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A novel social distancing analysis in urban public space: A new online spatio-temporal trajectory 
approach 

Jie Su, Xiaohai He, Linbo Qing, Tong Niu, Yongqiang Cheng, and Yonghong Peng 

 

Abstract 

Social distancing in public spaces plays a crucial role in controlling or slowing down the spread of 
coronavirus during the COVID-19 pandemic. Visual Social Distancing (VSD) offers an opportunity for 
real-time measuring and analysing the physical distance between pedestrians using surveillance 
videos in public spaces. It potentially provides new evidence for implementing effective prevention 
measures of the pandemic. The existing VSD methods developed in the literature are primarily based 
on frame-by-frame pedestrian detection, addressing the VSD problem from a static and local 
perspective. In this paper, we propose a new online multi-pedestrian tracking approach for spatio-
temporal trajectory and its application to multi-scale social distancing measuring and analysis. Firstly, 
an online multi-pedestrian tracking method is proposed to obtain the trajectories of pedestrians in 
public spaces, based on hierarchical data association. Then, a new VSD method based on spatio-
temporal trajectories is proposed. The proposed method not only considers the Euclidean distance 
between tracking objects frame-by-frame but also takes into account the discrete Fréchet distance 
between trajectories, hence forms a comprehensive solution from both static and dynamic, local and 
holistic perspectives. We evaluated the performance of the proposed tracking method using the 
public dataset MOT16 benchmark. We also collected our own pedestrian dataset “SCU-VSD” and 
designed a multi-scale VSD analysis scheme for benchmarking the performance of the social 
distancing monitoring in the crowd. Experiments have demonstrated that the proposed method 
achieved outstanding performance on the analysis of social distancing. 

Keywords: Visual social distancing, Hierarchical data association, Multi-pedestrian tracking, Spatio-
temporal trajectory, Discrete Fréchet distance, Crowd gathering 

1. Introduction 

The COVID-19 pandemic is ravaging the world, which has sadly caused a significant loss to human 
life, and a great negative impact on society and the economy. On 30 January 2020, the World Health 
Organisation (WHO) declared that the outbreak of COVID-19 constitutes a Public Health Emergency 
of International Concern (PHEIC) (Statement on the second meeting of the International Health 
Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV, 
2021). On 13 January 2021, it reported that there have been 90,054,813 confirmed cases of COVID-
19, including over 1,945,610 deaths globally (WHO Coronavirus Disease (COVID-19) Dashboard, 
2021). The rapid spread of COVID-19 is mainly through close contact from people to people, and 
asymptomatic carriers can also spread the virus to others (Aguilar, Faust, Westafer, & Gutierrez, 
2020). Due to the high density and mobility of the urban population and the complexity of the urban 
environment, the spread of the pandemic has been exacerbated to some extent, which brings severe 
challenges to the construction, governance and sustainable development of cities. 

For the epidemic diseases, measures that are taken to prevent and control infections include 
vaccination, treatment, quarantine, isolation, and prophylaxis (Dias, Queiroz, & Martins, 2020). 
However, the vaccine for COVID-19 has not yet entered the promotion stage, and the more 
contagious coronavirus variant has been detected. In this scenario, one effective way to control or 
slow down the spread of coronavirus is to make sure people maintain social distancing in public 
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places. There exists some work in the literature studying the impact of social distancing on the 
progression of the coronavirus (Cacciapaglia and Sannino, 2020, Dias et al., 2020, Hellewell et al., 
2020, Prem et al., 2020, Rahmani and Mirmahaleh, 2020, Sun and Zhai, 2020). Using Wuhan as a 
case study, Prem et al. (2020) stated that physical distancing based non-pharmacological 
interventions have a high potential for flattening the peak of COVID-19 and reducing the overall 
number of cases. Cacciapaglia and Sannino (2020) demonstrated that social distancing measures are 
more efficient than border control in delaying the epidemic peak. Sun and Zhai (2020) researched 
the efficacy of social distancing and ventilation effectiveness in preventing COVID-19 transmission. 
With the current epidemic unlikely to end in the short term, keeping a safe social distancing1 from 
others in public spaces and workplaces is one of the key measures for maintaining a low risk of 
infection. 

In recent years, with the deepening of the concept of “smart sustainable cities” (Bibri and Krogstie, 
2017, Silva et al., 2018), countries around the world have deeply integrated information technologies 
with the various needs of urban development. In this context, some research work has explored 
ways to prevent and respond to the ongoing COVID-19 pandemic by using urban infrastructures and 
emerging technologies (Bhattacharya et al., 2020, He et al., 2020, Loey et al., 2020, Nguyen et al., 
2020, Silva et al., 2020, Zhou et al., 2020), especially in the aspect of automatic social distancing 
monitoring in public places (Ahmed et al., 2020, Cristani et al., 2020, Khandelwal et al., 2020, Nguyen 
et al., 2020, Punn et al., 2020, Sathyamoorthy et al., 2020, Shorfuzzaman et al., 2021, Yang et al., 
2020). This helps to enhance the resilience and sustainability of cities. The construction of smart 
cities has also resulted in an explosive growth in video data taken from public spaces. Compared with 
other big data utilised in existing researches, the video data contains wealthy spatial and temporal 
information about humans. Exploiting video data to study and analyse human trajectories can more 
precisely mine human activities in various complex scenes, which is an excellent supplement to non-
visual big data and has unique advantages. Therefore, during the pandemic, it is of great theoretical 
significance and research value to measure and analyse the social distancing between pedestrians 
based on their spatio-temporal trajectories using surveillance videos in public places and take 
appropriate epidemic prevention measures according to the crowd gathering situations. This 
research topic is called Visual Social Distancing (VSD), which refers to approaches relying on video 
cameras and other imaging sensors to analyse the proxemic behaviour of people (Cristani et al., 
2020). 

In this paper, a new VSD method based on the human spatio-temporal trajectory has been proposed 
to quantify and analyse the social distancing between pedestrians in public spaces. The contributions 
of our work are summarised as follows: 

• 1. 

A new hierarchical association based online and real-time multi-pedestrian tracking method is 
proposed to obtain pedestrians’ trajectories, which can effectively reduce the number of identity 
switches while achieving overall competitive performance. 

• 2. 

A new VSD method based on spatio-temporal trajectories is proposed, considering both the 
Euclidean distance between sampling points of trajectories from a local perspective and the Fre´chet 
distance between trajectories from a holistic view. 

• 3. 
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A multi-scale social distancing analysis scheme is proposed, including four evaluation metrics, which 
can evaluate the crowd gathering situations from various time scales respectively. 

The rest of the paper is organised as follows. Section 2 gives the related work of VSD and Multiple-
Object Tracking. Section 3 provides the detailed contents of the proposed approaches. The related 
experimental results and discussions are illustrated in Section 4. The conclusion of the given work is 
presented in Section 5. 

2. Related work 

Here we introduce the related work of VSD and Multi-Object Tracking respectively. 

2.1. VSD problem 

Some new research work has been conducted to study the VSD problem for COVID-19 (Ahmed et al., 
2020, Cristani et al., 2020, Khandelwal et al., 2020, Nguyen et al., 2020, Punn et al., 
2020, Sathyamoorthy et al., 2020, Shorfuzzaman et al., 2021, Yang et al., 2020). For instance, Cristani 
et al. (2020) proposed a VSD method based on body pose estimation. In each frame, the body pose 
detector is used to detect visible people. In the corresponding bird’s eye view (top view), each 
detected pedestrian is regarded as the centre of the circle, and the safe distance as the radius. Then 
the VSD issue is converted to a sphere collision problem. Yang et al. (2020) proposed a VSD and 
critical social density detection system to avoid overcrowding by modulating inflow to the region-of-
interest (ROI). Shorfuzzaman et al. (2021) used deep learning-based object detection models to 
detect individuals and implement social distancing monitoring. The Landing AI Company2 developed 
a social distancing detection tool by detecting pedestrians in real-time video streams and measuring 
the distance between pedestrians in the corresponding bird’s eye view frames. These methods have 
made some useful contributions to VSD in the pandemic, but most of them are based on frame-by-
frame pedestrian detection rather than pedestrian tracking over a period of time. Although there 
existed some VSD studies leveraging both detection and tracking approaches (Ahmed et al., 
2020, Sathyamoorthy et al., 2020), the tracking algorithms in these methods were employed for 
tracking detected people and associating them with assigned IDs rather than for trajectory-based 
social distancing measuring. As a consequence, these frame-by-frame distance metric based VSD 
methods fall in the category of the detection-based VSD, while the proposed VSD method based on 
spatio-temporal trajectories distance metric belongs to the trajectory-based VSD. To the best of our 
knowledge, this research work is the first attempt to address the VSD issue in a dynamic and spatio-
temporal manner. 

The distinction between the detection-based VSD and the trajectory-based VSD is shown in Fig. 1. 
The detection-based VSD detects and calibrates the positions of pedestrians, and measures the 
distance between them frame-by-frame in the bird’s eye view. The trajectory-based VSD tracks 
pedestrians and calibrates trajectories, and measures the distance between corresponding calibrated 
trajectories in the three-dimensional spatio-temporal coordinate (adding a time axis t). The 
detection-based VSD method is from a static and local perspective, while the trajectory-based VSD 
method is from a dynamic and spatio-temporal perspective. However, during the pandemic, the issue 
that should be considered is the continuous measurement and analysis of social distancing rather 
than a specific moment. Therefore, it is more sensible to investigate the VSD problem based on the 
spatio-temporal trajectory over a time period. 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#sec2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#sec3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#sec4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#sec5
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b11
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b23
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b30
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b32
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b32
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b39
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b40
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b50
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b11
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b11
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b50
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b40
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#fn2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b39
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/figure/fig1/
https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=7865092_gr1_lrg.jpg


4 
 

 

Fig. 1 

The distinction between the detection-based VSD and the trajectory-based VSD. 

2.2. Multi-object tracking 

The Multi-Object Tracking (MOT) (Luo, Xing, Zhang, Zhao, & Kim, 2015) task is a fundamental 
research topic in the field of computer vision, which is widely applied to smart surveillance, 
autonomous driving, security and other areas. MOT is also an underpinning technique for the 
trajectory-based VSD. In recent years, with the dramatical improvement of detectors (Redmon and 
Farhadi, 2017, Redmon and Farhadi, 2018, Ren et al., 2015), Tracking-by-Detection (Al-Shakarji et al., 
2018, Bae and Yoon, 2017, Bewley et al., 2016, Chu et al., 2017, Sanchez-Matilla et al., 2016, Wojke 
et al., 2017) has become the mainstream paradigm of MOT. For Tracking-by-Detection, objects are 
detected and localised in each frame firstly, and then tracking is conducted by using data association 
to link detections into trajectories. Therefore, the tracking performance is highly dependent on the 
performance of the detector and the data association method. Also, MOT can be divided into online 
tracking (Al-Shakarji et al., 2018, Bae and Yoon, 2017, Bewley et al., 2016, Chu et al., 2017, Sanchez-
Matilla et al., 2016, Wojke et al., 2017) and offline tracking (Brendel et al., 2011, Dehghan et al., 
2015, Milan et al., 2013, Son et al., 2017). Online tracking refers to data association based only on 
the past and the current frames, while offline tracking refers to data processing by exploiting all the 
frames or batch frames. Because offline tracking methods demand the entire set of videos to be 
obtained in advance, they are less favoured by real-time tasks compared to their online counterparts. 

With regard to online Tracking-by-Detection, the traditional methods include the Multiple Hypothesis 
Tracking (MHT) (Reid, 1979) and the Joint Probabilistic Data Association Filter (JPFAF) (Fortmann, Bar-
Shalom, & Scheffe, 1983). Recently, deep learning based methods enhance the tracking performance 
in complex scenes drastically. The Person of Interest (POI) (Yu et al., 2016) method introduced the 
high-performance detection and deep learning based appearance feature into the context of MOT. 
Depending on Convolutional Neural Network (CNN) based detection, the Simple Online and Realtime 
Tracking (SORT) (Bewley et al., 2016) method utilised the Kalman filter for frame-by-frame prediction 
and the Hungarian method for data association, by calculating intersection-over-union (IOU) distance 
as the assignment cost for the association. The Deep SORT (Wojke et al., 2017) method further 
introduced deep appearance features and motion features on the basis of SORT for assignment costs 
calculation. Also, some research work in the literature focuses on researching hierarchical data 
association to improve the reliability of association. Bae and Yoon (2017) proposed a hierarchical 
association method based on the tracklet confidence, which built optimal tracklets by sequentially 
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linking tracklets and detections using the high and low confidence association. Al-Shakarji et al. 
(2018) proposed a three-step cascade scheme for efficient data association. 

3. The proposed approaches 

The proposed approaches consist of two main steps: (1) a hierarchical association based online multi-
pedestrian tracking method to obtain trajectories of pedestrians; (2) a trajectory-based social 
distancing measurement and analysis method to evaluate social distancing situations between 
pedestrians in public spaces. 

3.1. Hierarchical association based online multi-pedestrian tracking 

Considering the real-time requirement of the trajectory-based VSD task, it is necessary to design a 
simple and highly real-time tracking method. Inspired by SORT (Bewley et al., 2016) and Deep SORT 
(Wojke et al., 2017) method, we utilise the Kalman filter and the Hungarian algorithm (Kuhn, 1955) 
to address the MOT task. Besides, we design a new hierarchical data association scheme to ensure 
tracking performance and fewer ID switches. 

3.1.1. The states of the tracklets and the transition mechanism  

For online Tracking-by-Detection, the essence is a frame-by-frame data association based on 
detection responses pre-generated by the detector. The detection responses in the current frame are 
assigned to the existing tracklets (the tracklet is a part of the trajectory formed during the tracking 
process) according to the data association method. However, the issues of misdetection, occlusion, 
the appearance and the disappearance of tracking objects lead to many challenges of the MOT task. 
To tackle these challenges, we adopt a hierarchical data association method based on the states of 
the tracklets to address multi-pedestrian tracking. According to the number of consecutive 
associated frames, the states of the tracklets are classified into four categories, namely initial, 
tentative, stable and deleted. The transition mechanism of the four states of the tracklets is shown 
in Fig. 2. 

 

 

Fig. 2 

The transition mechanism of the four states of the tracklets. 

The initial-state: the initial-state is defined for a new detection that cannot be associated with any 
existing tracklet. In this state, it is regarded as a new tracklet. If it is associated successfully in the 
next frame, its state will become as tentative. Otherwise, it will be deleted. 

The tentative-state: the tentative-state is a state when the tracklet in initial-state is successfully 
associated in the next frame. In this scenario, if the tracklet in tentative-state continues to be 
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successfully associated for over τ1 consecutive frames (the threshold τ1 is a small positive integer), 
its state will progress to stable. Otherwise, it will be deleted. 

The stable-state: the stable-state is defined as a state when the tracklet in tentative-state is 
successfully associated for over τ1 consecutive frames. Once the state of the tracklet becomes stable, 
it can only be deemed to be finished and deleted when it fails to be associated for 
over τ2 consecutive frames (The threshold τ2 is a positive integer significantly greater than τ1). 
Besides, the stable-state can be further divided into two stages, the first association stage and the 
second association stage. These two stages employ different feature metrics for assignment costs 
calculation during the association (Section 3.1.3). 

The deleted-state: under the following conditions, the state of the tracklet will be defined as 
deleted-state: (1) when the tracklet is in initial-state or tentative-state, and it fails to be associated in 
the next frame; (2) when the stable-state tracklet fails to be associated for over τ2 consecutive 
frames. 

The setting of the initial-state and the tentative-state can effectively address the misdetection issue. 
This is because the tracklet of the misdetected object in the initial or tentative state will be deleted 
once the association fails. The stable-state setting takes into account the impact of occlusion during 
tracking. The tracklet may fail to be associated during the tracking process due to occlusions. Under 
this situation, the object could not be considered to have disappeared, nor should the tracklet be 
deleted immediately. The setting of the threshold τ2 is beneficial to improve the completeness of 
tracking. And the two association stages of the stable-state helps to improve the reliability of data 
association. The deleted-state setting is to reduce unnecessary calculations. 

3.1.2. AAM-Softmax appearance feature descriptor  

The distance between appearance features is taken into account in the analysis of data association. 
Inspired by the Cosine Softmax method (Wojke and Bewley, 2018, Wojke et al., 2017) and the 
Additive Angular Margin Softmax (AAM-Softmax) method (Deng et al., 2019, Jie et al., 2019), an 
AAM-Softmax appearance feature descriptor network is designed to obtain well-discriminative 
appearance features of pedestrians. Before being applied in the online tracking task, the network is 
trained offline by using a large-scale person re-ID dataset Market1501 (Zheng et al., 2015) with 
12,936 training images of 751 identities, which facilitates deep metric learning in a pedestrian 
tracking context. 

We mainly use convolutional layers and residual blocks (He, Zhang, Ren, & Sun, 2016) to construct 
the architecture of the proposed descriptor network (shown in Fig. 3). The pedestrian images with 
size 128 × 64 × 3 are input into the CNN-based architecture, including two convolutional layers (each 
layer has 32 kernels with size 3 × 3 and stride 1), a max-pooling layer (pooling size is 3 × 3 and stride 
is 2) and six residual blocks with two stacked layers. Through the CNN architecture, the feature maps 
with size 16 × 8 × 128 can be obtained. Then after a Global Average Pooling (GAP) layer, a Batch 
Normalisation (BN) layer and a l2 Normalisation layer, the descriptor network finally outputs a 
feature vector with 128 dimensions. In the training phase, the ID of each sample is utilised as a 
training label, and each embedded feature is input into the fully connected layer followed by the 
AAM-Softmax classifier, performing supervised learning by the AAM-Softmax loss. 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#sec3.1.3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b47
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b48
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b13
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b22
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b52
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b20
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/figure/fig3/
https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=7865092_gr3_lrg.jpg
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Fig. 3 

The architecture of the AAM-Softmax appearance feature descriptor network. 

The Softmax classifier is widely used in deep classification tasks, with loss function as Eq. (1): 

Lstandard =−1N∑i=1NlogeWTyixi+byi∑nj=1eWTjxi+bj 

(1) 

where xi∈Rd is the input feature (due to the l2 Normalisation layer in the descriptor, ∥xi∥ is equal to 
1), and yi is the class label of xi. Wj is the jth column of the weight matrix W∈Rd×n and bj∈Rn is the 
bias. The target logit term is presented as WTyixi+byi, N is the batch size and n is the number of 
classes. Based on the Softmax loss, the improvement can boost the ability to learning discriminative 
features effectively. Specifically, the bias bj is set to 0, and l2 normalisation is imposed 
on Wj (∥Wj∥=1) to project it onto the unit sphere. So the term WTjxi+bj is equal 
to WTjxi=∥∥Wj∥∥∥∥xi∥∥cosθj=cosθj, where θj is the angle between Wj and xi. The l2-normalised 
Softmax loss is presented as Eq. (2): 

Ll2-normalisation=−1N∑i=1Nlogescosθyi∑nj=1escosθj 

(2) 

where cosθyi is the target logit, s is the feature scale hyper-parameter. Then by imposing an additive 
angular margin m to the target logit, the AAM-Softmax loss (Deng et al., 2019) formulation can be 
written as Eq. (3): 

Laam=−1N∑i=1Nloges(cos(θyi+m))es(cos(θyi+m))+∑nj=1,j≠yiescosθj 

(3) 

The additive angular margin penalty makes the decision boundaries more stringent and separated, 
enhancing the similarity of intra-class features and the disparity of inter-class features 
simultaneously, which facilitates to improve the discriminative capability of features effectively. Since 
the AAM-Softmax loss only imposes an additive angular margin constraint in the angular space, it 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/figure/fig3/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#fd1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#fd2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b13
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#fd3
https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=7865092_gr3_lrg.jpg
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neither increases the structural complexity of the network nor the number of trainable parameters. 
When performing the online MOT task, the pre-trained descriptor network is exploited as the feature 
encoder to obtain discriminative features of pedestrians for the appearance distance metric in the 
subsequent data association process. 

3.1.3. Assignment problem  

During the data association process, the assignment costs between tracklets and detections are the 
basis of association. In this paper, based on different states of the tracklets, different metric methods 
are utilised to calculate the assignment costs and hierarchical associations are conducted. For each 
tracklet, except the initial-state tracklet, an appearance feature gallery Φi={f(i)k}Kk=1 will be 
generated, containing the historical appearance features backtracking from the current frame, 
where f(i)k(∥∥f(i)k∥∥=1) is the kth l2-normalised historical appearance feature, k=1 denotes the 
current frame and K is the maximum capacity of the gallery. The appearance metric between the 
tracklet and the detection forms an important part of the distance metric. It can be derived by 
calculating the minimum cosine distance between all historical appearance features of the 
tracklet f(i)k∈Φi and the appearance feature of the detection, written as Eq. (4): 

da(t(i),dj)=min{1−fjTf(i)k∣f(i)k∈Φi} 

(4) 

where t(i) is the ith tracklet (except for the initial-state tracklet), dj is the jth detection and fj is the 
appearance feature of dj. da(t(i),dj) represents the appearance metric between t(i) and dj. Due to 
the l2 normalisation operation (∥∥f(i)k∥∥=1, ∥∥fj∥∥=1), the cosine similarity can be written as the 
inner product form fTjf(i)k. 

(1) Assignment costs calculation based on the state.  

The initial-state: for the initial-state tracklet, since there is no appearance feature gallery, only 
position information can be used for data association. Firstly, the standard Kalman filter is used to 
predict its moving state. Then the IOU distance between the prediction bounding box and the 
detection bounding box is calculated as the motion metric, presented as Eq. (5): 

d(t(i)initial,dj)=dIoU(t(i)initial,dj)=μ−IoU(t(i)initial ,dj)=μ−Bt(i)initial∩BdjBt(i)initial∪Bdj 

(5) 

where t(i)initial denotes the ith initial-state tracklet and Bt(i)initial is the prediction bounding box 
of t(i)initial; dj denotes the jth detection and Bdj is the bounding box 
of dj. d(t(i)initial,dj), dIoU(t(i)initial,dj) and IoU(t(i)initial ,dj) represent the distance metric, the IOU 
distance and the IOU value between t(i)initial and dj respectively. μ is the minimum constant that 
makes all the IOU distances are not less than 0. 

The tentative-state: the tentative-state tracklet already generates an appearance feature gallery Φi, 
but at this time the features in the gallery are limited. So, at this stage, the IOU distance between the 
prediction and the detection is still used as the motion metric for association, whilst the appearance 
metric is only used as a threshold for filtering and discarding infeasible detections. If the appearance 
metric is greater than the threshold, the candidate detection will be excluded, with no possibility of 
being associated. The assignment cost is expressed as Eq. (6): 

d(t(i)tentative,dj)={dIoU(t(i)tentative,dj)∞da(t(i)tentative,dj)≤τa else ) 

(6) 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#fd4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#fd5
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#fd6
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where t(i)tentative and dj denote the ith tentative-state tracklet and the jth detection 
respectively. d(t(i)tentative,dj), dIoU(t(i)tentative,dj) and da(t(i)tentative,dj) represent the metric 
distance, the IOU distance and the appearance metric (obtained by Eq. (4)) 
between t(i)tentative  and dj respectively. τa is the appearance threshold. 

The stable-state: for the stable-state tracklet, the data association process contains two stages. In 
the first association stage, the Mahalanobis distance is utilised as the motion metric, written as 
Eq. (7): 

dm(t(i)stable,dj)=(dj−yi)TS−1i(dj−yi) 

(7) 

where t(i)stable and dj represent the ith stable-state tracklet and the jth detection 
respectively. dm(t(i)stable,dj) is the Mahalanobis distance between t(i)stable and dj, and (yi,Si) is the 
measurement space of t(i)stable. In this stage, different metric methods are adopted for different 
states of the camera (moving or stationary) due to the motion information caused by the camera’s 
movement. For the moving situation, the appearance metric is mainly considered, and the motion 
metric is only used for filtering. If the motion metric is greater than the threshold, the candidate 
detection will be discarded. The assignment cost is written as Eq. (8): 

d(t(i)stable,dj)={da(t(i)stable,dj)∞dm(t(i)stable,dj)≤τm else ) 

(8) 

where d(t(i)stable,dj), da(t(i)stable,dj) (calculated by Eq. (4)) and dm(t(i)stable,dj) (calculated by 
Eq. (7)) denote the metric distance, the appearance metric and the motion metric 
between t(i)stable and dj respectively. τm is the Mahalanobis threshold. For the stationary situation, 
the motion metric and the appearance metric are both taken as the joint metric and integrated into a 
unified form through the hyper-parameter λ, presented as Eq. (9): 

d(t(i)stable,dj)=λdm(t(i)stable,dj)+(1−λ)da(t(i)stable,dj) 

(9) 

Due to occlusions or other reasons, the appearance features of the object may change dramatically, 
causing the stable-state tracklet to fail to be associated in the first association stage. Hence, the 
second association stage is added for this situation. Instead of considering the appearance metric, 
only the motion metric calculated by IOU distance is utilised for data association in the second stage. 

(2) Hierarchical data association and the states’ update.  

The stability of the tracklet determines its confidence. Therefore, according to the order of 
confidence from high to low, the corresponding states are the stable-state, the tentative state and 
the initial state, respectively. Based on this confidence order, a hierarchical association method is 
designed to divide the entire data association stage into three levels. The flow chart of the proposed 
hierarchical data association is shown in Fig. 4. Specifically, the first association of the stable-state 
tracklets is performed. Then, those tracklets that fail to be associated subsequently enter the second 
association stage. After that, the tracklets in the initial-state or the tentative-state are considered to 
be associated with the remaining detections. According to the states of the tracklets, the 
corresponding metrics are calculated, and the associations between the tracklets and the detections 
are conducted by using the Hungarian algorithm (Kuhn, 1955). For the tracklet in initial-state or 
tentative-state, if it fails to be associated, it will be deleted. This way of dealing with unstable objects 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#fd4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#fd7
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#fd8
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#fd4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#fd7
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#fd9
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/figure/fig4/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b24
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can facilitate the tracker to filter the incorrectly detected objects to a certain extent thus to improve 
the performance efficiency. For the tracklet in the stable-state, if it fails to be associated for over 
consecutive τ2 frames, it will be deleted, which can increase the completeness of the trajectory. For 
unassociated detection, it will be considered as a new tracklet and will be assigned with a new ID. 

 

 

Fig. 4 

The flow chart of the proposed hierarchical data association. 

The description of a tracklet includes the ID, the position information (the coordinates of the 
bounding box), the appearance feature and its state. After each association, the tracklets will be 
updated. For the successfully associated tracklet, the coordinates of the tracking bounding box are 
updated according to its new position; the new appearance feature in the current frame will be 
added to the appearance feature gallery. But when occlusion occurs, the confidence of the 
appearance feature decreases due to the introduced noise. To tackle this issue, the IOU values 
between the prediction bounding box of the tracklet with all detection bounding boxes are 
calculated and a threshold τIoU is set. If there exists an IOU value greater than τIoU, the appearance 
feature gallery is not updated. Besides, the state of the tracklet should be updated as well according 
to its current state and the transition mechanism (Section 3.1.1). 

As a summary, the entire process of online multi-object tracking based on hierarchical data 
association is illustrated in Fig. 5. For the kth frame, firstly the detector is used to conduct multi-
object detection. Then, according to different states of the tracklets, different assignment cost 
calculation methods are adopted to associate the tracklets with the detections hierarchically. After 
data association, it is required to update the appearance feature galleries and the states of the 
tracklets. Then the updated tracklets will be associated with the candidate detections in the (k+1)-th 
frame. 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=7865092_gr4_lrg.jpg
https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=7865092_gr4_lrg.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/figure/fig4/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#sec3.1.1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/figure/fig5/
https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=7865092_gr4_lrg.jpg
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Fig. 5 

The entire process of online multi-object tracking based on hierarchical data association. 

3.2. Trajectory-based social distancing measurement and analysis 

The surveillance videos are taken from arbitrary perspective views, it is necessary to transform the 
original perspective video into the bird’s eye view to perform distance measurement. This is carried 
out by utilising the perspective transformation matrix. As the calibration is conducted for the 
transformation of the ground plane, the bottom–centre point of the tracking bounding box of every 
trajectory in each frame is transformed into the bird’s eye view as the sampling point of the 
trajectory. Then, the re-parameterisation time information is added to ensure t cannot be 
backtracked, and the spatio-temporal trajectories of pedestrians are represented in the three-
dimensional coordinates space (xʹ, yʹ and t). For addressing the VSD problem, the discrete Fre´chet 
distance (Eiter & Mannila, 1994) is utilised to measure the distance between each spatio-temporal 
trajectory pair. Finally, the social distancing between pedestrians in the real world can be estimated 
by multiplying the metric distance with the scaling factor. 

3.2.1. Trajectory transformation and distance measurement  

The essence of calibration is to map the original video into the bird’s eye view by performing the 
perspective transformation. The formula of the perspective transformation is presented as Eq. (10): 

⎡⎣⎢xyz⎤⎦⎥=M⎡⎣⎢uv1⎤⎦⎥=⎡⎣⎢a11a21a31a12a22a32a13a23a33⎤⎦⎥⎡⎣⎢uv1⎤⎦⎥ 

(10) 

where (u, v) and (u, v, 1) are the Cartesian coordinate and the homogeneous coordinate of the 
trajectory respectively in each original frame. M is the perspective transformation matrix. (x, y, z) is 
the calibrated homogeneous coordinate in the bird’s eye view. Its corresponding Cartesian 
coordinate (xʹ, yʹ) can be obtained as Eq. (11): 

{xʹ=xz=a11u+a12v+a13a31u+a32v+a33yʹ=yz=a21u+a22v+a23a31u+a32v+a33) 

(11) 

For calibration, we first need to select a rectangular reference area in the shooting scene. Due to the 
arbitrary angle of the camera, the reference area appears as a quadrilateral in the original 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=7865092_gr5_lrg.jpg
https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=7865092_gr5_lrg.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/figure/fig5/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b16
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#fd10
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#fd11
https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=7865092_gr5_lrg.jpg
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perspective view. Since the video is captured by a single camera (monocular camera), the calibration 
method is to map the quadrilateral in the original video to the bird’s eye view to re-form a rectangle 
with the same aspect ratio. Using the four pairs of vertex coordinates of the quadrilateral and the 
rectangle, the perspective transformation matrix M can be calculated by Eq. (10). Then, the 
calibrated coordinates in the bird’s eye view of each trajectory’s sampling points can be calculated 
through Eq. (11). 

The Fre´chet distance (Eiter & Mannila, 1994) is to determine the distance between each spatio-
temporal trajectory pair P and Q in the calibrated space S by taking into account location and time 
ordering, defined as Eq. (12): 

D(P,Q)=infα,βmaxt∈[0,1]{d(P(α(t)),Q(β(t)))} 

(12) 

where d is the distance function of the space S. P(α(t)) and Q(β(t)) represent the spatial position 
of P and Q at time t respectively. α and β are continuous and non-decreasing re-parameterisation. 
The discrete Fre´chet distance (Eiter & Mannila, 1994) is an approximation of the continuous Fre´chet 
distance. Firstly, the two trajectory curves P and Q are discretised and represented as the sequences 
with p and q sampling points, presented with σ(P)=P(p1,…,pp) and σ(Q)=Q(q1,…,qq) respectively. 
Because the distance metric is performed in the bird’s eye view, the corresponding transformed 
sequences σ(Pʹ)=Pʹ(pʹ1,…,pʹp) and σ(Qʹ)=Qʹ(qʹ1,…,qʹq) need to be obtained by Eq. (11). A 
coupling Lʹ between Pʹ and Qʹ is a sequence of distinct pairs from σ(Pʹ) and σ(Qʹ), written as Eq. (13): 

Lʹ=(pʹa1,qʹb1),(pʹa2,qʹb2),…,(pʹam,qʹbm) 

(13) 

where a1=1 and b1=1, am=p and bm=q, and for all i=1,2,…,q, we 
have ai+1=ai or ai+1=ai+1, bi+1=bi or bi+1=bi+1. The length ∥Lʹ∥ of the coupling Lʹ is the length of the 
longest link in Lʹ, presented as Eq. (14): 

∥∥∥Lʹ∥∥∥=maxi=1,…,md(pʹai,qʹbi) 

(14) 

We use Euclidean distance to calculate d(pʹai,qʹbi), and the discrete Fre´chet distance 
between Pʹ and Qʹ in the bird’s eye view is defined as Eq. (15) 

δdF(Pʹ,Qʹ)=min∥∥Lʹ∥∥ 

(15) 

By Multiplying the metric distance in the bird’s eye view with the scaling factor s, the social 
distancing in the real world can be estimated. On the one hand, the Euclidean distance is used to 
measure the distance between each sampling point pair of trajectories from a local perspective, 
presented as Eq. (16): 

Ds=s⋅d(pʹai,qʹbi) 

(16) 

On the other hand, from a holistic view, the discrete Fre´chet distance is exploited to measure the 
distance between trajectory pairs, presented as Eq. (17): 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#fd10
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#fd11
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b16
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#fd12
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b16
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#fd11
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#fd13
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#fd14
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#fd15
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#fd16
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#fd17
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Dt=s⋅δdF(Pʹ,Qʹ) 

(17) 

3.2.2. Social distancing analysis  

Here we design a multi-scale social distancing analysis scheme to evaluate the social distancing 
situations in public spaces from multiple time scales. The scheme includes the following four 
evaluation metrics: 

The Average Ratio of Pedestrians with Unsafe Social Distancing (ARP-USD): if the distance between 
pedestrians, calculated by Eq. (16), is below the minimum acceptable distance, we believe that the 
pedestrians are at an unsafe distance at this moment. The ARP-USD metric is the mean proportion of 
the number of pedestrians with an unsafe distance in respect to the total number of people over a 
period of time in the public space. Given a video with M frames, for the ith frame, Ni is the total 
number of tracking persons, pki(k=1,2,…,Ni) is the position point of the kth pedestrian. The set of 
pedestrians with unsafe social distancing in the ith frame is represented as Eq. (18): 

Ti={pki∣s⋅d(p'ki,p'li)<τs} 

(18) 

where p'ki,p'li(k,l=1,2,…,Ni and k≠l) are the calibrated points of pki,pli in the bird’s eye view, d(⋅) is 
the Euclidean distance, s is the scaling factor, τs is the safe distance threshold, and ni is the number 
of the elements in Ti. If Ni≠0, the ratio of pedestrians with an unsafe distance in the ith frame can be 
written as niNi, so the ARP-USD is calculated as Eq. (19): 

RARP-USD =1m∑i=1mniNi 

(19) 

where m(m≤M) is the number of the frames with Ni≠0. 

The Number of Trajectory Pairs with Unsafe Social Distancing (NTP-USD): if the distance between 
the trajectory pair, calculated by Eq. (17), is below the safe distance τs, we consider the trajectory 
pair to be at an unsafe distance. The NTP-USD metric is the number of the stable-state trajectory 
pairs with unsafe social distancing. Assuming that the number of the stable-state trajectories 
is Ns (Ns is dynamically updated) and the pth stable-state trajectory is represented 
as Tpstable (p=1,2⋯,Ns), the set of the stable-state trajectory pairs with unsafe social distancing can 
be formulated as Eq. (20): 

Q={(Tpstable ,Tqstable )∣s⋅δdF(T'pstable ,T'qstable)<τs} 

(20) 

where T'pstable ,T'qstable (p,q=1,2⋯,Ns and p≠q) are the mapped trajectories 
of Tpstable ,Tqstable  in the bird’s eye view, where δdF(⋅) is the discrete Fre´chet distance and s is the 
scaling factor. NQ is the number of the elements in Q, indicating the value of the NTP-USD. 

If the discrete Fre´chet distance of the trajectory pair is less than the safe distance threshold, it 
means that the distance of each sampling point pair of the two trajectories has been less than the 
safe distance for the entire measurement process. In another word, the two pedestrians have 
continuously violated social distancing for a period of time. Therefore, based on spatio-temporal 
trajectories, the NTP-USD metric measures the overall number of trajectory pairs with an unsafe 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#fd16
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#fd18
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#fd19
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#fd17
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#fd20
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distance in public spaces, which reflects the situation of social distancing violations in the public area 
over a period of time. 

The Number of Pedestrian Pairs with Continuous Unsafe Social Distancing (NPPC-USD): Concerning 
the spread of pandemics, the longer people stay at an unsafe distance, the higher the risk of 
infection. Therefore, the duration of pedestrians staying within an unsafe distance is an essential 
factor that should be taken into account. The discrete Fre´chet distance used in NTP-USD is to 
measure the similarity of trajectories for a given duration holistically. But for two dissimilar 
trajectories, for example, two trajectories facing each other with opposite directions, their Fre´chet 
distance can be very large. Hence NTP-USD is unable to spot the infection risk when pedestrians are 
very close for a certain amount of time but facing back to each other. So, for a trajectory pair, if the 
number of their sampling point pairs with an unsafe distance is more than the threshold τn, it is 
considered as the pedestrian pair with continuous unsafe social distancing. The NPPC-USD is 
designed to count the number of the above pedestrian pairs, which can reflect the concept of the 
unsafe distance for a period of time. 

The Average Gathering Degree (AGD): to describe the degree of pedestrians gathering in public 
spaces, the concept of gathering group is defined. As shown in Fig. 6, pedestrians in one gathering 
group have social distancing with one or more people in the same group less than the safe distance. 
The social distancing between any two people in different gathering groups is larger than the safe 
distance. According to the number of pedestrians in a group, the gathering degree is divided into six 
levels, from 0 to 5 (illustrated in Fig. 6). In order to facilitate unified grading, a single person is also 
regarded as a gathering group with gathering degree 0. For each frame, the maximum gathering 
degree is taken as the gathering degree of this frame Di. The average gathering degree of a video 
with M frames is formulated as Eq. (21): 

DAGD=1M∑i=1MDi 

(21) 

During the pandemic, the larger the number of people in a gathering group, the higher the risk of 
cross-infection. Therefore, the AGD can reflect the gathering situation of people in a period of time, 
which is a useful metric for assessing the risk of infection in public spaces. 

 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/figure/fig6/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/figure/fig6/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#fd21
https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=7865092_gr6_lrg.jpg
https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=7865092_gr6_lrg.jpg
https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=7865092_gr6_lrg.jpg
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Fig. 6 

The gathering group and the corresponding gathering degree. 

4. Experiments 

4.1. Datasets 

Market1501: the AAM-Softmax appearance feature descriptor network is pre-trained using a large-
scale person re-ID dataset Market1501 (Zheng et al., 2015) captured by six cameras. It contains 
12,936 images of 751 identities for training, 3,368 images of another 750 identities as the query set, 
and 19,732 images as the gallery set. The input images are resized to 128 × 64. 

MOT16: we evaluate the performance of the proposed tracking method on the MOT16 benchmark 
dataset (Milan, Leal-Taixé, Reid, Roth, & Schindler, 2016). It consists of 14 video sequences, where 7 
videos are used as training and verification sets, and another 7 are employed as test sets. The input 
sizes of the MOT16 are 1920 × 1080 and 640 × 480. There are front-view scenes taken from moving 
camera and top-down view scenes captured from surveillance camera. The complex scenes, the large 
number of pedestrians and the varying illuminations have imposed great challenges in analysing this 
MOT16 benchmark dataset. 

SCU-VSD: we conduct social distancing measurement and analysis experiments on our own dataset, 
called as SCU-VSD. It includes 8 pedestrian video sequences, which were taken from a pedestrian 
street with different scenes and perspective views. For each video sequence, the size is 1920 × 1080, 
the duration is 60 s, and the frame rate is 25 fps (each video gives 1500 consecutive frames). 

4.2. Implementation details and experimental results 

4.2.1. Online hierarchical association based multi-pedestrian tracking  

The detection results of the MOT16 benchmark dataset used in the paper are provided by the POI 
method (Yu et al., 2016). The detector in the POI is Faster R-CNN (Ren et al., 2015) fine-tuned by 
additional training datasets (including ETHZ pedestrian dataset (Ess, Leibe, Schindler, & Van Gool, 
2008), Caltech pedestrian dataset (Dollár, Wojek, Schiele, & Perona, 2009) and their surveillance 
dataset (Yu et al., 2016)). For the AAM-Softmax loss, the hyper-parameters s and m in Eq. (3) are set 
to 30 and 0.006 respectively. The Optimiser is Adam and the batch size is 128. During the training, 
the learning rate is set to 1×10−3 with the first 55,000 interactions, and it decays to 1×10−4 in the 
last 10,000 interactions. For the transition mechanism of the states, the thresholds τ1 and τ2 are set 
to 3 and 30 respectively. For hierarchical data association, the appearance threshold τa in Eq. (6) is 
set to 0.8 and the Mahalanobis threshold τm in Eq. (8) is set to 9.49, the hyper-parameter λ in 
Eq. (9) is set to 0.2. For the states’ update, the threshold τIoU is set to 0.5. 

The evaluations of the proposed MOT method are conducted by using following six metrics (Luo et 
al., 2015). (1) Multi-Object Tracking Accuracy (MOTA): it reflects the overall accuracy according to 
false positives, false negatives and identity switches; (2) Multi-Object Tracking Precision (MOTP): it 
reveals the overall tracking precision based on the bounding box overlap between the ground-truth 
and the prediction position; (3) Mostly Tracked (MT): the percentage of ground-truth trajectories 
that are covered by the tracker output for more than 80% of their length ; (4) Mostly Lost (ML): the 
percentage of ground-truth trajectories that are covered by the tracker output for less than 20% of 
their length; (5) Identity Switches (IDS): the number of times the reported identity of a ground-truth 
trajectory changes; (6) Fragmentation (FM): the number of times a ground-truth trajectory is 
interrupted in the tracking result. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/figure/fig6/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b52
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b28
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b51
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b37
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b17
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b17
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b15
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b51
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#fd3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#fd6
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#fd8
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#fd9
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b27
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b27
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The results shown in Table 1 are obtained based on MOT16 benchmark dataset. Compared with 
other online MOT methods, our proposed hierarchical data association based multi-pedestrian 
tracking method has achieved overall competitive performance. While maintaining high tracking 
accuracy and precision (MOTA and MOTP are 61.4% and 79.1% respectively), the IDS of our proposed 
method decreases to 710, which effectively reduces the number of trajectory ID switches and 
improves the ability to maintain trajectory ID. The reduction of FM (1913) indicates the decrement of 
the number of trajectory interruptions. 

Table 1 

Comparisons of different online algorithms on MOT16 benchmark (with private detectors). 

Methoda 
MOTA(%)
↑ 

MOTP(%)
↑ 

IDS↓ FM↓ MT(%)↑ ML (%)↓ 

Config-
MOT (Bae 
& Yoon, 
2017) 

43.9 76.0 1030 
 

17.4 30.2 

MOTDT 
(Long, 
Haizhou, 
Zijie, & 
Chong, 
2018) 

47.6 50.9 792 – 15.2 
 

STRN (Xu, 
Cao, 
Zhang, & 
Hu, 2019) 

48.5 73.7 

 

– 17.0 34.9 

Deep Sort 
(Wojke et 
al., 2017)   

781 2008 
  

EAMTT (S
anchez-
Matilla et 
al., 2016) 

  

910 – 19.0 34.9 

The 
proposed 
method   

 

  

19.9 

Open in a separate window 

aThe values in red and blue represent the optimal and the suboptimal results respectively. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/table/tbl1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b26
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b26
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b26
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b26
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b26
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b49
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b49
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b49
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b49
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b48
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b48
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b38
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b38
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b38
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#b38
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/table/tbl1/?report=objectonly
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4.2.2. Trajectory-based social distancing measurement and analysis  

For each scene in the real world, a rectangular reference area on the ground is selected and its actual 
length and width are measured. Due to the arbitrary angle of the camera, the rectangular reference 
area is presented as a quadrilateral in the original perspective video. According to the aspect ratio of 
the reference area, a reference rectangle is drawn with scaling factor s=0.1 in the bird’s eye view 
(with size 500 × 500), which corresponds to the calibrated rectangle of the quadrilateral in the 
original video. Through the coordinates of the four vertex pairs of the quadrilateral and the 
calibrated rectangle, the perspective transformation matrix M of each video can be obtained by using 
the Eq. (10). By using M, the transformed trajectory of each pedestrian in the bird’s eye view can be 
calculated. The detailed information of the selected rectangular reference area of each SCU-VSD 
video is shown in Table 2. 

Table 2 

The information of the selected rectangular reference areas for SCU-VSD Dataset. 

SCU-VSD 01 02 03 04 05 06 07 08 

In the real world 
Width (m) 6 6 7.8 6 6 6 6 7.2 

Length (m) 14.7 12 11 24.5 18 12 15 12.6 

 

In the bird’s eye view 
Width (pixel) 60 60 78 60 60 60 60 72 

Length (pixel) 147 120 110 245 180 120 150 126 

The comparisons between the original perspective view and the calibrated bird’s eye view for SCU-
VSD dataset are shown in Fig. 7. The rectangular reference area in each video is marked as a purple 
box. Due to the different perspective views of the videos, the reference areas in original videos are 
presented as different quadrilaterals. In the calibration process, we use four corresponding vertex 
coordinate pairs of the reference area in the original video and the bird’s eye view to calculate the 
perspective transformation matrix M of each video by Eq. (10), shown in Table 3. The numerical 
values of each matrix are expressed using scientific notation. 

Table 3 

The coordinates of the four vertex pairs and the perspective transformation matrix for SCU-VSD. 

Da
ta
se
t 

In the original 
video 

In the bird’s eye 
view 

M  

SC
U-
VS
D-
01 

P1=(695,183),P2=(3
28,899)P3=(1300,9
40),P4=(1129,193) 

Pʹ1=(225,325),Pʹ2=(
225,472)Pʹ3=(285,4
72),Pʹ4=(285,325) 

⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢1.9422e−01−2.1163e−02−1.9038e
−056.5468e−011.4486e+002.4575e−036.8420e
+012.1647e+021.0000e+00⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥ 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#fd10
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/table/tbl2/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/figure/fig7/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/#fd10
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/table/tbl3/
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Da
ta
se
t 

In the original 
video 

In the bird’s eye 
view 

M  

SC
U-
VS
D-
02 

P1=(409,317),P2=(1
13,776)P3=(1199,7
65),P4=(1095,310) 

Pʹ1=(225,325),Pʹ2=(
225,445)Pʹ3=(285,4
45),Pʹ4=(285,325) 

⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢1.5449e−011.4504e−022.2426e−0
55.8471e−011.4124e+002.1704e−031.3333e+0
29.7908e+011.0000e+00⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥ 

 

SC
U-
VS
D-
03 

P1=(397,153),P2=(5
1,712)P3=(1771,17
15),P4=(1510,163) 

Pʹ1=(225,300),Pʹ2=(
225,410)Pʹ3=(303,4
10),Pʹ4=(303,300) 

⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢7.4208e−02−1.0730e−02−2.5199e
−053.0369e−016.9188e−011.1300e−031.8572e
+022.4727e+021.0000e+00⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥ 

 

SC
U-
VS
D-
04 

P1=(781,129),P2=(3
20,891)P3=(1515,9
40),P4=(1295,140) 

Pʹ1=(225,225),Pʹ2=(
225,470)Pʹ3=(285,4
70),Pʹ4=(285,225) 

⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢1.4485e−01−2.3251e−02−1.4727e
−055.7949e−011.4215e+002.1771e−039.7719e
+011.2039e+021.0000e+00⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥ 

 

SC
U-
VS
D-
05 

P1=(677,155),P2=(4
36,788)P3=(1529,7
88),P4=(1225,155) 

Pʹ1=(225,250),Pʹ2=(
225,430)Pʹ3=(285,4
30),Pʹ4=(285,250) 

⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢1.4474e−01−8.9224e−16−2.1849e
−185.2241e−011.2690e+002.0769e−031.1847e
+021.3379e+021.0000e+00⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥ 

 

SC
U-
VS
D-
06 

P1=(190,355),P2=(2
50,913)P3=(1679,7
68),P4=(1146,272) 

Pʹ1=(225,325),Pʹ2=(
225,445)Pʹ3=(285,4
45),Pʹ4=(285,325) 

⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢1.0968e−016.8670e−028.1190e−0
53.0204e−019.3750e−011.3861e−032.1112e+0
21.4407e+021.0000e+00⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥ 

 

SC
U-
VS
D-
07 

P1=(666,247),P2=(2
11,909)P3=(1613,9
61),P4=(1472,263) 

Pʹ1=(225,300),Pʹ2=(
225,450)Pʹ3=(285,4
50),Pʹ4=(285,300) 

⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢1.0462e−01−9.2389e−034.6381e−
064.1639e−019.9577e−011.5342e−031.3844e+
021.7481e+021.0000e+00⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥ 

 

SC
U-
VS
D-
08 

P1=(665,187),P2=(4
61,634)P3=(1569,6
31),P4=(1328,186) 

Pʹ1=(225,300),Pʹ2=(
225,426)Pʹ3=(297,4
26),Pʹ4=(297,300) 

⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢1.5073e−018.1498e−04−5.8150e−
075.3939e−011.2834e+002.0913e−031.1180e+
021.7667e+021.0000e+00⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥ 

 

 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=7865092_gr7a_lrg.jpg
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Fig. 7 

The comparisons between the original perspective view and the calibrated bird’s eye view for SCU-
VSD. 

For social distancing measurement, the safe distance threshold τs is set to 2 m, the threshold τn is set 
to 250, and the scaling factor s is set to 0.1. Based on the varying scales of time, the experiments of 
multi-scale social distancing measurement and analysis in public spaces are performed as follow: (1) 
for 1/25 s (one frame as a unit), the Euclidean distance between tracking objects in the bird’s eye 
view is measured to calculate the real-time social distancing between pedestrians, the real-time ratio 
of pedestrians with unsafe social distancing and the real-time gathering degree; (2) for 10 s (250 
consecutive frames as a unit), the ARP-USD and AGD are calculated; (3) for 60 s (1500 frames, this is 
the entire video duration), the ARP-USD and AGD are calculated; for pedestrians’ trajectories, the 
NTP-USD and the NPPC-USD are calculated. 

The real-time social distancing measurement and analysis for SCU-VSD dataset are shown in Fig. 8. 
The figure on the left is the original video, and the one on the right is the corresponding bird’s eye 
view. The tracking pedestrians in the original video are transformed to the trajectory points in the 
bird’s eye view. The Euclidean distance between tracking object pairs in the bird’s eye view are 
measured frame-by-frame to estimate the real-time social distances between the pedestrians. If the 
social distances are less than the safe distance, the tracking bounding boxes in the left figure will 
change from blue to red, and the corresponding trajectory points in the right figure will change from 
green to red, with a red line linking pedestrians. The real-time ratio of pedestrians with unsafe social 
distancing and the real-time gathering degree are calculated, and the results are displayed in the top-
left corner of the right figure. 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/figure/fig7/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/figure/fig8/
https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=7865092_gr8a_lrg.jpg
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Fig. 8 

The real-time social distancing measurement and analysis for SCU-VSD dataset. 

Taking 10 s as a unit, each video is divided into 6 periods. For each period, the ARP-USD and AGD 
metrics are calculated, and the results are drawn using colourmaps. The colourmaps of ARP-USD (on 
the left) and AGD (on the right) for every 10 s of each video clip are shown in Fig. 9. 

 

 

Fig. 9 

The colourmaps of ARP-USD and AGD for every 10 s. 

From Fig. 9, each row of the colourmaps can reflect the changing trend of metrics in different time 
units of the same video, while each column of the colourmaps can reflect the metrics’ changing 
tendency of different videos in the same time unit. These trends can be displayed intuitively through 
colour gradients of the corresponding colorbar. We take the first row and the first column of 
colourmaps as the examples for analysis. The first row of data represents the ARP-USD and AGD 
metrics of SCU-VSD-01 clip in different time units. It can be seen that the changing trends of the two 
metrics of SCU-VSD-01 are roughly identical, rising and then falling, reaching their peaks (80.4% and 
1.81 respectively) at the second time unit. The first column of the data represents the comparisons 
of the two metrics of the 8 video clips in the first time unit. It also can be observed that in this 
period, the two metric values of SCU-VSD-03 are the minimum (7.07% and 0.06 respectively), while 
the ARP-USD of SCU-VSD-04 and the AGD of SCU-VSD-01 are the maximum (84.83% and 1.32 
respectively). In practical applications, the duration of the time window can be adjusted according to 
the actual requirement, so that ARP-USD and AGD at different time scales can be obtained. 

From the global perspective, the four metrics ARP-USD, NTP-USD, NPPC-USD and AGD for each entire 
video are calculated, shown in Table 4. 

Table 4 

The four metrics ARP-USD, NTP-USD, NPPC-USD and AGD for each entire video. 

Datasets ARP-USD (%) NTP-USD NPP-CUSD AGD 

SCU-VSD-01 67.01 32 11 1.2 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/figure/fig8/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/figure/fig9/
https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=7865092_gr9_lrg.jpg
https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=7865092_gr9_lrg.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/figure/fig9/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/figure/fig9/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/table/tbl4/
https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=7865092_gr9_lrg.jpg
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Datasets ARP-USD (%) NTP-USD NPP-CUSD AGD 

SCU-VSD-02 75.90 10 9 1.0 

SCU-VSD-03 47.62 3 2 0.57 

SCU-VSD-04 63.84 22 11 1.03 

SCU-VSD-05 64.48 14 10 0.98 

SCU-VSD-06 49.59 5 4 0.76 

SCU-VSD-07 67.64 19 6 0.99 

SCU-VSD-08 61.60 6 6 0.92 

As shown in Table 4, the NTP-USD, NPPC-USD and AGD of SCU-VSD-01 achieve the maximum values, 
which are 32, 11 and 1.2 respectively, while the four metrics of SCU-VSD-03 are the minimum, 
47.62%, 3, 2 and 0.57 respectively. Comprehensively, it can be concluded that SCU-VSD-01 video has 
the largest number of pedestrian pairs with unsafe social distancing and the highest average 
gathering degree. In contrast, SCU-VSD-03 video has the smallest number of pedestrians with unsafe 
distancing and the lowest average gathering degree. 

5. Conclusion 

In this paper, in response to the VSD problem in public places during the pandemic, we first proposed 
a hierarchical association based online multi-pedestrian tracking method to obtain pedestrians’ 
trajectories. We then proposed a spatio-temporal trajectory based multi-scale social distancing 
measurement and analysis method. The proposed VSD method considers both Euclidean distance 
from a static perspective and Fre´chet distance from a spatio-temporal perspective to estimate the 
social distancing and analyse the crowd gathering situations based on a variety of time scales. The 
multi-scale metrics obtained by the proposed VSD approach can provide the local authorities with 
guiding information to help them monitor the real-time and overall situations of the social distancing 
of crowds in public spaces, so as to formulate and take corresponding prevention measures. In 
addition, for the areas where the pandemic has outbroken, the proposed VSD and analysis scheme 
can be used to provide useful supporting data for the subsequent epidemiological investigation, such 
as locating and search of the infection chain. 
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Footnotes 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865092/table/tbl4/
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1The World Health Organisation advises maintaining at least 1 metre (3 ft) distance between yourself 
and others(https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public). 
In this paper, the safe distance threshold is set to 2 metres (6 ft). 

2https://landing.ai/landing-ai-creates-an-ai-tool-to-help-customers-monitor-social-distancing-in-the-
workplace/. 
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