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A B S T R A C T

There has been an increasing interest in examining organisational principles of the cerebral cortex (and
subcortical regions) using different MRI features such as structural or functional connectivity. Despite the
widespread interest, introductory tutorials on the underlying technique targeted for the novice neuroimager are
sparse in the literature.

Articles that investigate various “neural gradients” (for example based on region studied “cortical gradients,”
“cerebellar gradients,” “hippocampal gradients” etc … or feature of interest “functional gradients,” “cytoarchi-
tectural gradients,” “myeloarchitectural gradients” etc …) have increased in popularity. Thus, we believe that it is
opportune to discuss what is generally meant by “gradient analysis”. We introduce basics concepts in graph
theory, such as graphs themselves, the degree matrix, and the adjacency matrix. We discuss how one can think
about gradients of feature similarity (the similarity between timeseries in fMRI, or streamline in tractography)
using graph theory and we extend this to explore such gradients across the whole MRI scale; from the voxel level
to the whole brain level. We proceed to introduce a measure for quantifying the level of similarity in regions of
interest. We propose the term “the Vogt-Bailey index” for such quantification to pay homage to our history as a
brain mapping community.

We run through the techniques on sample datasets including a brain MRI as an example of the application of
the techniques on real data and we provide several appendices that expand upon details. To maximise intuition,
the appendices contain a didactic example describing how one could use these techniques to solve a particularly
pernicious problem that one may encounter at a wedding. Accompanying the article is a tool, available in both
MATLAB and Python, that enables readers to perform the analysis described in this article on their own data.

We refer readers to the graphical abstract as an overview of the analysis pipeline presented in this work.

1. Introduction

Every discrete point in the brain (modelled as a voxel or vertex in the
context of MR imaging) has several co-existing features such as the
cytological architecture, the functional signature, the receptor density etc

… Parcellation is one method of describing neural features and their
similarities. The technique groups area of the brain that have similar
features together. One of the most recognisable names in modern
neuroscience is that of Korbinian Brodmann and his cytoarchitectonic
parcellations of the cortex from the early 20th century. Despite his

* Corresponding author. Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, The University of Malta, Msida, Malta
** Corresponding author. Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University
of Manchester, Academic Health Science Centre, Brunswick Street, Manchester, M13 9PL, UK

E-mail address: claude.bajada@um.edu.mt (C.J. Bajada).

Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/neuroimage

https://doi.org/10.1016/j.neuroimage.2020.117140
Received 14 January 2020; Received in revised form 9 June 2020; Accepted 2 July 2020
Available online 7 July 2020
1053-8119/© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

NeuroImage 221 (2020) 117140

mailto:claude.bajada@um.edu.mt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2020.117140&domain=pdf
www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
https://doi.org/10.1016/j.neuroimage.2020.117140
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.neuroimage.2020.117140


modern fame, Brodmann was not the most ardent proponent of parcel-
lation. That honour arguably goes to Oskar and Cecile Vogt, who were
the true parents of modern parcellation, and Brodmann’s mentors.

Brodmann’s regions attempted to define areas of local cytoarchitec-
tural homogeneity in the cortex. Unfortunately, the convenience of using
such areas in neuroimaging studies comes at a high price. First, Brod-
mann areas were defined histologically and do not necessarily corre-
spond to gross anatomical landmarks that are visible on MRI (Zilles and
Amunts, 2010). Second, Brodmann’s maps certainly are not the final
word on what constitutes a cytoarchitectural brain parcel. His contem-
poraries (von Economo and Koskinas, 1925) as well as current re-
searchers (Amunts et al., 2005; Bludau et al., 2014; Caspers et al., 2013,
2006; Rottschy et al., 2007; Scheperjans et al., 2008) are still investi-
gating and refining cytoarchitectonic parcellation. Third, cytoarchi-
tecture is not the only feature with which one can parcellate the cortex.
Myeloarchitecture, for instance, has been used since the times of Brod-
mann (Geyer and Turner, 2013; Nieuwenhuys et al., 2015; Vogt and
Vogt, 1911) and recently a vast array of neuroimaging features has been
used (Glasser et al., 2016). Fourth, the boundaries (or borders) between
areas characterised by any particular feature may sometimes be sharp
while other times they can be blurred (Bailey and von Bonin, 1951;
Brodmann, 1909; Glasser et al., 2016). Finally, different “distinct” areas
may also share some relationship with other areas and thus show a
non-random pattern across the whole cortex; for example functional
areas involved in resting state networks (Damoiseaux et al., 2006).

In the 1950s, Percival Bailey and Gerhardt von Bonin proposed
another, competing conceptualisation of cortical organisation. Vogt and
Bailey can be, prima facie, thought of as expounding opposing points of
views. While the Vogts, championed cortical parcellation, Bailey and von
Bonin (1951) argue that the isocortex (or neocortex – the six layered
cortex) is much more similar throughout its extent than it is different.
They go so far as to state that:

“The drawing of sharp areal boundaries, on the basis of many struc-
tural peculiarities of varying distinctiveness and significance, is the
fundamental defect of most maps and has been carried to absurd
lengths by the Vogt school.” (p. 189)

They elaborate by stating:

“Anybody can see, to give an example, the difference between
Brodmann’s areas 17 and 18. But the differences between his 18 and
19 are quite tenuous and very difficult to recognize. To draw amap on
which these three areas are given three different markings - such as
dots, cross-hatchings, and broken lines - is to create an entirely
misleading impression. Useful as such maps are for the description of
corticocortical connections, they do not translate accurately
cytoarchitectonic data.” (p. viii)

An interest in similar issues of parcellations versus gradual transitions
between areas has reappeared in the modern neuroscience literature.
Indeed, Brodmann himself asserted that some regions demonstrated
transitionary zones (Brodmann, 1909). While the feature of interest has
moved on from cytoarchitecture to fMRI time series analysis or diffusion
MRI tractography (more generally within a context of network analysis,
connectomes and connectivity based parcellations), some themes of the
early debates have lived on. For example: when, and to what extent, is
clustering the cortex into distinct parcels appropriate? And, as has been
explored by (Mesulam, 2008, 1998), what are the interareal relationships
between cortical territories?

In 2004, a novel approach, based on spectral graph theory, appeared
in the literature to investigate changes in cortical connectivity patterns
across the brain using diffusion MRI tractography (Johansen-Berg et al.,
2004). Similar approaches have become a popular tool for parcellating
the cerebral cortex using both diffusion and functional MRI (Cloutman
et al., 2012; Craddock et al., 2012; Devlin et al., 2006; Eickhoff et al.,
2015; O’Donnell et al., 2013, 2006). Recently, similar techniques have

also been used to explore interareal connectivity pattern changes (such as
structural connectivity through tractography or functional connectivity)
as one traverses the cerebral cortex; so-called feature similarity gradients
(Bajada et al., 2017; Cerliani et al., 2012; Haak et al., 2018; Jackson et al.,
2017; Margulies et al., 2016). Indeed, Margulies et al. (2016) have shown
that, under certain constraints that likely depend on the construction of
the similarity matrix, the primary rs-fMRI feature gradient reflects the
interareal relationships outlined by Mesulam (2008) and elaborated by
Buckner et al. (2013) where this gradient has modality selective and
modality general cortices on either end. While this concept may not be
fully understood by a novice reader, we hope that by the end of this
article (and particularly after reading the supplementary text) the
interpretation of such a statement will be obvious.

These techniques are appealing to the neuroimaging community since
they have the potential to provide a flexible, unified framework for un-
derstanding similarities of neural structure or function across the brain
(c.f. Paquola et al., 2020, 2019; V�azquez-Rodríguez et al., 2019 for ex-
amples of how flexible these concepts can be used across multiple mo-
dalities). In this article we further extend this framework by introducing
a way to measure how sharply defined each area is, showing the full
spectrum of possibilities between the ideas of the Vogts, and those of
Bailey and von Bonin; The Vogt-Bailey index.

We use the historical context to highlight the importance of having a
way of thinking about cortical organisation through “feature gradients” –
e.g. fMRI, tractography, cytoarchtectonic etc … that bridges the gap
between old debates. Specifically, we will apply the tools described here
to help settle a discussion started in the middle of the 20th century. We
have also made available a pair of tools written in MATLAB and Python
implementing the algorithms outlined in this work, thus making it
possible for the interested reader to calculate the VB index using their
own data (https://doi.org/10.5281/zenodo.3609459, https://gith
ub.com/VBIndex/) (Da Costa Campos and Bajada, 2020). It is also
possible to install the recommended production version of the software
using Python’s de facto package manager, pip, with “pip install vb_toolbox”.
Once this is done, the software vb_tool will be available for use. For usage
details, we refer to the full documentation of the software’s GitHub re-
pository (https://github.com/VBIndex/py_vb_toolbox).

We note that various groups have released their own “gradient
analysis” pipelines and toolboxes including the early “gradient pipeline”
by Margulies et al. (2016), connectotopic mapping focused on regional
modes of connectivity changes and their statistical tests by Haak et al.
(2018), LittleBrain focusing on Cerebellar gradient by Guell et al. (2019),
and BrainSpace a recent all-purpose gradient toolbox by Vos de Wael
et al. (2019). All these workflows and toolboxes have minor differences
in certain choices that are described below. Some also include the ability
to perform statistical testing on gradient maps. The software presented in
this article creates similar, but not necessarily identical, ‘gradient maps’
as the other software packages available, in addition it is the only
package to-date, that allows calculation of the VB index (as described in
section 5.1).

In the rest of this article we describe and explore the details of the
steps needed to extract feature similarity gradients and the VB Index from
data. We discuss methods of measuring similarity between brain regions,
why it is useful to think of these resultant similarity measurements as a
mathematical graph, and how to further process the graph to obtain the
desired gradient maps. In this article we restrict our discussion to a
technique based heavily upon Laplacian Eigenmaps (c.f. Belkin and
Niyogi, 2003, 2002). In general, the problem of finding meaningful
structures and geometric descriptions of such data is usually stated as
some sort of nonlinear dimensionality reduction. Although several forms
of dimensionality reductions for constructing cortical gradients (or
subcortical, cerebellar etc.) have been used in the literature (Coifman and
Lafon, 2006; Haak et al., 2018; Johansen-Berg et al., 2004; Margulies
et al., 2016), they are similar in spirit to the Laplacian Eigen-mapping
reviewed here. We refer the interested reader to the relevant literature
and hope that the tutorial presented here will serve as a useful
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introduction to understand the principles behind those related
approaches.

2. What is a graph?

Most algorithms for feature gradient analyses emerge from the
mathematical discipline of spectral graph theory. This is an approach to
studying properties of graphs by computing the eigenvalues and eigen-
vectors of matrices that summarise the graph. While it would be lengthy
to go into a detailed explanation of eigenvalues and eigenvectors in this
text, we hope that their use in the context described will become clearer
in later sections.

A graph is a mathematical structure that defines relationships be-
tween various objects. For example, the structure in Fig. 1 is a graph that
defines the relationship between four objects. Each object is called a
node.

The nodes could be thought of as voxels (or surface vertices) in the
cortex or as cortical regions of interest.

The lines that link the nodes are called edges. The edges can be binary
or have a weight associated with them (creating a weighted graph).
Within neuroimaging, the edges are almost always undirected meaning
that if node a connects to node b, the opposite is also true.

Some basic concepts are needed in order to proceed. The adjacency
matrix is a square matrix (i.e., the same number of rows and columns)
where every row and every column represent a single node, and the el-
ements in the matrix represent the relationships between the row node
and the column node. For the unweighted graph in Fig. 1, the adjacency
matrix is

A ¼

0
BB@

0 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0

1
CCA:

The rows and columns are ordered from 1 to 4 such that entries of 1s
in columns 2, 3 and 4 of row 1 means that node a (row 1) is connected to
nodes b, c and d (columns 2, 3 and 4).

The degree matrix is a diagonal matrix where the entries along the
diagonal represent the degree of each node, that is, the number of nodes
that are connected (adjacent) to that node. For example, node a has a
degree of 3 because it is adjacent to three nodes (b, c and d). The degree
matrix D can be computed as the row/column wise sum of the adjacency
matrix. For the graph in Fig. 1, the degree matrix is

D ¼

0
BB@

3 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1

1
CCA:

The Laplacian is defined as the degree matrix minus the adjacency
matrix

L ¼ D� A:

While the exact meaning of the Laplacian may be difficult to intuit for
many readers, we hope that the use of it in Section 4 will give the readers
some intuition. At this point it is useful to note that in many applications,
including in neuroimaging one can define a weighted graph, where each
edge connecting the nodes carry different weights. A high weight, for
instance, could mean that two nodes are strongly connected, while a low
weight would indicate the nodes are not as strongly connected. One can
now define a weighted version of the adjacency matrix, which can be
used to describe a weighted graph. In the general case, the weighted
adjacency matrix can be defined as

W ¼

0
B@

w11 w12 ⋯
w21 w22 ⋯
⋮ ⋮ ⋱

w1n

w2n

⋮
wn1wn2⋯ wnn

1
CA:

We will see later that this matrix can be associated to the concept of a
similarity or affinity matrix. In the example above, the weighted adja-
cency matrix can be written replacing the 1s in the adjacency matrix with
the corresponding weights. Weighted versions of the Degree and Lap-
lacian matrices can be defined in the same way as before. Henceforward,
unless otherwise specified, we will refer to the Laplacian, degree and
adjacency matrix as their generalised weighted versions.

2.1. Graphs in neuroimaging

For neuroimaging purposes, a graph can be one of two distinct types.
The most conceptually straightforward way of creating a graph of the
brain is to consider its structural connections. For example, the nodes in
the graph of Fig. 1 can represent brain areas (e.g. cerebellum, brainstem,
etc …) and the edges can represent the tracts that connect those brain
areas. In other words, these graphs can be obtained through tractography
and assuming that each voxel (or region of interest) is a node and that
every tract is an edge connecting two nodes. These graphs we refer to as
direct graphs since the edges are the direct connections between each
node. One can think of these as friendship networks where an edge be-
tween two individuals is determined on whether they are friends or not.

Another approach to constructing a graph is to compute a measure of
similarity between a feature of interest of one region and the same
feature of another. For structural data, the whole output of a tractography
algorithm (the tractogram of a single voxel) can be considered to be a
feature of a voxel and is compared pairwise to obtain a similarity matrix
between voxels (Bajada et al., 2017; Cerliani et al., 2012; Devlin et al.,
2006; Johansen-Berg et al., 2004). For functional data, one can use the
fMRI time series. In this case, the nodes are still voxels, but the edges are
weights of how similar one voxel’s feature is to another’s. If we consider
that two people are nodes in a network their edge weight would be
determined by how similar two individuals are, based on individual
features (e.g. dress sense, job, etc …). We call this a feature similarity
graph. For simplicity, this is the type of graph that we will be discussing in
the rest of this article. It is important to note that much work in the fMRI
literature performs the similarity computation not on the features
themselves (e.g. the time-series), but on a “functional connectivity”
matrix (c.f. Margulies et al., 2016). In terms of the “people network”
proposed above, if we assume that the “functional connectivity” gives us
information about the “level of friendship” between two individuals,
then the similarity matrix of this last approach indicates the similarity
between each individual’s friendship network.

3. The similarity, affinity or adjacency matrix

The adjacency matrix is a simple mathematical representation of a
graph that describes the structure of the connectivity in the graph, that is,

Fig. 1. A representation of a graph with 4 nodes. Every node can be considered
to be a voxel or a region of interest. The edges between the nodes represent their
relationships; these can either be structural connections or a measure of simi-
larity (affinity) between the nodes.
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whether nodes are connected or not. A more detailed description is
provided by using a weighted adjacencymatrix. The question is then how
to define the weights, which in turn depends on what kind of graph we
want to describe.

In neuroimaging the weights can be defined in terms of a similarity
metric describing to what extent a feature of one voxel, or vertex (e.g. an
fMRI time series or a set of streamlines) is similar to every other voxel in
the region of interest. This is done across all voxels (or vertices). We will
refer to such a weighted adjacency matrix as the similarity or affinity
matrix.

Choosing a similarity metric is extremely important since it will affect
any clustering that may be done on the data. By far the most popular
similarity measure between two voxels is the Pearson’s correlation co-
efficient, which can be interpreted as a centred and normalised dot
product (Cerliani et al., 2012; Craddock et al., 2012; Devlin et al., 2006;
Johansen-Berg et al., 2004; Klein et al., 2007; Zhang et al., 2014); see
next section for a discussion of the dot product and other similarity
measures. In order to understand the utility of correlation as a similarity
metric, a short description of its precursors is given below (cf O’Connor,
2012 for an intuitive review). We will then introduce a slight modifica-
tion that we employ in our adjoining code.

One caveat of the algorithms used for these analyses is that the ad-
jacency matrix must be non-negative. This is not automatically true for
most similarity measures, including those introduced in section 4.1.
Hence, some technique must be used to ensure that the corresponding
similarity matrix only contains non-negative weights (Haak et al., 2018;
Johansen-Berg et al., 2004; Von Luxburg, 2007). For example, Johan-
sen-Berg et al. (2004) proposed to add a scalar constant to the similarity
matrix to ensure that all values are positive, others have only kept pos-
itive values at some threshold (Margulies et al., 2016).

Once a similarity matrix has been created, it can be used to represent
the graph that all computations are carried out on. A final consideration
regarding the similarity matrix is whether the full set of similarities
should be used or if the similarity matrix should be thresholded in some
way (Von Luxburg, 2007). For example, all weights below some arbitrary
value ε could be set to zero; the remainder of the weights can be retained
or binarised (this will be the same as using a simple adjacency matrix).
Another approach to limiting the neighbourhood is to restrict the weights
to the k-nearest neighbours. Advantages of both these data reduction
approaches are that they remove noisy weights and they sparsify the
matrix, leading to faster and cheaper computations. For example, in fMRI
voxels may have a very low correlation (weight) not because of any
intrinsic functional connectivity, but because of noise.

3.1. Similarity measures

The most basic way to measure the similarity of two datasets (thought
of as vectors) is the dot product of the two vectors (consider an fMRI time
series or a three-dimensional image of a tract density map (or tracto-
gram) that is flattened into one long vector).

Geometrically, the dot product of two vectors is the projection of one
vector onto the other. There are many equivalent ways to calculate the
dot product. For this paper, the one offers the most insight is

dotðx; yÞ¼
ffiffiffiffiffiffiffiffiffiffiffiX
i

x2i
r ffiffiffiffiffiffiffiffiffiffiffiX

i

y2i
r

cosðx; yÞ:

In this form, the dot product has two components: the cosine of the
angle between the two datasets (treated as vectors) and their magnitudes.
This means that magnitude and angular similarity (as measured by the
cosine of an angle) are confounded. In order to solve this problem, one
can normalise the dot product by dividing by the magnitude of each
dataset and that leaves us with the cosine function.

One problemwith the cosine similarity is that it is sensitive to relative
shifts in the data between samples (such as can occur in fMRI time series
due to absolute signal differences that are of no interest). The most

common way to create a shift invariant similarity is to mean centre the
data and then compute the cosine similarity, which is the sample Pear-
son’s correlation coefficient:

corrðx; yÞ¼ cosððx� xÞ; ðy� yÞÞ;

where x and y are constant vectors the size as x and y, where each element
is the mean of x and y, respectively. Being shift invariant is an appealing
property of the correlation coefficient and is especially useful to compare
variables that have different means. Examples of works in the literature
that use the cosine similarity can be found in the following articles
(Bajada et al., 2017; Hong et al., 2019; Jackson et al., 2020, 2017;
Margulies et al., 2016).

One should remember that the cosine is a sinusoidal function. As a
result, a cosine similarity, or a correlation, value of 0.5 does not have the
neat interpretation that the angle between the two datasets is 45�. An
easy solution to this is to calculate the angle between the two data sets by
using the inverse cosine function (the arccosine), normalise by 90� (or
π/2):

normAngle¼ cos�1ðcosððx� xÞ; ðy� yÞÞÞ
90

:

The above formula will measure a normalised “angular distance”
between two datasets bound between 0 and 2. We can thus define the
quantity, as follows

AngSim¼ 1� normAngle:

This measure returns a value that has an almost identical interpre-
tation to the correlation coefficient (or cosine similarity) but has the nice
property that a value of þ0.5 implies that the two datasets are half way
between orthogonal and colinear while a value of �0.5 implies that the
two datasets are half way between orthogonal and anti-colinear. Exam-
ples of works in the literature that use a normalised angle include
(Larivi�ere et al., 2020; Vos de Wael et al., 2018).

4. The spectral transformation and the graph laplacian

Once a similarity (also affinity or adjacency) matrix is computed, we
have all the information that describes the relationships between indi-
vidual nodes. Our next step is to embed our data into a low dimensional
space (for the moment a one-dimensional line) where the nodes distances
from each other and the centre of the space reflect the internodal affinity.

While we refer readers to the supplementary material (Appendix C)
for an informal discussion of the problem, the process can be formulated
as the solution of an optimisation problem where a suitable cost function
UðxÞ is minimised (described by Leskovec et al., 2014)

bx¼ argmin
x

fUðxÞg:

Shortly, bx is the vector that minimises the cost function UðxÞ. Such
cost function can be written as a weighted sum of squared internode
(Euclidean) distances across all connected nodes,

UðxÞ¼
X
ði;jÞ2E

Wij

�
xi � xj

�2
:

One can think of the weights Wij as a measure of the relationship
between two nodes, for example, cortical vertices. Using graph theory
language, one can think of the above situation as defining a weighted
graph where the value of each node represents the location of each in-
dividual and the weight of the edge connecting two nodes represent their
relationship.

The minimisation of the above cost function means that long dis-
tances between pairs of vertices with a high relationship value (i.e., high
weight) is penalised. As a result, a pair of vertices with a high weight will
be placed close to each other, while a pair of vertices with a low weight
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will be placed far apart. The aim is to find a positioning where the sum of
costs associated with all pairs of vertices is at its minimum.

The above problem, however, is not well-posed. First, it has a trivial
solution which is to place all vertices at the same location (x is a constant
vector), which produces zero cost. While this satisfies the minimisation of
our cost function, it is not useful since it tells us nothing about the re-
lationships between vertices. Second, if bx is a solution then any shifting
or re-scaling of bxby a constant value c (i.e., by ¼ bx þ c or by ¼ cbx,
respectively) will also be a solution because the resulting cost function is
invariant to shifting or re-scaling. Therefore, in order to circumvent
trivial and non-unique solutions some constraints are required. The
simplest constraint is that the cost function must be minimised subject to
(s.t.) the magnitude of the position vector x being equal to 1. Mathe-
matically this is written as

bx¼ argmin
x

fUðxÞg s:t: xTx¼ 1:

Note that this constraint does not solve the problem of a constant
solution completely since a constant vector, can still produce a zero cost
and also satisfy the constraint. We will see later that since this solution is
known in advance, one can easily account for it after optimisation. In
general, the constrained minimisation problem can be solved using the
method of Lagrange multipliers (cf Hagen and Kahng, 1992). While a
detailed explanation of Lagrangian multipliers is beyond the scope of this
text, the modification makes the computation easier to solve while
maintaining its accuracy. The idea of this method is simple: We incor-
porate the constraints into the cost function itself. Thus, we rewrite the
problem as

bx¼ argmin
x

�
UðxÞþ λð1� xTxÞ�:

Now, any putative solution that does not conform to the constraint
imposed will be penalised. This penalty is dictated by the weight λ, often
called the Lagrange multiplier. We proceed to solve the problem in the
following way. First, rewrite the optimisation problem as follows (see
Appendix A for details):

bx ¼ argmin
x

f~UðxÞ g ¼ argmin
x

�
xTLxþ λð1� xTxÞ�:

Theminimisation can now proceed in the usual way by taking the first
derivative of the modified cost function ~UðxÞ and equating to zero
(extremum condition)

∂
~UðxÞ
∂x ¼ 2Lx� 2λx ¼ 0;

and hence

Lx ¼ λx:

The last expression defines a standard eigenvalue problem for the
Laplacian that can be solved using standard numerical libraries (e.g., the
MATLAB function eig). The pair ðλ; bxÞ is called an eigenpair, with λ called
the eigenvalue, and bx the eigenvector. Eigenvalues and eigenvectors are
useful in a broad range of applications, with the interpretation of these
pairs depending on the context in which they are used.

In this paper, we will focus on the eigenvectors of the Laplacian, as
they contain the information which we will use to create our gradients.
However, the eigenvalues also encode important information. Given that
the Laplacian matrix is positive semi-definite, the smallest eigenvalue is
zero and its associated eigenvector is a constant, thus, we will focus upon
the second smallest eigenvalue, which is termed the algebraic connec-
tivity of a graph (Fiedler, 1973).

Fiedler (1973) showed that the magnitude of the algebraic connec-
tivity reflects how well connected the overall graph is, i.e., the larger the
algebraic connectivity is, the more difficult it is to cut a graph into in-
dependent components. If the algebraic connectivity is zero it means that

the graph is not connected; i.e. there are at least two graph partitions. In
other words, if a graph has at least two hard clusters (i.e. it is two
completely disconnected subgraphs), the algebraic connectivity will be
zero. The more connected a graph gets, the higher the algebraic con-
nectivity becomes. This intuition will be revisited in section 5.3.

The fact that the first eigenvalue is zero directly dictates that its
associated eigenvector does not carry any useful information regarding
the relative position of the nodes. Hence, the optimal solution is encoded
in the eigenvector associated with the second smallest eigenvalue. This is
called the Fiedler vector after the mathematician who first described this
solution in the context of graph partitioning (Fiedler, 1973).

At this stage, it is worth noting that the described solution to the
problem is biased in the sense that nodes with high degree will dominate
the minimisation since the corresponding row (or column) of the Lap-
lacian matrix is dominant. This means that nodes with a high number of
neighbours (i.e., high degree) will tend to be grouped together irre-
spective of their similarity. This bias can be compensated for by using a
modified constraint xTDx ¼ 1 so that our optimisation problem is
transformed to

bx ¼ argmin
x

�
xTLxþ λð1� xTDxÞ�:

The new constraint means that nodes are penalised (i.e., they are
assigned a higher cost) according to their degree (Johansen-Berg et al.,
2004). By following the same mathematical derivation, as above, the
associated eigenvalue problem is then

Lx ¼ λDx:

This is known as the generalised eigenvalue problem for matrices L and
D, which can also be solved numerically using standard toolboxes.
Commonly, toolboxes that are able to solve the standard eigenvalue
problem can also be used to solve the generalised problem. This is the
case, for instance, for MATLAB’s and Scipy’s eig function.

Often, the Laplacian matrix is used in normalised form (i.e., nor-
malised with respect to the nodes degree), so that its diagonal elements
are all one. However, it can be demonstrated that normalising the Lap-
lacian is equivalent to changing the constraint of the minimisation
problem in some way and therefore one must be clear of how a given
normalisation affects the solution. Several versions of the normalised
Laplacian have been used in the literature. In Appendix B we describe the
symmetric normalised Laplacian and the random walk normalised
Laplacian.

5. Reordering, eigenmaps, and the Vogt-Bailey Index

If we think of brain voxels, or cortical surface vertices, as nodes with
associated features (such as an fMRI time series, or a tractogram etc …)
and the relationships between these features as edges on a graph, we
previously described that the second smallest eigenvector describes the
location (coordinate) of each node in one dimension, a line, which is
dictated by each nodes relationship (affinity) to each-other. Using the
location as a heatmap value becomes a way to visualise those relation-
ships on the brain (the so-called macroscale gradients). Further, the
components of eigenvectors denote the coordinates of the node in a space
containing as many dimensions as there are eigenvectors (it is not
restricted to a single dimension). Hence the eigenvector with the second
smallest eigenvalue would give coordinates of the nodes on a line, the
second and third eigenvectors would give the coordinates on a plane and
so on. For this, more complicated visualisations are needed. Onemay also
present the higher dimensional gradients independently, but one must
always remember that the second gradient is influenced by the first and
the third by the previous two etc.

Further, the algebraic connectivity indicates the sharpness of the best
split (or cluster) in the region of interest. If a searchlight VB index
analysis is performed on local neighbourhoods (see section 5.3), we can
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investigate mesoscopic gradients (or transitions between areal borders).

5.1. Spectral reordering

The simplest approach to mapping the embedded location onto the
brain is by assigning each voxel or vertex a heatmap value that corre-
sponds to their rank order in the embedding. This approach allows for
investigating the general pattern of changes in features across the brain,
but, being rank ordered, does not provide any details about the actual
feature distance between vertices (c.f. Bajada et al., 2017 for an example;
c.f. Johansen-Berg et al., 2004 for the original spectral reordering paper
in the literature where it was used for parcellation).

5.2. Eigenmaps

Laplacian eigenmaps (Belkin and Niyogi, 2003, 2002) are closely
related to spectral reordering. Use of eigenmaps has been introduced to
the neuroscience literature (Cerliani et al., 2012; Haak et al., 2018). In
one dimension, the approach uses the coordinate points given by the
primary eigenvector of the Laplacian as the intensity of the voxel of
interest.

This approach can be particularly advantageous since one can explore
the relationships between voxels in more than one dimension. Indeed,
coordinates of the similarity or eigen-space can be mapped into a colour
palette and the resultant colour map value can be mapped onto the brain
space by assigning that value to the corresponding voxel (c.f. Bajada
et al., 2019). This means that one can only map as many dimensions as
the dimensions of the colour palette (in our case the 3-dimensional RGB
colour palette).

Reordering and eigenmaps give us maps of optimal embedding of
voxels in a low dimensional space. Effectively, voxels (or ROIs) with a
similar value, have a greater affinity to one another. This establishes the
large-scale organisational gradients of the cortex. It also gives some
indication as to whether there are sharp discontinuities across that
gradient but a focus on the eigenvectors alone fails to quantify the extent
of discontinuity in cortical intra-areal relationships. The eigenvalues
provide a solution.

5.3. The algebraic connectivity and the Vogt-Bailey Index

The algebraic connectivity of a graph is an indicator of how “well
connected” that graph is. It is the second smallest eigenvalue of the
Laplacian matrix (see section 4).

Once normalised to be bounded between zero and one (by dividing by
themean of all eigenvalues save for the first, which is the maximum value
a graph with an affinity matrix one ones would have), the algebraic
connectivity can be used as an indicator that a particular neural region
has at least one sharp delineation or comprises only graded differences.
This allows for a quantification of the historical issue about the degree of
interareal transitions present in the cortex. While the Vogts primarily
argued for clearly demarcated brain areas, Brodmann, in his 1909
monograph clearly stated that some areal cytoarchitectonic boundaries
were graded. In the extreme, Bailey and von Bonin (1951) argued for an
effectively graded cortex (with some minor exceptions). We thus propose
the term “Vogt-Bailey Index” to describe the normalised algebraic con-
nectivity of the graph Laplacian when used to describe the extent of
feature similarity in a neuroscientific context.

Such an approach can be done across the entire cortex to give a single
value for the “gradedness” of the whole cortex, across predefined clusters
(such as the resting state networks) or to give a value per region of in-
terest that quantifies how similar features in the region are. We note,
however, that this value alone tells us little since the value will be
affected by smoothing (which exist in MRI signals). It can, however, be
used as a relative measure where one can compare regions across the
same brain or between different subjects (see section 5.3. for notes on
statistical analysis).

Finally, one can use a vertex-wise searchlight to calculate the Vogt-
Bailey (VB) Index across the entire cortex. Using this approach, a
neighbourhood of adjoining cortical voxels, or vertices (as is assumed in
the adjoining code) is calculated and the (normalised) algebraic con-
nectivity of its affinity graph is calculated. The calculated VB index gives
a value of how similar a feature (fMRI, tractography, or others) in the
centre of the searchlight is to its nearest neighbours. The final result is
effectively a cortical edge detection algorithm (see Figs. 2 and 3 for
intuitive examples) where boundaries between parcels should emerge

Fig. 2. The VB Index applied to a photograph (top left) using all three normalisations of tha Laplacian matrix. The colormap ranges from black (0) where there are
sharp transitions to white (1) where there is homogenous structure in the image.
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naturally and their relative sharpness should be apparent. Of course,
smoothing effects and voxel/vertex size will limit the resolution that one
can expect. Indeed, such notions in MRI analysis are not new. The idea of
a measure of regional homogeneity (ReHo) has been present since the
early days of fMRI (Jiang and Zuo, 2016; Zang et al., 2004). Further, the
approach has similarities to the observer independent method for
microstructural parcellations (Schleicher et al., 1999). Our approach
simply fits these ideas of regional homogeneities and boundaries into a
flexible and more general framework that does not restrict either the
metric for similarity that is used (such as the method for microstructural
parcellation) or the feature of interest (such as in both ReHo and the
observationally independent approach for microstructural parcellation).

In summary, the VB Index is the proposed term for the normalised
algebraic connectivity of the graph Laplacian when used to describe the
extent of feature similarity in a neuroscientific context. The adjoining
software can produce three “types” of VB Indices: 1) the full brain
analysis which also computes a whole brain gradient single VB Index for
the whole brain; 2) clustered analysis that computes a gradient and VB
Index per region of interest, and 3) the searchlight VB Index which
computes a VB Index per vertex based on the neighbourhood data of
directly adjacent vertices. The size of the cluster (going from the nearest
connected 5 or 6 neighbours to the full brain) is relevant in the inter-
pretation of the VB Index. As Fielder (1973) showed in the original paper,
the value of algebraic connectivity provides a measure of how difficult it
is to split the graph (higher value indicating more “connectedness”, i.e.
more difficult to split). If it is zero, then it indicates that there is at least
one complete split in the graph. Hence as the cluster gets larger there is
more of a chance that the graph will be easier to split into two, that is
what the VB Index measures. In the case of the searchlight, since we are
only looking at 5 or 6 connected neighbours, the interpretation is more
straightforward: is there an edge near that vertex?

6. Notes on statistical analysis

This article focused on creating a conceptual understanding of the
large-scale gradients and the quantification of boundary edges using MRI
data.

With respect to the statistical treatment of large-scale feature gradi-
ents, a literature is emerging that discusses various statistical approaches
to use on gradient maps. The reader is encouraged to explore the articles
in this section for current approaches on gradient statistics (Haak et al.,
2018; Hong et al., 2019; Langs et al., 2015; Tian and Zalesky, 2018; Xu
et al., 2019).

Regarding the statistical analysis of the VB Index maps, future work is
needed to disentangle the effects of MR noise and inherent smoothness
from real gradations in feature similarity. A research avenue for noise
removal includes the generation of null models with similar noise and
baseline smoothness as the underlying MRI data (c.f. Gordon et al., 2016;
Tian and Zalesky, 2018).

The VB toolbox is a freely available, open source, project under the

terms of a GPL licence, we hope that with interest growing in the field of
Gradient analysis that the toolbox will grow to also incorporate various
statistical approaches for making inferences on both gradient maps and
the VB Index.

7. Experiments

7.1. Photography example: searchlight VB index

Before applying the VB Index to the rather abstract notion of function
MRI, we have provided a MATLAB script within the respective version of
the toolbox that implements the VB Index on a colour photograph (http
s://github.com/VBIndex/matlab_vb_toolbox/tree/master/vb_index_int
uitive_example). Every pixel within the 2D photo can be thought of as a
vertex within a brain surface. The functional data is represented by the
hue, saturation and their brightness value of the pixel. Performing the VB
Index searchlight operation on the photograph, as described in Section
5.3. results in a quantification of boundaries of the image (See Fig. 2).
Readers are invited to explore this script with other images made freely
available or try it out using their own photographs.

7.2. A neuroimaging example: simulated MRI data example

Following the validation of the technique on colour photographs, the
performance of the technique was evaluated on synthetic MRI data where
the ground truth is known. To this end a cortical surface from the HCP
dataset was arbitrarily split into 6 contiguous parcels. The vertices within
the same parcel were assigned identical time-series, which differed
across different parcels. The analysis was carried out using version 1.1.0
of the python vb_tool. Fig. 3 show the results of applying the proposed
method to the simulated data. As expected, the full brain gradient shows
a piece-wise constant pattern, reflecting the similarity structures between
parcels (unknown) as described above (Fig. 3a). Consistent with this
result, the vertex-wise VB Index shows a pattern where the edges be-
tween parcels are highlighted (Fig. 3b).

7.3. A neuroimaging example: human connectome project data example

The adjoining toolbox was run on twenty-four (24) individuals (12 F)
from the human connectome project database. The calculations were
carried out on two separate rs-fMRI runs per participant across both
hemispheres. The dataset was pre-processed by the HCP using the min-
imal processing pipeline (Glasser et al., 2013). The data collection was
approved by the Washington University Institutional Review Board (IRB)
and further approval for processing the data was obtained by the Uni-
versity of Malta’s University Research Ethics Committee.

The data were processed according to the procedures outlined in the
above text using version 1.1.0 of the python vb_tool; all calculations used
the generalised eigenvalue problem for computations.

First, the whole brain affinity matrix was computed for all 24 subjects

Fig. 3. a) The gradient map on synthetic data showing the expected pattern with values within parcels being extremely similar but different across parcels. b) The VB
Index on a cortical surface highlighting the arbitrary parcels. All results show the default generalised eigenvalue problem solution.
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(per run) and an eigendecomposition of its Laplacian was computed. This
resulted in Fig. 4 (left) which shows an exemplar of the primary large
scale inter-areal (feature) gradient of the whole cortex in both hemi-
spheres of a single subject. Fig. 5 shows all 24 subjects on the lateral
surface of the left hemisphere for a single rs-fMRI run.

We note that the principle gradients differ somewhat from previously
published work (c.f. Margulies et al., 2016). This may be due to multiple
differences in parameter choices that were made (and discussed briefly in
section 2.1). In short, the principle gradient is highly dependent upon the
properties of the affinity matrix; the most pertinent difference between
our affinity matrix and that of Margulies et al. (2016) was the latter’s
retention of only the top 10% of functional connections and subsequent
re-computation of a cosine similarity while our approach (c.f. Jackson
et al., 2020, 2017 for a slightly modified example) accepts all positive

correlations that were then transformed to a normalised angular dis-
tance. Thresholding plays an important role in the interpretation of the
results. A high threshold (such as retaining only the top 10% of con-
nections) will only consider the similarity of “well-connected” vertices
giving no weight to moderately and poorly connected ones. Our
approach, which only eliminates negative weights, takes these connec-
tions into account but would also be more sensitive to “spurious”
connections.

Second, the toolbox was used to calculate the primary gradients and
their associated VB Index for the data parcellated using the Multimodal
HCP parcellation (Glasser et al., 2016). An exemplar of these results can
be found in Fig. 3 (right), where the principle gradient is computed in
each parcel. Associated with these parcels are the VB Indices per parcel
(see Fig. 7 right and a further discussion below).

Fig. 4. An exemplar of the principal similarity gradient across the whole cortex based on rs-fMRI as a feature (left). An exemplar of the principal gradient computed on
a pre-clustered cortex (using the HCP Multimodal Parcellation, right).

Fig. 5. The principle similarity gradient across 24 individuals on a single run. The image of the same participants on a second fMRI run can be found in the sup-
plementary material.
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Finally, the vertex-wise searchlight VB Index was computed on all
participants. This approach highlights, in a data-driven fashion, the
feature edges and boundaries across the cortex. Fig. 6 shows the
searchlight VB Index across all 24 participants while Fig. 7 (left) shows
the mean vertex-wise VB Index. One can also see similar patterns be-
tween the group vertex-wise VB Index (Fig. 4 left) and the group VB Index
computed on clusters (Fig. 7 right).

The full set of results can be found on the HCP BALSA database (https
://balsa.wustl.edu/study/show/kND1N).

8. Conclusion

The idea of gradations in neural features has been present since at
least the beginning of the twentieth century and has gained traction in
the neuroimaging community throughout the early twenty-first. This
paper has outlined the general concepts and mathematical intuition
behind the spectral transformation and has introduced the related

techniques of spectral reordering, Laplacian eigenmaps and clustering. As
an accompaniment to this paper, MATLAB and Python tools that per-
forms the different spectral transformations discussed in Section 4 are
available. Depending on the size of the data, the technique can take up a
considerable amount of RAM and computation time, however, at stan-
dard mesh sampling our attached code can run a full brain gradient
analysis (using HCP 32K surfaces) on a standard desktop or notebook
with 32 GB of RAM.

While the described framework can be used to reason about re-
lationships between neural features, there are plenty of unanswered
questions. The first important issue regards the choice of similarity
measurement. Although all the metrics discussed above have been used
to some extent, a systematic comparison along with guidance regarding
which metric to use in different circumstances is needed.

In summary, it is hoped that this article and accompanying tools will
be used as a guide to researchers interested in performing anatomical
investigations using neural features and their interareal relationships in

Fig. 6. The VB Index computed across 24 individuals on a single run. The image of the same participants on a second fMRI run can be found in the supplemen-
tary material.

Fig. 7. An average (on a single run) of 24 individual’s searchlight, local neighbourhood, whole brain VB-index identifying regions of relatively sharper borders across
the cortex.
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the brain.
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