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Objective: Alpha-neurofeedback (α-NFB) is a novel therapy which trains individuals to
volitionally increase their alpha power to improve pain. Learning during NFB is commonly
measured using static parameters such as mean alpha power. Considering the biphasic
nature of alpha rhythm (high and low alpha), dynamic parameters describing the time
spent by individuals in high alpha state and the pattern of transitioning between states
might be more useful. Here, we quantify the changes during α-NFB for chronic pain in
terms of dynamic changes in alpha states.

Methods: Four chronic pain and four healthy participants received five NFB sessions
designed to increase frontal alpha power. Changes in pain resilience were measured
using visual analogue scale (VAS) during repeated cold-pressor tests (CPT). Changes in
alpha state static and dynamic parameters such as fractional occupancy (time in high
alpha state), dwell time (length of high alpha state) and transition probability (probability
of moving from low to high alpha state) were analyzed using Friedman’s Test and
correlated with changes in pain scores using Pearson’s correlation.

Results: There was no significant change in mean frontal alpha power during NFB.
There was a trend of an increase in fractional occupancy, mean dwell duration and
transition probability of high alpha state over the five sessions in chronic pain patients
only. Significant correlations were observed between change in pain scores and
fractional occupancy (r = −0.45, p = 0.03), mean dwell time (r = -0.48, p = 0.04) and
transition probability from a low to high state (r = -0.47, p = 0.03) in chronic pain patients
but not in healthy participants.

Conclusion: There is a differential effect between patients and healthy participants
in terms of correlation between change in pain scores and alpha state parameters.
Parameters providing a more precise description of the alpha power dynamics than the
mean may help understand the therapeutic effect of neurofeedback on chronic pain.
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INTRODUCTION

Neurofeedback (NFB) is a neuromodulatory therapy which trains
patients to develop volitional control over their brain activity
(Patel et al., 2020). Neurofeedback systems provide patients with
a real-time representation of their electroencephalogram (EEG)
signals (Alkoby et al., 2018). This facilitates recognition and
practice of mental strategies that allow them to achieve brain
states associated with therapeutic benefit (Bagdasaryan and Le
Van Quyen, 2013). NFB has been implemented in a variety of
conditions ranging from anxiety, depression to chronic pain with
promising results being reported by several studies (Schoenberg
and David, 2014; Melo et al., 2019).

One of the areas where neurofeedback has been increasingly
explored is chronic pain. Alpha power has been known to be
lower in chronic pain patients compared to healthy individuals
in a number of chronic pain conditions (Chang et al., 2001;
Boord et al., 2008; Saithong et al., 2012; Jensen et al., 2013b;
Lim et al., 2016; Nickel et al., 2017). Hence, several studies have
attempted to increase the alpha power in these patient groups
using neurofeedback with the aim of alleviating pain either by
targeting alpha rhythm in isolation (Elbogen et al., 2019; Mayaud
et al., 2019) or in combination with other rhythms like beta
and theta rhythms (Jensen et al., 2013a; Hassan et al., 2015; Al-
Taleb et al., 2019; Vuèkoviæ et al., 2019). Whilst most of these
studies report a significant reduction in pain in these individuals
following neurofeedback, very few of these studies have been able
to show a direct correlation between the reduction in pain and
the change in neurophysiological signal as highlighted by a recent
systematic review (Patel et al., 2020). All of the neurofeedback
studies conducted in the past decade have used mean alpha power
to measure changes in neurophysiological signals (Jensen et al.,
2013a; Hassan et al., 2015; Al-Taleb et al., 2019; Elbogen et al.,
2019; Mayaud et al., 2019; Vuèkoviæ et al., 2019). This raises
the question of whether the indices commonly used to gauge the
success of learning truly reflect the neurophysiological changes
underlying pain relief following neurofeedback.

The choice of learning index has indeed been a highly debated
topic in the field of neurofeedback. Two widely used indices
include mean alpha power and percentage time above a pre-
determined alpha power threshold (Travis et al., 1974; Hardt
and Kamiya, 1976; Lansky et al., 1979; Dempster and Vernon,
2009). Whilst some researchers believe that mean alpha power
is the most sensitive index of the two (Hardt and Kamiya, 1976;
Dempster and Vernon, 2009), others have argued that dynamic
indices might be more informative. For instance, early work
found that durations of periods of high alpha power obeyed
a non-trivial asymmetrically shifted exponential distribution
(Bohdaneck et al., 1978). A recent study (Ossadtchi et al., 2017)
looked at changes following neurofeedback in terms of alpha
spindles and reported that there was an increase only in frequency
of alpha spindles with no change in the amplitude of these
spindles. Whilst there are not many studies in the field of
neurofeedback and chronic pain that have taken this approach
of analyzing dynamic nature of alpha rhythm, the idea of bi-
modal alpha amplitude states is being increasingly explored in
other fields as discussed below.

It has been shown that the alpha rhythm has bi-stable
dynamics, whereby the alpha power erratically jumps between
high and low amplitude modes or states (Freyer et al., 2009;
Roberts et al., 2015). Changes in such bi-stable dynamics
following any form of intervention can be captured in a number
of ways. For instance, one can measure the amount of total
time that an individual stays in the high (low) alpha state,
also referred to as fractional occupancy, or the chance of
transitioning from one state to the other, also known as transition
probabilities (Khanna et al., 2014; Quinn et al., 2018; Kottaram
et al., 2019). To explore this further, some studies have also
mapped out the distribution of high alpha state durations (Quinn
et al., 2018). Such measures have been shown to correlate with
motor and cognitive function in Parkinson’s disease (Chu et al.,
2020) and schizophrenia (Khanna et al., 2015) and furthermore,
cognitive manipulation of these states can be achieved through
interventions (Seitzman et al., 2017). However, no studies have
used these dynamic parameters of alpha rhythm to measure
neurophysiological changes in chronic pain.”

It is not clear how well the currently used indices capture such
complex dynamic expression of the alpha rhythm. Understanding
the temporal changes in these states might give us more insight
into neuronal mechanisms which underlie pain processing as
higher alpha rhythm has been associated with increased resilience
to pain (Jensen et al., 2013b; Lim et al., 2016; Villafaina et al.,
2019). Furthermore, distribution of times that the neuronal
networks dwell in each state and the pattern of transition
between the states might be key to understanding how these
systems process painful stimuli as well as provide insight into
the mechanism by which NFB alters neuronal signaling and
pain processing.

Brain activity can be assumed to occupy one of the two
alpha states over time. An increase in average alpha power can
be achieved in one of three ways (or a combination of them)
(Figure 1): (i). Firstly, due to an increase in the power of the high
alpha state with the number of visits remaining constant; (ii) due
to more frequent visits to the high alpha state and (iii) due to
longer time spent in each visit to that high state.

Whilst there are many ways in which brain activity may be
modulated, it is unclear which of these parameters are more
sensitive to the effect of NFB training or whether a combination
of them will describe individual differences better (specificity). It
might be the case that it is possible to voluntarily control alpha
activity only through one of these mechanisms. The sensitivity
and/or specificity of these parameters may vary between chronic
pain patients and healthy participants. More importantly, it is
not known how changes in any one of these parameters correlate
with changes in behavioral outcomes. Therefore, in order to be
able to sensitively measure meaningful NFB learning, a greater
understanding of the temporal dynamics of alpha power changes,
their susceptibility to voluntary control and their correlation to
behavioral outcomes is required.

This study attempted to understand the changes in temporal
dynamics of EEG which occur during alpha NFB using a bimodal
alpha states model. Brain alpha states analysis was conducted on
electroencephalogram (EEG) data during five α-NFB sessions in
chronic pain patients as well as healthy participants to gain an
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FIGURE 1 | Schematic representation of mechanisms by which alpha power can increase during neurofeedback. Dashed red line represent pre-set threshold
defining the states and solid blue line represents alpha power during neurofeedback. Y-axis represents time and x-axis represents alpha power.

insight into differences in the way brain activity changes in these
two groups during the intervention.

MATERIALS AND METHODS

Study Design
This was an exploratory study conducted in the Human
Pain Research Group laboratory at Salford Royal Hospital,
United Kingdom, with the aim of testing the proof-of-concept
of an alpha NFB system in training individuals to modulate
their alpha activity in order to increase their resilience to pain.
This study was sponsored by the University of Manchester
and approved by the National NHS Research Ethics Committee
(REC reference 18/NS/0102, IRAS ID 244779). Written informed
consent was obtained from the participants according to the
Declaration of Helsinki. This study was a registered clinical
trial NCT04097522.

Participant Recruitment
Participant recruitment has been summarized in Figure 2. Ten
participants (6 females, 4 males) were recruited for the study.
Chronic pain conditions studied included fibromyalgia, chronic
headache and lower back pain. EEG data from eight participants,
four healthy participants and four chronic pain patients, who
completed all five neurofeedback sessions was included in the
final analysis. The patient group was heterogeneous including a
range of chronic pain conditions in order to make the results
widely applicable to chronic pain in general. Adults above the
age of 18 years who were able to give informed consent were
eligible. Exclusion criteria included concomitant psychotherapy,
previous brain injury, stroke or surgery, and any brain or
spinal cord implants.

General Procedure
NFB training consisted of five sessions spread across
approximately 3 weeks. The experimental protocol and
conditions were same for both the groups. At the beginning
and end of each session, resting state alpha power was recorded
with eyes-open for 2 min. Pain resilience was also assessed at
the start and end of each session before measuring resting-state
alpha activity by inducing experimental pain using Cold-Pressor
Test (CPT) at 10◦C cold water for 3 min. The participants were
asked to give a pain rating on the scale of 0 (no pain) to 10
(worst pain) using the Visual Analogue Scale (VAS) every 30 s.
An average pain rating was obtained by calculating the mean
of the six VAS pain ratings provided over the course of the 3
min CPT block. Change in pain scores was calculated for each
session by comparing pain rating in each session with pain
ratings before any NFB.

Neurofeedback System
EEG was acquired using a 64-channel Standard BrainCap-MR
with multitrodes by Brain Products (Herrsching, Germany)
(actiCHamp Plus (64 channels) [Apparatus], 2019). The NFB
system used a sampling frequency of 1,000 Hz and channel
impedances were kept below 20 k�. All electrodes were
referenced to channel Fz with AFz used as the ground electrode.
Neurofeedback was delivered using an in-house developed
MATLAB script. A 10-s sliding window was used for filtering the
EEG data at the frequency band of interest which was 8–13 Hz.
Power calculation and feedback were then provided on the last
2-s period of data from this 10-s sliding window.

Each session consisted of two NFB training blocks of 5 min
each with a 1 min break between the blocks. Participants were
provided with continuous visual feedback in the form of a dial
ranging from 0 to 10, where an increase in mean alpha power
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FIGURE 2 | Flow diagram of participant recruitment onto each stage of the study.

recorded from frontal channels AF3 and AF4 caused the arrow
on the dial to move toward 10 and vice versa. The participants
were instructed to keep their needle on or close to 10 for the
duration of training. The 0 and 10 corresponded to 2nd and 98th
percentile of their alpha power during resting-state respectively.
Feedback was provided for alpha frequency (8–13 Hz) from
frontal electrodes AF3 and AF4.

Off-Line Analysis
All the EEG pre-processing and analysis was performed using
EEGLab (Delorme and Makeig, 2004) and fieldtrip (Oostenveld
et al., 2011) toolboxes through a script written in MATLAB
2019a 9.6 software (Mathworks Inc., United States) (Natick
MTMI. MATLAB, 2018). The raw signal data from AF3 and
AF4 were down sampled to 250 Hz and segmented into 1 s
non-overlapping epochs. The EEG acquired was first cleaned by
visual inspection to remove epochs with high amplitude technical
artifacts. No more than 10% of the total epochs were discarded
during process. Independent Component Analysis (ICA) was
then used to remove components associated with eye blinks, eye
movements and muscle movement using SASICA plugin. On
average 3–5 components were removed. Frequency analysis was
performed using Fourier Transformation to obtain the average
alpha power in the frequency range 8–13 Hz for each 1 s epoch of
data gathered during resting state and NFB block.

EEG Brain Alpha States Parameters
The dynamics of alpha power fluctuations were first characterized
using a symbolic dynamic method. Each 1s epoch was labeled
as “1,” if the mean power was higher than a certain pre-defined

threshold (high alpha state) or “0” if the power was lower than
the threshold. The threshold was computed individually for each
participant and defined as a percentage of the maximum alpha
power during the resting-state eyes-open EEG from the first
session. To assess the sensitivity of the analysis to threshold
choice, three different threshold values were analyzed, 30, 50,
and 70%. The maximum alpha power was defined as 1.5 ×

interquartile range for each individual. This was done in order
to prevent random high-amplitude fluctuations in alpha power
from being used to set a threshold.

After symbolization, the following alpha state parameters were
calculated based on the state sequences obtained:

• Fractional Occupancy: Defined as the fraction of all epochs
occupied by high alpha state.

• Dwell Time (duration) Distribution: Defined as
the frequency of dwell times of each state during
neurofeedback. Dwell time of the high (low) state is
computed as the counts of contiguous epochs where the
alpha power was successively in the high (low) state before
transitioning to the low (high) state in each state visit.
The distribution was then plotted as a violin chart and
described in terms of mean, median, mode, variance and
tail weights for each plot.

• Transition Probability: Defined as the likelihood
(probability) of transitioning from one state to another.
This was estimated by assuming an observable Markov
Process to explain the state sequences. This was achieved by
using the hesitate() function on MATLAB [which is based
on a Hidden Markov Model (Quinn et al., 2018)], and
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FIGURE 3 | (A) Normalized Mean Alpha Power over five neurofeedback sessions in chronic pain patients and healthy participants. NFB sessions are denoted by
S1–S5. (B) Change in mean alpha power during a neurofeedback session and change in VAS pain ratings.

forcing the states’ emission probability to be the identity
matrix.

Analysis based on these dynamic parameters was contrasted
with more traditional (static) evaluation based on the normalized
and log-transformed mean alpha power in each NFB session.
Each parameter from a single neurofeedback session was then
correlated with change in pain scores reported by the participant
in that particular session.

Statistical Analysis
Statistical analysis was performed using IBM SPSS Statistics
version 25 (IBM Corp, 2017). Each alpha state parameter was
analyzed using a Friedman Test in order to analyze changes
in repeated recordings of alpha power parameters over the five
neurofeedback sessions. Correlation between these parameters
and behavioral outcomes were tested using Pearson’s correlation.
Use of parametric tests was possible due to availability of more
datapoints and a normal distribution of these points. Generally,
statistical significance was accepted with a p-value of less than
0.05 for all the tests.

RESULTS

Changes in Mean Alpha Power
Figure 3A shows the change in mean alpha power over the five
NFB sessions in chronic pain patients and healthy participants.
There was no significant change in mean frontal alpha power
over the five NFB sessions in patients [χ2(4) = 0.80, p = 0.94]
or healthy participants [χ2(4) = 1.40, p = 0.84]. The correlation
between mean alpha power and change in pain scores during
cold-pressor test in that session were as follows: chronic pain
patients r = 0.32, p = 0.21; Healthy participants r = 0.44,
p = 0.05 (Figure 3B).

EEG Alpha State Temporal
Characteristics
Figure 4 shows the changes in different alpha state parameters
over five NFB sessions in chronic pain patients and healthy

participants. Descriptive statistics of these parameters are
provided in Table 1.

Fractional Occupancy
There was no significant change in fractional occupancy over the
five NFB sessions in patients [χ2(4) = 1.97, p = 0.74] or healthy
[χ2(4) = 4.40, p = 0.36] participants. However, a gradual increase
in mean fractional occupancy was seen in chronic pain patients
with each subsequent session until the fourth session where
there was a drop compared to the third session, nevertheless,
the fractional occupancy in the fourth and fifth session remained
higher than the first session (Figure 4A).

Dwell Time Distribution
Dwell times followed a heavy tail distribution whereby most
visits to the high alpha state were of short duration (Figure 4C).
The frequency of visits decreased as the dwell duration increase.
There was no significant change in mean dwell time over the
five NFB sessions in patients [χ2(4) = 2.13, p = 0.71] or healthy
participants [χ2(4) = 3.00, p = 0.56]. Although, the results were
not statistically significant, there were some important trends in
data over sessions. Over the course of the NFB training, there was
an increase in the heaviness of the tail in chronic pain patients
as shown by the increasing thickness of tails in Figure 4C until
session five. There were more visits with longer dwell times over
the course of the neurofeedback training. There was also a slight
increase in the length of the tail until session five. In contrast, the
distribution of dwell times in healthy participants did not show
consistent change over the five sessions.

Transition Probability
Figure 4E shows a heat-map demonstrating the probabilities of
transitioning from low to high alpha state and vice versa as well
as the probabilities of remaining in a low or high state during
each NFB session. Statistical analysis performed on transition
probability from low to high alpha state showed that there was no
significant change in probability of transitioning from low to high
alpha state over the five NFB sessions in patients [χ2(4) = 2.57,
p = 0.63] or healthy participants [χ2(4) = 6.20, p = 0.18].
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TABLE 1 | Descriptive statistics of EEG alpha state parameters over five NFB sessions in chronic pain patients and healthy participants.

Chronic pain patients Healthy participants

S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

Mean amplitude

Mean (SD) -0.10 (0.98) -0.44 (0.64) 0.92 (2.75) 0.50 (2.01) −3.0 (0.43) −0.24 (1.27) 0.14 (1.71) 0.07 (0.89) -0.01 (1.17) -0.32 (1.32)

Fractional occupancy

Mean (SD) 0.62 (0.35) 0.66 (0.37) 0.82 (0.23) 0.69 (0.45) 0.69 (0.29) 0.68 (0.20) 0.77 (0.25) 0.70 (0.17) 0.72 (0.17) 0.62 (0.16)

Dwell times

Mean 4.13 6.45 9.09 6.82 5.99 3.86 6.09 4.98 4.07 3.27

Median 2.00 2.00 4.00 2.00 2.00 2.00 3.00 2.00 2.00 2.00

Mode 2.00 1.00 2.00 2.00 1.00 1.00 2.00 1.00 1.00 1.00

Variance 133% 168% 129% 145% 174% 133% 115% 137% 122% 121%

Tail wgt. 1.96 2.55 1.84 3.96 2.04 1.98 2.21 2.21 2.18 2.54

Transition probability

Low > Low 0.63 0.72 0.43 0.81 0.70 0.47 0.45 0.43 0.38 0.34

Low > High 0.37 0.28 0.57 0.19 0.30 0.53 0.55 0.57 0.62 0.66

High > High 0.78 0.84 0.88 0.91 0.71 0.75 0.84 0.75 0.76 0.69

High > Low 0.22 0.16 0.12 0.09 0.29 0.25 0.16 0.25 0.24 0.31

Threshold for transition to high alpha state was set at 30% of maximum alpha power. The NFB sessions are denoted by S1–S5.

However, there were some overall trends which emerged when
considering all of the transition probabilities. During the first
session, compared to chronic pain patients, healthy participants
had a slightly higher probability of transitioning from low to
high alpha state, lower probability of moving from high to low
alpha state, were more likely to remain in high alpha state and
less likely to remain in the low alpha state. Over the course of
training, in the chronic pain group, there was no trend in the
probability of transitioning from low to high alpha state. There
was a decrease in the probability of transitioning from high to
low state. There was an increase in the probability of patients
remaining in high alpha state which increased with each session
until the last session.

In the healthy participant group, there was a trend of a
small increase in the probability of transitioning from low to
high alpha state over the five sessions but no steady change
in the probability of transitioning from high to low state.
Figure 5 shows a schematic representation of changes in the
probability of transitioning from low to high alpha state over five
neurofeedback sessions in chronic pain patients.

Correlation With Reduction in VAS Pain Ratings
Figures 4B,D,F show the correlation of each of the EEG
alpha state parameter with reduction in VAS pain scores. None
of the parameters were significantly correlated with change
in pain scores in healthy participants including: Fractional
Occupancy (r = 0.19, p = 0.20), Mean Dwell Duration
(r = -0.22, p = 0.34), Transition Probability from low to
high alpha state (r = 0.03, p = 0.46). In the chronic pain
group, there was a significant negative correlation between
change in pain scores and Fractional Occupancy (r = -0.45,
p = 0.03), Mean Dwell Times (r = -0.48, p = 0.04) as well as
Transition Probability from low to high alpha state (r = -0.47,
p = 0.03).

Sensitivity to Thresholds
Sensitivity of Parameters to Threshold
Figure 6 shows how changes in different alpha state parameters
differ for different thresholds.

Fractional occupancy of chronic pain participants during
the first session was similar to healthy participants for each
threshold (Figures 6A–C). Although statistically non-significant,
for all thresholds, chronic pain participants then showed a
trend of an increase in fractional occupancy over the first three
sessions, with a drop in the last two sessions. Nevertheless, the
fractional occupancy in the last two sessions remained above
that observed in the first session. Furthermore, the slope of
change in fractional occupancy was steeper at higher thresholds
(Figure 6C) compared to lower thresholds (Figure 6A). There
was no consistent change in fractional occupancy in healthy
participants over sessions.

Dwell time distribution of chronic pain patients was also
similar to healthy participants across all thresholds during the
first session (Figures 6D–F). However, across all thresholds,
this distribution did not change much over sessions for healthy
participants. However, the heaviness and the length of the tail
increased over sessions in chronic pain patients. The increase
in heaviness and length of tail was more prominent at higher
thresholds. However, these changes in mean amplitude over
sessions was not statistically significant.

The transition probability matrices of chronic pain patients
were similar to healthy participants at the beginning of training
across all thresholds. Overall, across all thresholds, there was a
general trend of an increase in the probability of transitioning
from low to high alpha state and decrease in probability of
transitioning from high alpha to low alpha state over sessions
in both chronic pain patients and healthy participants across all
thresholds except for the last session. However, the change in
probability was greater for lower thresholds compared to high
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FIGURE 4 | EEG Brain alpha states characteristics over five NFB sessions in chronic pain patients and healthy participants and their correlation with reduction in
VAS pain ratings. The NFB sessions are denoted by S1–S5. Error bars show standard error. L refers to low alpha state and H refers to high alpha state. *Statistically
significance of p < 0.05.

thresholds and greater for chronic pain patients compared to
healthy participants.

Sensitivity of Correlation to Threshold
Figure 7 shows the correlation of different parameters at
different threshold with reduction in VAS pain scores. Change
in pain scores was significantly correlated with fractional
occupancy, mean dwell time and transition probability when

the threshold was set at 30% of maximum alpha power
as discussed above. These correlations were significant
only in the chronic pain patients and not in the healthy
participants. These correlations were not significant when
the thresholds of 50% and 70% of maximum resting-state
alpha power were used. Interestingly, there was a cluster
of datapoints with fractional occupancy and transition
probability much higher than the rest of the chronic pain
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FIGURE 5 | Schematic representation of changes in probability of transitioning from low to high alpha state and vice versa over the course of five NFB sessions in
chronic pain patients. The NFB sessions are denoted by S1–S5.

FIGURE 6 | EEG alpha state parameters over five NFB sessions in chronic pain patients and healthy participants for different thresholds. NFB sessions are denoted
by S1–S5.

patient group, which could potentially affect the results of the
statistical tests.

Baseline EEG Alpha Parameters
Supplementary Figure 1 shows EEG Alpha state parameters
at baseline before any neurofeedback was delivered in the two
groups. There was no statistically significant difference in the
mean alpha power, fractional occupancy, dwell time distribution
or transition probability between healthy participants and

chronic pain patients at rest. Although chronic pain patients had
a longer and heavier tail for dwell time distribution, the difference
in the mean dwell time was not significant between the groups.

DISCUSSION

In this study, we found that over five alpha neurofeedback
sessions, there was no increase in mean alpha power in
patients, however, there was a trend of increase in other
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FIGURE 7 | Correlation between EEG alpha state parameters using different thresholds and reduction in VAS pain ratings during neurofeedback sessions.
*Statistically significance of p < 0.05.

alpha state parameters such as fractional occupancy, dwell time
distribution and transition probability. Our results suggest that
with neurofeedback training, participants were more likely to
make transitions from a low alpha state to a high alpha state
and once in the high alpha state, they were more likely to
remain in that state before reverting back to low alpha state. Such
trends were consistent only in chronic pain patients and not in
healthy participants. This is the first study to our knowledge to
have compared mean alpha power and alpha state parameters
following NFB for pain. We propose an EEG alpha states-based
approach to analyzing learning following neurofeedback and
provide interesting insight into changes in neurophysiological
signals that occur with neurofeedback learning as well as link this
to possible mechanisms that may underlie the therapeutic benefit
of this neuromodulatory technique.

Negative correlation of alpha state parameters with changes
in VAS pain rating during cold-pressor tests was statistically
significant for fractional occupancy, mean dwell time and
transition probability, meaning that we saw that the greater
the fractional occupancy, the longer the high alpha state visit
and the higher the transition probability from low to high
state, the greater the reduction in pain. Furthermore, these
correlations were sensitive to the threshold used to differentiate

low and high alpha state, such that significant correlations were
present between alpha state parameter and behavioral outcome
only when threshold for high alpha state was set as above
30% of maximum alpha power during eyes-open resting-state
and not for the higher thresholds. There was a marginally
significant positive trend between change in pain ratings and
mean alpha power, however, the direction of this trend was
opposite to expected.

Being able to measure any therapeutic change sensitively and
displaying this as feedback to the patients is important in order
to reinforce mental strategies which lead to an increase in alpha.
Failure to detect such small changes may prevent patients from
recognizing practices which lead to these changes as the required
positive or negative feedback would not be provided. Our results
have a number of implications in terms of designing future
neurofeedback studies. Firstly, it has implications in terms of EEG
data analysis that should be performed in neurofeedback studies,
whereby we encourage other researchers to not only report
changes in mean alpha amplitude but also to report changes
in parameters of alpha states dynamics. This will enable us to
assess whether a patient is actually responding to neurofeedback
therapy and also allow us to further our understanding of how
the brain responds to such therapy. Secondly, such dynamic
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alpha states parameters can also be used to fine-tune the way
neurofeedback is delivered. Feedback signals shown to the
patients can be based on such alpha dynamic features rather
than a cruder measure such as mean amplitude. Considering that
these parameters are more reflective of the bistable dynamics
of alpha rhythm, providing feedback based on them may lead
to a more physiologically meaningful (causal) change in alpha
power and encourage control strategies which actually translate
to pain reduction.

These results suggest that perhaps changes in fractional
occupancy, mean dwell times and transition probability may
have different implications in terms of the functioning of the
underlying neuronal network than changes in mean amplitude
alone, and it might be the case it is changes in these dynamic
parameters which might be responsible for the increased
resilience to pain. For instance, it has been suggested that longer
dwell times might reflect an increased stability of the network
giving rise to the respective alpha state (Khanna et al., 2015).
Increased transition probability means an increased chance
of sequential activation of the state (Khanna et al., 2015).
Pain relief may be mediated through increased transitioning
of individuals’ alpha from low to high alpha state as it may
reflect the receptiveness of the brain for the incoming stimulus
(Michel and Koenig, 2018). Another reason why such patterns
of sequential activation might influence pain might be that the
sequence in which these alpha states are present may have a
meaning in itself and influence how the incoming stimulus
is being processed (Buzsáki and Watson, 2012; Khanna et al.,
2015; Michel and Koenig, 2018). This has been suggested
before based on the neuronal workspace model where alpha
states have been interpreted as “atoms of thoughts” (Ros et al.,
2014; Villafaina et al., 2019), each representing specific mental
processes making up a conscious mind. Hence, the sequence
of mental processes or transition properties from one state to
another can be thought to carry a meaning in itself (Ros et al.,
2014; Villafaina et al., 2019).

Another interesting observation was regarding the presence
of changes in alpha state parameters in the chronic pain patients
with little consistent change in healthy volunteers. One possible
explanation for this might be that chronic pain patients have
more scope for improvement in these parameters since their
alpha state parameters were lower, although not significantly,
than healthy participants during the first session. However,
another explanation for this might be that perhaps neurons
are more susceptible to plasticity by external factors in chronic
pain patients than healthy individuals. This idea of chronic
pain patients having lower alpha than healthy participants and
lower alpha being correlated with greater pain has been reported
widely in the literature (Jensen et al., 2013b; Lim et al., 2016;
Villafaina et al., 2019).

This discrepancy in the EEG changes between chronic
pain patients and healthy participants may also be due to a
motivational effect. We did not assess the motivation of our
participants at the beginning of the training, hence the impact
of any such factor on the performance of the individual cannot
be determined in our study. Nevertheless, our results show
that chronic pain patients are as capable, if not more capable,

than healthy participants at learning to control their alpha
activity. One would have anticipated that since the neuronal
networks have already been rewired in chronic pain patients
to attend to pain signals (Katz and Rothenberg, 2005; Reddan
and Wager, 2019), it might be more difficult for chronic pain
patients to change their brain activity following prolonged
exposure to pain. Our results suggest that brains of chronic
pain patients might be more plastic than we think. If this
is the case, then such neuromodulatory therapy may have
substantial potential for systematic development for personalized
therapy in the future.

The initial rationale for alpha states modeling in this paper
was simply to have a description of the dynamics of alpha power
fluctuations between the low and high alpha states. Since the
participants were required to follow the feedback provided to
them, an extrinsic threshold, used to define these two “empirical”
states, was derived based on an ad hoc criterion of what alpha
power would be considered “good” or “high” enough for the
neurofeedback to have an effect. There are no suggestions in the
literature in terms of what this threshold should be, hence, we
analyzed our data for a range of thresholds.

Ideally however, this threshold can be determined based on
a characterization of the bistable dynamics of the endogenous
alpha fluctuations of each subject, rather than based on an
external criterion. The bistable nature of the alpha rhythm
means that whilst in the low alpha state, the amplitude of the
alpha fluctuates around a low “mean” value for some time and
then spontaneously switches to the high alpha state, where it
starts fluctuating around a high “mean” alpha value (Freyer
et al., 2009, 2011; Roberts et al., 2015). This gives a bimodal
distribution of the alpha amplitudes when viewed in double
logarithmic coordinates, which can be best described by the
sum of two exponential distributions (one for each alpha mode)
(Freyer et al., 2009; Roberts et al., 2015). Hence the “meeting
point” of the two distributions, (which is not the same as
the midpoint of the low and high mean values), would be a
more physiologically meaningful threshold for defining the two
intrinsic alpha states. Moreover, changes in such an “intrinsic”
threshold evaluated pre and post neurofeedback intervention,
might correlate with a pain effect, which might in itself be
a potential marker of pain modulation. Hence, although the
extrinsic threshold used in our study might be sub-optimal,
these preliminary findings provide useful insights into the
underlying mechanisms of neurofeedback which warrant further
in-depth analysis.

The limiting factors of our study were the small sample
size and the small number of sessions. This means the results
should be interpreted with caution. This could perhaps explain
why we did not see a significant increase in the different EEG
parameters. It might be the case that with provision of further
NFB sessions, we would have seen significant increase. However,
this preliminary study has enabled us to identify learning indices
which can still detect learning in these initial sessions when the
other commonly used parameters do not show noticeable change.
In fact, the alpha states dynamic approach presented here might
be a better way to model alpha rhythm as it exploits the bistable
nature of alpha rhythm better.
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On a methodical note, we used a sliding window to calculate
the alpha power. This approach introduces a smoothing effect
that can “smear out” the finer dynamics of the alpha rhythm.
Since the alpha rhythm shows some scale invariance (Van De
Ville et al., 2010), this short window averaging will still preserve
some of the dynamical features of the alpha rhythm, which we
believe support results reported here. To improve on this, we
propose that future analysis can then focus on characterizing the
dynamics of the instantaneous alpha power fluctuations. Such an
approach has the potential to uncover new and possibly more
sensitive effects of α-NFB for the treatment of chronic pain.

CONCLUSION

In conclusion, we have observed changes in dynamic alpha state
parameters that are not reflected in mean alpha power during
alpha neurofeedback for pain. Our study found that changes
in alpha state parameters might potentially be more sensitive
predictors of learning than currently used measures. Over the
course of five alpha neurofeedback sessions in this study, whilst
there was no change in mean alpha power, there was a trend
of increase in fractional occupancy, dwell time duration, and
transition probability of high alpha state. Furthermore, fractional
occupancy, mean dwell times and transitional probability was
correlated with change in pain scores, such that in sessions
where an individual spends more time in the high alpha state,
had longer high alpha state visits or had higher probability
of transitioning from low to high alpha state were likely to
report greater reduction in pain. We hope that our results will
encourage others to measure learning using similar approach.
Reporting such temporal dynamics alongside changes in mean
alpha power will not only enable us to measure success more
sensitively but may also provide insight into the mechanisms of
neurofeedback training.
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