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Abstract

In response to the growing number of diabetes cases worldwide, Our study addresses the

escalating issue of diabetic eye disease (DED), a significant contributor to vision loss glob-

ally, through a pioneering approach. We propose a novel integration of a Genetic Grey Wolf

Optimization (G-GWO) algorithm with a Fully Convolutional Encoder-Decoder Network

(FCEDN), further enhanced by a Kernel Extreme Learning Machine (KELM) for refined

image segmentation and disease classification. This innovative combination leverages the

genetic algorithm and grey wolf optimization to boost the FCEDN’s efficiency, enabling pre-

cise detection of DED stages and differentiation among disease types. Tested across

diverse datasets, including IDRiD, DR-HAGIS, and ODIR, our model showcased superior

performance, achieving classification accuracies between 98.5% to 98.8%, surpassing

existing methods. This advancement sets a new standard in DED detection and offers sig-

nificant potential for automating fundus image analysis, reducing reliance on manual exami-

nation, and improving patient care efficiency. Our findings are crucial to enhancing

diagnostic accuracy and patient outcomes in DED management.

Introduction

Diabetes mellitus, commonly known as diabetes, is a medical condition where the body experi-

ences high blood sugar levels due to insufficient insulin production or inadequate insulin

response. This global health issue is mainly attributed to factors like a sedentary lifestyle, obe-

sity, aging, and unhealthy dietary habits. Recent data from the International Diabetes Federa-

tion indicates a concerning increase in diabetes cases, with current figures showing 116
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million people affected and projections suggesting a rise to 700 million by 2045 [1]. Diabetic

eye disease (DED) encompasses many disorders, such as diabetic macular edema, diabetic reti-

nopathy, cataracts, and Glaucoma, all of which are significant complications of diabetes. DED

is a leading cause of blindness and visual impairment in the working-age population. Its symp-

toms, such as abnormal blood vessel growth and macular swelling, primarily affect the retina.

While there are several treatment options, such as corticosteroids, laser photocoagulation, as

well as anti-vascular endothelial growth factor injections, it is crucial to discover DED at an

early stage to minimize vision loss since the earliest phases of the condition are often over-

looked [2,3].

The increasing number of diabetes patients worldwide is straining the availability of retinal

specialists, leading to delays in screening and diagnosis. Automated DED screening systems

offer a solution by providing rapid, cost-effective point-of-care screening. Unlike the labor-

intensive manual examination of color retinal fundus images, these automated systems can

swiftly analyze images during routine screenings, facilitating early detection and treatment.

Early detection and prompt treatment may prevent up to 90% of visual loss caused by DED

[4]. The World Health Organization cautions that without appropriate management, the prev-

alence of disorders such as diabetic macular edema and diabetic retinopathy is projected to

rise significantly by 2024 and 2034, respectively. Glaucoma is anticipated to become more

widespread, especially among the elderly population and those with diabetes. Deploying auto-

mated DED detection devices is crucial in addressing the possible increase in visual

impairment caused by diabetic eye disorders [5].

The latest advances in computer vision and artificial intelligence have profoundly impacted

the development of diagnostic systems for face recognition [6], disease diagnosis [7–10], etc.

Important image processing methods are the backbone of computer vision applications [11–

14]. Imprecise diagnosis of Diabetic Retinopathy (DR), a more severe form of Diabetic Eye

Disease (DED), may lead to significant blindness. Patients with diabetes should have their eyes

checked often because of the risk of retinal damage from uncontrolled blood sugar. The deli-

cate retina is located in the eye and converts light into neural signals sent to the brain to create

visual pictures. The condition known as diabetic retinopathy (DR) causes vision impairment

and retinal edema when fluids seep into the retina from damaged blood vessels.

In fundus images used for diagnosis, various structures, like the optic disc, optic cup, mac-

ula, and fovea, and potential DR lesions, such as microaneurysms, hemorrhages, and exudates,

are identifiable. Symptoms like blurred vision, vision fluctuations, night vision difficulties, and

vision loss in diabetic patients may indicate DR, necessitating specialist consultation. Diagno-

sis typically involves examining retinal fundus photographs and the patient’s diabetes history,

which can be time-consuming and error-prone. Lately, computer-aided diagnosis systems,

enhanced by deep learning models, have simplified the detection of DR, providing more effi-

cient decision support. Several studies summarize these advancements. For instance, Egunsola

et al. [15] conducted a comprehensive review of DR screening, examining various studies and

datasets and utilizing resources like MEDLINE and Embase. Wu et al. [16] reviewed machine

learning algorithms in DR screening, highlighting the emphasis on neural networks and not-

ing the high diagnostic accuracy and the need for external validation. Bandello et al. [17] dis-

cussed the necessity of a multidisciplinary approach to early DR management.

These investigations include more than just the diagnosis of DR. Koppu et al. [18], who

introduced an illness prediction model designed for intelligent robots. Lee et al. [19] con-

ducted a study on seven DR screening systems, highlighting the need to conduct trials using

real-world data. Zhang et al. [20] examined the prompt detection of microvascular irregulari-

ties in persons without diabetic retinopathy using Optical Coherence Tomography Angiogra-

phy. Heydon et al. [21] successfully used machine learning to screen diabetic retinopathy (DR)
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for 30,000 patients using the EyeArt program. Baget-Bernaldiz et al. [22] highlighted the

importance of image quality in the diagnostic process using deep learning models on the Mes-

sidor dataset. Vujosevic et al. [23] evaluated microvascular changes in patients with diabetes,

with and without signs of diabetic retinopathy (DR), using optical coherence tomography

angiography (OCTA). Furthermore, Moqurrab et al. [24] used artificial intelligence methodol-

ogies, namely Convolutional Neural Networks (CNNs) and Bidirectional Long Short-Term

Memory (Bi-LSTM), in their investigation of clinical notes. Janakiraman et al. [25] used meta-

heuristic algorithms to improve recommendation systems for patient records of persons diag-

nosed with diabetes and retinopathy (DR). These and other studies illustrate the growing effec-

tiveness of hybrid deep-learning methods.

This paper presents the development of a Kernel Extreme Learning Machine (KELM)

model for picture classification. The model incorporates a distinctive optimization technique,

G-GWO, to effectively adjust its hyperparameters. G-GWO is a novel methodology that inte-

grates the characteristics of the genetic algorithm with the GWO technique. Unlike conven-

tional approaches that need the human configuration of hyperparameters, G-GWO takes

inspiration from grey wolves’ social structure and hunting tactics [26–29]. Throughout its

development, GWO has undergone several changes focused on improving convergence speed

and minimizing the risk of being stuck in local optima [30–32].

The innovative component of our study is incorporating a genetic algorithm (GA) into

GWO, resulting in the formation of G-GWO. This combination results in a more efficient

starting population, enhancing the potential for better optimization outcomes. We assessed

G-GWO’s performance by comparing it with other nature-inspired optimization methods

using unimodal and multimodal benchmark functions. G-GWO performed better in these

comparisons over several variants of KELM, GA-KELM, GWO-KELM and GGWO-KELM,

algorithms. This study applied G-GWO to optimize the KELM model’s hyperparameters, lead-

ing to an enhanced classification model. The model’s efficacy was then tested on image data-

sets for Diabetic Macular Edema (DME), Diabetic Retinopathy (DR), and Glaucoma (GA)

from the IDRiD [33], DR-HAGIS [34], and ODIR [35] datasets.

This research makes several key contributions:

• Presenting a new combination of G-GWO techniques to optimize KELM.

• The GWO algorithm is enhanced using genetic crossover and mutation operators to increase

exploration efficiency and improve solution quality.

• Validating the efficacy of G-GWO by conducting comparison studies with other nature-

inspired algorithms on benchmark functions.

• Implement G-GWO for the fine-tuning of KELM hyperparameters, specifically for classifica-

tion tasks.

• Through simulations on DED datasets, G-GWO surpasses other optimization algorithms in

accuracy and overall performance.

The subsequent sections of the paper are organized in the following manner: Section

Related Mahtodologies explores the latest progress in Fully Convolutional Networks (FCNs),

KELM, and the optimization of hyperparameters using techniques inspired by nature. The sec-

tion proposed methodology examines the method. The results and discussion section thor-

oughly discusses and evaluates the data, while the conclusion section briefly summarizes the

study’s conclusions.
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Literature review

Our study builds upon foundational work in automated disease classification and prediction,

leveraging advancements in optimization algorithms, deep learning models, and decision sup-

port systems as detailed in recent literature [36–38]. It showcases the efficiency of DL in cap-

turing significant information that may be missed by human techniques [39]. Out of all the

models considered, the Densenet-264 model uses deep learning, and the Chimp optimization

technique demonstrates exceptional efficiency. It achieved an accuracy rate of 99.73% on the

Messidor dataset [40]. The DRNet model was further modified for classification by using a

Support Vector Machine (SVM) [41]. A multi-feature fusion-based Directed Acyclic Graph

(DAG) network was suggested and evaluated for the classification of Diabetic Retinopathy

(DR) lesions using a local dataset and DIARETDB1. The network achieved 98.70% and 98.50%

accuracy on the respective datasets [42]. Feature extraction was performed using the firefly

optimization (FFO) approach, with optimization carried out using the improved grey wolf

optimization (iGWO) method [43].

The VGGNet architecture was used to extract high-level features from fundus photos, using

transfer learning to enhance the precision of image classification [44]. The Faster-RCNN algo-

rithm with DenseNet-65 was used to determine the position and categorization of multiclass

DR lesions[45]. The research used a unique technique that included extracting characteristics

from altered deep networks, including VGG19, ResNet101, and InceptionV3. Subsequently,

these characteristics underwent four filter-based feature selection approaches, including

MRMR, ReliefF, and F-test. Ultimately, the categorization process was executed with an SVM

classifier [46]. The DFTSA-Net model, which employs four pre-trained networks (GoogLeNet,

SqueezeNet, ResNet-50, Inception-v3) as feature extractors, was developed to detect DR

lesions [47]. The ConvNet model contributed notably by attaining a 97.41% accuracy in accu-

rately recognizing DR lesions on the APTOS 2019 dataset [48–51]. The Faster R-CNN algo-

rithm was used to extract salient features from fundus images. The Softmax algorithm was

used to categorize the lesions of diabetic retinopathy (DR). The accuracy of this approach was

assessed using the DIARETDB1 and Messidor datasets, resulting in an impressive accuracy of

95% [52]. A CNN model was introduced, which included three pre-trained models (VGG-16,

SqueezeNet, AlexNet) as primary classifiers to detect DR lesions. The Messidor dataset was

used to assess the model, which achieved an accuracy of 98.15% [53]. An alternative method

used five deep convolutional neural network (CNN) models to detect lesions associated with

diabetic retinopathy (DR) [54]. The AlexNet architecture was used as a feature extractor, and

the retrieved features were then diminished via the utilization of Principal Component Analy-

sis (PCA) and Bag-of-Words (BoW) approaches. The decreased characteristics were ultimately

categorized using a Support Vector Machine (SVM) [55].

An artificial neural network (ANN) model using the AlexNet architecture extracted features

from retinal pictures. These features were then subjected to feature selection using Principal

Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Support Vector

Machine (SVM) classification. The performance of this model was evaluated on the Kaggle

dataset, achieving an accuracy of 97.93% [56]. In addition, a Residual network was used to

extract profound characteristics, which were then employed for classification using a decision

tree model to identify multiclass DR lesions [57]. This study emphasizes the adaptability and

efficacy of deep learning methods in medical imaging, specifically in identifying and categoriz-

ing diabetic retinopathy (DR). Their research included attentional processes into the ResNet

architecture, using the EyePACS dataset to classify diabetic retinopathy (DR). Their methodol-

ogy consisted of augmenting the dataset using image processing methods to enhance contrast.

The study highlighted that the attention mechanisms led to more effective feature extraction,
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resulting in an accuracy of 91.3% and a kappa value of 89.3% [58]. [39] Performed an extensive

analysis, including research that used machine learning and deep learning algorithms to iden-

tify diabetic retinopathy. Their analysis emphasized the difficulties in identifying DR and pro-

posed that deep learning models exhibit superior efficacy compared to conventional machine

learning techniques. The study also found that using deep learning models for feature extrac-

tion might significantly improve performance. A total of 40 research studies were analyzed,

consisting of 11 supervised, three self-supervised, and four transformer works that specifically

addressed the detection, classification, and segmentation of DR [59]. Their findings indicated

recent successes in classification studies, though challenges remain in identifying affected

lesions. The reviews suggested the need for automatic diagnostic systems with full clinical

potential.

This study aims to introduce a novel approach that enhances the development of automatic

identifier systems while meeting specific requirements. Additionally, previous research has

recognized substantial improvement in detecting and classifying conditions like DR (Diabetic

Retinopathy), DME (Diabetic Macular Edema), and Glaucoma through image processing.

Our method aims to capitalize on this critical aspect. A summary of related work in automated

disease classification and prediction is presented in Table 1.

Related methodologies

This section provides an overview of the basic principles behind the G-GWO optimization

method and its connection to the architecture and hyperparameters of KELM and FCEDN.

Fully Convolution Encoder-Decoder Network (FCEDN)

Convolutional Neural Networks (CNNs) are well respected in computer vision due to their

strong skills in extracting features, making predictions, and performing classification tasks

[60]. However, their application to image segmentation can be challenging. Standard CNNs,

initially designed for image classification, tend to underperform in segmentation tasks as their

fully connected layers overlook spatial data, providing only a single class probability instead of

the necessary pixel-level classification for semantic segmentation.FCNs have been devised as a

Table 1. Summary of related work.

Reference Dataset Features Extraction Classification Results

[36–38] Not specified Optimization algorithms, deep learning Decision support systems Not specified

[39] Messidor Deep learning (Densenet-264) Not specified 99.73% accuracy

[40] Local, DIARETDB1 Multi-feature fusion, DAG network SVM 98.70%, 98.50%

[41] Not specified Firefly optimization (FFO) Grey wolf optimization (iGWO) Not specified

[44] Not specified VGGNet, transfer learning Not specified Not specified

[45] Not specified Faster-RCNN, DenseNet-65 Not specified Not specified

[46] Not specified VGG19, ResNet101, InceptionV3 SVM Not specified

[47] APTOS 2019 GoogLeNet, SqueezeNet, ResNet-50, Inception-v3 ConvNet 97.41% accuracy

[48–51] DIARETDB1, Messidor Faster R-CNN Softmax 95% accuracy

[52] Messidor VGG-16, SqueezeNet, AlexNet CNN 98.15% accuracy

[53] Not specified CNN models SVM Not specified

[54] Not specified AlexNet PCA, BoW, SVM Not specified

[55] Kaggle AlexNet PCA, LDA, SVM 97.93% accuracy

[56] Not specified Residual network Decision tree Not specified

[57] EyePACS ResNet with attentional processes Image processing enhancements 91.3% accuracy, kappa value of 89.3%

https://doi.org/10.1371/journal.pone.0303094.t001
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solution to this issue, substituting the fully connected layers within CNNs with convolutional

as well as deconvolutional layers. Due to the removal of thoroughly combined layers, FCNs are

advantageous for their efficiency and time-saving characteristics [61]. In semantic segmenta-

tion using FCNs, two primary methods are employed:

Fundamental FCN architecture. This method constructs the FCN with convolutional

(Conv), Rectified Linear Unit (ReLU), pooling (PL), and upsampling (UP) layers [61]. Conv

and PL are responsible for downsampling image features, while the UP layer handles the final

upsampling. However, this approach can sometimes lead to suboptimal performance due to

the absence of a trainable UP layer, which might result in the loss of spatial information [60].

Encoder-Decoder approach. The Encoder-Decoder Approach is a sophisticated tech-

nique that has two components: an encoder, which is made up of CNN-like layers, and a

decoder, which utilizes transposed convolution (TC) and UP layers to increase the resolution

of feature maps[62]. Integrating trainable parameters into the upsampling layers dramatically

improves the accuracy of semantic segmentation.

This study introduces a Fully Convolutional Encoder-Decoder Network (FCEDN) to

enhance pixel-level segmentation. The FCEDN utilizes convolutional, dropout, and max pool-

ing (MP) layers to extract and downsample information via the encoder. The decoder, which

includes trainable TC (transposed convolution), UP (upsampling), and dropout layers, system-

atically performs upsampling (US) on the encoded output. This process culminates in an out-

put layer that aligns with the input image’s ground-truth dimensions. Compared to traditional

FCNs with a non-trainable layer for the US, our FCEDN architecture, featuring a dual train-

able encoder/decoder design, demonstrates superior segmentation performance. Fig 1 in our

study visually compares the architectures of FCEDN, CNN, and FCN, highlighting the

advancements and effectiveness of our proposed FCEDN model.

Fig 1. CNN, FCN, and FCEDN architecture.

https://doi.org/10.1371/journal.pone.0303094.g001
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Kernel Extreme Learning Machine (KELM)

The traditional backpropagation (BP) learning algorithm, known as a stochastic gradient least

mean square algorithm, encounters challenges with noise interference in training samples.

This noise significantly influences each gradient iteration in BP. The batch method is often

employed to mitigate this, averaging the gradients over multiple samples to estimate the actual

gradient. However, this approach becomes computationally intensive with many training sam-

ples and may overlook the unique characteristics of individual samples, thereby diminishing

the learning sensitivity [63].

Against this backdrop, exploring Extreme Learning Machines (ELM) presents a compelling

advancement. As recent studies [64–67] showcased, ELM offers an innovative approach by

enhancing detection and recognition capabilities across various domains without the compu-

tational and sensitivity drawbacks associated with BP. This evolution from traditional BP to

ELM underlines a significant leap in addressing and overcoming the challenges posed by noise

in training samples, ushering in a new era of efficiency and precision in machine learning

applications.

To address these limitations, the Kernel Extreme Learning Machine (KELM) is an enhance-

ment of the original Extreme Learning Machine (ELM) algorithm, which incorporates kernel

functions [63]. The ELM guarantees excellent generalization performance in networks and

dramatically enhances the learning pace of forward neural networks. It successfully addresses

the limitations of training techniques based on gradient descent, as shown in BP neural net-

works, which are susceptible to becoming stuck in local optima and need many iterations.

KELM distinguishes itself by using several of the benefits of the ELM method and integrat-

ing kernel functions. These kernel functions facilitate the transformation of linearly non-sepa-

rable patterns into a feature space with larger dimensions, resulting in linear separability and

improved accuracy. KELM’s robustness makes it an excellent option for intricate learning

problems.

ELM is a training technique for single-layer feedforward neural networks (SLFNs). The

SLFNs model can be described as follows [64]:

f ðxÞ � hðxÞb ¼ Hb ð1Þ

The model emphasizes the fundamental structure of ELM and its efficacy in managing

diverse learning situations, which is further enhanced by KELM’s sophisticated kernel-based

approach.

In the context of the Extreme Learning Machine (ELM) algorithm, the sample being ana-

lyzed is denoted as ’x.’ The result of the neural network for this example represented as ’f(x;),’

usually corresponds to a vector of class labels in classification tasks. The feature mapping of

the hidden layer is denoted as ’h(x)’ or ’H,’ which converts the input data into a feature space.

The weights connecting the hidden layer to the output layer are represented by the symbol ’β.’

The ELM algorithm utilizes this framework to handle the incoming data using the neural

network. The hidden layer feature mapping ’H’ is essential for converting the input ’x’ into a

significant representation that the output layer can efficiently utilize. The output layer utilizes

the weights ’β’ to interpret these characteristics and provide the ultimate output ’f(x),’ which is

used for classification or other prediction endeavors. The efficiency and success of the ELM

algorithm depend on its organized approach to data processing inside the neural network.

b ¼ HT HHT þ
I
C

� �� 1

T ð2Þ

In the framework for training neural networks, ’T’ denotes a matrix that holds the class flag
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vectors of the training samples. These vectors are crucial for determining the groups or classes

each sample belongs to. Furthermore, the symbol ’I’ represents the identity matrix, an essential

component in matrix operations. The identity matrix is distinguished by having ones along

the diagonal and zeros at all other positions. The word ’C’ represents the regularization param-

eter, which plays a critical role in balancing the accuracy of fitting the training data with the

simplicity of the model parameters to prevent overfitting. When the mapping ’h(x)’ of the hid-

den layer is not immediately known or visible, a kernel matrix becomes relevant, especially in

the context of Kernel Extreme Learning Machines (KELM). The KELM kernel matrix is specif-

ically designed to address such problems adequately. The matrix is crucial in KELM since it

allows for calculating the required transformations without needing explicit knowledge of ’h
(x).’ The kernel matrix is formulated as follows [65]:

O ¼ HHT : Oi;j � hðxiÞ ¼ Kðxi; xjÞ ð3Þ

The kernel matrix methodology enables KELM to function well even when direct access to

the hidden layer feature map is impossible. This strategy successfully harnesses the capabilities

of kernel methods to analyze and categorize the training data. According to (2) and (3), (1) can

be transformed as follows:

f xð Þ � Hb ¼ HHT HHT þ
I
C

� �� 1

T

Kðx; x1Þ

..

.

Kðx; xNÞ

2

6
6
6
4

3

7
7
7
5

T

ðOþ
I
C
Þ
� 1T ð4Þ

The Radial Basis Function (RBF), sometimes called the Gaussian kernel function [66], may

be mathematically described when used as the kernel function in computational models. The

RBF kernel is renowned for its efficacy in diverse machine-learning methods, especially when

involving nonlinear data. Its capability to convert data into a higher-dimensional space distin-

guishes it, enabling more efficient classification or regression tasks.

The Gaussian kernel function, a commonly used option within the RBF kernel family, is

characterized by its precise mathematical formulation. The RBF kernel’s functionality is

encapsulated by this equation, allowing it to effectively handle intricate patterns in data by

quantifying the similarity between various locations in the feature space. The precise under-

standing of this kernel function is crucial for its utilization in different algorithms, guarantee-

ing the most efficient execution across a wide range of computing activities.

K x; x1ð Þ ¼ exp �
kx � yk2

2g2

� �

ð5Þ

The system’s performance is greatly influenced by two critical parameters: the regulariza-

tion value, indicated as ’C,’ and the kernel function parameter, represented by ’gamma.’ Pre-

cisely adjusting these parameters is crucial for maximizing the classifier’s efficiency. The

regularization parameter ’C’ is essential for managing the trade-off between the complexity of

the model and its capacity to generalize to unseen data. Conversely, the parameter ’γ’ of the

kernel function governs the characteristics of the kernel function, which is crucial for the clas-

sifier’s capacity to deal with non-linear associations in the data.
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The precise arrangement of both ’C’ and ’γ’ is crucial since it directly affects the KELM’s

capacity to categorize data appropriately. The parameters must be carefully fine-tuned to guar-

antee that the classifier operates at its best, accurately discriminating between various classes

and adjusting to the unique properties of the dataset it is applied to. Fig 2 offers a visual repre-

sentation of the KELM’s workings.

Genetic Algorithm (GA)

The Genetic Algorithm (GA), first proposed by Holland [67], draws inspiration from the ideas

of Darwinian natural selection and genetic processes found in biological systems. Genetic algo-

rithm (GA) is an adaptive optimization technique that uses a collection of potential solutions

called chromosomes. The chromosomes consist of many genes, usually represented by binary

values of 0 or 1. In this work, we use a Genetic Algorithm (GA) to produce the starting loca-

tions for the GWO algorithm. The generation of these initial placements using Genetic Algo-

rithms (GA) entails a series of crucial stages:

• Population initialization begins by randomly generating chromosomes, forming the starting

population.

• Parental Selection: The roulette wheel selection technique picks parent chromosomes. This

method emulates a roulette wheel, where the likelihood of choosing a chromosome is pro-

portional to its fitness.

• Crossover Process: Specifically, we employ a single-point crossover operation, where the

production of child chromosomes requires the exchange of genetic information between

parent chromosomes at a randomly selected location across their length. This technique

ensures a mix of parental traits with a chance of producing more viable offspring.

• Mutation Process: We utilize a uniform mutation strategy to provide genetic variety and pre-

vent early convergence. This approach involves randomly altering gene values with a fixed

probability, introducing new features in the child’s chromosomes, and enhancing the genetic

diversity within the population.

• Deciphering Mutated Chromosomes: The modified chromosomes are then decoded to

determine the original positions of the population within the solution space.

Formulating Initial Stances for GWO: Incorporating genetic algorithms (GA) into the pro-

cess is essential. It establishes the groundwork for the following optimization stages, facilitating

a more streamlined and successful pursuit of optimum solutions. For a detailed overview of

the Genetic Algorithm process utilized in this study, please refer to the flowchart presented in

Fig 3.

Genetic-Grey Wolf Optimization (G-GWO) algorithm

The GWO algorithm [26] is a metaheuristic algorithm that draws inspiration from grey

wolves’ social structure and hunting behavior (GWs). This algorithm simulates the intricate

collective behavior of wolves during the hunt, with a specific emphasis on three main phases:

surrounding the prey, pursuing it, and launching an assault.

The social organization of the wolf pack in GWO is mathematically simulated, where the

ranking is established based on the optimal solutions. The alpha wolf (α) is the ideal solution

within the pack, symbolizing its position as the leader. Beta (β) and delta (δ) wolves represent

the second and third perfect solutions. The alpha depends on these wolves to assist in both
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decision-making and hunting. The omega (ω) wolves represent the remaining members of the

pack who follow after the alpha, beta, and delta wolves.

The GWO algorithm utilizes a mathematical equation, Eq 6, to replicate the surrounding

behavior of grey wolves when hunting. This equation represents the wolves’ tactic of encircling

Fig 2. KELM configuration.

https://doi.org/10.1371/journal.pone.0303094.g002
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their prey, a vital element of their hunting style. The encircling mechanism in GWO is essen-

tial as it serves as the foundation of the algorithm’s search and optimization process, directing

the movement of the wolf pack (solutions) toward the prey (ideal solution). The correct articu-

lation of this behavior is crucial in determining the algorithm’s efficacy in exploring and utiliz-

ing the solution space.

Y
*

¼ jQ
*

�M
*

pðtÞ � M
*

wj;M
*

wðt þ 1Þ ¼ M
*

pðtÞ � N
*

�Y
*

j ð6Þ

The GWO method utilizes distinct symbols and vectors to represent different aspects and

activities. These depictions are essential for comprehending the mathematical operations of

the algorithm. Let’s analyze their significance within the framework of GWO:

Current Iteration (t): This symbol denotes the present stage or cycle in the optimization

process.

In the GWO algorithm, the prey represents the goal or the ideal solution the grey wolves

(GWs) want to achieve.

Grey Wolf (w): A grey wolf symbolizes a possible solution inside the algorithm.

The coefficient vectors (N
*

and Q
*

) are essential for directing the movement of the grey

wolves towards their prey. The dynamic changes with each Iteration influence the wolves’

placements in the search space.

The prey’s location vector (M
*

p) represents the precise position of the prey inside the search

space. It serves as a guide for the wolves, leading them towards the most optimum option.

Fig 3. Genetic algorithm flowchart.

https://doi.org/10.1371/journal.pone.0303094.g003

PLOS ONE G-GWO based DED classification

PLOS ONE | https://doi.org/10.1371/journal.pone.0303094 May 20, 2024 11 / 45

https://doi.org/10.1371/journal.pone.0303094.g003
https://doi.org/10.1371/journal.pone.0303094


The Location Vector of the Grey Wolf (M
*

w) provides the precise location of a grey wolf,

which is a possible solution inside the search space.

Determining the coefficient vectors N
*

and Q
*

This is a crucial step in the method, as they

enables the mathematical representation of the wolves’ surroundings and hunting behavior.

The computations are given in Eqs 7 and 8 correspondingly. The equations play a crucial role

in the GWO algorithm, as they dictate the behavior and effectiveness of the grey wolves in

their pursuit of the prey, ultimately leading to the discovery of the best possible solution. The

precise formulation of these vectors and their interaction is crucial for the effectiveness of the

GWO method in addressing optimization issues.

N
*

¼ 2 n
*
� l
*

1 � n
*

ð7Þ

Q
*

¼ 2 l
*

2 ð8Þ

The GWO method utilizes many vectors to direct the simulated hunting behavior of grey

wolves toward an ideal solution. A vector, represented as n
*

, is crucial since it progressively

decreases linearly from 2 to 0 over the repetitions. This slow drop is intended to replicate the

gradual approach of wolves toward their prey as the hunt advances.

In addition, the algorithm utilizes two randomly chosen vectors, l
*

1 and l
*

2, from the range

[0,1]. These vectors enhance the stochasticity of the wolves’ search, adding a random element

that aids in a more comprehensive search space exploration.

Eqs 6–8 in the GWO framework are designed to mimic the tactical hunting maneuvers of

grey wolves. The mathematical representations alpha (α), beta (β), delta (δ), and omega (ω)

play a crucial role in directing the simulated wolves toward the prey, which represents the best

possible solution in the search space.

During each iteration of the program, the positions of the wolves are updated according to these

equations. The alpha wolf, symbolizing the most optimal present resolution, mostly leads the group.

The beta and delta wolves, representing the second and third most optimal alternatives, also contrib-

ute to the direction of the hunt. The other members of the pack, known as the omega wolves, adhere

to the guidance of these leaders, modifying their places according to Eqs 9 to 15 [22].

The hierarchical structure and the accompanying equations allow the GWO algorithm to

navigate and utilize the search space efficiently. The algorithm can achieve convergence to the

most promising solutions by iteratively updating the positions of the wolves, thus emulating

the efficient and cooperative hunting behavior of grey wolves in their natural habitat.

Y
*

a ¼ Q
*

1 � ðM
*

a � M
*

Þ ð9Þ

Y
*

b ¼ Q
*

2 � ðM
*

b � M
*

Þ ð10Þ

Y
*

d ¼ Q
*

3 � ðM
*

d � M
*

Þ ð11Þ
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M
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M
*

1 þM
*

2 þM
*

3

3
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In the original GWO method, randomly creating the initial population of wolf swarms may

sometimes lead to a deficiency of variation within the group as they explore the search space.

Studies on swarm intelligence optimization algorithms have constantly emphasized the signifi-

cance of the starting population’s quality. This attribute is crucial in attaining worldwide

harmonization and acquiring top-notch solutions.

A novel technique called G-GWO has been devised to improve the efficiency of the GWO

algorithm. This novel technique incorporates the concepts of Genetic Algorithms (GA) to gen-

erate the first wolf swarm. G-GWO aims to provide a varied and appropriate starting popula-

tion to enhance the optimization process.

Utilizing the G-GWO confers a significant strategic benefit. The algorithm’s exploring

capabilities may be considerably enhanced by introducing a more organized and diverse start-

ing place for the wolf swarm. This approach considers a broader array of possible solutions

from the beginning, improving the probability of the algorithm reaching the best possible out-

come. The G-GWO technique signifies a significant improvement in enhancing the efficiency

of the GWO algorithm.

Proposed methodology

The proposed model consists of four fundamental processes, as seen in Fig 4. The approach

comprises many stages: image pre-processing, using the G-GWO algorithm to select hyper-

parameters, constructing and training a KELM model with the chosen hyperparameters, and

assessing the model’s performance [68].

To ensure the highest efficiency and accuracy in our model, we meticulously selected the

Genetic Grey Wolf Optimization (G-GWO) and Kernel Extreme Learning Machine (KELM)

algorithms for their specific strengths in handling the challenges presented by Diabetic Eye

Disease (DED) classification and segmentation.

The G-GWO was chosen due to its robust optimization capabilities, particularly in complex

search spaces. This algorithm effectively combines the explorative power of Genetic Algo-

rithms (GA) with the exploitative strength of Grey Wolf Optimization (GWO), making it

adept at finding global optima while avoiding local optima traps. Its application in our meth-

odology is crucial for optimizing the hyperparameters of the KELM model, ensuring that we

achieve the best possible performance in terms of accuracy and computational efficiency. The

G-GWO’s ability to dynamically adapt and refine search strategies is particularly beneficial for

processing the high-dimensional data associated with DED images, where conventional opti-

mization methods often fall short.KELM was selected for its rapid training and exceptional

generalization performance. Unlike traditional neural networks, KELM requires no iterative

tuning, making it significantly faster and more efficient, especially when dealing with large

datasets. Its kernel function enhances the model’s ability to handle non-linear data, providing

superior classification accuracy in medical image analysis. In the context of DED, where timely

and accurate diagnosis is crucial, KELM’s fast processing and high predictive accuracy make it

an ideal choice for classification and segmentation tasks.

Furthermore, the proposed methodology, integrating Genetic Grey Wolf Optimization

(G-GWO) with Kernel Extreme Learning Machine (KELM), represents a significant advance-

ment in Diabetic Eye Disease (DED) classification and segmentation. The novelty of our
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approach lies in its efficient optimization process and rapid, accurate predictive modeling,

which is tailored for large-scale medical image analysis.

In [69], IoT and 5G with AI for real-time VTDR diagnosis, employing a multi-model AI-

driven framework that includes a hybrid CNN-SVD for feature extraction and classification

through SVM-RBF, DT, and KNN. While demonstrating high accuracy, this approach

requires complex system integration and extensive data processing. In contrast, our methodol-

ogy simplifies the computational process without compromising accuracy or efficiency. By

leveraging G-GWO, we enhance hyperparameter optimization in KELM, achieving

Fig 4. Proposed methodology.

https://doi.org/10.1371/journal.pone.0303094.g004
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streamlined and scalable model training suitable for rapid deployment in various healthcare

settings. This is especially beneficial for regions with limited access to advanced technological

infrastructure.

Moreover, [70] enhances VTDR detection through a Hierarchical Block Attention (HBA)

and HBA-U-Net architecture, emphasizing detailed pixel analysis for improved image seg-

mentation. Although effective in achieving high-performance metrics, the methodology neces-

sitates substantial computational resources. Our approach distinguishes itself by optimizing

the entire process through the synergy of G-GWO and KELM, facilitating enhanced perfor-

mance with reduced computational demand. This efficiency enables more effective processing

of extensive DED image datasets, making it a more feasible and robust solution for widespread

clinical application.

The proposed methodology showcases improved efficiency and scalability in DED image

analysis and underscores our commitment to advancing medical diagnostics through AI. By

optimizing hyperparameters and model architecture with G-GWO and KELM, we provide a

novel, efficient, and scalable solution that outperforms existing methods regarding computa-

tional efficiency and practical applicability, marking a clear advancement in medical image

analysis.

Experimental design and datasets description

Extensive experiments were done to evaluate the efficacy of G-GWO in optimizing the hyper-

parameters of the Kernel Extreme Learning Machine (KELM).

This study enhances diabetic eye disease classification and suggests possibilities for

improved healthcare integration, which could boost early detection and patient outcomes.

Since the datasets IDRiD[33], DR-HAGIS[34], and ODIR [35] were used in this study and are

publicly available, there is no need for an ethics statement. The datasets played a crucial role in

evaluating the algorithm’s ability to extract features based on super pixels, classify them, and

provide accurate reference data.

The studies used a comprehensive set of tools and libraries, such as MATLAB, Python,

Keras, Scikit-learn, and OpenCV, to streamline data processing and analysis. The experimental

setup for these tests used Google Colab Pro, which had a high-performance GPU, an Intel-

Core i7 8th generation CPU, and 32 GB of RAM. This configuration guaranteed the effective

management and analysis of the datasets.

The IDRiD, DR-HAGIS, and ODIR datasets are comprised of various image resolutions,

such as 4288 × 2848, 4752 × 3168, 3456 × 2304, 3126 × 2136, 2896 × 1944, and 2816 × 1880,

offering a diverse range of image qualities and sizes for analysis. The IDRiD dataset has pre-

cisely 516 RGB pictures designed for classification applications. The DR-HAGIS dataset has 30

RGB photographs, whereas the ODIR dataset contains 362 RGB photos. The ODIR dataset has

177 photographs depicting Glaucoma, 49 pictures illustrating diabetic retinopathy (DR), and

136 images showcasing diabetic macular edema (DME). This dataset provides a comprehen-

sive collection of many diagnostic scenarios.

To get a comprehensive analysis of the datasets used and to see example photographs, read-

ers are directed to Table 2 and Fig 5 in the paper. These materials provide a more comprehen-

sive understanding of the dataset’s properties and the visual context of the pictures used in the

trials. They emphasize the strength and variety of the data used to evaluate the G-GWO’s effec-

tiveness in hyperparameter optimization for KELM.

The IDRiD [33] is a distinct collection exclusively created for India, including 516 retinal

fundus images. The photos were taken at the eye clinic in Nanded, Maharashtra, using a Kowa

VX-10α fundus camera. The dataset specifically targets the macula and provides a wide field of
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view of 50 degrees, enabling comprehensive examinations of diabetic retinopathy and normal

retinal structures. Each image is meticulously labeled with accurate information at the pixel

level. The grading methodology enhances the dataset by giving values ranging from 0 to 4 for

diabetic retinopathy and 0 to 3 for diabetic macular edema. The grades of IDRiD adhere to

internationally recognized clinical criteria, making it an essential tool for developing algo-

rithms designed to detect and evaluate diabetic retinopathy in India promptly.

The DR-HAGIS[34] comprises retinal fundus pictures acquired from the diabetic retinopa-

thy screening program in the United Kingdom. The collection consists of 39 high-resolution,

color fundus images. The screening procedure employs a variety of fundus and digital cameras

obtained from various service providers, resulting in many image resolutions and sizes. The

database contains images of diabetic retinopathy, along with four other subsets of comorbidi-

ties: age-related macular degeneration, hypertension, and Glaucoma. The primary objective of

the DR-HAGIS database is to faithfully depict the vast array of photographs that experts assess

during screenings.

The Ocular Disease Recognition (ODIR) [35]consists of a comprehensive collection of reti-

nal images captured using fundus cameras. The primary purpose of this dataset, which is

accessible to the public, is to further research in identifying ocular illnesses. It enables the

development and evaluation of algorithms for detecting and classifying eye-related disorders.

The dataset has a diverse collection of photographs depicting persons with various ocular ill-

nesses and those in good condition. This enables a thorough comparison. The dataset is anno-

tated for conditions such as diabetic retinopathy, Glaucoma, age-related macular degeneration

Table 2. A Detailed description of the dataset.

Fundus image Datasets DR DME Glaucoma Total Images

IDRiD [33] 516 0 516

DR-HAGIS [34] 10 10 10 30

ODIR [35] 1131 171 207 1509

Total Fundus Images - - - 2055

https://doi.org/10.1371/journal.pone.0303094.t002

Fig 5. Sample images from the datasets.

https://doi.org/10.1371/journal.pone.0303094.g005
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(AMD), as well as hypertensive retinopathy. ODIR is partitioned into subsets for testing, vali-

dation, and training purposes. It aids in optimizing and assessing algorithms, resulting in

progress in automated illness diagnosis and enhancing therapies for patients in the field of

ophthalmology.

Image processing

To tackle the difficulties presented by the diverse resolutions and extensive dimensions of Dia-

betic Eye Disease (DED) photographs, several pre-processing measures are required. DED

photos are accessible in various resolutions, such as 4288 × 2848, 4752 × 3168, 3456 × 2304,

3126 × 2136, 2896 × 1944, and 2816 × 1880. Efficiently handling the various resolutions and

large dimensions of input pictures is of utmost importance, as they might result in less accurate

segmentation and increased training duration for the Fully Convolutional Encoder-Decoder

Network (FCEDN) model. The training and testing photos are resized to optimize them for

input into the FCEDN model. The resizing process employs the bilinear interpolation tech-

nique [17] to ensure that the images are uniformly and efficiently resized to a smaller size

while preserving their original aspect ratio. This stage guarantees uniformity and effectiveness

throughout the training and processing of the model.

A median filter is also used to improve the quality of the pictures and make them suitable

for efficient segmentation. This filter efficiently eliminates noise from the photos, which may

otherwise alter the model’s interpretation of the data. Furthermore, contrast-limited adaptive

histogram equalization (CLAHE) is used. CLAHE enhances the contrast of the pictures, facili-

tating the FCEDN model in distinguishing and segmenting different features and details in the

photos. The pre-processing processes of resizing, noise reduction, and contrast enhancement

are essential for improving the segmentation performance of the FCEDN model. In addition,

they decrease the model’s training time, enhancing the process’s overall efficiency. By applying

these processes, managing picture resolution and size variations is efficiently achieved, guaran-

teeing that the FCEDN model gets data properly prepared for correct segmentation and

analysis.

Data augmentation

Computer-Aided Diagnosis (CAD) technologies are designed to detect lesions linked to Dia-

betic Eye Disease (DED). Despite progress, these systems often face difficulties, especially

regarding the high occurrence of false-positive detections in individual photos. The two pri-

mary challenges in improving the precision of lesion identification and training deep learning

models are the need for human feature engineering and the limited availability of labeled data.

Furthermore, fundus picture databases sometimes have size limitations and are subject to pri-

vacy problems, further complicating the training process.

To address these difficulties, this work presents a new method of enhancing fundus pictures

using various strategies to improve the training dataset. The data augmentation techniques

employed in this study encompass geometric transformations and patch extraction. These

strategies are specifically developed to augment the variety and quantity of picture examples,

hence improving the dataset used to train the CAD systems.

Geometric modifications alter pictures to simulate various viewing angles and situations,

whereas patch extraction concentrates on some regions of the images, offering comprehensive

perspectives of essential characteristics. The work seeks to resolve the challenges of insufficient

data and enhance the model’s accuracy in identifying lesions in fundus pictures by using vari-

ous data augmentation techniques. Multiple approaches have been identified and imple-

mented with specific parameter settings to explore diverse data augmentation techniques for
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enhancing invariance features. The sharpening technique is applied with intensity levels of 0.5,

1, 1.5, and 2 to refine image details. Similarly, embossing is used with the same intensity levels

to create a three-dimensional effect on images. Gaussian blur, known for smoothing image

textures, is utilized at four scales: 0.25, 0.5, 1, and 2. Rotation is another critical technique per-

formed at angles of 45, 90, 135, and 180 degrees to assess rotational invariance. Edge identifica-

tion, crucial for highlighting outlines, is executed at four incremental intensity levels: 0.25, 0.5,

0.75, and 1.0. Skewing, which distorts the image in various directions, is conducted in left,

right, forward, and backward orientations. Flipping images is another technique executed

along the left side, right side, top, and bottom. Lastly, shearing, which shifts parts of an image

along the X or Y axis, is performed explicitly at 10 degrees along both axes. Collectively, these

methods contribute to a robust framework for enhancing data invariance in image processing.

To enrich the dataset for our research, we used several data augmentation approaches,

resulting in a sevenfold increase in the number of photos. The methodology is shown in

Table 3. Consequently, the collection grew to include 14,385 fundus photos. Out of them, a sig-

nificant proportion of 10,070 photos, which accounts for 70% of the total, was designated for

training. 4,316 photos, which account for 30% of the total, were allocated for review. The allo-

cation of pictures between the training and evaluation stages guarantees a thorough approach

to learning and evaluating the performance of the studied models.

Segmentation and feature extraction

The FCEDN is a sophisticated deep learning framework that consists of an encoder, responsi-

ble for down-sampling, and a decoder, responsible for up-sampling. Both the encoder and

decoder are composed of several layers with distinct purposes. The encoder comprises convo-

lutional (Conv), Rectified Linear Unit (ReLU), dropout, and max pooling (MP) layers. In con-

trast, the decoder consists of transposed convolutional (TC), up-sampling (UP), ReLU, and

dropout (DO) layers.

Creating a functional FCEDN framework customized for specific applications might pres-

ent difficulties. A combination of testing and ideas derived from previous research is often nec-

essary [71–74]. The pertinent research papers in our investigation shape the FCEDN’s original

structure. The encoder is configured with four Convolutional layers, one dropout layer, four

Rectified Linear Unit (ReLU) levels, and two pooling layers. The decoder comprises four TC

layers, two UP levels, four ReLU layers, and one DO layer. The Convolutional (Conv), Trans-

posed Convolution (TC), pooling, and Upsampling (UP) layers use kernel sizes of either 3x3

or 5x5. The number of kernels in each layer varies, ranging from 20 to 200. The quantity of

kernels increases as we go from the first stages to the subsequent ones. The model’s regularisa-

tion technique uses a dropout rate between 0.2 and 0.4.

The quantity of Convolutional, Temporal Convolutional, pooling, and Upsampling layers

determines the general architecture of the FCEDN. Ensuring a proper balance of these layers is

Table 3. Description of the experimental augmented dataset.

Dataset /Cases DR DME Glaucoma Overall

IDRiD [33] 3612 3612

DR-HAGIS [34] 70 70 70 210

ODIR [35] 7917 1197 1449 10563

Overall Augmented 11599 1,267 1519 14385

Training sample 8120 887 1063 10,070

Testing sample 3479 380 456 4,316

Total Augmented Images 11599 1267 1519 14385

https://doi.org/10.1371/journal.pone.0303094.t003
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of utmost importance; an excessive number of convolutional layers may lead to overfitting,

while an insufficient number may result in underfitting. Moreover, the amount of pooling lay-

ers influences feature representation. Having more pooling layers might remove some features,

whereas having fewer layers may result in repeating features. The research establishes the mini-

mum and maximum values for Convolutional (Conv), Temporal Convolutional (TC), pooling,

and Upsampling (UP) layers as 2 and 10, respectively. Multiple trials were carried out to deter-

mine the ideal equilibrium between efficacy and computational efficiency.

Optimizing the FCEDN’s hyperparameters utilizing G-GWO may be divided into four

steps: encoding, population initialization, fitness evaluation, and population updating. The

encoding phase entails encoding key hyperparameters of FCEDN, such as the Conv layer. The

size of the kernel in the transpose convolution operation is called C-KS. The size of the kernel

(TC-KS), the number of convolutional kernels (C-NK), and the transpose convolution The

number of kernels (TC-NK), maximum pooling The size of the kernel, referred to as MP-KS,

and the process of unpooling. The kernel size (UP-KS) and dropout rate (DL-Dr) are trans-

formed into a k-dimensional vector inside the dropout layer. The elements in this vector are

selected randomly from a pre-established range. The i-th parameter vector is officially repre-

sented by Eq (16).

Pi ¼ fRi1;Ri2;Ri3 . . . :Rikg ð16Þ

The Fully Convolutional Encoder-Decoder Network (FCEDN) architecture consists of a

total of four convolution (Conv) layers, two dropout (DL) layers, two max-pooling (MP) lay-

ers, four transposed convolution (T-Conv) layers, and two up-sampling (UP) layers. Based on

this arrangement, the vector size (k) required to describe the hyperparameters of these layers is

calculated to be 22. This vector size represents the different hyperparameters linked to each

layer in the network. The hyperparameters that correspond to the elements of this vector are

as follows: C1-Nk&Ks, C2-Nk&Ks, MP1-Ps, DL1-Dr, C3-Nk&Ks, C4-Nk&Ks, MP2-Ps,

DL2-Dr, UP1-ps, TC1-Nk&Ks, TC2-Nk&Ks, UP1-ps, TC3-Ks&Nk, TC4-Ks&Nk.

To commence the optimization process, a set of n encoding vectors, abbreviated as Xn, is

constructed to represent the initial population of grey wolves. Each vector Xi in this population

represents the location of the ith grey wolf in the search space and is a k-dimensional vector

that encodes the FCEDN hyperparameters.

A streamlined model is trained using fewer, randomly selected samples to accelerate the fit-

ness assessment process and save computing time. This method guarantees prompt detection

of even the slightest changes in the fitness value. The coefficient vectors n ⃑, N⃑, and Q⃑ in

the G-GWO are formed using Eqs (2), (3) and (10) correspondingly.

After this configuration, the fitness of every agent in the population is assessed. The method

updates the overall population while preserving the positions of the top three agents (α, β, and

δ) for a certain number of iterations. The procedure is outlined in the given pseudocode. Ulti-

mately, the agent with the highest fitness value signifies the most practical combination of

hyperparameters for the FCEDN.

This work aims to optimize the hyperparameters of the FCEDN model for picture segmen-

tation. The objective function for this optimization, driven by the G-GWO, is formulated to

maximize the Jaccard coefficient. The Jaccard coefficient, which quantifies the similarity and

diversity, is a crucial indicator for evaluating the efficacy of the selected hyperparameters in

the segmentation job.

f Xið Þ ¼ 1=tim
Xtim

m¼1

εþ
Pj¼r;l¼c

j¼1;l¼1
ymðj; lÞy^mðj; lÞ

εþ
Pj¼r;l¼c

j¼1;l¼1
ymðj; lÞ þ εþ

Pj¼r;l¼c
j¼1;l¼1

y^mðj; lÞ � εþ
Pj¼r;l¼c

j¼1;l¼1
ymðj; lÞy^mðj; lÞ

 ! !

ð17Þ
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Our research aims to assess the precision of picture segmentation at the pixel level using the

Fully Convolutional Encoder-Decoder Network (FCEDN). For every pixel in the mth picture

with dimensions (r*c), ’y_m (j,l)’ represents the actual pixel value at location (j,l), whereas

’y^_m (j,l)’ means the projected label for the same pixel, based on the position vector Xi

derived by FCEDN. A random smoothness value between 0 and 1 is selected to simplify this

procedure, and ’tim’ denotes the fraction of pictures utilized for training. In evaluating the

enhanced architectural configurations of the Fully Enhanced Convolutional Deep Network

(FECDN), Table 4 presents the revised parameter settings, showcasing adjustments to opti-

mize network performance.

An essential difficulty in segmentation jobs, particularly those with a small number of clas-

ses, is the problem of class imbalance. In such instances, a deep neural network may get a

seemingly high level of accuracy, such as 80%, by accurately detecting the majority of back-

ground pixels. Nevertheless, this does not always indicate precise division since the crucial

focus regions often constitute a smaller fraction of the picture, roughly 20%. Hence, relying

just on accuracy as the criteria for assessing segmentation performance might be deceptive. A

more suitable metric is the percentage of overlap between the actual masks and the anticipated

masks. The measure is derived by computing the intersection of pixels between the forecast

and ground truth masks and then dividing this by the total number of pixels in both datasets.

This methodology offers a more precise evaluation of the model’s efficacy in delineating the

specific regions of interest within the picture. Using this assessment technique, we may

enhance our comprehension of the model’s effectiveness in segmentation tasks, guaranteeing

its precise identification and differentiation of the regions of interest rather than only focusing

on the prominent background pixels.

Expanding on the effective segmentation outcomes, this research subsequently concen-

trated on meticulously examining fundus pictures (FIs) using a Convolutional Neural Network

(CNN). The segmentation results established a firm basis, allowing us to explore the intricate

details of these photos. This research systematically identifies the essential characteristics that

may distinguish between the different phases of Diabetic Retinopathy (DR), Glaucoma, and

DME. To streamline this process, we selected a Convolutional Neural Network (CNN) model

that was simple and efficient, primarily focusing on accentuating distinct attributes. Using the

method shown in Fig 1, smoothly shift from the segmentation stage to a more focused feature

extraction stage. Every layer of our Convolutional Neural Network (CNN) has a crucial func-

tion in breaking down the segmented pictures and focusing on the essential elements necessary

Table 4. Configuration of FCEDN.

Configuration Aspect Setting

Convolutional Layers (Conv) 5 layers

Activation Layers (ReLU) 5+3 configuration

Convolutional Filters (Conv_K) 25, 55, 75, 105 counts

Size of Convolutional Kernels (Conv_K Size) 3x3 for each layer

Transitional Convolution (TC) Layers 5 layers

Transitional Convolutional Filters (TC_K) 75, 55, 25, 5 counts

Size of TC Kernels (TC Size) 3x3 for all, except last at 2x2

Pooling Layers 3 layers

Pooling Kernel Sizes (Pooling_K) 2x2 for each

Upsampling (UP) Layers 3 layers

Upsampling Kernel Sizes (UP_K Size) 2x2 for each

Dropout Rates (DO_Rate) 0.25

https://doi.org/10.1371/journal.pone.0303094.t004
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for accurately diagnosing the stages of Diabetic Retinopathy (DR), Glaucoma, and Diabetic

Macular Edema (DME). We improved this approach by using batch normalization, ensuring

consistent input distribution across layers, simplifying training, and enhancing the model’s

generalization capacity.

Additionally, max-pooling concentrated and condensed the segmented pictures to their

most prominent characteristics. Nevertheless, because of the intricate nature of more compli-

cated networks and the abundance of parameters, there was a potential danger of excessively

tailoring the training data. Dropout layers addressed this issue by randomly deactivating neu-

rons during training sessions. This approach helps prevent overreliance on specific character-

istics, fostering a more universal and efficient learning experience. After optimizing the

training process using the Adam optimizer, specifically selected for its effectiveness in manag-

ing large datasets such as our FIs collection, we successfully reached the final step of our

model. A densely connected layer extracts distinct features from each split feature image in

this case. Subsequently, Singular Value Decomposition (SVD) was used to reduce the

dimensionality, ensuring that only the most essential data patterns were preserved. This stage

was vital in transferring from dividing our information into segments to categorizing it,

intending to simplify the dataset to its fundamental elements while protecting the essential

attributes necessary for classifying DR, Glaucoma, and DME.

KELM hyperparameter optimization using G-GWO for classification

This paper presents a novel computational framework called GGWO-KELM, particularly for

medical diagnostics. The GGWO-KELM framework consists of two main stages, both essential

for achieving precise and efficient diagnosis using medical data.

The first phase utilizes the G-GWO) method. The primary goal of this step is to analyze the

medical data and remove any unnecessary or unrelated information. This approach entails

dynamically looking for the data’s most pragmatic combination of characteristics. The GGWO

technique commences with the genetic technique (GA) to produce the starting placements of

the population inside the feature space. Afterward, the GWO approach repeatedly updates

these locations inside a discrete search space. This technique enables the identification of traits

that are essential for precise diagnosis. After selecting the most relevant features, the next step

is implementing the Kernel Extreme Learning Machine (KELM) classifier. The classifier is

used on the refined feature subset acquired from the first step. The KELM classifier is

renowned for its efficacy and efficiency, making it a perfect selection for processing the opti-

mized feature set and generating diagnostic outputs.

Fig 4 presents a detailed flowchart of the GGWO-KELM framework. This flowchart visually

depicts every step involved in the two-phase process. The main objective of the GGWO in this

architecture is to dynamically explore the feature space, determining the combination of fea-

tures that optimizes classification accuracy while decreasing the number of needed features.

The efficacy of the chosen characteristics is evaluated by using a fitness function inside the

GGWO. This fitness function assesses the features by considering their impact on classification

accuracy and quantity, guaranteeing that the resulting feature set is concise and effective in

generating accurate medical diagnoses. Using a dual-phase methodology inside the GGWO-

KELM framework signifies a notable breakthrough in using computational techniques for

medical diagnostic applications.

Fitness ¼ aP þ b
N � L
N

ð18Þ

The Fitness formula integrates many essential components:
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P: Denotes the precision of the categorization model. It is a crucial measure that indicates

the model’s accuracy inappropriately categorizing the data.

The symbol "L" represents the length of the chosen subset of features. The size refers to the

number of features selected during the selection procedure.

N: The overall count of features included in the dataset. This Figure serves as a point of ref-

erence for comprehending the relative size of the chosen features.

α and β are parameters that determine the trade-off between the classification accuracy and

the quality of feature selection. The variable α, bounded between 0 and 1, directly impacts the

weighting assigned to classification accuracy. On the other hand, β, which is calculated as 1−α,

modifies the importance placed on the quality of feature selection.

The process of selecting features is shown using a flag vector. The vector comprises binary

values (0s and 1s), with each value indicating the selection status of a feature in the dataset. In

this vector, a ’1’ denotes the inclusion of the associated trait, while a ’0’ indicates its exclusion.

The size of the feature subset is determined by the total number of chosen features, represented

by ’1’s in the vector.

In a problem with ’n’ dimensions, the flag vector consists of ’n’ bits. Each bit represents a

specific characteristic in the dataset, with the ith bit (i = 1, 2,. . ., n) corresponding to the ith
feature. The binary format facilitates the monitoring of the characteristics used in the model.

Additionally, the report has a pseudocode (pseudocode 1) that comprehensively describes

the G-GWO method. The provided pseudocode systematically explains the IGWO algorithm’s

functioning, elucidating the feature selection and optimization process used in the classifica-

tion model. By including this pseudocode, a precise and straightforward framework is pro-

vided to comprehend the computational mechanics involved in feature selection and model

optimization.

Pseudocode 1 contains the G-GWO algorithm’s pseudocode

Initialization:
1. Define Key Variables:

- Population size (`popsize`), maximum iterations (`maxiter`),
feature dimensionality (`dim`), grey wolf positions (`GWs[pos]`), fea-
ture selection marker (`flag[]`).
2. Generate Initial Grey Wolf Positions:

- Use Genetic Algorithm (GA) for initial `GWs[pos]` setup.
- Initialize variables `n,` vector `N,` and vector `Q.`

First Population Assessment:
1. Feature Selection:

- For each grey wolf `i` and each feature `j`:
- If `pos[i, j]` > random number, then `flag[j] = 1` (feature

selected).
- Else, `flag[j] = 0` (feature not selected).

2. Fitness Evaluation:
- Calculate fitness of each GW using `αZ + β(H-G)/H`.
- Identify the top three GWs: alpha (α), beta (β), and delta (δ).

Iterative Optimization:
1. Loop Until Max Iterations:

- For each iteration `k < maxiter`:
- For each grey wolf `i`:

- Update `GWs[pos]` using Eq 10.
- For each feature `j`:

- If `pos[i, j]` > random integer, `flag[j] = 1`.
- Else, `flag[j] = 0`.

- Update variables `n,` `N,` and `Q.`
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- Recalculate fitness using Eq 11.
- Update rankings of α, β, and δ.
- Increment iteration counter `k.`

Conclude Optimization:
1. Final Feature Set Determination:

- Upon reaching `maxiter,` return the best feature set from the
alpha grey wolf.

The GGWO algorithm employs a systematic technique to find the most attractive feature

subset for the given goal, as elaborated in the works of Albadr et al. [75,76]. The algorithm pro-

gressively improves the location of each GWO in the feature space by assessing and modifying

their fitness according to a predetermined fitness function. The result is the identification of

an ideal collection of characteristics chosen by the dominant wolf that most effectively meets

the criteria of the classification model.

To refine the classification accuracy of Diabetic Eye Disease detection, we systematically

optimized the Fully convolutional Encoder-Decoder Network (FCEDN). Parameters This

optimization was achieved by integrating G-GWO and further enhancements using the Kernel

Extreme Learning Machine (KELM). Table 5 compares the parameter configurations across

the original FCEDN model, its enhancement through G-GWO, and subsequent optimization

with G-GWO-KELM. The comparative overview illustrates our methodological approach to

achieving superior classification performance. The specific parameter settings utilized in our

experiments are detailed below the table, providing insights into the optimization process and

its impact on the model’s effectiveness in classifying Diabetic Eye Disease.

Performance metrics

When it comes to machine learning, it is crucial to evaluate the efficacy of a model in real-

world scenarios, going beyond its performance during the initial training phase. For compre-

hensive details on the equations used in our evaluation metrics, which bolster our analysis and

understanding of model performance across diverse conditions, readers are referred to [77–

80]. This entails using diverse assessment criteria, starting with essential indicators for catego-

rization. Sensitivity, or the True Positive Rate, quantifies the model’s capacity to detect positive

instances accurately. Conversely, Specificity, often known as the True Negative Rate, measures

the model’s ability to identify virtual negative occurrences correctly. Accuracy provides a com-

prehensive measure of the model’s total capacity to accurately align its predictions with the

actual results, including both classes. The F1-Score, which combines accuracy and recall, is

Table 5. Comparative overview of parameter configurations for FCEDN, enhanced with G-GWO and G-GWO-

KELM optimizations.

Setting Description

Population Count 8

Iteration Quantity Extended to 200 iterations for an exhaustive search

Feature Count (n) Represents the comprehensive number of features evaluated

Domain Range Broadened to the interval [–1, 2] for broader search space

GA Crossover Rate 0.8

GA Mutation Rate 0.01

Fitness Function Alpha (α) Adjusted importance to 0.99 for balancing precision and diversity

Fitness Function Beta (β) Adjusted to a complementary weighting of 0.01

KELM Regularization (C) Increased to 32 for improved regularization

KELM Kernel Parameter (γ) Adjusted to a value of 0.5 for optimal kernel performance

https://doi.org/10.1371/journal.pone.0303094.t005
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especially important in cases when the distribution of classes is not balanced. Matthew’s Corre-

lation Coefficient (MCC) offers a fair assessment that considers the differences in class sizes.

Precision is concerned with the accuracy of optimistic forecasts, whereas the Error Rate quan-

tifies the fraction of inaccurate forecasts. The purpose of these measures is to provide a com-

prehensive, unambiguous, and accurate assessment of the model’s performance. The

mathematical equations for these measurements are outlined in Table 6 to give a complete

comprehension.

Results and discussion

Results

This research assesses the effectiveness of the FCEDN model in attaining accurate segmentation.

The FCEDN architecture consists of four convolutional layers with Rectified Linear Unit (ReLU)

activation, two Max Pooling (MP) layers, two Dropout (DO) levels, four Transposed Convolution

(TC) layers, and two Upsampling (UP) layers. The convolutional layers consist of 20, 50, 70, and

100 filters, each with a consistent size of 4. Conversely, the TC layers include filters with dimen-

sions of 70, 50, 20, and 2, respectively. The diameters of these filters are 4, 4, 4, and 2 units, corre-

spondingly. The model uses a particle size of two and a dissolved oxygen rate 0.2 in both the MP

and UP layers. The last layer of the Fully Convolutional Encoder-Decoder Network (FCEDN)

comprises a Transition Convolution (TC) layer with two filters, each two in size. These filters are

specifically intended to capture the distinctive aspects of the picture precisely. The result is gener-

ated using the softmax activation method. The FCEDN model employs the Adam optimizer,

using a constant learning rate of 0.001 and a batch size 20 throughout the training phase. The

FCEDN architecture is selected based on previous research and comprises various arrangements

of convolutional (conv), rectified linear unit (ReLU), max pooling (MP), transposed convolution

(TC), and upsampling (UP) layers. The number and dimensions of these layers and the number

of filters in the convolutional and transposed convolution layers are modified in various simula-

tions. However, the other network characteristics remain unchanged despite these modifications.

The FCEDN architecture consists of four Convolutional layers, eight Rectified Linear Unit

(ReLU) levels, two Dropout (DO) layers, two Max Pooling (MP) layers, four Transposed Convo-

lution (TC) layers, and two Upsampling (UP) layers. The models were subjected to 500 iterations

of testing using the IDRiD, DR-HAGIS, and ODIR datasets. The Jaccard coefficient and Jaccard

loss were calculated for each training iteration, and the results were analyzed, focusing on the

model’s ability to segment the datasets accurately, as seen in Fig 6.

Fig 7 depicts the step-by-step procedure, beginning with the original input, then pre-pro-

cessing, and concluding with presenting the ground truth and the predicted masks produced

Table 6. Performance evaluation matrices.

Matric Name Mathematical Representation

Accuracy (ACC) TPþTN
TPþTNþFPþFN� 100%

Sensitivity (SEN) TP
TPþFN� 100%

Specificity (SPC) TN
TNþFP� 100%

Precision (PRE) TP
TPþFP� 100%

MCC TP�TN� FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþFPÞðTPþFNÞðTNþFPÞðTNþFNÞ
p � 100%

Error Rate (ER) 1 � 0:5�
Sensitivity valueþSpecif ity values

100
� 100%

F1-Score (F1-S) 2�Precision�Recall
PrecisionþRecall � 100%

https://doi.org/10.1371/journal.pone.0303094.t006
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Fig 6. Segmentation performance matrices comparison.

https://doi.org/10.1371/journal.pone.0303094.g006

Fig 7. Input, pre-processing, ground truth, and the predicted segmentation results were obtained by the proposed

model for some sample images.

https://doi.org/10.1371/journal.pone.0303094.g007
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by the FCEDN model for several sample photos. The illustrations show successful segmenta-

tion of the specific region by the model.

This study explores sophisticated classification methods using the GGWO-KELM model,

renowned for its exceptional computer vision skills. The study’s fundamental purpose is to

showcase the efficacy of the new GGWO-KELM algorithm. This method enhances perfor-

mance by combining the GWO and Genetic algorithm. A wide range of assessment indicators

is used to evaluate the effectiveness and dependability of the GGWO-KELM model. The evalu-

ation metrics used in this study include the training set mean square error, testing accuracy,

ROC curve analysis, confusion matrix, and critical statistical indicators such as sensitivity,

Specificity, precision, Matthews correlation coefficient (MCC), error rate, and the F1-score.

This comprehensive evaluation methodology thoroughly examines the model’s precision,

coherence, and robustness across many assessment criteria.

Table 7 thoroughly assesses four distinct algorithms (KELM, GA-KELM, GWO-KELM,

GGWO-KELM) for diagnosing Diabetic Retinopathy. The performance of each algorithm is

evaluated based on various critical indicators. The GGWO-KELM algorithm routinely demon-

strates superior performance. It has the most remarkable accuracy, sensitivity, Specificity, pre-

cision, Matthews Correlation Coefficient (MCC), and F1-Score among all the algorithms.

GGWO-KELM has a remarkable accuracy rate of 98.6%, highlighting its extraordinary capac-

ity for accurate classification. The sensitivity of 97.2% demonstrates its ability to reliably iden-

tify positive situations, while its Specificity of 99.0% indicates its skill in correctly detecting

negative cases. The accuracy of GGWO-KELM is 98.5%, highlighting its capacity to provide

accurate and optimistic forecasts. The MCC value of 0.984 signifies the robustness of the classi-

fication, while the error rate of just 0.014 showcases its high accuracy. The F1-Score of 0.987

demonstrates its efficacy in balancing accuracy and recall.GGWO-KELM regularly surpasses

the other algorithms in several crucial measures, giving it an up-and-coming option for detect-

ing Diabetic Retinopathy in this dataset. Its outstanding accuracy, precision, and robust MCC

and F1-Score make it the top performer for this assignment.

Fig 8 presents an evaluation of Accuracy, Sensitivity, and Specificity to examine the perfor-

mance of four different algorithms (KELM, GA-KELM, GWO-KELM, and GGWO-KELM) in

detecting Diabetic Retinopathy. GGWO-KELM stands out as the undisputed frontrunner in

accuracy, with an impressive score of about 98.6%. This makes it the most precise algorithm

out of the four options. The GGWO-KELM method has a high sensitivity of around 97.2%,

indicating its ability to detect positive cases accurately. Furthermore, GGWO-KELM demon-

strates exceptional Specificity by successfully identifying negative instances with an approxi-

mate rate of 99.0%. On the other hand, GA-KELM shows the least favorable results in these

three measurements, with an accuracy of around 82.7%, a sensitivity of 87.2%, and a specificity

of 76.9%. GGWO-KELM exhibits greater diagnostic accuracy for Diabetic Retinopathy, but

GA-KELM falls behind in overall correctness.

Table 7. Different classifiers Performance evaluation using IDRiD dataset.

Dataset Disease Metric KELM GA-KELM GWO-KELM GGWO-KELM

IDRiD Diabetic Retinopathy Accuracy 88.5 82.7 84.1 98.6

Sensitivity 85.8 87.2 86.3 97.2

Specificity 89.1 76.9 81.0 99.0

Precision 87.9 82.1 83.4 98.5

MCC 0.742 0.665 0.695 0.984

Error Rate 0.112 0.173 0.158 0.014

F1-Score 0.881 0.854 0.867 0.987

https://doi.org/10.1371/journal.pone.0303094.t007
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Fig 9 examines explicitly more sophisticated assessment criteria, such as the Matthews Cor-

relation Coefficient (MCC), Error Rate, and F1-Score, to provide a more comprehensive

review of the performance of the same four algorithms. GGWO-KELM maintains its excep-

tional performance, with a remarkable MCC score of about 0.984, indicating strong perfor-

mance and accurate predictions. GGWO-KELM has the most optimal performance in terms

of Error Rate, with a meager value of about 0.014, signifying the least misclassifications. Fur-

thermore, GGWO-KELM maintains its dominant position in the F1-Score, with a fantastic

score of about 0.987. This demonstrates a seamless equilibrium between accuracy and

responsiveness.

On the other hand, GA-KELM falls behind with the lowest MCC score, the most excellent

Error Rate, and a trade-off in F1-Score. To summarize, these spider plots thoroughly assess

algorithm effectiveness in detecting Diabetic Retinopathy, with GGWO-KELM constantly sur-

passing its competitors in performance. Simultaneously, GA-KELM demonstrates the poten-

tial for enhancement in its diagnostic skills.

Incorporating the results presented in the Fig 10, the visual comparison reinforces the tex-

tual analysis, vividly illustrating the unmatched precision of GGWO-KELM in accurately clas-

sifying Diabetic Retinopathy. This graphical representation complements the discussion and

provides a clear, at-a-glance understanding of each algorithm’s performance, further substanti-

ating GGWO-KELM’s superiority in achieving the most favorable balance between identifying

actual cases and reducing errors.

Table 8 presents a thorough analysis of three disease categories (Diabetic Retinopathy, Dia-

betic Macular Edema—DME, and Glaucoma) using four different algorithms (KELM,

Fig 8. ACC, SEN, and SPC evaluation using IDRiD dataset.

https://doi.org/10.1371/journal.pone.0303094.g008
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GA-KELM, GWO-KELM, GGWO-KELM). The analysis focuses on several essential perfor-

mance metrics.

Among the algorithms evaluated for Diabetic Retinopathy (DR-HAGIS), GGWO-KELM

consistently demonstrates superior performance. With an impressive accuracy rate of 97.6%, it

has exceptional categorization skills. GGWO-KELM shows a high level of sensitivity (96.3%),

Specificity (98.8%), accuracy (97.7%), Matthews correlation coefficient (MCC) of 0.982, and

F1-Score of 0.986. These results emphasize its exceptional performance in all aspects. GGWO-

KELM again demonstrates its outstanding skill in reliably differentiating instances of Diabetic

Macular Edema (DME), with an impressive accuracy rate of 98.1%. The method has strong

performance in terms of sensitivity (98.0%), Specificity (98.3%), precision (98.4%), Matthews

correlation coefficient (MCC) (0.979), and F1-score (0.982), establishing it as the top algorithm

in this illness category. GGWO-KELM performs exceptionally well in Glaucoma, with an accu-

racy rate of 98.4%. This high level of accuracy underscores its efficacy in the categorization

process. The GGWO-KELM has outstanding sensitivity (98.6%), Specificity (98.3%), accuracy

(98.5%), Matthews correlation coefficient (0.978), and F1-Score (0.986), highlighting its excel-

lent diagnostic capabilities for Glaucoma.

GGWO-KELM regularly performs better than the other algorithms in all three illness cate-

gories, highlighting its adaptability and usefulness in diverse medical diagnoses. The accuracy,

sensitivity, Specificity, precision, Matthews correlation coefficient (MCC), and F1-Score con-

tinually make it the top option for precise illness categorization.

Figs 11–16 presents a holistic overview of the performance measures for several illnesses

(Diabetic Retinopathy, Diabetic Macular Edema, and Glaucoma) using four separate algo-

rithms (KELM, GA-KELM, GWO-KELM, and GGWO-KELM). The visualizations display

Fig 9. MCC, ER, and F1-Score evaluation using IDRiD dataset.

https://doi.org/10.1371/journal.pone.0303094.g009
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intriguing trends and comparisons related to six fundamental metrics: Accuracy, Sensitivity,

Specificity, MCC (Matthews Correlation Coefficient), Error Rate, and F1-Score. The GGWO-

KELM algorithm consistently performs better than the other three for all three illnesses, exhib-

iting excellent accuracy. GGWO-KELM has exceptional Sensitivity and Specificity, affirming

its efficacy in accurately detecting genuine positives and real negatives. Regarding the Mat-

thews Correlation Coefficient (MCC), GGWO-KELM again demonstrates outstanding perfor-

mance, exhibiting the highest values. This suggests that the algorithm is resilient and capable

of achieving well-balanced categorization. Furthermore, GGWO-KELM has the lowest Error

Rate, offering a reduced number of misclassifications. The F1-Score, which accounts for both

accuracy and recall, highlights the overall efficacy of GGWO-KELM, regularly attaining the

top values.

GGWO-KELM demonstrates good performance, but the line graphs illustrate variances in

algorithm performance for various disorders. Examining these patterns may inform decision-

making when choosing the appropriate algorithm according to the medical situation.

The confusion matrix comparison depicted in Fig 17 highlights the performance evaluation

of various classifiers across three prevalent eye diseases: Diabetic Retinopathy, DME, and

Glaucoma. Each matrix showcases the true positive, true negative, false positive, and false neg-

ative values for different classifiers, providing a comprehensive understanding of their efficacy

in disease classification. This visual representation aids in identifying the strengths and

Fig 10. Confusion matrix comparison of four algorithms on IDRiD dataset for diabetic retinopathy, showcasing

GGWO-KELM’s exceptional performance.

https://doi.org/10.1371/journal.pone.0303094.g010
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weaknesses of each classifier, contributing valuable insights for optimizing machine learning

algorithms in ophthalmology applications.

Table 9 presents a thorough assessment of three specific disease categories (Diabetic Reti-

nopathy, Diabetic Macular Edema—DME, and Glaucoma) using four different algorithms

Table 8. Different classifiers performance evaluation using DR-HSGIS dataset.

Dataset Disease Metric KELM GA-KELM GWO-KELM GGWO-KELM

DR-HAGIS Diabetic Retinopathy Accuracy 88.9 83.0 83.3 97.6

Sensitivity 86.4 87.8 86.1 96.3

Specificity 89.7 78.1 80.2 98.8

Precision 88.6 81.4 82.0 97.7

MCC 0.757 0.680 0.696 0.982

Error Rate 0.102 0.167 0.162 0.015

F1-Score 0.889 0.862 0.873 0.986

DR-HAGIS DME Accuracy 87.9 82.0 82.6 98.1

Sensitivity 84.9 86.7 85.5 98.0

Specificity 88.6 77.8 80.1 98.3

Precision 87.1 80.9 81.4 98.4

MCC 0.729 0.647 0.668 0.979

Error Rate 0.123 0.184 0.174 0.018

F1-Score 0.872 0.854 0.865 0.982

DR-HAGIS Glaucoma Accuracy 88.7 91.3 82.1 98.4

Sensitivity 87.3 90.0 91.2 98.6

Specificity 89.2 92.1 92.6 98.3

Precision 87.7 91.0 91.8 98.5

MCC 0.759 0.837 0.849 0.978

Error Rate 0.112 0.095 0.087 0.016

F1-Score 0.882 0.903 0.914 0.986

https://doi.org/10.1371/journal.pone.0303094.t008

Fig 11. Accuracy evaluation using DR-HAGIS dataset.

https://doi.org/10.1371/journal.pone.0303094.g011
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(KELM, GA-KELM, GWO-KELM, GGWO-KELM). The evaluation is based on many neces-

sary performance measures.

Regarding Diabetic Retinopathy (OIDR), GGWO-KELM constantly demonstrates superior

performance as the leading algorithm. With a remarkable accuracy record of 98.6%, it proves

its excellent proficiency in appropriately categorizing instances. GGWO-KELM has excep-

tional sensitivity (98.5%), Specificity (98.8%), accuracy (98.7%), Matthews correlation coeffi-

cient (0.984), and F1-Score (0.987), underscoring its outstanding performance in all aspects.

GGWO-KELM has shown exceptional performance in precisely differentiating instances of

Diabetic Macular Edema (DME), with an impressive accuracy rate of 98.2%. This highlights its

Fig 12. Sensitivity evaluation using DR-HAGIS dataset.

https://doi.org/10.1371/journal.pone.0303094.g012

Fig 13. Error Rate evaluation using DR-HAGIS dataset.

https://doi.org/10.1371/journal.pone.0303094.g013
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expertise in accurately identifying and classifying cases of DME. The method has strong sensi-

tivity (98.1%), Specificity (98.4%), precision (98.5%), Matthews correlation coefficient (MCC)

of 0.978, and F1-Score of 0.983, establishing it as the top algorithm in this illness category.

Within the context of Glaucoma, GGWO-KELM demonstrates exceptional performance,

with an accuracy rate of 98.5%. This high level of accuracy underscores its usefulness in the

categorization process. The GGWO-KELM demonstrates outstanding sensitivity (98.6%),

Specificity (98.4%), precision (98.7%), Matthews correlation coefficient (MCC) of 0.977, and

F1-score of 0.985. These results highlight its remarkable diagnostic capabilities for Glaucoma.

Fig 14. Specificity evaluation using DR-HAGIS dataset.

https://doi.org/10.1371/journal.pone.0303094.g014

Fig 15. MCC evaluation using DR-HAGIS dataset.

https://doi.org/10.1371/journal.pone.0303094.g015
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GGWO-KELM regularly performs better than other algorithms in all three illness catego-

ries, highlighting its adaptability and usefulness in diverse medical diagnoses. The accuracy,

sensitivity, Specificity, precision, Matthews correlation coefficient (MCC), and F1-Score con-

tinually make it the top option for precise illness categorization.

Fig 16. F-1 Score valuation using DR-HAGIS dataset.

https://doi.org/10.1371/journal.pone.0303094.g016

Fig 17. Comparison of confusion matrices for different classifiers across three diseases: Diabetic retinopathy,

DME, and Glaucoma.

https://doi.org/10.1371/journal.pone.0303094.g017
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The Figs 18–23 heatmaps provide a full visual depiction of the performance measures for

three ocular disorders (Diabetic Retinopathy, DME, and Glaucoma) and four machine learn-

ing algorithms (KELM, GA-KELM, GWO-KELM, GGWO-KELM). Each heatmap represents

a distinct performance statistic, including Accuracy, Sensitivity, Specificity, MCC (Matthews

Table 9. Different classifiers performance evaluation using OIDR dataset.

Dataset Disease Metric KELM GA-KELM GWO-KELM GGWO-KELM

OIDR Diabetic Retinopathy Accuracy 89.6 84.3 85.0 98.6

Sensitivity 87.2 88.8 88.1 98.5

Specificity 91.5 81.4 82.5 98.8

Precision 88.8 83.0 83.6 98.7

MCC 0.775 0.702 0.721 0.984

Error Rate 0.102 0.173 0.150 0.015

F1-Score 0.890 0.865 0.877 0.987

OIDR DME Accuracy 86.4 82.9 83.5 98.2

Sensitivity 82.1 86.9 84.2 98.1

Specificity 87.8 77.4 80.3 98.4

Precision 85.3 80.7 81.4 98.5

MCC 0.710 0.654 0.673 0.978

Error Rate 0.136 0.171 0.160 0.018

F1-Score 0.865 0.854 0.868 0.983

OIDR Glaucoma Accuracy 91.2 90.3 89.7 98.5

Sensitivity 90.7 93.2 88.3 98.6

Specificity 92.5 91.5 89.2 98.4

Precision 91.3 89.4 90.4 98.7

MCC 0.805 0.791 0.791 0.977

Error Rate 0.089 0.097 0.097 0.015

F1-Score 0.913 0.904 0.899 0.985

https://doi.org/10.1371/journal.pone.0303094.t009

Fig 18. Accuracy evaluation using OIDR dataset.

https://doi.org/10.1371/journal.pone.0303094.g018
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Correlation Coefficient), Error Rate, and F1-Score. These heatmaps provide significant

insights into the diverse performance of algorithms for each illness and parameter. The heat-

maps use lighter hues to show greater values, corresponding to better performance, while

darker shades reflect lower values. The GGWO-KELM algorithm continuously exhibits excep-

tional performance across all measures and disorders, as seen by the notably lighter zones. In

contrast, the other algorithms perform somewhat worse, as shown by the darker regions on

the heatmaps.

These visualizations serve as a potent instrument for healthcare practitioners and academics

to make well-informed judgments on algorithm selection, considering unique medical

Fig 19. Sensitivity evaluation using OIDR dataset.

https://doi.org/10.1371/journal.pone.0303094.g019

Fig 20. Specificity evaluation using OIDR dataset.

https://doi.org/10.1371/journal.pone.0303094.g020
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problems. They provide a rapid and spontaneous comprehension of the merits and limitations

of each algorithm, aiding in the choice of the most appropriate method for precise illness cate-

gorization and diagnosis.

The confusion matrices depicted in Fig 24 present a comparative analysis of various classifi-

ers applied to different diseases within the respective datasets. Each matrix illustrates the per-

formance metrics, including accuracy, sensitivity, specificity, precision, Matthew’s correlation

coefficient (MCC), error rate, and F1-score for classifiers such as KELM, GA-KELM, GWO-

KELM, and GGWO-KELM. The matrices visually represent how each classifier distinguishes

Fig 21. MCC evaluation using OIDR dataset.

https://doi.org/10.1371/journal.pone.0303094.g021

Fig 22. Error Rate evaluation using OIDR dataset.

https://doi.org/10.1371/journal.pone.0303094.g022
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between positive and negative instances of diabetic retinopathy, diabetic macular edema

(DME), and glaucoma across different datasets. This comparison offers valuable insights into

the efficacy of these algorithms in diagnosing specific diseases, aiding researchers and practi-

tioners in selecting the most suitable classifier for their applications.

Fig 23. F-1 Score evaluation using OIDR dataset.

https://doi.org/10.1371/journal.pone.0303094.g023

Fig 24. Comparison of confusion matrices for different classifiers using OIDR dataset.

https://doi.org/10.1371/journal.pone.0303094.g024
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Discussion

This section will examine and contrast the three Tables 7–9 results. The tables evaluate the

effectiveness of four algorithms (KELM, GA-KELM, GWO-KELM, GGWO-KELM) in three

different disease categories (Diabetic Retinopathy, Diabetic Macular Edema—DME, and Glau-

coma). The evaluation is based on multiple essential performance metrics. The measures

included in this set are accuracy, sensitivity, Specificity, precision, Matthews Correlation Coef-

ficient (MCC), error rate, and F1-Score. The discussion will center on discerning trends and

patterns within the datasets and deriving insights into the algorithms’ efficacy in various medi-

cal scenarios.

Broader implications and ethical considerations

This study not only advances diabetic eye disease classification but also indicates the potential

for broader healthcare integration, potentially improving early detection and patient out-

comes. Ethical considerations like data privacy, informed consent, and algorithmic bias need

careful attention to ensure equitable and responsible use in clinical settings. Developing guide-

lines to navigate these ethical challenges is essential.

Impact on clinical decision-making

This system’s integration into clinical workflows may affect decision-making, with the risk of

misclassification posing significant ethical concerns. It’s imperative to rigorously validate and

monitor the system in clinical environments to ensure it aids, rather than overrides, medical

professionals’ judgments, particularly in critical health scenarios.

Clinical integration

The proposed model’s transition into clinical practice requires thorough validation to establish

its real-world efficacy. Collaborative efforts with healthcare professionals are crucial to align

the technology with clinical workflows, aiming to improve care quality and efficiency through

a patient-centric approach.

Performance in Diabetic Retinopathy (DR-HAGIS, OIDR)

Both DR-HAGIS and OIDR datasets evaluate the algorithms for diagnosing Diabetic Retinop-

athy, and the findings demonstrate a persistent pattern. GGWO-KELM consistently performs

better than the other algorithms in both datasets, as shown by all measures. It proves excep-

tional accuracy, sensitivity, Specificity, precision, Matthews correlation coefficient (MCC), and

F1-Score, highlighting its efficacy in diagnosing Diabetic Retinopathy. The DR-HAGIS dataset

demonstrates that GGWO-KELM obtains an accuracy rate of 97.6%, highlighting its outstand-

ing classification skills. GGWO-KELM achieves an accuracy of 98.6% in the OIDR dataset,

highlighting its exceptional precision in detecting Diabetic Retinopathy. The findings indicate

that GGWO-KELM is a reliable option for detecting Diabetic Retinopathy, consistently per-

forming better than other algorithms.

Performance in Diabetic Macular Edema (DME, OIDR)

When evaluating Diabetic Macular Edema (DME), the DME data in the OIDR dataset and the

DME data in the DR-HAGIS dataset demonstrate a comparable pattern in algorithm efficacy.

GGWO-KELM outperforms other algorithms in several parameters, demonstrating its robust-

ness in diagnosing DME. The DME data of the DR-HAGIS dataset shows that GGWO-KELM

obtains an accuracy of 98.1% and demonstrates good sensitivity, specificity, precision, MCC,
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and F1-Score. The GGWO-KELM algorithm achieves an accuracy of 98.2% in classifying

DME data within the OIDR dataset, demonstrating its high accuracy and dependability. The

data indicate that GGWO-KELM routinely identifies DME effectively, giving it a robust option

for this particular medical scenario.

Performance in Glaucoma (DR-HAGIS, OIDR)

Examining algorithms in diagnosing Glaucoma uncovers a recurring trend in the DR-HAGIS

and OIDR datasets. GGWO-KELM remains the top algorithm regarding accuracy, sensitivity,

specificity, precision, MCC, and F1-Score. Within the Glaucoma data subset of the DR-HAGIS

dataset, GGWO-KELM has an accuracy rate of 98.4% and outperforms in sensitivity, Specific-

ity, and precision. The GGWO-KELM algorithm achieves an accuracy of 98.5% in the Glau-

coma data of the OIDR dataset. It also consistently demonstrates exemplary performance in

sensitivity, Specificity, precision, Matthews correlation coefficient (MCC), and F1-Score. The

constant results highlight the solid and dependable nature of GGWO-KELM in detecting

Glaucoma, making it an exceptional option for this medical condition. Examining these three

datasets indicates that GGWO-KELM regularly surpasses other algorithms in accurately iden-

tifying Diabetic Retinopathy, Diabetic Macular Edema, and Glaucoma. The algorithm consis-

tently outperforms others in many medical scenarios, as seen by its high accuracy, sensitivity,

Specificity, precision, MCC, and F1-Score. The exceptional durability and dependability of

GGWO-KELM position it as a very suitable option for clinical applications that need precise

illness categorization. Nevertheless, it is crucial to acknowledge that the selection of an algo-

rithm should be contingent upon the particular demands and intricacies of the medical diag-

nostic work. Additionally, additional validation and clinical testing may be imperative to

verify the algorithm’s appropriateness for real-world implementations.

Evidence of impact (Newly Added)

We explore the broader impact of our approach beyond diabetic eye disease classification,

detailing its potential applications in other medical domains. By demonstrating superior per-

formance in Diabetic Retinopathy, Diabetic Macular Edema, and Glaucoma, the GGWO-

KELM model sets a benchmark in these areas and indicates its applicability in other disease

detection and classification tasks. The adaptability and accuracy of our approach suggest its

potential for integration into comprehensive healthcare systems, offering a scalable solution

for various diagnostic challenges.

Statistical evaluation of the GGWO-KELM model’s performance

Statistical analysis to demonstrate that the superior performance of our GGWO-KELM model

in diagnosing Diabetic Retinopathy is not due to chance. We chose the paired t-test for this

purpose, given its suitability for comparing the means of two related groups—our GGWO-

KELM model against each of the other models (KELM, GA-KELM, GWO-KELM)—across

various performance metrics (accuracy, sensitivity, specificity, precision, Matthews Correla-

tion Coefficient [MCC], error rate, and F1-score). For each metric, we calculated the mean val-

ues from the performance outcomes of the GGWO-KELM model and those of the compared

model on the same datasets. The significance level was set at α = 0.05, with adjustments made

for multiple comparisons via the Bonferroni correction, ensuring rigorous statistical

validation.

The results of our paired t-test analysis revealed that the differences in performance metrics

between the GGWO-KELM model and each of the other models are statistically significant.

Specifically, the p-value was less than 0.01 for accuracy across all datasets, indicating that
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GGWO-KELM’s accuracy is not a product of random variation but a statistically significant

improvement over other models.

Similarly, we found statistically significant differences in sensitivity and specificity

(p< 0.01), confirming the GGWO-KELM model’s ability to identify both positive and nega-

tive cases of Diabetic Retinopathy accurately. Precision, MCC, and F1-score comparisons also

yielded significant p-values (p< 0.01), further underscoring the model’s efficacy in providing

accurate and reliable diagnoses. This comprehensive statistical analysis, grounded in the fun-

damental values obtained from our experiments, conclusively demonstrates the statistical sig-

nificance of the GGWO-KELM model’s performance across multiple metrics and datasets.

These findings validate the model’s potential as a robust and effective tool in the early detec-

tion and classification of Diabetic Retinopathy, offering substantial evidence that its perfor-

mance enhancements are significant and not attributable to chance. This rigorous statistical

evaluation has addressed the reviewer’s concerns and reinforced our model’s reliability and

applicability in medical imaging and diagnostics.

Time complexity analysis

This study introduces a novel hybrid method combining G-GWO with a Fully Convolutional

Encoder-Decoder Network (FCEDN) and a Kernel Extreme Learning Machine (KELM) for

enhanced diabetic eye disease (DED) detection and classification. Due to its computational

complexity, this advanced approach necessitates increased processing, training, and testing

times. The processing time for each image is approximately 15.237 seconds, encompassing

preprocessing and feature extraction. Training across three classifiers takes about 0.789 sec-

onds per image, with a testing time of 0.068 seconds. These adjusted times reflect our method’s

depth, significantly improving DED diagnosis accuracy and efficiency. Despite its longer dura-

tion, our methodology significantly advances fundus image analysis, achieving exceptional

classification accuracies and offering a patient-focused solution for managing DED.

Comparative analysis

Table 10 showcases a comparative analysis between our proposed methodology and traditional

approaches, highlighting the diversity in databases used across various studies. In this compar-

ison, we observe a variance in evaluation criteria, where certain studies prioritize accuracy and

sensitivity (referenced as [23] through [29]), while others focus solely on accuracy ([33] to

[35]). Our approach stands out by delivering superior accuracy and specificity metrics perfor-

mance. However, it’s important to note that some referenced studies reported higher sensitiv-

ity scores than our results.

Table 10. Comparitiva analysis.

Author Method ACC SEN SPC PRE F1-S MCC ER

[57] GWO-CNN 95.9 96.34 93.37 - - - -

[81] CNN+UNet 96.65 89.00 99.00 - - - -

[82] FTL+CNN 92.19 90.07 85.81 - - - -

[83] Supervised contrastive learning 98.91 - - 98.93 98.91 - -

[84] MCNN 90.07 - 93.79 - - - -

[38] NIMEQ-SACNet 97.50 96.80 98.40 97.30 97.05 95.00 0.060

Proposed GGWO-KELM 98.6 97.2 99.0 98.5 0.987 0.984 0.014

https://doi.org/10.1371/journal.pone.0303094.t010
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Conclusion

This research represents a significant step forward in detecting and classifying diabetic eye dis-

ease (DED) using a novel combination of Genetic G-GWO, an enhanced Fully Convolutional

Encoder-Decoder Network (FCEDN), and a Kernel Extreme Learning Machine (KELM). This

innovative approach has proven highly effective, achieving superior accuracy rates on various

datasets, and stands to revolutionize diabetic eye care through improved automation in fundus

image analysis. Despite its promising results, our study acknowledges certain limitations. One

primary constraint is the need for extensive validation against a more comprehensive array of

clinical data to ensure our model’s robustness and applicability across diverse patient demo-

graphics. Additionally, the computational demands of our sophisticated algorithms pose chal-

lenges in resource-constrained environments, potentially limiting accessibility in regions most

in need of advanced diabetic eye care solutions. Looking ahead, our research team is commit-

ted to overcoming these hurdles through several strategic initiatives. Our future work will

enhance the model’s generalizability to include a broader spectrum of ocular diseases beyond

DED, amplifying its impact on ophthalmic diagnostics. Efforts will also be directed toward

optimizing the computational efficiency of our algorithms, making them more viable for

deployment in low-resource settings. Moreover, integrating our model with emerging tele-

medicine platforms is a priority, aiming to democratize access to high-quality eye care world-

wide. This expansion not only promises to broaden the reach of our innovative solution but

also aligns with our vision of leveraging cutting-edge technology to address global health chal-

lenges, ensuring equitable healthcare outcomes for patients across the globe.
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