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A B S T R A C T   

Currently, the use of autografts is the gold standard for the replacement of many damaged biological tissues. 
However, this practice presents disadvantages that can be mitigated through tissue-engineered implants. The aim 
of this study is to explore how machine learning can mechanically evaluate 2D and 3D polyvinyl alcohol (PVA) 
electrospun scaffolds (one twisted filament, 3 twisted filament and 3 twisted/braided filament scaffolds) for their 
use in different tissue engineering applications. Crosslinked and non-crosslinked scaffolds were fabricated and 
mechanically characterised, in dry/wet conditions and under longitudinal/transverse loading, using tensile 
testing. 28 machine learning models (ML) were used to predict the mechanical properties of the scaffolds. 4 
exogenous variables (structure, environmental condition, crosslinking and direction of the load) were used to 
predict 2 endogenous variables (Young’s modulus and ultimate tensile strength). ML models were able to identify 
6 structures and testing conditions with comparable Young’s modulus and ultimate tensile strength to liga-
mentous tissue, skin tissue, oral and nasal tissue, and renal tissue. This novel study proved that Classification and 
Regression Trees (CART) models were an innovative and easy to interpret tool to identify biomimetic electrospun 
structures; however, Cubist and Support Vector Machine (SVM) models were the most accurate, with R2 of 0.93 
and 0.8, to predict the ultimate tensile strength and Young’s modulus, respectively. This approach can be 
implemented to optimise the manufacturing process in different applications.   

1. Introduction 

The gold standard for surgeries such as Anterior Cruciate Ligament 
(ACL) replacement, coronary artery bypass graft, treatment for gingival 
recession or skin transplantation is the use of autologous tissues (Lau-
rencin and Freeman, 2005; Rashid et al., 2008; Kamolz et al., 2022; 
Webb et al., 2023; Moharamzadeh et al., 2012). However, several dis-
advantages are associated with this practice, such as donor site 
morbidity, long rehabilitation time or lack of availability, potentially 
solved through the implantation of tissue engineered grafts. 

There are some premises that a tissue engineered graft should ach-
ieve: biocompatibility; appropriate biodegradability rate; porosity; its 
mechanical behaviour should be comparable to the natural tissue that it 
would replace (Laurencin and Freeman, 2005; Freeman et al., 2007a); 

and ideally, it should replicate the morphology of the extracellular 
matrix tissue in order to promote cell proliferation and imitate me-
chanical response. In terms of material properties, each biological tissue 
exhibits different mechanical behaviours. For instance, if the goal is to 
mimic mechanical behaviour of the natural ACL in the linear region, 
ACL replacements should have an ultimate tensile stress of approxi-
mately 38 MPa (Noyes and Grood, 1976) and a Young’s modulus of 
about 111 MPa (Noyes and Grood, 1976), values observed in the natural 
ACL; however, for gingival grafts the Young’s modulus should be about 
37 MPa and the ultimate tensile strength of 3.8 MPa (Choi et al., 2020) 
and for skin replacements those values should vary between 160-70 MPa 
and 15–28 MPa respectively depending on the location and testing 
conditions (Joodaki and Panzer, 2018; Ottenio et al., 2015; Ní Annaidh 
et al., 2012). To imitate the morphology of the biological tissue, the 
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scaffolds should present the diameter of fibres and filaments between 40 
and 150 nm to mimic the collagen fibrils, and between 1 and 20 μm to 
replicate the collagen fibres of the human soft tissue in the extracellular 
matrix (ECM) (Shino et al., 1995; Moeller et al., 1995; Bancelin et al., 
2014; Strocchi et al., 1996; Roldán et al., 2023a). 

The conventional electrospinning process allows the production of a 
sheet-like network of nanofibres similar to the ECM of soft tissue (Chen 
et al., 2020a). However, 3D scaffolds promote cell growth, migration, 
cell-cell interaction and tissue morphogenesis, which are essential fac-
tors for cell cycle and tissue performance (Sun et al., 2014). Electro-
spinning in combination with other manufacturing techniques such as 
gas foaming (Joshi et al., 2015; Jiang et al., 2015), freeze-drying (Si 
et al., 2016) and 3D printing (Chen et al., 2019, 2020b) were studied to 
manufacture 3D scaffolds. Although these studies reported optimum 
morphology and good cell proliferation on their scaffolds, the majority 
of them they do not assess the mechanical behaviour. Twisted and 
braided electrospun scaffolds can mimic the morphology to the ECM of 
soft tissue (Roldan et al., 2023a), improve the flexibility, bear axial/-
shear loads and provide torsion stability (Freeman et al., 2007b), useful 
characteristics for certain artificial grafts. However, there is a lack of 
studies involving these kind of electrospun scaffolds to be used in 
different tissue engineering applications and they are mainly focused on 
producing tendons (Bosworth et al., 2013; Sensini et al., 2017, 2021) 
and ligaments (Mouthuy et al., 2015; Rothrauff et al., 2017; Roldán 
et al., 2024). 

Each human tissue is subjected to different environmental and 
loading conditions that must be taken into account to design and treat 
the scaffolds. For instance, oral, nasal or vascular tissues are constantly 
in a wet environment; therefore, degradable scaffolds, such as PVA 
scaffolds, should be crosslinked to reduce the degradation rate while the 
tissue is formed, and the scaffolds must behave as the native tissue in wet 
conditions. Another key aspect is the loading of the tissues, it was 
demonstrated that some tissues, such as the anterior cruciate ligament, 
are subjected to multidirectional load (Roldán et al., 2016, 2017), 
therefore different loading conditions, such as longitudinal or transverse 
loading, should to be considered to evaluate the final scaffold, which 
must support the same loading as the native tissue. Therefore, the un-
derstanding of how crosslinking and testing conditions (environmental 
and loading) influence the mechanical behaviour of 2D and 3D struc-
tures is crucial, to design and evaluate tissue engineered scaffolds. 

Traditional statistical models, such as Multivariate Analysis of 
Variance (MANOVA) or linear regression models, and Machine Learning 
(ML) techniques are excellent tools to understand the importance of 
different factors (exogenous variables) on the predicted variables 
(endogenous variables). ML models play a key role, providing the 
highest accuracy predictions even when data presents complicated 
nonlinear interactions or when the parametric conditions are not met 
(Bzdok et al., 2018a), minimising the time and cost of experimental 
work after developing the model (Roldán et al., 2023a). However, some 
ML models such as KNN, SVM or neural networks are more complicated 
to interpret than others such as linear regression models, CART or 
CUBIST models. The ML models learn from the data provided to them, 
knowing the influence that the input variables have had on obtaining 
their results will allow us to know the reason for their predictions. A 
model will be better interpreted if the reasons why its decisions have 
been made are understood (Miller, 2019). In this research the predict-
ability and the interpretability of the models were studied and discussed 
to determine the best models able to predict the Young’s modulus and 
ultimate tensile strength and assess their suitability to identify the 
structure and testing conditions that best mimic a human tissue. 

The use of ML models in relation with tissue engineering applications 
increased exponentially in the last decade, from 9 articles published in 
2013 to 130 articles published in 2023 (maximum recorded so far). Such 
increase is partly due to the recent advances in the ML field as well as the 
broad availability of ML toolboxes and software packages (Yagli et al., 
2019), such as Scikitlearn a Python package (Pedregosa et al., 2011) or 

the libraries PyCaret (PyCaret Available online) and Caret (Kuhn, 2008) 
available in Python and R, respectively. Caret library was used in this 
research due to its simplicity in aspects such as data preprocessing, 
hyperparameter tuning, and training steps. 

However, only three original articles were found that studied the use 
of ML tools to predict the mechanical behavior of electrospun scaffolds, 
and only two of them for tissue engineering purposes. Vatankhah et al. 
used neural networks to predict the Young’s modulus of electrospun 
polycaprolactone/gelatin scaffolds for tissue engineering applications, 
knowing the manufacturing parameters such as polymer concentrations 
and rotation speed, and morphological properties such as fibre diameter 
and alignment of the fibres (Vatankhah et al., 2014). The optimisation of 
manufacturing parameters such as the concentration of the polymer, 
flow rate, voltage, type of collector, diameter of the needle, distance 
between needle and collector and revolutions of the mandrel was 
explored, with decision trees and neural network, by Roldan et al. to 
develop electrospun scaffolds with comparable mechanical and 
morphological properties to human blood vessels (Roldán et al., 2023a). 
And Muqeet et al. used machine learning models, implemented in 
PyCaret, to improve the cellulose nanofiber mechanical stability 
through ionic crosslinking and interpretation of adsorption data for 
potable water treatment (Muqeet et al., 2023). 

The aim of the present study is to explore the suitability of traditional 
statistical models (Multivariate Analysis of Variance) and 28 machine 
learning algorithms to predict the mechanical behaviour (ultimate ten-
sile strength and Young’s modulus) of 2D and 3D PVA electrospun 
structures (one twisted filament scaffolds, 3 twisted filaments scaffolds 
and 3 twisted/braided filaments scaffolds) and assess their suitability to 
identify the structure that best mimic a specific human tissue. In order to 
achieve this goal, crosslinked and non-crosslinked 2D and 3D structures, 
under dry and wet conditions and longitudinal and transversal testing 
were mechanically analysed to inform the models. 

This novel approach allows prediction of combinations of factor 
levels that can generate biomimetic scaffolds for a wide variety of 
human tissue replacements. The same methodology can be applied to 
optimise the manufacturing process across various applications. 

2. Materials and methods 

2.1. Materials 

PVA purchased from Sigma Aldrich (UK) was diluted in distilled 
water (dH2O) in a concentration of 12% w/v by heating at 100 ◦C and 
stirring for 1 h until a homogenous solution was achieved. 

Crosslinked samples were manufactured using 25% glutaraldehyde 
acquired from Sigma Aldrich (UK). 

2.2. Manufacturing process 

An electrospinning device (Spraybase®, Ireland) was used to fabri-
cate the electrospun meshes. After an optimization process (Roldán 
et al., 2023a; Roldan et al., 2023b), a 20 ml syringe was loaded with 10 
ml of polymer solution, and it was pumped with a flow rate of 1 ml/h 
through a 18 G needle. An electrostatic field was created applying high 
voltage of 20 kV between the tip of the needle and the collector. The 
fibres were projected from the tip of the needle over a sheet of 
aluminium foil attached to a 9.65 cm diameter rotating collector 
working at 2000 rpm. The distance between the needle and the collector 
was set up to 8 cm. The sheet-like electrospun meshes were manufac-
tured at room temperature (25 ◦C) and for 3 h spin time (Roldán et al., 
2023a, 2023b). A total of 12 sheet-like electrospun meshes were pro-
duced in 4 days (3 sheet-like electrospun meshes/day). 

2.2.1. Fabrication of the 2D electrospun scaffolds 
Both non-crosslinked and crosslinked 2D structures were fabricated 

by cutting the sheet-like electrospun meshes in a dog-bone shape (25 ×
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4 mm, test length x width. Typical thickness of the sheet-like electrospun 
meshes was 50 μm) in order to test them mechanically and compare 
their mechanical behaviour to the 3D electrospun structures. A total of 
40 2D scaffolds were manufactured, 3 samples per sheet-like electrospun 
mesh were taken from 10 meshes, and 5 samples per mesh from 2 
electrospun meshes. 

2.2.2. Fabrication of the 3D electrospun structures 
The sheet-like electrospun meshes were cut into rectangles of 2 × 15 

cm, carefully peeled from the aluminium foil, and manually twisted 
clockwise to form a packed filament. Each filament was then cut in half 
to optimise the sample size to be tested and three different types of 
scaffolds were created with those filaments: one filament scaffolds, 3 
twisted filaments scaffolds and 3 twisted/braided filaments scaffolds. 
One twisted filament scaffolds were created by manually twisting the 
sheet-like electrospun scaffolds. 3 twisted filaments scaffolds were 
fabricated by twisting together three of the one filament scaffolds, the 
three filaments were twisted together, in a clockwise manner, until a 
packed and stable structure was created. 3 twisted/braided filaments 
scaffolds were manufactured by manually braiding three twisted fila-
ments with similar diameters. 90 3D samples were produced, 30 scaf-
folds per 3D structure. 2 samples of each 3D structure per mesh were 
manufactured from 10 electrospun meshes, and 5 samples of each 3D 
structure per mesh from 2 electrospun meshes. 

Crosslinked and non-crosslinked scaffolds 3D samples were manu-
factured following the same procedure described above. 

2.3. Crosslinking process 

A total of 90 samples were crosslinked by vapour deposition. These 
samples were placed on a cardboard frame over a metallic mesh in a 
sealed desiccator and were exposed to 25 ml of 25% glutaraldehyde 
(GTA) for 24 h, following previous studies (Roldán et al., 2023a, 2023b; 
Roldan et al., 2023a). After the samples were crosslinked, they were 
dried under a fume hood for 24 h to reduce the moisture and toxicity of 
the samples. 

2.4. Mechanical characterisation 

Tensile tests were performed on non-crosslinked and crosslinked 
samples of each structure under dry and wet conditions to determine the 
Young’s modulus and the ultimate tensile strength (UTS). Wet samples 
were immersed in phosphate-buffer saline solution (PBS) for 1 min and 
tested within the next minute after removal from PBS to maintain the 
moisture, following previous studies (Roldan et al., 2023a; Roldán et al., 
2024). Crosslinked 2D scaffolds were longitudinally and transversally 
tested in dry conditions. A total of 128 samples were tested (10 samples 
per combination of structures and conditions) following Table 1. 

The 2D and 3D samples were prepared as reported in section 2.2 and 
placed them separately on cardboard frames to allow the alignment of 

the sample in the tensometer (Instron H10KS, US). Once the samples 
were aligned, both sides of the cardboard frame were cut before testing. 

To accurately determine the nominal cross-sectional area of each 
scaffold, the thickness of each sample was measured three times with a 
digital calliper, an analogue calliper and through SEM images and the 
average calculated. The limitations of each technique related to the 
calculus of the nominal cross-sectional area were discussed in the dis-
cussion section. 

All the mechanical tests were conducted under the same conditions: 
at room temperature (25 ◦C), with a 100 N load cell, 5 mm/min test 
speed and rubber pneumatic clamps to reduce stress concentrations 
(Roldan et al., 2023a). However, a preload of 0.1N was applied in wet 
samples to fully align them in the tensometer. 

2.5. Mechanical requirements for tissue engineered grafts 

Mechanical properties of common human tissue previously reported 
(Roldán et al., 2023b) were used to benchmark the experimental results 
of the present study and assess the possibility of using certain structures 
in different environmental/loading conditions for a variety of tissue 
engineered grafts. This identification was carried out traditionally, with 
the mean and standard error of the mechanical properties of each 
manufactured scaffold, and through CART models to predict the Young’s 
modulus and the ultimate tensile strength. The results of both techniques 
were discussed in this research. 

2.6. Statistical analysis 

An initial exploratory analysis and a treatment of aberrant data were 
conducted prior to developing the models. 

The normality and homoscedasticity were assessed through Kolmo-
gorov Smirnov and Breusch-Pagan tests respectively. 

Traditional statistical approaches, such as Multivariate Analysis of 
Variance (MANOVA), were conducted to be compared with machine 
learning models and evaluate the significance of the independent vari-
ables (structure, environmental condition, crosslinking and direction of 
the load) and their interactions on the dependent continuous variables 
(Young’s modulus and ultimate tensile strength). The accuracy of these 
models was assessed by the coefficient of determination. Partial squared 
Eta values were used to determine the effect sizes produced by endog-
enous variables, factors and interactions (Roldán et al., 2023a, 2023b). 

To identify which manufactured scaffold could be suitable to replace 
a specific human tissue in a traditional manner, the mean and standard 
deviation (Std Dev) were calculated for each mechanical property for all 
2D and 3D structures and conditions. 

Descriptive statistics of all the predictions obtained with RF, KNN, 
CUBIST and SVM were used to assess which model could get a better 
approximation to certain human tissue. 

SPSS version 29.0.1.0 (IBM Inc, US) was used to conduct all statis-
tical analyses, descriptive and exploratory and inference analysis. 

Table 1 
Design factors and number of samples per factor.   

Structure Environmental condition Crosslinked Orientation Number of Samples 

Our Scaffolds 2D Dry Non-Crosslinked Longitudinal 10 
Crosslinked Longitudinal 10 

Transverse 10 
Wet Crosslinked Longitudinal 10 

3D 1 Filament Dry Non-Crosslinked Longitudinal 10 
Crosslinked Longitudinal 10 

Wet Crosslinked Longitudinal 10 
3D 3 twisted filaments Dry Non-Crosslinked Longitudinal 10 

Crosslinked Longitudinal 10 
Wet Crosslinked Longitudinal 10 

3D 3 twisted/braided filaments Dry Non-Crosslinked Longitudinal 8 
Crosslinked Longitudinal 10 

Wet Crosslinked Longitudinal 10  
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2.7. Machine learning models 

2.7.1. Predictability 
A total of 28 ML models were studied in this research. 4 exogenous 

variables (structure, environmental condition, crosslinking and direc-
tion of the load for 2D scaffolds) were used to predict 2 endogenous 
variables (Young’s modulus and ultimate tensile strength). 128 obser-
vations for each endogenous variable informed a Multivariate Analysis 
of Variance (MANOVA) whose results were compared to the results 
obtained with 28 parametric and non-parametric machine learning (ML) 
models, including Linear Models (LM), Generalized Linear Model 
(GLM), Generalized Additive Model (GAM), Stepwise Model Selection 
by Akaike information criterion (Step AIC), Multivariate Adaptive 
Regression Splines (MARS, also known as EARTH models), Lasso and 
Elastic-Net Regularized Generalized Linear Models (GLMNET), Support 
Vector Machine (SVM), Tune SVM (optimised SVM), Classification and 
Regression Trees (CART), k-Nearest Neighbours (KNN), Random Forest 
(RF), Generalized Boosted Regression Models (GBM), cubist models 
(CUBITS) and Tune CUBIST (optimised CUBIST), to select the most ac-
curate model for each dependent variable. 

Linear models were used in this study for comparison purposes with 
the rest of the ML models following previous research (Roldán et al., 
2023a). 

For all of the models the pre-processes were set up as “center”, 
“scale” and “BoxCox”. All models were validated with a nested cross- 
validation (Fig. 1). The outer loop corresponded to a leave-one day- 
out 4 folds cross-validation (1 fold per day). The test data of the outer 
loop included scaffolds created from 3 sheet-like meshes manufactured 
the same day. Training data of the outer loop included the scaffolds 
manufactured from 9 sheet-like scaffolds created in different days that 
the scaffolds included in the test data. Inner loops of 10-folds cross- 
validation and 3 repeats were created with the function “trainControl 
()” and the method “repeatedcv”, to optimise the hyperparameters of 
models such as Cubist and SVM through the function “expand.grid()”. 
Sigma values of 0.025, 0.05, 0.1, 0.15 and a sequence between 1 and 10 
were used to optimise the hyperparameters of SVM models (Tune SVM). 
To optimise hyperparameters for CUBIST models (Tune CUB) commit-
tees with sequences between 15 and 25 and K-neighbours of 3, 5, and 7 
were evaluated. The default hyperparameters and settings embedded in 
the “caret()” library were used for the rest of the models. 

Final R2 and Mean Absolute Percentage Error (MAPE) and Root 
Mean Square Error (RMSE) of the cross-validation (R2

CV, MAPECV and 
RMSECV) were calculated with the average of the results of these pa-
rameters obtained per day (R2

CV_day1 until R2
CV_day4, MAPECV_day1 until 

MAPECV_day4 and RMSECV_day1 until RMSECV_day4), which were calcu-
lated with the average of the R2, MAPE and RMSE results for each 

validation stage (R2
CV1 until R2

CV10, MAPECV1 until MAPECV10 and 
RMSECV1 until RMSECV10). 

The different data sets are represented in Fig. 1. 
To determine the most accurate model per independent variable, the 

final MAPE and RMSE errors (MAPETest and RMSETest), and the fitted 
values of R2 (R2

Test) were calculated with the average of the results ob-
tained per day with test data (R2

Test1 until R2
Test4, MAPETest1 until 

MAPETest4 and RMSETest1 until RMSETest4) and the “predict()” function. 
The importance of the exogenous variables on the endogenous var-

iables was calculated, for all the ML models, with the function “varImp 
()” and training and validation data. A percentual average of the 
importance of the variables was calculated considering all popular ML 
models (14 models per independent variable), all the scaffolds created 
per day (4 days) and all the repetitions for the cross-validation (30 
repetitions per day). Therefore, the importance of the predictors on the 
predicted variable was computed with a total of 1680 cases per inde-
pendent variable (Young’s modulus and ultimate tensile strength). 

All the models and functions used in this research are implemented 
in the library “caret()” of R-4.3.2 and RStudio 2023.10.31. 

2.7.2. Interpretability 
Regression coefficients of LM, GAM, EARTH and Step AIC models 

were obtained with the function summary(). This function also provides 
standard errors, significance level (P value), R2 and AIC (Akaike infor-
mation criterion) to determine the best predicted model penalising 
complex models to avoid overfitting. The interpretation of linear models 
is the easiest since the regression coefficients allows to create a mathe-
matical relationship between the dependent and the independent vari-
ables (equation (1)). 

E or UTS= ⅈntercept + 1TF, 3TF,3TBF structure + β1 condition

+ β2 crosslinking + β3 direction (1)  

Where β1, β2 and β3 are the regression coefficients of each exogenous 
variable, condition would be 0 for dry samples and 1 for wet samples, 
crosslinking would be 0 for non-crosslinked samples and 1 for cross-
linked samples, direction would be 0 for longitudinal and 1 for trans-
verse, and structure would be 0 for 2D structures and 1 for any 3D 
structure. The regression coefficients for the structure will depend on the 
structure, coefficients 1TF correspond to 1 filament scaffolds, 3TF co-
efficient will be applicable for just 3 twisted filament scaffolds and 3TBF 
are the coefficients applied to 3 twisted/braided filament scaffolds. 

CART models are non-parametric supervised learning algorithms and 
were selected due to their easy interpretability. Two inverted trees were 
created in this research to present the predictions and importance of the 
independent variables on the prediction of the dependent variables 

Fig. 1. Validation process of the model.  
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(Young’s modulus and ultimate tensile strength). These models can be 
pruned to enhance their interpretability; however, the prune function 
was not used to favour the identification of the structure that under an 
environmental and loading condition would be suitable as human tissue 
replacement. For this goal, the terminal leaf and the path followed to 
reach that leaf was considered, and the mean and standard deviation of 
the predicted dependent variable (Young’s modulus or ultimate tensile 
strength) were graphically compared with the same property for the 
different human tissues obtained in a previous research (Roldán et al., 
2023b). 

CUBIST models provide an effective model interpretability while 
offering powerful predictive performance. These models are based on 
decision trees with series of “if-then” rules in their branches which are 
associated with a multivariate linear regression model in the terminal 
leaf. CUBIST models add boosting with training committees and K 
nearest neighbours to adjust the predictions generated by the model 
rules (Kuhn et al., 2014; Kuhn and Johnson, 2013). The function sum-
mary() provided all the rules and multivariate linear regressions, which 
offered an easier understanding than other ML techniques such as SVM 
or KNN while giving a better predictions than simple techniques such as 
multivariate linear regression. 

SVM is a powerful non-parametric supervised machine learning 
technique used for classification, regression and outliers detection 
(Smola and Schölkopf, 2004). A linear score classifier is provided by 
SVM; however, the coefficient function that defines that linear score 
exhibits many irregular oscillations which makes difficult its interpre-
tation (Martin-Barragan et al., 2014). 

The KNN method can be used for regression and classification and 
uses the nearest neighbours (or the average of the neighbours, in case of 
regression) of a data point for prediction. The interpretation of this 
method is tricky mainly for two reasons; first, there is no interpretability 
on a modular level due to no parameters are used to learn; second, there 
are not global weights or structures explicitly learned and therefore its 
global interpretability is complicated. The interpretability of this 
method will highly depend on the data set, being more uninterpretable 
as many features we have to create the model (Molnar, 2019). 

Due to the demonstrated similarity of the errors and R2 calculated 
with test data and after the cross-validation, we used the descriptive 
statistics of all predictions of the Young’s modulus and UTS for each 
structure and testing conditions obtained with RF, KNN, SVM and 
CUBIST models and we compared the different factor’s levels to human 
tissues to identify the most suitable structure for human tissue 
replacement. 

3. Results 

3.1. Statistical analysis 

After an initial exploratory analysis and a treatment of aberrant data, 
two of the mechanical values observed for 3 twisted/braided filaments 
scaffolds resulted in aberrant values and were considered out of the 
study. 

Kolmogorov Smirnov and Breusch-Pagan tests proved that none of 
the 2 output variables followed a normal distribution (P value < 0.001), 
and they did not meet the homoscedasticity (P value < 0.001). There-
fore, popular statistics models such as general linear models or Multi-
variate Analysis of Variance (MANOVA) models would be not suitable 
for this study. Nonetheless, these approaches were included in this 
research due to their popularity in the scientific community, and their 
accuracy and importance (Eta values) of each exogenous variable were 
discussed and compared to those of machine learning models. Table 2 
presents the MANOVA for the Young’s modulus and ultimate tensile 
strength, Fisher’s number, significance, Eta value and coefficient of 
determination (R2). 

MANOVA analysis presented significant differences for the Young’s 
modulus and ultimate tensile stress (P value < 0.0001) depending on 

scaffold structure, environmental condition (dry or wet samples), testing 
direction (longitudinal or transversal to the fibres) and structure/envi-
ronmental condition interactions. Also, crosslinked and non-crosslinked 
samples exhibited significant differences (P value < 0.0001) for ultimate 
tensile stress; however, they presented borderline significant differences 
(P value = 0.046) in Young’s modulus. No significant differences were 
observed in both Young’s modulus and ultimate tensile stress for the 
interaction between crosslinked and structure (P value = 0.263 and P 
value = 0.272 respectively). 

Eta values were studied to evaluate the importance of the indepen-
dent variables on the dependent variables (Table 2). Eta values of 0.627, 
0.631depend and 0.552 were obtained for the influence of the structure, 
the environmental condition (dry vs. wet samples) and the loading di-
rection on the Young’s modulus, demonstrating a high importance of 
these independent variables on this dependent variable. It was also 
observed that the structure and environmental condition (dry vs. wet 
samples) highly affected the ultimate tensile stress exhibiting Eta values 
of 0.594 and 0.515. 

Fig. 2 shows the MANOVA predicted values vs. the observed values 
for both mechanical properties. 

Traditionally, the way to identify which structure would mechani-
cally behave more similarly to a specific tissue, would be through the 
mean and standard deviation of specific mechanical properties. Table 3 
presents the mean and Std Deviation of the Young’s modulus and ulti-
mate tensile strength for each structure and manufacturing and testing 
condition, and they are compared with biological human tissue in the 
same range. 

3.2. Machine learning models 

3.2.1. Predictability 
Although R2 informs us of the goodness of fit of the model, this does 

not mean that all of those who have high or low R2 are good or bad 
models; the combination of the study of the coefficient of determination 
and the accuracy of the model, defined by the type of errors, will be 
decisive. To select the most accurate model, graphical interpretations of 
the coefficient of determination and precision parameters (MAPE and 

Table 2 
MANOVA for the Young’s modulus and ultimate tensile strength.  

Intersubject effects test 

Origen Dependent 
variable 

F Sig. Eta partial 
squared 

Corrected model Young’s Modulus 42.681 0.000 0.817 a 

Ultimate tensile 
strength 

33.271 0.000 0.776 b 

Intersection Young’s Modulus 742.796 0.000 0.866 
Ultimate tensile 
strength 

1356.070 0.000 0.922 

Structure Young’s Modulus 64.408 0.000 0.627 
Ultimate tensile 
strength 

56.198 0.000 0.594 

Environmental 
condition 

Young’s Modulus 196.665 0.000 0.631 
Ultimate tensile 
strength 

122.039 0.000 0.515 

Direction Young’s Modulus 141.620 0.000 0.552 
Ultimate tensile 
strength 

50.297 0.000 0.304 

Crosslinked Young’s Modulus 3.969 0.049 0.033 
Ultimate tensile 
strength 

13.098 0.000 0.102 

Structure * 
Condition 

Young’s Modulus 20.371 0.000 0.347 
Ultimate tensile 
strength 

11.920 0.000 0.237 

Structure * 
Crosslinked 

Young’s Modulus 1.347 0.263 0.034 
Ultimate tensile 
strength 

1.318 0.272 0.033  

a R2 = 0.817 (Young’s Modulus). 
b R2 = 0.776 (Ultimate tensile strength). 
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RMSE) have been used. 
Fig. 3 shows the MAPE and R2 of each ML model to predict the 

Young’s modulus and ultimate tensile strength. Both, MAPE and coef-
ficient of determination were calculated with test data. Fig. 3A shows 
the coefficient of determination and MAPE for each ML regression model 
used to predict the Youngs modulus, whereas Fig. 3B indicates the MAPE 
and goodness of fit of each model to predict the ultimate tensile strength. 

From the above figure (Fig. 3) and as expected, we observed a clear 
trend between R2 and MAPE, as higher the R2 was, lower MAPE we 

obtained for the models, and as lower R2, higher MAPE was observed. 
This trend is obvious for almost all models predicting both Young’s 
modulus and ultimate tensile strength. However, models such as LM, 
GLM, step AIC and GLMNET presented worst R2 than the GAM and 
EARTH models, but these last models exhibited MAPE errors higher than 
the others. The inflection point between good and bad models was 
observed from CART models, where R2 started increasing whereas 
MAPE started decreasing. 

CUBIST, SVM and RF models were the best models with values of R2 

Fig. 2. MANOVA predicted values vs. the observed values A) Young’s modulus and B) ultimate tensile strength.  

Table 3 
Comparative between mechanical properties of our scaffolds and human tissues (Mean ± Std Dev).       

Young’s Modulus 
(MPa) 

Ultimate Tensile 
Strength (MPa) 

References 

Our Scaffolds 2D Dry Non- 
Crosslinked 

Longitudinal 326.7 ± 100.1 27.1 ± 8.6  

Crosslinked Longitudinal 401.7 ± 149.8 30.3 ± 9.8  
Transverse 67.8 ± 6.3 7.1 ± 2.2  

Wet Crosslinked Longitudinal 37.6 ± 6.4 3.8 ± 1.5  
3D 1 Filament Dry Non- 

Crosslinked 
Longitudinal 277.2 ± 74.4 37.2 ± 9.6  

Crosslinked Longitudinal 333.7 ± 157.4 54.4 ± 35.6  
Wet Crosslinked Longitudinal 73.9 ± 15.6 37.2 ± 12.1  

3D 3 twisted filaments Dry Non- 
Crosslinked 

Longitudinal 85.4 ± 12.8 17.9 ± 2.3  

Crosslinked Longitudinal 84.9 ± 47.3 20.9 ± 5.9  
Wet Crosslinked Longitudinal 8.5 ± 3.9 11.3 ± 3.2  

3D 3 twisted/braided 
filaments 

Dry Non- 
Crosslinked 

Longitudinal 128.9 ± 37.5 26.9 ± 5.4  

Crosslinked Longitudinal 149.3 ± 32.6 38.2 ± 7.6  
Wet Crosslinked Longitudinal 23.7 ± 2.9 9.0 ± 0.4  

Skin tissue  83.3 ± 34.9 21.6 ± 8.4 Ní Annaidh et al., 2012 
Parallel to the fibres 160.8 ± 53.2 28.0 ± 5.7 Ottenio et al., 2015 
Perpendicular to the fibres 70.6 ± 59.5 15.6 ± 5.2 Ottenio et al., 2015 
Middle back parallel to the fibres 112.5 17–28 Ní Annaidh et al., 2012; Joodaki and 

Panzer, 2018 
Connective 

tissue 
Anterior cruciate ligament 111 38 Noyes and Grood, 1976 

Other tissue Nasal periosteum  3.88 Zeng et al., 2003 
Gingiva 37.36 ± 17.4 3.81 ± 0.9 Choi et al., 2020  

Fig. 3. R2 and MAPE of each model to predict with test data A) Young’s modulus and B) Ultimate Tensile Strength.  
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of 0.8 and 0.93, and MAPE of 0.27 and 0.21, for Young’s modulus and 
ultimate tensile strength respectively. 

The comparative between R2 and RMSE obtained with the cross- 
validation and with test data for each model to predict the Young’s 
modulus and ultimate tensile strength are shown in Fig. 4. Once the 
models were organised following their R2 and RMSE the trendlines were 
added to check the convergency between the results calculated from test 
data or after cross-validation. 

Fig. 4A represents the coefficient of determination for the models 
predicting the Young’s modulus calculated from test data and cross- 
validation data. This graph shows that the best models Tune CUB 
(optimised CUBIST), CUBIST, Tune SVM, RF and SVM tended to 
converge to R2 of 0.8 with values of coefficient of determination 
calculated from test data slightly lower than the values after cross- 
validation. The RMSE errors predicting the Young’s modulus calcu-
lated from test data were lower than the RMSE calculated after cross- 
validation (Fig. 4C). Fig. 4B shows that R2 reached 0.93 for CUBIST, 
RF and Tune SVM calculated from test data, these results were sur-
passing better than the results obtained from cross-validation. Fig. 4D 
shows an improvement of RMSE calculated for test data versus cross- 
validation for the best models mentioned above and predicting the ul-
timate tensile strength. All these results corroborated the same as was 
shown in Fig. 3, the best models to predict the Young’s modulus and 
ultimate tensile strength were the CUBIST models, RF and SVM models, 
and the fact that the best accurate models had better predictions with 
test data than after cross-validation, confirmed the replicability and 
reproducibility of the method. 

The importance of each factor and their levels, that have the greatest 
participation in shaping its predictions, were found for the 14 ML 
models. 

The structure factor has the greatest participation in the prediction of 
the Young’s modulus of the scaffolds, with a 50% of the total importance 
due to this factor. Dry/wet testing conditions experienced an importance 
of 32%. Surprisingly, testing direction (longitudinal/transverse) and the 
effect of crosslink the scaffold (non-crosslinked/crosslinked) exhibited a 
low influence on the prediction of this endogenous variable with 17% 
and 1% respectively. For the prediction of the ultimate tensile strength, 
the variable with the highest importance was condition (43%), followed 
by direction (36%), structure (12%) and crosslinking (9%). 

Analysing the factor levels more in detailed, it was observed that the 
wet condition along with the 3D 3 twisted/braided filaments structure 
contributed the most to the mechanical properties of the scaffolds. Fig. 5 

shows the importance of each independent variable in the prediction of 
the Young’s modulus and ultimate tensile strength. 

3.2.2. Interpretability 
A ML model should be as much reliable and robust as possible, where 

smalls changes do not highly affect the predictions. To understand how 
the independent variables affect the predictions, it is important to be 
able to interpret the model (Doshi-Velez and Kim, 2017). Intrinsic 
methods of interpretation of a ML model provide statistical summaries, 
graphs or regression coefficients/weights to understand how the exog-
enous variables influence the endogenous variables. Some intrinsic 
interpretable models are LM, GAM, EARTH, Step AIC, CART or CUBIST 
(Molnar, 2019; Ribeiro et al., 2016). 

Table 4 shows this regression coefficients/weights to predict the 
Young’s modulus and ultimate tensile strength for LM, Step AIC, GAM 
and EARTH models. Regression coefficients determine the weight of 
each factor level on the predicted variable. 

The weights and intercepts calculated for the LM, StepAIC, GAM, and 
EARTH models are very similar in value and with identical degrees of 
significance. 

Analysing the regression coefficients and intercept calculated to 
predict the Young’s modulus, it is observed that all the coefficients 
related to the structure were negative, contributing more negatively to 
the Young’s modulus the 3 twisted/braided filaments structure. 2D 
structure did not experience any influence on the predicted variables, as 
it was set up as zero, and therefore, the predictions for this structure did 

Fig. 4. Comparative between R2 and RMSE calculated from test data and with cross-validation with each model A) R2 to predict Young’s modulus, B) R2 to predict 
Ultimate Tensile Strength, C) RMSE to predict Young’s modulus and D) RMSE to predict Ultimate Tensile Strength. 

Fig. 5. Importance of independent variables in the prediction of the depen-
dent variables. 
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not decrease the value of the intersect. Furthermore, the structure levels 
were highly significant (***) with P values less than 0.001 for 3 twisted 
filaments and 3 twisted/braided filaments structures. The variable 
environmental condition (dry/wet samples) was highly significant and 
exerted a high negative influence on the Young’s modulus, with a 
regression coefficient of − 78.33 for LM, for wet samples. The cross-
linking process did not significantly influence the prediction of the 
Young’s modulus. However, the testing direction had a negative impact 
on the prediction of the Young’s modulus (with a regression coefficient 
of − 93.98 for the LM model) for samples tested transversally to the 
fibres. 

Young’s modulus can be predicted with LM for 2D structures, one 
filament structure, 3 twisted filament structures and 3 twisted/braided 
filament structures as indicated in equations (2)–(5) respectively. 

E (MPa)=154.07 − 78.33 condition + 14.73 crosslinking

− 93.98 direction (2)  

E (MPa)=154.07 − 22.90 structure − 78.33 condition

+ 14.73 crosslinking − 93.98 direction (3)  

E (MPa)=154.07 − 61.09 structure − 78.33 condition

+ 14.73 crosslinking − 93.98 direction (4)  

E (MPa)=154.07 − 89.33 structure − 78.33 condition

+ 14.73 crosslinking − 93.98 direction (5) 

As an example, if we want to predict the Young’s modulus for a 
crosslinked 3 twisted filaments structure under tensile test and wet 
conditions, the equation to apply for LM would be the equation number 
5. Substituting all the values as indicated in section 2.8.2, we would get a 
value of Young’s modulus of 13.73 MPa comparable to the 8.5 ± 3.9 
MPa obtained from the experimental work. 

One filament structure had a highly significant positive regression 
coefficient of 8.73 in predicting the ultimate tensile strength using a LM. 
The regression coefficients for 3 twisted filaments structures and 3 
twisted/braided filament structures were not significant and 2D scaf-
folds did not contribute to the predicted variables. The environmental 
condition (wet samples) had a significant negative effect on the ultimate 
tensile strength for these models. The crosslinking process significantly 
affected the ultimate tensile strength prediction, but their significance 
level was lower than the condition. Direction of the test contributed 
negatively and significantly to the UTS prediction. 

Ultimate tensile strength can be predicted as indicated for the 
Young’s modulus. As an example, the estimated ultimate tensile strength 
for a crosslinked 2D structure under tensile and longitudinal test and dry 
conditions with a LM would be 27.13 MPa comparable to the 30.3 ± 9.8 
MPa obtained from the experimental work. 

Regression coefficients calculated from LM, Step AIC, GAM and 
EARTH models agreed with the importance of the variables obtained 
with the average of the importance of all the ML models and the Eta 
values calculated with the MANOVA. 

Even though LM, Step AIC, GAM and EARTH models are easy to 
interpret, their predictions were not as reliable as other ML techniques, 
presenting low values of R2 and high errors. Moreover, LM would be not 
suitable due to our data did not meet the parametric conditions of a 
gaussian distribution. 

CART models provided better accuracy than the models studied 
above, and their predictions and importance of the variables are visible 
and easy to interpret. Fig. 6 shows the CART to predict the Young’s 
modulus. 

As shown in Fig. 6, the environmental condition variable was the 
most important variable to predict the Young’s modulus and divides all 
observations into dry and wet, with a mean of approximately 203 MPa 
and 36 MPa respectively. Following the incidence of the factors in the 
graph, 2D and 1 twisted filament structures exhibited higher Young’s 
modulus than the other two structures. It was also observed that the 
texting direction in dry 2D samples influenced the prediction of the 
Young’s modulus, increasing its value when the samples are tested 
longitudinally to the fibres and decreasing it when they are tested 
transversely to the fibres. All these findings were in agreement with the 
regression coefficient calculated for LM, Step AIC, GAM and EARTH 
models, the Eta values calculated with the MANOVA and the average of 
the importance calculated with all the ML models. 

Fig. 7 shows the CART to predict the ultimate tensile strength. 
In this case, the structure was the most important variable to predict 

the ultimate tensile strength, with higher predicted values of ultimate 
tensile strength for the structures 1 twisted filament than 2D structures, 
3 twisted filament structures and 3 twisted/braided filament structures. 
The observations with higher ultimate tensile strength (1 twisted fila-
ment) are divided by crosslinked factor into non-crosslinked and 
crosslinked, with means of UTS of 37.197 MPa and 40.777 MPa 
respectively. The observations with lower ultimate tensile strength (2D, 
3 twisted filament structures and 3 twisted/braided filament structures) 
are divided by the environmental condition factor, with means of UTS of 
approximately 23.960 MPa for dry samples and 8.008 MPa for wet 
samples. 

CART models provide a visual and intuitive graph with the pre-
dictions and the importance of the variables involved in the model. 
Observing the paths/branches to reach a terminal leaf we can obtain the 
predictions of our dependent variables without the necessity of per-
forming any mathematical operation. Fig. 8 compares the predicted 
mechanical properties obtained through CART models and the me-
chanical properties of human tissues obtained in a previous study 
(Roldán et al., 2023b). 

CART models identify six different structures tested under different 

Table 4 
Regression coefficients/weights to predict the Young’s modulus and ultimate tensile strength through LM, Step AIC, GAM and EARTH models.  

Coefficients LM StepAIC GAM EARTH 

Young’s modulus (MPa) Intercept 154.07 *** 154.07 *** 154.07 *** 154.07 *** 
Structure: 1TF − 22.90 * − 22.90 * − 22.90 * − 24.16 * 
Structure: 3TF − 61.09 *** − 61.09 *** − 61.09 *** − 61.68 *** 
Structure: 3TBF − 89.33 *** − 89.33 *** − 89.33 *** − 89.99 *** 
Condition: Wet (r1) − 78.33 *** − 78.33 *** − 78.33 *** − 74.25 *** 
Crosslinking: Yes (r2) 14.73  14.73  14.73  0.00  
Direction: Transverse (r3) − 93.98 *** − 93.98 *** − 93.98 *** − 86.64 *** 

UTS (MPa) Intercept 23.86 *** 23.86 *** 23.86 *** 23.86 *** 
Structure: 1TF 8.73 *** 8.73 *** 8.73 *** 8.64 *** 
Structure: 3TF 1.20  1.20  1.20    
Structure: 3TBF − 0.89    − 0.89    
Condition: Wet (r1) − 5.79 *** − 5.49 *** − 5.79 *** − 5.84 * 
Crosslinking: Yes (r2) 3.27 ** 3.21 ** 3.27 ** 3.33  
Direction: Transverse (r3) − 8.05 *** − 8.07 *** − 8.05 *** − 8.09 *** 

Significance codes: 0 ‘***’ 0,001 ‘**’ 0,01 ‘*’ 0,05 ‘,’ 0,1 ‘’ 
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conditions as mechanically suitable to be used as scaffolds for tissue 
engineering applications such as ligamentous tissue, skin tissue, oral and 
nasal tissue and renal tissue. 2D wet crosslinked scaffolds under tensile 
force exhibited a Young’s modulus in the same range as human kidney 
tissue (41.5 MPa (Snedeker et al., 2005)). Dry 3 twisted filament scaf-
folds under tensile force exhibited Young’s modulus similar to the native 
anterior cruciate ligament (111 MPa (Noyes and Grood, 1976)); how-
ever, dry 3 twisted/braided filament scaffolds under tensile testing fully 
mimicked the mechanical behaviour of the anterior cruciate ligament in 
terms of Young’s modulus and ultimate tensile strength (111 MPa and 
38 MPa respectively (Noyes and Grood, 1976)). The mechanical 
behaviour of human gingiva and human nasal periosteum can be 
mimicked with 2D wet crosslinked scaffolds under tensile force (Young’s 
modulus of 37.36 ± 17.4 MPa was observed in gingiva (Choi et al., 
2020) and UTS of 3.81 ± 0.9 and 3.88 MPa was observed in gingiva and 
nasal periosteum tissue respectively (Choi et al., 2020; Zeng et al., 
2003)). Dry 3 twisted filament scaffolds under tensile force exhibited 
Young’s modulus and UTS in the same range as the human skin tested 
perpendicular to the fibres (70.6 ± 59.5 MPa and 15.6 ± 5.2 MPa 
respectively (Ottenio et al., 2015)), whereas dry 3 twisted/braided fil-
aments scaffolds tested under tensile force presented mechanical prop-
erties comparable to the human skin tested parallel to the fibres (160.8 
± 53.2 MPa and 28.0 ± 5.7 MPa for Young’s modulus and UTS 
respectively (Ottenio et al., 2015)). All these structures and tissues were 
also identified as mechanically suitable in Table 3, demonstrating that 
CART predictions are in the same range as means and standard errors of 
the mean of each structure and testing condition observed. 

CUBIST model established 20 sub-models with a different number of 
if-then rules on them to predict the Young’s modulus. However, only one 
sub-model with 4 rules was established to predict the ultimate tensile 
strength. These if-then rules were associated to different observations 
with different mean and range of the dependent variable, and a multiple 

regression equation was provided for each rule. The rules were arranged 
in an ascendant order for the exogenous variable mean, as an example to 
predict the Young’s modulus, the first rule involved observations with a 
mean of 34.9 MPa whereas the fourth had a mean of 249 MPa. Due to the 
length and complexity of the sub-models and rules, they are not included 
in the present article but can be found in the Supplementary Material. 
Although CUBIST models can be interpreted through the rules and 
regression equations, they are not as clear as CART models, however the 
descriptive statistic of their predictions for each structure and testing 
condition were calculated to identify human tissues with similar me-
chanical properties as our scaffolds (Table 5). 

Table 5 shows the predictions of Young’s modulus and UTS obtained 
with KNN, RF, CUBIST and SVM models for each structure and tensile 
conditions comparable to human tissues. KNN, RF, CUBIST and SVM 
models identified the same six tissues presented above with means 
comparable to the means observed in the experiments in Fig. 3 and with 
the decision trees’ predictions. 

All the six ML models evaluated in Table 5, predicted Young’s 
modulus and UTS within the range observed for skin tested parallel to 
the skin fibres with scaffolds created from 3 twisted/braided filaments 
with a crosslinked treatment and tensile tested in dry conditions. The 
mechanical behaviour of skin tested perpendicular to the skin fibres can 
be also achieved with non-crosslinked 3 twisted filaments scaffolds 
tested under tensile force in dry conditions. Predictions obtained with 
crosslinked 3 twisted/braided filaments scaffolds under tensile test in 
dry conditions were in the same range as the UTS observed for the 
anterior cruciate ligament but with slightly higher Young’s modulus. All 
the predictions of the UTS obtained with crosslinked 2D scaffolds tested 
under wet conditions were able to be in the same range of the UTS of the 
nasal periosteum and gingiva except for the SMV model, whose values 
were slightly higher than those of human tissues. Prediction of Young’s 
modulus within the range of kidney tissue were obtained with 

Fig. 6. CART for Young’s modulus.  
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crosslinked 2D scaffolds tested under wet conditions; however, the 
predictions of the UTS were lower than the UTS of this human tissue. 

4. Discussion 

Traditional statistical and machine learning models were a powerful 
tool to predict the morphological and mechanical properties of elec-
trospun scaffolds from different manufacturing conditions (Roldán et al., 
2023a; Vatankhah et al., 2014). However, both techniques have 

different approaches. Whereas ML models provide the highest accuracy 
prediction in cases where the data is imbalanced, with nonlinear in-
teractions or with non-parametric conditions (Roldán et al., 2023a; 
Bzdok et al., 2018b; Bzdok, 2017), statistical models are able to make 
inferential statements about the population (Bzdok and Ioannidis, 2019; 
Hunter and Holmes, 2023), find relationships between variables and 
assess models based on confidence intervals and significance test 
(Breiman, 2001) when parametric conditions are met and data is care-
fully collected and well-balanced (He et al., 2017). When the parametric 

Fig. 7. CART for ultimate tensile strength.  

Fig. 8. Comparative between CART predictions and human tissues.  
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conditions are not met, non-parametrical statistics such as Krus-
kal–Wallis and Mann–Whitney U tests or ML techniques can be applied. 

This novel study explored the suitability of 28 ML models to un-
derstand the influence between variables and predict the mechanical 
properties (Young’s modulus and ultimate tensile strength) of non- 
crosslinked and crosslinked 2D and 3D PVA-based scaffolds tested 
under various conditions, as well as investigate their suitability to 
identify the structures that best mimic human tissues. 

Even though traditional parametrical statistics are used for inferen-
tial analysis and to establish relationships between variables, non- 
parametrical ML techniques are able to evaluate the importance of the 
exogenous variables on the endogenous variables. In this study, we 
demonstrated that the importance of the independent variables showed 

in CART models were in agreement with the regression coefficient 
calculated for LM, Step AIC, GAM and EARTH models, the Eta values 
calculated with the MANOVA and the average of the importance 
calculated with all the ML models. It was also demonstrated that the 
variables that contributed the most to the prediction of the Young’s 
modulus were the “Structure” and the “Environmental condition”, and 
the most important variables for the prediction of the UTS were “Envi-
ronmental condition”, “Structure” and “Direction”. In all of the analysis, 
the variable with less influence on the prediction of the dependent 
variables was the “Crosslinked”. These findings are meaningful since it 
will determine which aspects or variables should be further investigated 
to mimic more accurately the mechanical behaviour of human tissue, 
and which variables could be omitted. Due to the novelty of this study, 

Table 5 
Comparative between KNN, RF, CUBIST and SVM predictions and human tissues (Noyes and Grood, 1976; Choi et al., 2020; Joodaki and Panzer, 2018; Ottenio et al., 
2015; Ní Annaidh et al., 2012; Snedeker et al., 2005; Zeng et al., 2003; Jansen and Rottier, 1958; Dunn and Silver, 1983; Butler et al., 1986; Siegler et al., 1988).  

Native tissue and ML models Young’s Modulus (MPa) Ultimate Tensile Strength (MPa) Manufacturing levels factors 

YM Max YM 
Mean 

YM Min UTS 
Max 

UTS 
Mean 

UTS 
Min 

Skin Parallel to the Langer lines Native 214.000 160.800 107.600 33.700 28.000 22.300 Condition (Dry) þ Structure (3D 3T_B_F) þ
Crosslinked (Yes) KNN 171.864 140.594 109.323 33.523 26.885 23.530 

RF 170.712 156.572 142.432 30.793 27.755 24.717 
SVM 162.488 153.419 144.350 32.497 29.541 26.586 
Tune 
SVM 

162.763 153.190 143.617 30.970 29.013 27.056 

CUBIST 157.173 150.300 143.428 30.977 27.830 24.684 
Tune 
CUB 

157.173 154.113 146.513 31.017 27.674 24.332 

Skin Perpendicular to the 
Langer lines 

Native 130.100 70.600 11.100 20.800 15.600 10.400 Condition (Dry) þ Structure (3D 3T_F) þ
Crosslinked (No) KNN 86.018 82.984 79.951 18.263 17.922 17.465 

RF 85.884 83.833 81.782 18.314 17.902 17.490 
SVM 85.866 83.727 81.588 19.659 18.313 16.967 
Tune 
SVM 

85.877 83.747 81.617 19.660 18.315 16.969 

CUBIST 87.998 84.572 81.147 18.263 17.864 17.465 
Tune 
CUB 

86.018 82.984 79.951 18.263 17.864 17.465 

Anterior cruciate ligament Native 121.000 111.000 100.000 45.000 38.000 30.000 Condition (Dry) þ Structure (3D 3T_B_F) þ
Crosslinked (Yes) KNN 171.864 140.594 109.323 40.018 38.159 37.602 

RF 143.299 138.098 132.897 39.683 38.739 37.795 
SVM 143.005 132.113 121.222 41.372 40.498 39.624 
Tune 
SVM 

143.044 132.135 121.227 40.946 39.344 37.742 

CUBIST 147.909 133.222 118.536 39.982 38.777 37.573 
Tune 
CUB 

135.837 128.181 120.526 40.018 38.810 37.602 

Nasal cavity nasal periosteum Native    4.200 3.880 3.400 Condition (Wet) þ Structure (2D) þ Crosslinked 
(Yes) KNN    4.090 3.762 3.504 

RF    4.152 3.824 3.497 
SVM    5.305 4.886 4.467 
Tune 
SVM    

4.784 4.327 3.870 

CUBIST    4.090 3.797 3.504 
Tune 
CUB    

4.090 3.797 3.504 

Oral cavity Gingiva Native 54.760 37.360 19.960 4.710 3.810 2.910 Condition (Wet) þ Structure (2D) þ Crosslinked 
(Yes) KNN 40.268 38.719 37.170 4.090 3.762 3.504 

RF 42.400 40.292 38.185 4.152 3.824 3.497 
SVM 49.265 47.673 46.080 5.305 4.886 4.467 
Tune 
SVM 

47.698 44.305 40.913 4.784 4.327 3.870 

CUBIST 41.237 39.019 36.801 4.090 3.797 3.504 
Tune 
CUB 

41.198 39.210 37.223 4.090 3.797 3.504 

Kidney tissue Native 43.000 41.500 40.000 11.900 9.000 6.100 Condition (Wet) þ Structure (2D) þ Crosslinked 
(Yes) KNN 40.268 38.719 37.170 4.090 3.762 3.504 

RF 42.400 40.292 38.185 4.152 3.824 3.497 
SVM 49.265 47.673 46.080 5.305 4.886 4.467 
Tune 
SVM 

47.698 44.305 40.913 4.784 4.327 3.870 

CUBIST 41.237 39.019 36.801 4.090 3.797 3.504 
Tune 
CUB 

41.198 39.210 37.223 4.090 3.797 3.504  
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comparison with other publications could not be done to discuss these 
findings. 

A key point in ML models is balancing the predictability and inter-
pretability of the models. Linear models are able to provide the rela-
tionship between the predicted variable and its predictors through a 
first-degree polynomic equation, what makes them the easiest option 
to interpret the influences between the dependent variable and the in-
dependent variables. However, they require compliance with para-
metric conditions that sometimes are difficult to meet, and their 
predictability, assessed with the coefficient of determination and errors 
of the models, generally is lower than other models such as CART, RF or 
CUBIST models (Roldán et al., 2023a; Zhou et al., 2019). Two in-
teractions can be added to these models to improve their predictability 
(R2) by 25% (Molnar, 2019); however, this approach would complicate 
their interpretability. As with linear models, regression models such as 
GLM, Step AIC, GAM, GBM, EARTH and GLMNET had a relatively easy 
interpretability but a poor predictability. CART models were a very 
intuitive and powerful tool to understand the importance of the inde-
pendent variables on the dependent one and interpret the predictions to 
be able to identify coincidences with human tissues. CART models 
marked the threshold between models which provided bad predictions 
(high MAPE and RMSE and low R2) and non-parametric models that 
generated better predictions. KNN, RF, CUBIST and SVM presented the 
highest goodness of fit and lowest errors, especially CUBIST and SVM 
models with their optimised parameters. However, these models are 
known as “black-box” models that are difficult to interpret. This study 
assessed the predictions obtained with these non-parametric models and 
identifies six different situations where our scaffolds could be used as 
human tissue replacements for skin tissue, ligamentous tissue, gingival 
and nasal tissue, and renal tissue. It is noteworthy that this analysis is 
made possible because of the coefficient of determination and errors 
obtained with the test and with cross-validation were comparable. In 
some cases, such as with CUBIST and SVM models, predictions were 
better with test data than after cross-validation, this fact confirmed the 
replicability and reproducibility of the models. Traditional techniques 
for identifying possible human tissues will only study the mean and 
standard deviation of the scaffolds produced at a certain factor level, 
making it difficult to guarantee the reproducibility of the experiments 
and calculate errors. 

Three main limitations are associated with this study. The first lim-
itation is that only Young’s modulus and ultimate tensile strength were 
explored in this study; therefore, once the potential human tissues are 
identified a deeper look at the mechanical performance of both the 
samples and the human tissues would be required to assess if the me-
chanical behaviour of the human tissue is fully mimicked by the samples 
and their testing conditions. The second limitation is associated with the 
calculation of the nominal cross-sectional area of the samples. In this 
study, three different techniques have been used to calculate the 
thickness of the 2D samples and the diameter of our 3D samples, a digital 
calliper, an analogue calliper and SEM images. Each technique has its 
limitations, for instance digital and analogue callipers can compress the 
samples and SEM images do not consider the topography of the sample. 
To minimise the errors, three measurements were taken for each sample 
and equipment, and the average was calculated to determine the 
thickness or diameter depending on the structure of the sample. Mea-
surements from the same sample resulted in the same order of magni-
tude for the three techniques, demonstrating their correlation. Cross- 
sectional area of 2D samples were calculated with the width and 
average thickness of the sample and the nominal cross-sectional area of 
3D samples were calculated with the average diameter of the samples. 
The third limitation is related to the number of observations, since a 
relatively small number of observations, 128 observations for each 
endogenous variable, informed the MANOVA and ML models, a larger 
dataset would improve the model’s accuracy, increasing the coefficient 
of determination and reducing the errors. However, studies involving 
ML to predict mechanical properties reported similar and inferior 

number of observations, with 165 observations used to predict shear 
strength (Zhou et al., 2019), 60 observations were used to predict strain 
at break and ultimate tensile strength (Roldán et al., 2023a) or 16 ob-
servations were used to predict the elastic modulus (Vatankhah et al., 
2014). 

5. Conclusions 

Traditional statistical models such as MANOVAs or linear regression 
models have demonstrated to be useful tools to predict the mechanical 
properties of electrospun scaffolds and establish relationships between 
the variables; however, when the parametrical conditions are not met or 
data presents complex non-linear interactions, more advanced statistics 
such as machine learning models have proved to be powerful predicted 
tools (Roldán et al., 2023a). Predictions provided from CART, KNN, RF, 
CUBIST and SVM models allowed the identification of six situations in 
which our structures tested under certain environmental and loading 
conditions were able to mimic the Young’s modulus and ultimate tensile 
strength of human tissues such as kidney tissue, anterior cruciate liga-
ment, gingiva, nasal periosteum and human skin tested perpendicular 
and parallel to the fibres. Although CART models were an innovative 
and easy to interpret tool to identify biomimetic electrospun structures, 
these models offered lower accuracy compared to less interpretable 
models such as CUBIST and SVM, which provided R2 of 0.93 and 0.8 to 
predict the ultimate tensile strength and Young’s modulus respectively. 
This novel approach can be implemented to optimise the manufacturing 
process in different applications and in particular, to build the basis for a 
further development of tissue engineered replacements. 
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