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ARTICLE OPEN

Identifying nootropic drug targets via large-scale cognitive
GWAS and transcriptomics
Max Lam 1,2,3,4,5, Chia-Yen Chen3,6,7, Tian Ge2,7, Yan Xia8,9, David W. Hill10,11, Joey W. Trampush12, Jin Yu1, Emma Knowles13,14,15,
Gail Davies 10,11, Eli A. Stahl16,17,18, Laura Huckins17,18, David C. Liewald 11, Srdjan Djurovic19,20, Ingrid Melle 21,
Andrea Christoforou22,23, Ivar Reinvang24, Pamela DeRosse 1,4,25, Astri J. Lundervold 26, Vidar M. Steen20,23, Thomas Espeseth21,24,
Katri Räikkönen27, Elisabeth Widen28, Aarno Palotie28,29,30, Johan G. Eriksson31,32,33, Ina Giegling34, Bettina Konte 34,
Annette M. Hartmann34, Panos Roussos 17,18,35, Stella Giakoumaki36, Katherine E. Burdick17,35,37, Antony Payton38, William Ollier39,40,
Ornit Chiba-Falek 41, Deborah C. Koltai42, Anna C. Need43, Elizabeth T. Cirulli44, Aristotle N. Voineskos 45, Nikos C. Stefanis46,47,48,
Dimitrios Avramopoulos 49,50, Alex Hatzimanolis46,47,48, Nikolaos Smyrnis46,47, Robert M. Bilder 51, Nelson B. Freimer51,
Tyrone D. Cannon52,53, Edythe London 51, Russell A. Poldrack 54, Fred W. Sabb55, Eliza Congdon51, Emily Drabant Conley56,
Matthew A. Scult57,58, Dwight Dickinson59, Richard E. Straub60, Gary Donohoe61, Derek Morris 61, Aiden Corvin62, Michael Gill 62,
Ahmad R. Hariri58, Daniel R. Weinberger 60, Neil Pendleton63, Panos Bitsios64, Dan Rujescu34, Jari Lahti 27,65,
Stephanie Le Hellard20,23, Matthew C. Keller66, Ole A. Andreassen 21,67, Ian J. Deary 10,11, David C. Glahn13,14,15, Hailiang Huang2,3,
Chunyu Liu 8,9, Anil K. Malhotra1,4,25 and Todd Lencz 1,4,25

Broad-based cognitive deficits are an enduring and disabling symptom for many patients with severe mental illness, and these
impairments are inadequately addressed by current medications. While novel drug targets for schizophrenia and depression have
emerged from recent large-scale genome-wide association studies (GWAS) of these psychiatric disorders, GWAS of general
cognitive ability can suggest potential targets for nootropic drug repurposing. Here, we (1) meta-analyze results from two recent
cognitive GWAS to further enhance power for locus discovery; (2) employ several complementary transcriptomic methods to
identify genes in these loci that are credibly associated with cognition; and (3) further annotate the resulting genes using multiple
chemoinformatic databases to identify “druggable” targets. Using our meta-analytic data set (N= 373,617), we identified 241
independent cognition-associated loci (29 novel), and 76 genes were identified by 2 or more methods of gene identification. Actin
and chromatin binding gene sets were identified as novel pathways that could be targeted via drug repurposing. Leveraging our
transcriptomic and chemoinformatic databases, we identified 16 putative genes targeted by existing drugs potentially available for
cognitive repurposing.

Neuropsychopharmacology (2021) 46:1788–1801; https://doi.org/10.1038/s41386-021-01023-4

INTRODUCTION
One central goal for genome-wide association studies (GWAS) is the
identification of potential targets for clinically useful pharmacologic
interventions; drugs whose targets have supporting genetic
evidence of association to the indication are significantly more
likely to successfully reach approval than those without such
evidence [1]. While novel drug targets for major psychiatric illnesses
have emerged from recent large-scale GWAS [2–4], broad-based
cognitive deficits are an enduring and disabling feature for many
patients with severe mental illness and are inadequately addressed
by current medications [5]. Similarly, effective cognitive enhancing
medications (“nootropics”) are limited for patients with dementias
and other neurodegenerative disorders [6]. Thus, the genetic study
of general cognitive ability (GCA) holds the potential for identifying
novel targets for nootropic medications, which could have wide-
spread applications [7].
The genetic architecture of GCA has been examined with

increasingly large sample sizes over the last few years [8–10].

Physical health, illness, mortality [11], and psychiatric traits [12]
have shown significant genetic correlations with individual
differences in GCA. Dissecting the pleiotropic genetic architectures
underlying GCA, educational attainment, and schizophrenia, we
have recently shown that neurodevelopmental pathways and
adulthood synaptic processes are dissociable etiologic mechan-
isms relating to genetic liability to psychosis [13].
Nevertheless, identifying specific genes functionally linked to

GCA, with protein products that could be targeted by pharmaco-
logical agents, remains a core challenge. Using a pathway-based
methodology [14], we previously reported that several genes
encoding T- and L-type calcium channels, targeted by known
pharmaceuticals, were associated with GCA [7]; however, that
study was relatively underpowered. Now with much larger GWAS
of cognition available [8, 9], increasingly large regions of the
genome may demonstrate statistical association with GCA,
requiring a principled approach to identify treatment-relevant
genes within those regions. Fortunately, the recent release of
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large-scale brain eQTL/transcriptomic databases have substantially
enhanced the assignment of regional GWAS signals to specific
genes [15–20]. Simultaneously, recent advances in genetic
epidemiology methods (e.g. Mendelian randomization) have
enabled identification of potentially spurious eQTL associations
that may be based on linkage rather than meaningful biology [21].
Thus, the convergence of adequately powered samples coupled
with cutting-edge statistical and bioinformatics tools allows for
novel genetic mechanisms underlying GCA to be discovered.
In order to turn the resulting GCA-associated gene sets into

actionable nootropic drug targets, it is useful to limit the search to
those genes which encode proteins that are known to be
druggable [22]. However, novel technologies have nominated an
increasing number of potentially druggable genes [23–25] beyond
the 15% of the genome originally estimated based on funda-
mental pharmacologic principles [22]. Given this uncertainty, well-
characterized existing compounds present the most robust
evidence of demonstrable druggability for a given target,
suggesting the efficiency of drug repurposing/repositioning as a
primary research strategy [26]. Such drug repurposing efforts also
serve to reduce the high rate of failure associated with novel drug
discovery [27]. Applied to GWAS of psychiatric disorders, drug
repurposing studies have pointed towards glutamatergic mod-
ulators and calcium channel blockers in schizophrenia and sex
hormones in depression; such analyses consistently also point
towards existing antipsychotic and antidepressant compounds,
serving as a positive control for the drug repurposing approach
[2, 4, 28, 29].
Here, we jointly analyzed the two largest GWAS of cognition to

date [8, 9]. In doing so, we harmonized the genome-wide signals
associated with GCA across these studies at the levels of both
individual variants and broader genomic regions of loci and
pathways. We also employed novel analytical methods not
previously employed in cognitive GWAS studies to determine
the direction of causality between GWAS hits for GCA and
genetically correlated phenotypes. Large brain-based transcrip-
tomic databases were then utilized to determine the biological
underpinnings of the most credible and actionable cognitive
GWAS signals. Finally, we sought converging evidence from large-
scale chemoinformatic resources to identify the most promising
nootropic drug targets for drug repurposing.

MATERIALS AND METHODS
A broad study overview is provided in Fig. 1 and specific algorithm
or software carried out in each analysis stage provided in Table S1,
respectively. Further in-depth details are available in the ‘Materials
and Methods’ section within the Supplementary Materials. The
overall data analytic strategy follows a broad strategy of (i) Locus
discovery (ii) Gene-based characterization (iii) Gene-to-drug
annotations.

Locus discovery
The core analysis combined summary statistics of the two largest
GWAS of cognition to date [8, 9]. Savage et al (N= 269,867)
analyzed 9,395,118 single-nucleotide polymorphisms (SNPs) for
association to intelligence, and Davies et al. [9] (N= 283,531)
analyzed 12,871,771 SNPs in relation to the somewhat broader
general cognition phenotype. The latter set of summary statistics
reported by Davies et al. [9] was reduced from the original N=
300,486 due to data access limitations. First, we carried out MTAG
as meta-analysis. As in all genome-wide meta-analytic studies, we
expected to gain and lose some loci. Hence, Winner’s Curse
Adjustment via the FDR Inverse Quantile Transformation was
carried out to evaluate if loci no longer significant were in fact due
to winner’s curse. The two studies were noted to have a relatively
large degree of sample overlap (89%); the relative increase in
power available is more modest than would be expected for a

meta-analysis of fully independent samples. While statistical
inflation of the combined results is thought to be well-
controlled by MTAG [30], the larger than usual sample overlap
was not addressed by the original MTAG report. We therefore
carried out data simulation in scenarios of 75 and 88.9% sample
overlap to extend current understanding of how MTAG might
appropriately handle the effects of sample overlap that is relevant
to the results reported in the current study. Genome-wide GCA
association results were passed through the FUMA v1.3.5 pipeline
[31] (see Supplementary Materials: Materials and Methods) to
identify GWAS-significant independent SNPs and genomic loci
and perform other downstream analyses that we report in
subsequent sections. The genome-wide significant threshold was
set at P < 5e−8. MTAG results were characterized using genetic
correlations with other psychiatric and physical traits via LD-hub
[32], and gene property analysis [33] was performed to screen
gene expression and localization in CNS tissue. Although many of
the results from genetic correlation and gene expression screen-
ing are expected to be reported in prior cognitive GWAS [8, 9],
they are conducted as “sanity check” to the genome-wide GCA
results that are reported here.

Gene-based characterization
In the second phase of the analysis, we utilized a series of
approaches to identify potential genes emanating from the MTAG
genome-wide results. These ranged from targeted transcriptome
wide approaches, to co-located gene expression eQTL mapping,
to more general gene-set and pathway-based methods. The
objective is to elucidate a broadly inclusive list of genes associated
with GCA that could be subjected to downstream gene-drug
annotations. First, S-PrediXcan and S-TissueXcan [34]
Transcriptome-Wide Analysis (TWAS) were used to characterize
gene expression mediated associations in GTEx(v7) tissues. The
latter was used to identify potentially functional genes in general,
and the former was used to identify genes that are expressed
specifically in the brain. We also carried out Summary Statistics
Based Mendelian Randomization (SMR) and Heterogeneity in
Dependent Instruments (HEIDI) analyses [21] where SNPs are used
as instruments to identify gene expression effects on a GCA with
estimated SNP-gene expression and SNP-phenotype effects
entered into a formal mediation model. At the same time, the
HEIDI test identifies SNP-gene expression effects and SNP-
phenotype effects that are correlated with each other through
LD rather than biologically related via horizontal or vertical
pleiotropy. SMR/HEIDI allows us to prioritize genes that might
have an immediate relationship between its function and
phenotype variance and de-prioritize genes that tend to be in
regions with long range LD, which might require further
experimental follow up to clarify their function. Next, we carried
out molecular quantitative trait locus mapping to identify
genomic regions where association signals and gene expression
“hot spots” in brain tissue tend to be co-located. Annotation
databases that are part of the FUMA pipeline were utilized for this
step (See Supplementary Materials: Materials and Methods).
Additional molecular annotations from the PsychENCODE data-
base such as splicing variants, expression variation QTL, and
ribosomal occupancy QTL were also examined. Gene association
tests and gene set analysis were carried out via MAGMA [33].
Results of gene-based tests from MTAG genome-wide results (via
MAGMA gene mapping), SMR, and S-TissueXcan were included in
gene-set analysis. Genes surviving multiple testing correction in
the gene-mapping analysis and nominally significant genes that
were part of significant gene sets were selected for downstream
drug-gene annotations.

Gene-drug annotations
“Druggable” genes from the Drug-Gene Interaction database
(DGIdb v.2), Psychoactive Drug Screening Database KiDB, and a
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recent review on “druggability” [35] were consolidated. Genes that
were identified by transcriptome wide analysis, molecular map-
ping QTL, and gene-set analysis were filtered on the consolidated
druggable gene list from drug databases. At the final stage of the
analysis we annotated high confidence genes using the Broad
Institute Connectivity Map, Drug Re-purposing Database [36] that

provides more in-depth details such as drug names, mechanism of
action, and drug indicatons. We matched drug mechanisms of
action (MOA) with direction of effects obtained from earlier
transcriptome analyses. Genes that are filtered in this manner are
deemed as high likelihood for being potential therapeutic targets
for nootropic repurposing.

Fig. 1 Workflow for the present study. The overall data analytic strategy follows a broad strategy of (i) locus discovery, (ii) gene-based
characterization, and (iii) gene-to-drug annotations. The green box at top summarizes locus discovery procedures and characterization of
results. Yellow box summarizes downstream analysis of summary statistics, resulting in a set of genes available for druggability analysis
displayed at figure bottom (red brackets). At each step, location of further details in Tables, Figures, and Supplementary Materials is specified.
SMR summary statistics mendelian randomization, FUMA functional mapping and annotation of GWAS, eQTL expression quantitative trait
locus, rQTL ribosomal occupancy qtl, sQTL splicing qtl, evQTL expression variation qtl.
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RESULTS
We have prepared a study flowchart (see Fig. 1) as well as a
methodological overview and results roadmap (see Table S1) to
aid in navigating through the reported results.

Locus discovery: MTAG of general cognitive ability
A total of 8,990,900 SNPs present in both sets of summary
statistics were extracted for use in the MTAG meta-analysis of the
two largest GWAS of cognition [8, 9]. Since both sets of GWAS
summary statistics indexed GCA, we constrained MTAG analysis to
give a single output; MTAG was further constrained such that the
heritability of both sets of summary statistics were set to
equivalent and genetic covariance set to 1 – an approach not
unlike fixed effect meta-analysis. Potential inflationary effects of
sample overlap, as tested by simulations in scenarios of 75 and
88.9% sample overlap, showed no inflation in either scenario
(β75%= 1.011; β88.9%= 1.015) and good agreement between
GWAS of the full sample, and MTAG of the GWAS of subsamples
with substantial sample overlap (Adj. R275%= 0.94; Adj. R288.9%=
0.96; see Fig. S1). MTAG’s maxFDR analysis revealed low
probability of false positives (maxfdr= 4.5e–7). The resulting mean
chi-square values after carrying out MTAG were as follows: mean
χ2Savage= 1.624, mean χ2Davies= 1.544, and mean χ2MTAG= 1.783.
The average projected GWAS equivalent sample size after MTAG
analysis was 373,617, which shows substantial power improve-
ment over input GWAS.
Clumping procedures were carried out on 8,990,900 SNPs

(see Methods). Genome-wide significant loci were defined based
on R2 > 0.6, and loci within 250 kb of each other were merged.
A total of 241 loci were GWAS significant for the MTAG analysis
(Fig. 2A–D), while 214 loci and 124 loci were GWAS significant
for Savage et al. [8] and Davies et al. [9] respectively (aee
Table S2). It should be noted that 38 loci reported as significant
in Savage et al. [8] and 8 loci in Davies et al. [9] were no longer
significant in the MTAG analysis (Table S3). Winner’s curse
analysis suggested that these loci were likely false positives in
the original studies (Table S4). A total of 39 MTAG-significant loci
were not reported as significant in the input GWAS (Table S3).
We then looked up reports that have used multi-trait strategies
to enhance power for GCA [10, 13] and found that of the 39 loci,
8 loci were also reported by Hill et al. [10], 1 locus was reported
by Lam et al. [13], and 1 locus was reported by both of these
studies (Fig S2). Region plots of fully novel loci are reported in
Figs. S3–S30.

Genome-wide characterization
A preliminary screen of the genome-wide MTAG via the MAGMA
gene-property analysis confirms that the genetic architecture
of GCA is closely related to gene expression within various
brain tissues after Bonferroni correction (Fig. 2E, F). At the
same time, we observe that GCA is also related to genes
expressed in prenatal brain tissue implicating a role for early
neurodevelopment.
Genetic correlations were estimated between GCA and 855

phenotypes from LD-hub [32] and UK Biobank. MTAG summary
statistics were merged and aligned with HapMap3 SNPs excluding
the MHC region for genetic correlation analysis (1,190,946 SNPs
remained). In total, 297 phenotypes showed significant genetic
correlation with cognition at Bonferroni corrected P < 0.05. Con-
sistent with prior reports [7, 10, 37, 38], traits genetically correlated
with GCA included education, reproduction, longevity, personality,
smoking behavior, anthropometric, brain volume, psychiatric,
dementias, lung function, sleep, glycemic, autoimmune, cardio-
metabolic, cancer and several ICD-10 medical phenotypes (Table S5).
Several novel traits that have not been previously reported to be
genetically correlated with GCA are displayed in Fig S3; these
include several gastric, vascular, and bronchial diagnoses and
medications.

Gene-based characterization
In the next several sections, we report results of a series of
analyses that aimed to nominate genes associated with GCA via a
series of transcriptomic and pathway-based approaches applied to
SNP-based summary statistics obtained in the earlier MTAG
analysis. As described (see Fig.1; Table S1, “Gene-Based Character-
ization”), a variety of complementary transcriptomic analysis were
conducted to convert SNP/locus associations into directional,
biologically interpretable gene effects on GCA. In the sections
below, we take an inclusive approach to generate a broad list of
candidate genes which will be subjected to further downstream
gene-drug annotations. Moreover, by utilizing a range of
complementary functional characterization approaches, the result-
ing gene list can be prioritized in terms of total strength of
supporting evidence (which will be summarized in Table S18).

S-PrediXcan/S-TissueXcan
Genome-wide joint transcriptomic modeling carried out via S-
TissueXcan [34] analysis in all 48 GTExv7 tissues yielded
444 significant genes after Bonferroni correction (Table S6). We
also conducted brain tissue-specific transcriptome wide modeling
via S-PrediXcan and found that 194 genes were significant in one
or more brain tissue annotations (Table S7a–k).

SMR and HEIDI
Using Summary-stats-based Mendelian Randomization (SMR [21]),
we were able to identify 166 genes that were genome-wide
significant (Bonferroni corrected), whose gene expression levels
were contributing to variation of GCA (Table S8). As discussed in
the Methods and Materials section (Supplementary Materials),
SMR analysis tends to be more conservative than other gene
identification methodologies [34]. Hence, we also nominated 1212
genes nominally significant genes (PSMR < 0.05) for follow up in the
later gene annotation (Table S9). Importantly, SMR analysis
indicated that the colocalization of GWAS and eQTL signals in
412 genes was likely artifactual due to linkage disequilibrium,
rather than causal mediation, as indicated by PHEIDI < 0.01. These
were excluded from subsequent druggability analysis.

Brain-based molecular QTL mapping
Next, we utilized eQTL mapping approaches to identify expressed
genes in and around genome-wide significant regions within the
MTAG results. We leveraged on databases packaged with FUMA
[31] such as BRAINEAC, GTEx, COMMONMIND and XQTLServer for
initial eQTL mapping. eQTL mapping from the FUMA [31] pipeline
revealed 421 significantly expressed genes within GWAS signifi-
cant regions (FDR corrected p values; Table S10). Additional
molecular QTL mapping of PsychENCODE prefrontal cortex with
GCA SNPs identified 592 genes with eQTL (Table S11), 42 genes
implicated in ribosomal occupancy QTLs (Table S12), 119 genes
with expression variation QTLs (Table S13) and 638 genes with
splicing activity QTLs (Tables S7a–S14c).

MAGMA association tests and gene set analysis
MAGMA gene-based analysis revealed that 652 of 18,730 genes
were significantly associated with GCA after Bonferroni correction
(Table S15). MAGMA gene-set analyses were carried out using
gene lists derived from the MAGMA gene-based results, as well as
from lists of genes significant in the SMR analysis (only using
PsychENCODE results), and S-TissueXcan (Using GTExv7) output.
Full gene-set analysis results are presented in Table S16.
Gene set results derived from the MAGMA gene-based results

were highly consistent with findings of previous cognitive GWAS:
gene sets that have been associated with neuropsychiatric
disorders such as schizophrenia and ASD were highly significant,
congruent with significant genetic correlations between GCA and
these disorders. Relatedly, gene sets reflecting neurodevelop-
mental processes implicated in schizophrenia and ASD, including
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the CHD8, FMRP, and RBFOX pathways, were also implicated in
GCA [39]. Also consistent with prior reports, a series of neuronal
and dendritic development, differentiation, and regulation gene
sets were also associated with GCA [10].
There were also several classes of gene sets emerging from

our data that are novel with respect to GCA; notably, these
results emerged in the context of the SMR (Table 1a) and S-
TissueXcan (Table 1b) results, demonstrating the value of

leveraging multiple approaches to post-GWAS gene identifica-
tion. First, genes responsible for cellular response to small
molecules such as sugars and cytokines appear to be implicated.
Cell signal transductions mediated by small monomeric GTPases
also appear to be relevant for GCA. In addition, gene sets
underpinning cell structure and binding mechanisms, including
adhesion, protein complexes, actin and chromatin binding were
identified.

MTAG mean chi-square = 1.783
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Given the strong signals derived from gene-set analysis, we
extracted all nominally significant genes (P < 0.05) within each
significant MAGMA gene set for further downstream annotations.
A total of 449 genes were identified as part of significant MAGMA
pathways (Table S16), and were subjected to further chemoinfor-
matic analysis for druggability as described below.

Identifying drug-gene targets for nootropic re-purposing
A total of 2017 genes (see Fig. 1) were identified via the gene
characterization approaches described above. To consolidate
evidence for these 2017 nominated genes, we performed
the following steps: First, we combined genes identified by
MAGMA gene-set and gene-mapping analysis, genes identified
via eQTL methods, and genes identified via transcriptome wide
analysis (Bonferroni corrected). 695 SMR identified genes, 166
genes identified by S-PrediXcan brain tissue eQTL analysis were
added to the annotation. 1876 “druggable” genes were identified
by merging across several drug databases (see Supplementary
Materials: Materials and Methods, Table S17). After applying a
preliminary filter based on three requirements (druggable genes,
genes with PHEIDI > 0.01, and genes that were identified by two or
more gene-identification approaches), 91 genes remained. It
should be noted that gene sets representing methylation
processes, DNA complex, and nucleosomes, while significantly
associated with GCA, do not contain any genes that are targeted
by known drugs, based upon our druggability criteria described
in the Materials and Methods section.
We further annotated these genes with information from the

Broad Institute CMAP Drug Repurposing Database [36]. We
filtered out drug indications for “Oncology” mainly for drug
delivery concerns, yielding a final list of 76 “high-confidence”
genes that were deemed druggable (Fig. 3). According to the
Cell-type Specific Expression Analysis (CSEA) [40], these genes
are expressed in a broad range of CNS cell types, including
cortical, subcortical, and cerebellar neurons, as well as astrocytes
and oligodendrocytes (Table S20); moreover, expression of these

genes is broadly demonstrated across developmental epochs
(Table S21). These genes were annotated with eQTL directions
(i.e., up- or down-regulation associated with higher GCA) for
each gene; eQTL directions were obtained from earlier analysis,
including brain-eQTLs from S-PrediXcan, SMR, PsychENCODE
eQTL, RNA-seq Ribosomal and Splicing eQTL mapping, and
overall S-TissueXcan GTEX eQTL analysis (Table S18). Effect sizes
that indicated up-regulation of the gene associated with higher
GCA were denoted as “↑,” while those where down-regulation
was associated with higher GCA were denoted as “↓.” We
predicted the “mechanism of action” from the overall eQTL
direction to determine if a given gene might require either an
“Agonist” or “Antagonist” to enhance GCA. This was achieved by
taking the sum of eQTL directions across tissues (see Table S18).
If overall eQTL indicates up-regulation, it would more likely
require an agonist and vice-versa. We eliminated “Ambiguous”
gene targets that have an equal number of tissues that show up-
and down-regulated gene expression.
Annotations from the CMAP Drug Re-purposing Database,

which include drug names, mechanism of action (MOA), and drug
indications, were merged with these “high-confidence” genes
(Table S19). Of the 76 “high-confidence” genes, manual curation of
the CMAP annotations compared to the predicted mechanism of
action based on eQTL directions yielded a final set of 16 most
likely targets for drug repurposing; these potential drugs and their
current indications with various types of physical or psychiatric
conditions are listed in Table 2. Notably, the relationships between
some of the drug MOA and gene targets do not always appear to
be direct. For example, adrenergic receptor agonists can indirectly
activate calcium channels of which CACNA2D2 is a constituent.

DISCUSSION
We report the largest joint GWAS analysis of GCA at an estimated
sample size of 373,617. A total of 241 significant genetic loci were
identified via MTAG procedures, of which 39 were not reported in

Table 1. (a) SMR and (b) S-TissueXcan gene sets associated with cognitive function. Only novel results are displayed.

Gene sets Gene Set P Gene set categories

(a) SMR

GOBP:regulation_of_binding 8.54E−06 Cell binding

REACTOME:Signaling_by_Rho_GTPases 2.28E−06 Cell metabolism

GOBP:small_GTPase_mediated_signal_transduction 2.13E−05 Cell metabolism

REACTOME:Signaling_by_Rho_GTPases 3.05E−07 Cell metabolism

GOBP:nucleosome_organization 5.92E−06 Cell structure

GOBP:protein-DNA_complex_assembly 1.81E−06 Cell structure

GOBP:protein-DNA_complex_subunit_organization 2.17E−07 Cell structure

GOBP:cell-substrate_adhesion 5.06E−06 Cell structure

GOBP:response_to_glucose 4.80E−06 Interaction with small molecules

GOBP:response_to_hexose 3.73E−06 Interaction with small molecules

GOBP:response_to_monosaccharide 8.65E−06 Interaction with small molecules

GOBP:macromolecule_methylation 4.62E−08 Methylation

GOBP:methylation 3.29E−07 Methylation

REACTOME:Ion_channel_transport 1.00E−05 Neuronal/Dendritic regulation/development

(b) S-TissueXcan

GOMF:actin_binding 6.44E−06 Cell binding

GOMF:chromatin_binding 4.52E−06 Cell binding

GOBP:cellular_macromolecular_complex_assembly 1.71E−07 Cell structure

GOBP:cellular_protein_complex_assembly 1.68E−07 Cell structure

GOBP:cellular_response_to_interferon-gamma 2.67E−06 Interaction with small molecules
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the input cognitive GWASs, and 29 were fully novel to this report,
despite substantial sample overlap between the two input GWAS.
Notably, within these 29 loci are several genes that have been
previously associated with psychiatric and brain related pheno-
types, as well as underlying biological mechanisms that may
underlie severe cognitive deficits (see Figs. S3–S30). Though not
exhaustive, the list of such genes includes CTNNA2, LMF1, ZNF536,
BAIAP2, and GOSR1, discussed below.
Catenin (Cadherin-Associated Protein), Alpha 2 (CTNNA2),

encodes for brain expressed alpha-catenin crucial for synaptic
contact, previously implicated with excitement seeking, risk-
taking, hyperactivity, substance use, bipolar, and antisocial
disorders [41]. CTNNA2 was found to be neuronal-specific, and
abundant in the dorsolateral prefrontal cortex and hippocampus
in primate brains; CTNNA2 and other catenin genes are involved in
folding and lamination of the cerebral cortex [42]. Loss of function
mutations within CTNNA2 are thought to be one of the factors
underlying pachygyria, characterized by loss of neurite stability
and migration [43]. Lipase Maturation Factor 1 (LMF1) lipoproteins
are mostly made in the brain; neurons and astrocytes coordinate
lipoprotein metabolism within the brain [44] and evidence for
lipoprotein lipase activity mediated by LMF genes implicate
regulation of brain energy balance underlying cognition [45]. Zinc-
Finger 536 (ZNF536) was identified as a candidate schizophrenia
gene and a double-knockout zebrafish line shows behavioral and
neuroanatomical (decreased forebrain volume) changes [46].
ZNF536 has also been implicated in the maintenance of neural
progenitor cells and neuronal differentiation within the prefrontal
cortex [47, 48]. Brain-specific angiogenesis inhibitor 1-associated
protein 2 (BAIAP2) is a multi-domain scaffolding and adapter
protein implicated in the regulation of membrane and actin
dynamics at subcellular structures, and is an abundant component
of the postsynaptic density at excitatory synapses and an
important regulator of actin-rich dendritic spines [49]. BAIAP2

has been shown to be potentially involved in the etiology of
attention deficit/hyperactivity disorder [50]. Golgi SNAP receptor
complex member 1 (GOSR1) is involved in transport from the ER to
the Golgi apparatus as well as in intra-Golgi transport [51]. The
gene has been identified in large-scale genetics of brain
phenotypes and is also reportedly associated with cognitive traits
in follow-on analysis [52]. Similarly, evidence has also been
reported that GOSR1 is implicated in architecture of epigenetic
and neuronal aging rates in human brain regions [53]. Further
follow up is necessary to validate these genes in larger samples
and biological experiments.
Gene property analysis revealed significant tissue expression

overrepresented in CNS tissue compared with expression in other
types of tissues, consistent with earlier reports [7–9, 39]. Notably,
some of these genes appear significantly expressed during the
prenatal state, indicating potential neurodevelopmental impact of
genes associated with GCA. We focused on identifying genes
associated with GCA that could be “actionable” in terms of
identifying pharmacological agents that could be re-purposed for
nootropic utilization based on GWAS results. In an earlier study,
MAGMA pathway analysis was carried out on drug-based pathway
annotations using a smaller GWAS of GCA [7], where we reported
several T and L-type calcium channels as potential targets for
nootropic agents. Here, we were able to leverage recent novel
developments, including newly available brain eQTL data and
complementary transcriptomic methodologies, enabling estima-
tion of directionality (i.e., up- vs. down-regulation of expression) of
gene effects on cognition. Notably, our study is the first cognitive
GWAS to employ HEIDI, an approach that allows pleiotropy (either
vertical or horizontal) to be differentiated from spurious associa-
tions due to linkage. HEIDI tests against the null hypothesis that a
single causal variant affects both gene expression and trait
variation, and so HEIDI-significant genes are less likely to be causal
and require closer inspection and further biological experiments

Fig. 3 Venn diagram of “High Confidence” genes and gene identification approaches. Genes highlighted in blue were deemed as most
likely having gene targets that were suitable for nootropic re-purposing.
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Table 2. Prioritized genes for nootropic re-purposing.

Gene ID Gene name Predicted nootropic
function

Drug name(s) MOA Drug indications

CA1 Carbonic anhydrase 1 Antagonist Acetazolamide
Benzthiazide
Brinzolamide
Chlorthalidone
Diclofenamide
Dorzolamide
Ethoxzolamide
Methazolamide
Topiramate
Trichlormethiazide
Methyclothiazide
Levosulpiride
Zonisamide
Bendroflumethiazide
Hydroflumethiazide
Coumarin
Amlodipine

• Carbonic anhydrase
inhibitor

• Glutamate receptor antagonist
• Kainate receptor antagonist
• Chloride channel blocker
• Chloride reabsorption inhibitor
• Dopamine receptor antagonist
• Sodium channel blocker
• T-type calcium channel blocker
• Sodium/potassium/chloride
transporter inhibitor

• Vitamin K antagonist
• Calcium channel blocker

Congestive heart failure
Duodenal ulcer disease
Dyspepsia
Edema
Epilepsy
Glaucoma
Hypertension
Migraine headache
Ocular hypertension
Acute glomerulonephritis
(AGN)
Anxiety
Asthma
Celiac disease
Chronic renal failure
Chronic stable angina
Coronary artery disease
(CAD)
Hepatic cirrhosis
Irritable bowel syndrome
Nephrotic syndrome
Premature ejaculation (PE)
Psychosis
Schizophrenia
Seizures
Ulcerative colitis
Vertigo

CA13 Carbonic anhydrase 13 Antagonist Ethoxzolamide
Zonisamide

• Carbonic anhydrase
inhibitor

• Sodium channel blocker
• T-type calcium channel blocker

Glaucoma
Duodenal ulcer disease
Epilepsy

CACNA2D2 Calcium voltage-gated channel
auxiliary subunit alpha2delta 2

Agonist Gabapentin-Enacarbil Adrenergic receptor agonist Restless leg syndrome
Postherpetic neuralgia

CACNG3 Calcium voltage-gated channel
auxiliary subunit gamma3

Agonist Gabapentin-enacarbil Adrenergic receptor agonist Restless leg syndrome
Postherpetic neuralgia

CLCN2 Chloride voltage-gated channel 2 Agonist Lubiprostone Chloride channel activator Constipation
Irritable bowel syndrome

DHODH Dihydroorotate dehydrogenase
(quinone)

Antagonist Leflunomide
Atovaquone
Teriflunomide

•Dihydroorotate
dehydrogenase inhibitor

•Mitochondrial electron
transport inhibitor

• PDGFR tyrosine kinase receptor
inhibitor

Multiple Sclerosis
Rheumatoid Arthritis
Pneumonia

DPP4 Dipeptidyl peptidase 4 Antagonist Alogliptin
Anagliptin
Linagliptin
Saxagliptin
Sitagliptin
Teneligliptin
Trelagliptin
Vildagliptin
Atorvastatin

•Dipeptidyl peptidase
inhibitor

• HMGCR inhibitor

Diabetes mellitus
stroke
Cholesterol reduction

GRIA4 Glutamate ionotropic receptor AMPA
type subunit 4

Agonist Piracetam Acetylcholine agonist Senile dementia

GRIN2A Glutamate ionotropic receptor
NMDA type subunit 2 A

Antagonist Acamprosate
Amantadine
Telbamate
Halothane
Memantine
Atomoxetine
Milnacipran
Gabapentin

•Glutamate receptor
antagonist

• Norepinephrine transporter
inhibitor

• Serotonin-norepinephrine
reuptake inhibitor (SNRI)

• Calcium channel blocker

Abstinence from alcohol
Alzheimer’s disease
Epilepsy
General anaesthetic
Influenza A virus infection
Parkinson’s Disease
Restless leg syndrome
Senile dementia
Virus herpes simplex
(HSV)
Attention deficit/
hyperactivity disorder
(ADHD)
Fibromyalgia
Seizures
Pain from shingles
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to unravel any true functional effects of the genes. Therefore,
we have filtered gene results based on a nominal threshold of
PHEDI < 0.01. Additionally, several novel classes of gene sets, such
as cell binding, cell metabolism, and cell structure not previously
reported as associated with GCA, created an additional pool of
genes available for further investigation. While many of the genes
in these novel sets were not easily druggable, identification of
methylation and chromatin binding gene sets further highlights

the link between GCA, neurodevelopment, and psychopathology;
loss of function variants in multiple genes in these sets result in
increased risk for schizophrenia, autism, and other neurodevelop-
mental disorders [54–58].
The most crucial stage of the current report involved

the identification of genes that are potential drug targets.
Using filtering methods that were detailed earlier, the 76
“high-confidence” druggable genes were selected for further

Table 2. continued

HTR1D 5-hydroxytryptamine receptor 1D Agonist Serotonin
Almotriptan
Dihydroergotamine
Eletriptan
Frovatriptan
Naratriptan
Rizatriptan
Sumatriptan
Zolmitriptan
Aripiprazole
Oxymetazoline
Bromocriptine
Cabergoline
lIsuride
Pramipexole
Ropinirole

• Serotonin receptor agonist
• Adrenergic receptor agonist
• Dopamine receptor agonist
• Growth factor receptor
activator

Bipolar disorder
Depression
Migraine headache
Schizophrenia
Sleeplessness
Acromegaly
Hyperprolactinemia
Nasal congestion
Parkinson’s Disease
Restless leg syndrome

HTR5A 5-hydroxytryptamine receptor 5 A Antagonist Ergotamine
Yohimbine
Asenapine
Clozapine
Loxapine
Olanzapine
Vortioxetine
Ketanserin
Methysergide

• Serotonin receptor
antagonist

• Adrenergic receptor antagonist
• Dopamine receptor antagonist
• Serotonin receptor agonist^

Bipolar disorder
Bradycardia
Cardiac arrythmia
Depression
Headache
Hypertension
Migraine headache
Schizophrenia

SLC6A4 Solute carrier family 6 member 4 Agonist Vortioxetine
Dopamine
Dextromethorphan
Tapentadol

• Serotonin receptor agonist
• Dopamine receptor agonist
• Glutamate receptor antagonist
•Opioid receptor agonist
• Sigma receptor agonist

Depression
Acute pain
Cough suppressant
Headache
Muscle pain
Tremors
Ventricular arrhythmias

PDE4C Phosphodiesterase 4 C Agonist Ketotifen • Phosphodiesterase inhibitor
• Histamine receptor agonist
• Leukotriene receptor antagonist

Itching

PDE4D Phosphodiesterase 4D Antagonist Aminophylline
Doxofylline
Caffeine
Dyphyllin
Ketotifen
Ibudilast
Apremilast
Dipyridamole
Pentoxifylline
Roflumilast
Iloprost

• Phosphodiesterase inhibitor
• Adenosine receptor antagonist
• Histamine receptor agonist
• Leukotriene receptor antagonist
• Platelet aggregation inhibitor
• Prostanoid receptor agonist

Asthma
Bronchitis
Chronic obstructive
pulmonary disease
Claudication
Coronary artery disease
(CAD)
Drowsiness
Emphysema
Fatigue
Hypertension
Itching
Peripheral artery disease
(PAD)
Psoriasis
Psoriatic arthritis
Pulmonary arterial
hypertension (PAH)
Stroke

PSMA5 Proteasome subunit alpha 5 Antagonist Bortezomib
Carfilzomib

• Proteasome inhibitor
• NFkB pathway inhibitor

Multiple myeloma
Mantle cell lymphoma
(MCL)

THRB Thyroid hormone receptor beta Agonist Levothyroxine
Liothyronine
Tiratricol

• Thyroid hormone receptor
beta

Myxedema coma
Hypothyroidism
Refetoff syndrome

Predicted nootropic function was obtained from gene expression association with general cognitive ability. MOA, drug names and drug indications were
annotated via Broad Institute Connectivity MAP: Drug Re-Purposing hub. Labels in bold directly implicate the gene, while labels in italics indicate drugs and
MOA that are consistent with the predicted nootropic function, but only indirectly implicate the gene.
MOA Mechanism of Action.
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annotation. Of these, 16 genes were identified as “most likely
druggable” based on their predicted function from eQTL results
and the CMAP Drug Re-purposing database [36]. These selected
genes could be further classified into broad gene classes (i)
Serotonergic genes, (ii) Carbonic Anhydrase, (iii) Phosphodies-
terase, (iv) Ion channel, (v) Glutamatergic/GABA-ergic, and (vi)
Others (See Table 2); details of these gene classes are provided
in the Extended Discussion in the supplement. Though we have
focused the discussion of results explicitly on identifying
potential targets for nootropic purposes, the converse could
also be relevant—where there might be commonly adminis-
tered drugs that appear to result in cognitive deficits. Indeed, we
note that at least two drugs with known cognitive side effects,
topiramate [59] and gabapentin [60], are predicted by our model
to cause cognitive deficits.
The results here have generated leads for further investigation

into potential drug targets and how they might subserve
nootropic repurposing. However, there are limitations to the
evidence that we report. First, although this report comprises the
largest and most well-powered genome-wide analysis of GCA,
there continues to be potential to expand sample size to increase
power. The modest increase in novel loci reported in the current
study could be accounted for by substantial sample overlap in the
earlier GWAS reports. Nevertheless, it is notable that results of
MTAG simulation of 75 and 88.9% sample overlap were largely
similar to those reported in Turley et al., [30], which used height to
show that MTAG was robust to 50% sample overlap. Here, under
simulation conditions, we were able to show that MTAG can
effectively control for inflation due to largely overlapping samples
and is a useful tool for merging and combining summary statistics
from large-scale GWAS into a single high-powered set of summary
statistics. Relatedly, the present study focused on general
cognitive ability, as this broad phenotype has the largest available
sample size for GWAS; studies of individual cognitive subdomains
(such as memory, processing speed, etc.) tend to be far less
powered. Nevertheless, it is worth noting that there is some
overlap of our results with prior, smaller studies of individual
cognitive domains [61, 62]. As just one example, one of our short
list of “most likely druggable” genes, GRIN2A, was previously
reported to link schizophrenia with performance on an anti-
saccade task [63].
Additionally, the transcriptomic reference databases (e.g.,

PsychENCODE) that we employed are an order of magnitude
larger than those previously available, but brain annotations
remain somewhat smaller than other QTL annotations (e.g.,
blood). Second, identifying eQTL for a particular phenotype is
challenging– as with most summary statistics approaches, it is not
always possible to directly confirm that the proposed eQTL is
necessarily leading to variation in the phenotype [64]. Direct
experimentation is required to rule out potential extraneous
factors that might be pleiotropic to both phenotypic variation and
eQTL effects. Third, the issue of LD complexity within a GWAS
region makes identification of a gene that is deemed associated
with the phenotype challenging [65], further computational and
functional work is needed to enhance the precision to which
genes are prioritized or identified as truly functional within these
genomic regions. Here, we attempted to identify functionally
relevant genes by examining the convergence across a range of
complementary methodologies to overcome some of the limita-
tions noted above. In addition, we used the HEIDI test to explicitly
exclude genes marked by linkage that might be inaccurately
labeled as “causal”. Nevertheless, the challenge of regions of
extensive LD encompassing many genes should be addressed in
future studies, perhaps incorporating recently developed methods
for examining three-dimensional properties of the genome [66].
Moreover, we attempted to combine results across multiple QTL
tissues and annotations (Table S18), in order to match gene
functions with drug MOA; however, we acknowledge that as yet

there are no formal methodologies developed to statistically
harmonize these signals.
We also observed several counter-intuitive findings with respect

to directionality of effects: for example, with respect to carbonic
anhydrase inhibition. It is plausible that many molecular functions in
the brain observe either a U-shape or inverted U-shape curve, such
that effects of up- or down-regulation are not strictly linear.
Moreover, the results reported here are with reference to GWAS
conducted in the general population and may be more complicated
when applied to a disease population. For instance, calcium channel
blockers might rescue cognitive impairments in schizophrenia, but
blocking calcium channel function in the general population could
be detrimental to synaptic function. At the same time, our GWAS
cohorts included older adults, and some findings may be a function
of cryptic pathologic processes occurring in these apparently normal
subjects. Further work is necessary to replicate evidence reported
here into disease populations, along with more precise data on
biological mechanisms underlying cognitive function to ensure that
compounds identified as nootropic are indeed applicable in disease
contexts.

CONCLUSIONS
We performed the largest genetic analysis for GCA. Aside from
identifying 29 fully novel loci in the current study, the effort has
included the most well powered analysis for identifying GCA-
related genes that are “druggable” and for nominating potential
drugs that could be repurposed for nootropic indications. Gene
set analysis identified known neurodevelopmental and synaptic
related pathways, as well as novel cell structure and binding
pathways underlying GCA, which we exploited for drug identifica-
tion purposes. Utilizing multiple chemoinformatic and drug
repurposing databases, along with eQTL and GWAS data, we
identified several gene classes contributing to GCA, including
serotonergic and glutamatergic/GABA-ergic genes, voltage-gated
ion channels, phosphodiesterase components, and carbonic
anhydrases. Our efforts show that within these classes, specific
drug candidates for nootropic repurposing appear most promis-
ing. Further work is necessary to confirm the role of these genes
and receptors, to specify their biological mechanisms influencing
cognition, and to consider potential CNS effects (including blood-
brain barrier permeability) of the putative nootropic compounds
nominated by this approach.
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