered in this study.
These limitations include the fact that the dataset was col-
lected from patients at increased melanoma risk and that
the majority of the images were acquired from fair-skinned
patients living in Germany. It is not detailed in this study
that the dataset is very small (233 images), and that having
a much larger dataset would produce a much more accu-
rate model. A large quantity of data would allow the CNN
to more accurately define the features and relationships be-
tween the images. Another issue with this study is that only
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one example of a CNN has been used to determine results.
Using a cohort of different CNNs would give the opportu-
nity to cross examine the results and ensure that the result
was not anomalous. Before artificial intelligence can be in-
corporated into the dermatological process, more research
is required to prove that any predictive model generated for
this task is correctly identifying features of a skin lesion and
not any artifact observed.

This paper aims to investigate the DCA phenomenon in
skin lesion image dataset, gain a better understanding of
how and why they occur and develop efficient DCA re-
moval processes. With this understanding, the efficiency of
modern deep learning methods applied to the binary clas-
sification of melanoma vs non-melanoma can be evaluated
and the idea of a class bias correlating to images contain-
ing DCA can be determined. The main contributions of
this paper are dataset-centric by: 1) Providing new insights
and understanding of dark corner in skin lesions; 2) Intro-
ducing new labels and attributes (manually inspected un-
der 600x magnification) of skin lesion image dataset that
will be made available publicly; and 3) Improving the qual-
ity of skin lesion image dataset by proposing DCA removal
method.

2. Related works
There are limited attempts in previous research in remov-

ing DCA. In a study conducted by [12], unsegmented im-
ages from PH2 dataset [13] were manually cropped so that
any DCA was removed from the image. It was believed that
these artifacts were causing a drop in model performance
as a large proportion of the PH2 dataset [13] consisted of
images with this artifact. There were multiple datasets used
throughout this study, including ISIC 2018 [6], HAM [21]
and PH2 [13], however the size of the datasets used were
not specified. The manual cropping of DCA was only ap-
plied to the PH2 dataset [13]. Manual cropping of images
is a task that is very time consuming and results in loss of
potentially important data within images. Cutting a square
out of a circle will lose the edges of the circle. These edges
of the circle could contain the nevi and this would be lost in
the cropping process.

Tajeddin and Asl [19] made efforts to remove DCA
alongside a variety of other image artifacts for the ISBI
melanoma segmentation challenge. This method was tested
on a dataset of 900 images. In order to remove the DCA,
they used a simple method of masking the images contain-
ing the dark corners. Pre-defined masks were used and se-
lected by evaluating 9 different pixel regions of the image
and determining the pixel intensity of the region. This mask
was then applied in a further pre-processing step prior to us-
ing Otsu’s thresholding method [14]. The method does not
remove the artifact, it only works around it by disregard-
ing the area from the thresholding method. Moreover, the

dataset this literature was conducted on only contains 900
images. The post-processing steps used to alter the mask
may have been fine for this dataset, but it might not be so ef-
ficient for a larger dataset. A similar study conducted by [9]
used Otsu’s thresholding [14] to generate a mask of the dark
corners in order to ignore them from segmentation. This pa-
per did not attempt to classify the lesions, only to suggest
an appropriate method to handle unwanted artifacts. This
study also used a limited dataset of 200 images.

Another approach that has been used to remove DCA
is cellular automata. [18] used this method in efforts to en-
hance the quality of the images ready for processing through
a diagnostics tool. It was suggested that using the images
without pre-processing steps might interfere with subse-
quent border detection steps. The approach was to inscribe
both a circle and an ellipse centrally on the image with a ra-
dius of half the image width. The dataset used by [18] con-
tained 45 dermatoscopic images. One thing that was noted
during this study is that the darkness level of the DCA is
not constant, so it is not as simple as applying a mask to
identify the DCA region. When [18] evaluated the result-
ing images, it was found that this method was ineffective on
images with a large nevi (the circle did not cover the entire
area of interest). The radius was then changed to half the
length of the image and yielded better results.

Although research into removal of this artifact is lim-
ited, there are multiple key points that are apparent from
reviewing other literature surrounding this issue. The first
key issue with other studies is that the dataset sizes used to
remove the artifact in many of the methods are very small.
Incorporating the methods used by other researchers onto a
large dataset could result is a substantial difference in relia-
bility and accuracy of the removal method. This is a com-
mon issue as access to a large dataset of dermatoscope im-
ages is very limited.

Another key issue raised from literature surrounds the
occurence of the DCA itself. As the artifact is directly re-
lated to the device settings, the intensity of the artifact varies
greatly. There is no standard size of artifact, it is directly in-
fluenced by the magnification of the device. This means
that pre-defined masks would be inaccurate and inefficient
due to the variety of artifact size. Not only do the artifacts
vary greatly in size, but the darkness level of the artifact
is not standardised either. As the artifact may not be solid
black, it can be difficult to identify using the colour. This
is why many of the studies focus on the shape rather than
the colour. Finally, many of the studies do not compare the
results generated post-removal of the artifact. Although the
artifact may have been removed from the image, it would
be useful to be able to compare and draw conclusion on the
effect the removal has on the accuracy of the CNN.
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Figure 2. Examples of artifact on skin lesions.

3. Methods

3.1. Dataset

We use a curated balanced dataset proposed by [5],
which consists of equal number of melanoma images and
other category of skin lesion images. This dataset has a total
of 9,810 images, where the authors split it to 7,848 training
images and 1,962 validation images. This dataset has been
evaluated for skin lesion classification tasks. The nature
of our study is dataset-centric, to understand the properties
and attributes of the vision dataset, and with no intention
to improve the classification algorithms. There are a num-
ber of reasons as to why the curated balanced dataset has
been used throughout this study. Firstly, this dataset con-
tains a large number of images. The majority of research
in this area uses small datasets and this is a key problem.
Secondly, the number of melanoma images in this dataset is
a significant improvement. Thirdly, this dataset contains a
comprehensive amount of examples of varying artifacts, in
particular there are a multitude of images containing DCA,
which allows in depth testing of methods and results. Fi-
nally, this dataset contains balanced classes and has been
thoroughly checked for duplicate images to help reduce bias
in any deep learning models created.

3.2. New Labels on Image Artifacts

The extent of artifact types present in the curated bal-
anced dataset is broad. In order to gain a more insightful
understanding of the artifacts distribution, each image has
been manually inspected under 600x magnification and an-
notated against the artifact categorical conditions. Figure 2
displays examples of all artifact types: Borders, Hair, Mea-
surement Device, Air Pocket(s) and Clinical Markings. It is
important to note that the annotations that have been made
are subjective to what is believed to be exhibited in the im-
ages. New annotations made on the dataset may yield dif-
ferent results to the ones discovered in this process.

Table 1 shows the distribution of artifacts in the curated
balanced dataset. It shows that the presence of hair is the
most common artifact in dermatological images, followed
by the presence of borders of any type. Another observation
is the presence of borders is more common in melanoma. In
the training set, the presence of borders is 2.6 times more
frequent in the melanoma compared to the other. In the
validation set, the presence of borders is 2.3 times more fre-
quent in the melanoma compared to the other. More borders

Table 1. Distribution of artifacts in the curated balanced dataset.

Artifact Subset Artifact
Category Train Mel Train Oth Val Mel Val Oth Totals
Borders 1721 663 417 179 2980
Hair 2224 2595 560 617 5996
Measurement Device 962 749 202 183 2096
Air Pockets 1129 637 442 142 2350
Clinical Markings 124 90 29 20 263
Other 100 55 55 18 228
No Artifacts 377 616 57 172 1222

Figure 3. Border Category Examples (Black Border - left, DCA -
middle, Non-Contact Background - right)

Table 2. Distribution of border artifact types across the curated
balanced dataset.

Border Subset Border Type
Type Train Mel Train Oth Val Mel Val Oth Totals
Black Bar(s) 56 212 10 58 336
DCA 1657 451 405 118 2631
Non-Contact BG 8 0 2 3 13
Dataset Totals 1721 663 417 179 2980

in the melanoma class may cause bias toward classification
task in any trained predictive models. All other categories
of artifact are closely matched across subsets.

3.3. DCA Labels

The borders artifact category is the most important as
this category encapsulates DCA. It is necessary to under-
stand how many images across the entire dataset are af-
fected by DCA of any size. Figure 3 shows examples of
each border artifact category and Table 2 shows a break-
down of the borders artifact category.

When comparing the different border sub-categories, it
is clear that DCA are by far the most common border type
found in the dataset. Of this category, DCA occupy 88.3%,
with the black bars and non-contact backgrounds occupy-
ing the further 11.7%. As the dataset size is 9,810 images,
26.8% of the entire dataset exhibits DCA.

Following the guidelines set out in the DCA Diagnostic
Performance research conducted by [17], the images cate-
gorised as having a DCA have been further categorised into
small, medium and large subsets. In order to get a true mea-
sure of the DCA size for each image, the masks generated
from the masking process detailed in Section 3.4 will be
used. Figure 4 shows examples of the DCA types and Ta-
ble 3 shows a breakdown of the DCA size categories. The
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Figure 4. DCA Category Examples (Small DCA - left, Medium
DCA - middle-left, Large DCA - middle-right, Other - right)

Table 3. Distribution of DCA sizes across the curated balanced
dataset.

DCA Subset DCA Type
Type Train Mel Train Oth Val Mel Val Oth Totals
Small DCA 742 237 167 58 1204
Medium DCA 393 79 95 16 583
Large DCA 343 78 80 25 526
Other 179 57 63 19 318
Dataset Totals 1657 451 405 118 2631

categories are determined by the following criteria:

• Small DCA: Any image with a DCA covering between
1% and 24% of the image (inclusive)

• Medium DCA: Any image with a DCA covering be-
tween 25% and 49% of the image (inclusive)

• Large DCA: Any image with a DCA covering over
50% of the image (inclusive)

• Other: This extra category has been added for any im-
age containing a DCA covering less than 1% of the
image.

From the results in Table 3, it can be seen that of all
DCA artifacts found in the curated balanced dataset, there
are more small DCA than any other type with a total cov-
erage of 45.8% of the dataset. The second most common
DCA artifact type is the medium DCA with a total coverage
of 22.2% of the dataset, followed by the large DCA which
cover 19% of the dataset. 12% of the DCA identified in
the curated balanced dataset have less than 1% total image
pixels.

3.4. DCA Detection and Dynamic Masking

We proposed an efficient process to masking images with
DCA more effectively, ensuring a minimum loss of data.
This section details a new, dynamic process to masking im-
ages with DCA and ensuring as much data is retained as
possible.
Contour Extraction. When inspecting an image with a
DCA, the most prominent shape on the image is the outer
ring of the DCA. Finding all of the contours in the image
displays an almost perfect outline of the DCA region, along
with all other contours found within the image with the

Figure 5. Contour extraction from images with DCA.

given threshold value. These contours can be found by re-
trieving a binary threshold image from the greyscale trans-
form of the original image and passing the image through
the computer vision inbuilt function to find all contours in
the image. Figure 5 shows the binary threshold result from
the original image, followed by the contours that are ex-
tracted from the threshold. The left-most example in Fig-
ure 5 contains a DCA with a small area. The central and
right-most examples in Figure 5 exhibit lesions that pro-
trude the artifact boundary and display results that do not
resemble full circles. The images in this figure have been
selected to display the effectiveness of the masking process.
Largest Contour Identification. Once all of the contours
have been identified within the image, it is necessary to re-
cover the contour with the largest area. The contour with the
largest area in the image is the contour which most closely
matches the edge of the DCA. This contour is retrieved by
calculating the area of all existing contours. Once the area
of each contour is calculated, the contour with the maxi-
mum area is selected. The top row of Figure 6 shows the
largest contour that is extracted from all contours located
in the image and the result of using this contour as a mask
directly. As can be seen in the central row, the masks gener-
ated at this stage appear to work well for DCA with a small
surface area, however the lesions in the images with pro-
trusions suffer from large amounts of data loss around the
nevi.
Cellular Automata. In order to only capture the DCA
present in the image and retain as much data in the image as
possible, the idea of cellular automata used in the research
conducted by [18] has been incorporated into the process.
Instead of iteratively increasing the circle from the centre
of the image, a minimum enclosing circle has been used to
contain the largest contour within. This uses a bounding
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Figure 6. Generating a mask from the largest contour

Figure 7. Comparison of original images against masked images

circle which iteratively reduces in size until it can no longer
reduce. The centre point and radius of the minimum en-
closing circle is calculated and a new circle is drawn. The
new circle has a reduced radius of 2 pixels to account for
the darkened area of the DCA. The bottom row in Figure 6
displays the new mask that is created from the minimum
enclosing circle surrounding the largest contour.

Figure 7 shows the original image against a copy of the
image with the DCA mask superimposed on top. Once the
masks are superimposed on top of the original images, it
can be seen that the DCA present in each of the images
have been correctly identified, whilst retaining as much data
within the image as possible. The results produced are ac-
curate regardless of the size of the DCA and the positioning
of the lesion. A small amount of data has been sacrificed in
order to eliminate the shaded edges that are present in the
transition into the DCA.

Figure 8. Radius boundaries surrounding the DCA outline (red =
area to remove, green = area to keep)

3.5. Proposed DCA Removal Method

DCA intensity reduction. When dealing with medium and
large DCA, the area of the DCA can be extreme. To reduce
a lot of the processing required for predicting the DCA re-
gion, the edges of these images need to be removed as much
as possible. As the sizes of the DCA are not static, this
process also needs to be dynamic. From the masks gener-
ated of the DCA, the centre point and radius are retrieved.
This information is crucial to accurately determine the DCA
boundary on both the x and y axis. Figure 8 displays the
area which can be removed outside of the DCA boundary
using the radius of the circle.

In order to remove the edges from the DCA, the thick-
ness of the horizontal and vertical borders need calculating.
The thickness of border to remove from an image (r) is cal-
culated with equation 1:

r = min ((Ldist +Rdist), (Tdist +Bdist)) (1)

where: Ldist is equal to the spacing of the left-most edge of
the image and the DCA; Rdist is equal to the spacing of the
right-most edge of the image and the DCA; Tdist is equal
to the spacing of the upper-most edge of the image and the
DCA; and Bdist is equal to the spacing of the lower-most
edge of the image and the DCA.

With the total removal amount calculated from the hor-
izontal and vertical border thickness, the border can be re-
moved from the image whilst retaining a square image. Fig-
ure 9 shows the result after intensity reduction processing
has been completed against the original image. When this
process encounters an image that does not have a medium or
large DCA or the DCA protrudes more than 2 edges of the
image, no intensity reduction steps are applied as no edges
can be removed without removing data from the image.
Super Resolution and Rescaling Once the intensity re-
duction process has been completed, there is a new issue
present with the images. As some of the image has been
removed, the images are no longer all the same size. Sim-
ply resizing the images that have been cropped will cause
a large reduction in quality. The cropped images which
are enlarged in figure 9 show the level of distortion that
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Figure 9. Comparison of before and after Intensity Reduction

results from resizing an image directly. In order to retain
image quality, super resolution steps are applied to the im-
ages when upscaling the size.

Lim et al. [11] proposed new EDSR network to recon-
struct high-resolution images at a higher scale. To train this
network, [11] used a baseline model resembling the ResNet
architecture is created with ReLU activation layers outside
of the residual blocks removed. This baseline model uses
64 feature maps for each convolutional layer, so no resid-
ual scaling is used in this step. Once the baseline model
is trained, it is expanded to contain 32 feature channels
with a scaling factor of 0.1. This model uses a pre-trained
baseline model to improve performance and results. [11]
won the NTIRE2017 Super-Resolution Challenge with this
proposed method. To restore image quality whilst the im-
ages are up-scaled, the DCA images which are cropped are
passed through a pre-trained EDSR model. As the new im-
ages are scaled 4x the original size, the resulting images
will be larger than required. The resulting images are then
resized back to the original size of 224×224.
Corner Removal Once the DCA intensity has been reduced
as much as possible and the image quality is restored, fur-
ther image processing techniques can be applied in efforts
to predict the remaining region within the DCA area. We
use two popular image processing inpainting methods. The
first method that has been used to remove the DCA region is
inpainting with a Navier Stokes [3]. This method was cre-
ated by [3] where ideas from fluid dynamics equations have
been adapted for use in image inpainting. Each of the inputs
used in the original equations are matched with a feature of
the image. To summarise this method, the image smooth-
ness is calculated using the Laplacian operator and is spread
across isophote lines detected within the image. The sec-
ond method that has been used to remove the DCA region
is inpainting with an algorithm proposed by [20]. To ap-

proximate the value of a pixel, this method takes the known
neighborhood of the pixel in question (the known pixels in
the image within a given radius) and sums the weighted,
normalised estimates that are calculated from the edges of
the radius. Each point within the region to predict is iter-
atively estimated starting from the edges of the area until
the entire region has been predicted. This method applies
techniques that are used in manual inpainting processes at a
much quicker rate.

3.6. Image Quality Comparison

In order to calculate and evaluate the effectiveness
of the DCA removal processes detailed above, a sec-
ond image dataset is introduced to limit any future
bias. The dataset used for this task is the Der-
mofit Image Library [2]: https://licensing.edinburgh-
innovations.ed.ac.uk/product/dermofit-image-library. This
dataset contains 1300 high quality images of skin lesions
from multiple classes with a minimal amount of artifacts
present. Due to the licensing surrounding this dataset, no
images are able to be shared in this report.

The images are loaded and shuffled to ensure a good
class distribution before splitting into 4 subsets of 318 im-
ages. These subsets represent the different DCA intensity
containing a balanced amount of images for each DCA
size. This is determined by the lowest number of DCA
masks generated from the ISIC curated balanced dataset.
The masks that are generated from the ISIC curated bal-
anced dataset are superimposed onto the Dermofit images
to recreate the DCA effect, giving both a masked image and
a ground truth image. To evaluate the performance of our
proposed DCA removal method, we compare the inpainted
area of the DCA image with the expected area in the ground
truth values.

4. Experiments and Results

This section present the results of the proposed DCA re-
moval method and an additional experiment to evaluate its
effect on a classification task. Figure 10 visually compare
the results of our proposed DCA removal method, on a su-
per resolution image. Both inpainted images show a closely
matched skin colour in most areas of the image. The main
visual difference between both resulting images is the up-
per left corner in the Telea method appears to more accu-
rately reflect the skin colour expected - however there is a
residual black line surrounding the perimeter of the DCA
boundary. The Navier Stokes result also shows a clear vari-
ance in colour across the DCA perimeter. Both inpainting
methods explained above appear to have made large visual
improvements to the quality of images containing DCA and
it is clear the colour gradient between the actual image and
the DCA area is reduced drastically.
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Figure 10. Illustration of inpainted results, from left to right: Super
Resolution Image, inpainted Image with Navier Stokes method,
and inpainted Image with Telea method.

Table 4. A comparison of image quality of baseline (augmented
DCA) and DCA removal methods.

Method Set MSE ⇓ MAE ⇓ SSIM ⇑ PSNR ⇑
Baselines Small 8.9923 7.6207 0.9133 16.2673

Medium 40.8948 34.5211 0.6088 8.1716
Large 67.1845 60.4687 0.3530 6.1891
Oth 0.3729 0.3119 0.9966 30.4560

Inpainting (NS) Small 3.0813 9.5022 0.9837 43.9194
Medium 9.0683 30.0187 0.9553 36.4367
Large 11.1234 35.6139 0.9584 34.6459
Oth 0.0933 0.3520 0.9997 61.3411

Inpainting (Telea) Small 3.2043 8.0621 0.9833 43.7565
Medium 9.1789 26.8469 0.9544 36.4933
Large 11.2175 32.7812 0.9573 34.7656
Oth 0.1050 0.3204 0.9997 60.3124

4.1. Image Quality Assessment

Table 4 shows the vast majority of metrics have in-
creased in performance from the baseline results for both
removal processes. Overall both DCA removal methods
gained performance on most metrics in comparison to the
baseline results, but both methods show a decrease in MAE
performance for images containing small DCA. The MAE
for each DCA size has greater improvement rates for the
Navier Stokes based method, the MAE shows less per-
formance losses and more performance gains in the Telea
based method, the SSIM shows more improvements in the
Navier Stokes based method and the PSNR shows level in-
creases between the methods. From these metrics, it can
be seen that both methods produce comparable results, with
the greatest affected category of DCA that both methods
improve is the large DCA.

4.2. Evaluation on Skin Lesions Classification

Eighteen of the most widely used deep learning mod-
els in image classification tasks from the Keras Ap-
plications zoo have been trained using the dataset in
its original state to form a series of benchmark re-
sults. These results enable comparisons with results gen-
erated using the datasets with new DCA labels. The
deep learning models used are VGG16, VGG19, Xcep-
tion, ResNet50, ResNet101, ResNet152, ResNet50V2,
ResNet101V2, ResNet152V2, InceptionV3, InceptionRes-

Table 5. A Comparison of DCA removal methods on binary skin
lesions classification.

Model Method Acc TPR TNR F1 AUC
InceptionResNetV2 Baseline 0.82 0.80 0.83 0.81 0.89

Telea 0.79 0.69 0.88 0.76 0.88
NS 0.80 0.81 0.79 0.80 0.88

DenseNet121 Baseline 0.76 0.67 0.84 0.73 0.82
Telea 0.80 0.80 0.80 0.80 0.88
NS 0.80 0.77 0.83 0.79 0.88

EfficientNetB3 Baseline 0.75 0.63 0.88 0.72 0.82
Telea 0.79 0.78 0.79 0.78 0.87
NS 0.77 0.73 0.82 0.76 0.86

NetV2, DenseNet121, DenseNet169, DenseNet201, Effi-
cientNetB0, EfficientNetB1, EfficientNetB3 and Efficient-
NetB4. Note that we only present the top-3 best models,
the full results are available at: https://github.com/
mmu- dermatology- research/dark_corner_
artifact_removal.

Each model is trained using stochastic gradient descent
with a batch size of 64, no pre-trained weights and a maxi-
mum of 200 epochs with a patience of 10 epochs. It is im-
portant to note that no model fine tuning is used in this train-
ing process and all models are trained using the same hyper-
parameters to ensure fairness and validity when comparing
model performance. The epoch for each model showing
the maximum validation accuracy was saved and recorded.
The hardware configuration used to train all of the networks
was an AMD Ryzen 7 3700X 8-core 16-thread 4.4GHz
CPU with 16GB DDR4 3000MHz Dual-Channel RAM and
an NVIDIA Geforce RTX 3090 FE 24GB GDDR6X GPU.
The software configuration used was Python 3.9.7, Tensor-
Flow GPU 2.9.0-dev20220203, CUDA 11.2.1 and cuDNN
8.1 running on Windows 10.

When comparing the results as in Table 5, it shows that
the model performances for each method have marginal dif-
ferences. This is not surprise as the original training set
with DCA will continue to provide prediction. However,
there is a possibility that DCA has been used to predict
melanoma (as there are more melanoma cases with DCA
in the dataset).

To understand the effect of DCA and our proposed DCA
removal methods on the model performance, it is neces-
sary to further examine the network using Grad-CAM [16].
Grad-CAM extracts gradients from the final convolutional
layer of a CNN and generates a heatmap. This heatmap
shows the areas of the image which are most focused on
by the convolutional layer. For this experiment, a class im-
plementation of Grad-CAM created by [15] has been used.
The colour scheme used in the following Grad-CAM im-
ages show the bright yellow areas as the targeted areas and
the purple areas as the areas of least interest by the network.

Figure 11 displays the different Grad-CAM heatmaps
generated for the same image exhibiting a DCA across each
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Figure 11. Comparison of Grad-CAM results for each removal-
method using InceptionResNetV2.

of the InceptionResNetV2 models for the baseline model
and each removal method used. InceptionResNetV2 has
been used because it was the most common network with
the best performance across each of the result sets.

As illustrated in Figure 11, the network activations in
the baseline model are largely focused on the DCA region.
In both of the networks using DCA removal methods, the
activations shift to focus mostly on the skin lesion indicat-
ing that the network is no longer predicting based on the
DCA and is focusing more on the features of the lesion it-
self. In this example, it can be seen that the prediction in the
baseline results was incorrect, whereas the predictions made
following the removal methods are correct. This example
supports the concept that the DCAs give a natural bias to-
ward the melanoma classification, which can be eliminated
by using DCA removal techniques.

To further support this, Figure 12 takes an image belong-
ing to the ’oth’ classification which is correctly predicted by
the baseline model and superimposes each a DCA of vari-
ous sizes onto it. Grad-CAM images are generated for each
image to show the difference in focus by the same baseline
network (InceptionResNetV2).

As shown in Figure 12, as the DCA intensity increases
- the area of focus in the centre of the image restricts. The
network is able to correctly predict the class of the image
when there is no DCA or if a small DCA is used. The ac-
tivations in the original image and small DCA image also
focus largely on the skin lesion. Once medium and large
DCAs are superimposed onto the image, the activations no
longer focus on the lesion are mostly predict based on the
edges of the image. The medium and large DCA images
are incorrectly predicted as belonging to the ’mel’ classifi-
cation.

Figure 12. Grad-CAM results for the best performing baseline
model for an image with varying DCA sizes superimposed. ‘mel’
for melanoma and ‘oth’ for other class.

5. Conclusion

This research has explored a widely acknowledged im-
age artifact that has a large potential to skew the decision
making of CNNs and generate a dynamic process to elim-
inate the artifact from images. It enables a deep under-
standing of the skin lesions image dataset, the artifacts and
the DCA phenomenon. An effective masking and DCA
removal method were created in order to limit the effect
these artifacts have on the classification process. The orig-
inal dataset and both removal methods were evaluated us-
ing popular deep learning methods for image classification
tasks. Although comparable results have been generated,
it is clear from the Grad-CAM heatmaps that the network
activations were originally focused on the DCA region and
with the removal processes, the activations focus more on
the areas intended.

There are many different avenues that could be explored
in efforts to enhance this project further. The main avenue
is to determine a better approach to removing the remain-
ing DCA from the image once the intensity reduction steps
have been applied. The majority of images are inpainted
effectively however there are examples where the process
has not worked as well. Another popular and actively re-
searched approach in computer vision is outpainting with
GANs. [22] proposed two outpainting methods to predict
what is beyond the edges of a square image whilst retain-
ing the style of the original image and reducing blur. If this
method were to be modified to predict beyond a circular re-
gion as opposed to square, the DCA removal process may
generate more accurate and less blurry predictions beyond
the DCA border. This could possibly further divert the fo-
cus of the activations from the DCA region.
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