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ABSTRACT There is ongoing interest in the dynamics of resting state brain networks (RSNs) as potential
predictors of cognitive and behavioural states.Multivariate Autoregressors (MAR) are used tomodel regional
brain activity as a linear combination of past activity in other regions. The coefficients of the MAR are taken
as estimates of effective brain connectivity. However, assumption of stationarity, and the large number of
coefficients renders the MAR impractical for estimating brain networks from standard neuroimaging time-
series of limited durations. We propose HsMM-MAR-AC, a novel sparse hybrid discrete-continuous model
for the efficient estimation of time-dependent effective brain networks from non-stationary brain activity
time-series. Discrete quasi-stationary Brain States, and the fast switching between them, are modelled by a
Hidden semi-MarkovModel whose continuous emissions are drawn from a sparse MAR. The coefficients of
the MAR are restricted by Anatomical Brain Connectivity information in two ways: 1) Effective direct con-
nectivity between two brain regions is only considered if the corresponding anatomical connection exists; and
2) the autoregressors lag associatedwith each connection is based on the fiber length between the two regions,
such that only one lag per connection is estimated. We test the accuracy of HsMM-MAR-AC in recovering
simulated resting state networks of various durations, and at different thresholds of anatomical restrictions.
We demonstrate that HsMM-MAR-AC recovers the RSNs more accurately than the benchmark method of
the sliding window, with as little as 4 minutes of data. We also show that when the anatomical restrictions are
relaxed, longer time-series are needed to estimate the networks, and became computationally unfeasiblewith-
out anatomical restrictions. HsMM-MAR-AC offers an efficient model for estimating time-dependent Effec-
tive Connectivity from neuroimaging data that exploits the advantages of Hidden Markov and MAR models
without identifiability problems, excessive demand on data collection, or unnecessary computational effort.

INDEX TERMS Anatomical constraint, brain state, hidden semi Markov model, multivariate autoregressive
model, state duration.

The associate editor coordinating the review of this manuscript and

approving it for publication was Gustavo Olague .

I. INTRODUCTION
A current challenge in systems neuroscience is to consider
the brain as a dynamical system evolving over time. This
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involves using neuroimaging data to detect quasi-stable
Brain States, and the transitions between them [1], [2],
[3], [4], [5], [6]. A Brain State (BS) corresponds to an
operational mode with a quasi-stationary activity pattern at
the topography, sources, or networks level. This paper focuses
on the latter. Recently, the dynamics of brain networks
activity in the absence of a cognitive task, the Resting State
Networks (RSNs), and the navigation between them over time
have attracted the attention as potentially supporting brain
function and enabling cognition [7], and marking difference
between health and disease [8], [9], [10], [11], [12].
RSNs represent simultaneous, synchronous or coherent activ-
ity across multiple brain regions, the configurations of which
closely corresponds to the patterns of activity observed during
sensory, motor, and cognitive tasks. A number of RSNs
has been identified: Default Mode Network (DMN) [13],
[14], Sensori-motor Network (SMN) [13], Executive Control
Network (ECN) [15], Visual Network (VN) [13], [16],
Fronto-Parietal Network (FPN) [13], Auditive Network
(AN) [17] and Temporo-Parietal Network (TPN) [17].

Differences in the time-varying occupancy of or switching
between RSNs are associated with cognitive and behavioural
performance, as well as with psychiatric and neurological
conditions [18]. Dynamic functional connectivity captures
task-based phenotypes, furthermore relevant functional con-
nectivity behavior emerges from the interconnection of all
RSNs [19]. The work of [20] suggests that functional connec-
tivity contains markers that are differentially expressed over
time with simultaneous consideration of spatial and temporal
characteristics.

Several methods have been proposed to address the RSN
detection problem, which can be classified into descriptive
and explanatory methods. The former uses features of the
measured signals to classify (allocate) time points into
specific brain states. The second one can generate or
simulate the observed brain signals and their statistical
properties (e.g., non-stationary). The descriptive methods
use time sliding windows [21], [22], adaptive segmentation
by grouping [4], [21], [23], among others [5], [24]. These
methods present several problems, such as sensitivity to time
window parameter definition, instability of the estimation
of the features of interest (e.g., signals’ covariance matrix),
among others; for more details, see [2] and [3]. The explana-
tory methods use generative models for characterizing the
observed signals [1]. HMM uses aMarkov chain to model the
transitions between a finite set of hidden discrete RSNs, such
that when an RSN is active, it emits an observation. Although
HMM addresses many of the shortcomings of descriptive
approaches, it has important limitations as a generative model
of brain activity. In [2], it was proposed to use HsMM to
resolve this limitation. HsMM is a generalization of HMM
where the Markov assumption leading to the geometric
duration constraint is relaxed to allow the explicit modeling
of the RSN duration distribution. The advantages of HsMM
over HMM for the modeling of EEG amplitude fluctuations
(signal envelope data) are demonstrated in [2]. This paper

proposes an efficient method of using neuroimaging data to
recover RSNs characterized by transiently stationary large-
scale causal interactions (directed information flow) between
different brain regions, henceforth time-dependent Effective
Connectivity (tdEC).

In the context of network-level analysis, previous work has
capitalized on the flexibility and simplicity of Multivariate
Autoregressive (MAR) models for modeling causal brain
networks. In aMAR, the output signals represent the temporal
evolution of the activity of a node (a brain area) of the
brain network; and they are modeled as a linear combination
of the past activity of the other nodes. Therefore the
coefficients of the linear combination (MAR coefficients)
provide a characterization of the causal interactions (directed
information flow) between different nodes of the brain
network [1], [3], [25], [26], [27]. The work of [1] is
one of the first models that used switching MARs to
model a time-dependent causal network, implemented a
RSN allocation method using a Bayesian generative model
where brain signals were temporally clustered (segmented)
into time periods (i.e., RSN) characterized by stationary
MAR models. Therefore [1] proposes adding a level of
flexibility using temporal clusters characterized by MAR
models. However, it is impossible to provide a transi-
tion probability between mesostates with this approach.
The research of [28] proposes HMM to model the RSN
transitions. This approach, however, inherits the shortcom-
ings intrinsic to HMM. Furthermore, the identification of a
MAR with unknown number of lags, for large-scale brain
networks in the source domain quickly becomes intractable.
For example, if we consider that the brain consists of
62 areas (based on Desikan Killiany parcelation [29]), and
we use a MAR order of 10 and 10 brain states, a total of
384 400 parameters have to be estimated (62 × 62 × 10 ×

10). Each coefficient is modeled as a mean and covariance
matrix, so the number of parameters to be estimated is much
more. Such a complex model can lead to overfitting or
identifiability issues if enough data is unavailable [30], [31].
This problem can be addressed in different ways. In [3],
the authors introduced a parameterization of the MAR
matrix of coefficients, reducing the number of parameters
to be estimated. This parameterization, although mathemat-
ically convenient, might impose physiological unrealistic
constraints on the model. Another option is to increase the
available data to fit the model by concatenating several
subjects’ data along the time dimension [28]. However, this
approach is only valid if RSN features can be assumed
to be invariant across subjects. An alternative option is
to pre-select a limited set of brain areas in advance to
reduce the dimensionality of the MAR. The risk of this
solution is the appearance of erroneous connections due
to the interference of areas that are not included in the
study [32], [33].

Here we propose to drastically reduce the number of MAR
coefficients by using the sparseness of the anatomical con-
nectivity information. Since functional integration between
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FIGURE 1. Pipeline of the presented experiments. (a) Experiment 1 is an essential validation of the proposed
HsMM-MAR-AC on a toy system of 10 nodes (a.1), whose structural connectivity is assigned randomly, and thresholded to
allow 50% of the connections, to define the anatomical constraints (a.2). Systems with 3, 4, and 5 states (network
configurations) were defined (a.3). Ten non-stationary node signals were simulated from the generative HsMM-MAR-AC
model as described in section II-A. (a.4). The coefficients are estimated at varying levels of anatomical constraints (a.5) as
explained in methods section II-C1. (b) Experiment 2: Stimulation and estimation of brain RSNs. b.1) A 62-node system was
designed based on the DKT atlas. (b.2) The system contained 7 states based on the 7 most reported RSNs, section II-B3 for
details. (b.3) The AC was calculated by applying a threshold to the connection weights (section II-B4), allowing all nodes of
the 7 RSNs to be connected to at least one other node, section II-B1. (b.4) Ten non-stationary signals were simulated from
the generative model HsMM- MAR-AC. (b.5) The estimation step was performed by varying the AC and the duration of the
signal, as explained in methods section II-C2.

different brain areas is mediated by white matter (WM)
connections [34], it follows that MAR coefficients should
only be estimated where the effective connection is supported
by anatomical connectivity. Furthermore, the length of the
fiber between two connected regions determines the time
delay of the signal between them, [35], [36], and [37],
such that only one MAR coefficient per connection can
be estimated. Several studies have reported that functional
dynamics reflects anatomical connectivity [38], [39], [40],
such that the time-dependant effective connectivity fluctuates
around an anatomical connectome [41], [42], [43]. These
findings suggest that anatomical connectivity could be
used as a constraint for estimating functional or effective
connectivity. Such constraint has previously been suggested
to limit the complexity of the MAR and to estimate static
functional connectivity [35], [44], [45].

In this paper we implemented an HsMM with MAR emis-
sions, whose sparse coefficients are constrained by anatom-
ical connectivity, hence HsMM-MAR-AC. We evaluate

the benefit of using anatomical connectivity constraints
in estimating the tdEC of the RSNs and their temporal
dynamics, compared to the moving window benchmark.
Although anatomical information in this work was derived
from the human connectome, the proposed approach could
also be used to incorporate individual anatomical infor-
mation should such data be available. In studies such
as [35], [44], and [45], anatomical connectivity is applied
as a constraint to MAR models of high complexity.
However, these studies do not consider the dynamics of
brain states. In addition, an arbitrary threshold is applied
to define the Anatomical Constraint (AC), as in [35],
we modified it to detect the strongest connections of
the RSNs.

The paper is organized as follows. Section II-A presents
the theoretical basis of HsMM-MAR-AC model, and the
estimation of the model parameters. Section II-B presents
the calculation of the anatomical connectivity information
and the constraint. Section II-C describes the generation
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of the validation data, and the validation experiments.
Section II-D contains the metrics to evaluate the per-
formance of the proposed model. Section II-E presents
the methods for RSN estimation that we compare with
HsMM-MAR-AC. Subsequently, in Section III, we show a
detailed evaluation of the method based on two simulated
experiments. The first experiment is carried out to validate
the performance of the algorithm in two key aspects:
a) the verification of the parameter recovery of the original
model and b) the evaluation of the prediction capacity
of the model in new data. The second experiment is
performed to validate the model’s ability to recover RSNs
and their dynamics. The third experiment focuses on using
the most commonly used algorithms in the literature to
compare our algorithm’s performance. Finally, Section IV
presents an analysis of the proposed model’s results and
scope.

II. METHODS
We describe an HsMM-MAR-AC model for RSN allocation,
where RSN is defined as a specific configuration of an
effective brain network that persists over short periods of
time, generating a continuous sequence of the observed brain
activity before switching to another RSN. Next, We elucidate
how the anatomical connectome information can reduce the
model’s description and hence the number of parameters to
be estimated. Finally, We describe the inversion procedure to
estimate the parameters using the Bayesian machinery and
the performance metrics and experiments used to evaluate
the accuracy and efficiency of the model. Figure 1 shows the
general pipeline used in this work. We divide the work into
two experiments; the first aims to validate the performance
of the algorithm (see Section II-C1), and the second
measures the ability of the algorithm to detect RSNs
(see Section II-C2).

A. THE GENERATIVE MODEL
1) MAR MODEL DESCRIPTION
This model characterizes the neuronal activity of each
area as a node of the network. The activity of node X
corresponds to the linear combination of the activity in the
past (with delay) of the other areas connected to X . The
interaction between the nodes is not instantaneous; each
interaction will take place in a specific delay (from 1 to L).
Furthermore, each interaction towards X must be modulated
by an Autoregressive coefficient. Finally, Gaussian noise
is incorporated into the resulting neuronal activity. As an
illustrative example, we consider a simple arbitrary system
comprising three nodes that are connected to a node n. This
can be represented as follows:

ynt = β1 × y1(t−5) + β2 × y2(t−6) + β3 × y3(t−7) + et (1)

where ynt corresponds to the neuronal activity of the nodes
n at time t , βn denotes the autoregressive coefficient, and
et is the noise Gaussian. In this case, there is a neural
connection from nodes 1, 2, and 3 to node n, which implies

that the neuronal activity of node n is determined by the linear
combination of the activity of nodes 1, 2, and 3 at delays 5,
6, and 7 respectively.

2) HsMM-MAR-AC MODEL DESCRIPTION
The model comprises two components: The HsMM char-
acterizes the time-dependent brain effective connectivity as
rapid transitions between discrete RSNs that persist over a
short duration in time [2]. For each state, the brain activity
in each brain area is defined by the activity and effective
(time-lagged) connections among brain areas, described by
the second component, the MAR, forming a stationary (or
quasi-stationary) network [1], [28], [46]. Figure 2 shows
the dynamic Bayesian network (DBN) graph represen-
tation of the model with the conditional dependencies
between the parameters, hidden variables, and the observed
data.

Where:

N Number of nodes,

M Number of states,

L Maximum delay,

yt Observed current density (brain activity) at
time t in each brain area,

st Hidden RSN at time t . Here there are M
states,

τt Remaining time in the RSN st ,

W Set of matrices of MAR coefficients,
one for each RSN, with W =

{W (1),W (2), . . . , . . . ,W (M )
},

3 Set of matrices that contain their
corresponding precisions, with
3 = {3(1), 3(2), . . . , . . . , 3(M )

},
8 Set of vectors of observation noise precision,

with 8 = {φ(1), φ(2), . . . , . . . , φ(M )
},

A Matrix of transition probabilities (M × M )
between RSNs,

U Set of M values that denote the
mean duration of each RSN, with
U = {µ(1), µ(2), . . . , . . . , µ(M )

},
Z Set of M values that denote their

corresponding precisions, with
Z = {ζ (1), ζ (2), . . . , . . . , ζ (M )

}.

The full likelihood function of Figure 2 is expressed as:

P(y1:T , s1:T , τ1:T , 8,W , 3,A,U ,Z )

= P(s1, τ1) ×

T∏
t=2

P(st , τt |st−1, τt−1,A,U ,Z )

× P(yt |W , 8, st , τt ) × P(8) × P(A)

× P(W |3) × P(3) × P(U ) × P(Z ) (2)
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FIGURE 2. Dynamic Bayesian graph of the generative probabilistic
HsMM-MAR model. If the model is in state sT , it emits a sequence of
measurable brain activity yT according to the rules specified by the MAR
coefficients in W (M), for a duration given by U = µ(M) and Z = ζ (M).
When st runs out of time τt , the model switches probabilistically to
another RSN according to the transition matrix A.

The probability of emitting an observation yt at instant t
given that the state st of duration τt corresponds to:

log
(
P(yt |W , 8, st , τt )

)
=

M∑
k=1

D∑
d=1

δ
(
(st , τt ), (k, d)

)
× log

(
N (yt |W (k)

× x·t ,Diag(φ(k))−1)
)

(3)

where x·t = (y·(t−1)
T , y·(t−2)

T , . . . y·(t−l)T ) denotes the
t column of the matrix X corresponding the to past
observations in each brain area, i.e., the regressors. The
autoregressive coefficients to estimate in Equation (3) are the
elements of matrix W , which corresponds to a full matrix
of dimensions N × (N × L). The n row of the matrix W
corresponds to the autoregressive coefficients associated with
the n input of yt .

For instance, considering a brain defined by the DKT
atlas [29], which contains 62 areas, a maximum lag of 10, and
7 brain states, then the number of autoregressive coefficients
to estimate is 62 × 62 × 10 × 7 = 269 080.
Here we use anatomical connectivity information to reduce

this number in two ways: limiting the connectivity matrix to
only where anatomical connectivity exists (see Section II-C1)
and using the tractography data to calculate the precise fiber
length and thus estimate the delay between two regions (see
Section II-C2). The delay restricts the number of connection
between regions to just one. In the above example, if half the
connections were considered and one lag is estimated, then
the number of coefficients drops to 1/2× 62× 62× 1× 7 =

13 454, which is approximately 6% of the original number of
coefficients.

The multivariate Gaussian probability density of the N
areas in Equation (3) is separated into N uni-variable

Gaussian distributions to implement this reduction. This
is feasible since the precision matrix Diag(φ(k)) has only
elements on the diagonal (they are considered independent).
Regarding the source n, we have that the new precision is φ

(k)
n

and corresponds to element n of the diagonal of the matrix
Diag(φ(k)).
In addition, the Gaussian means described in Equation (3)

by W (k)
× x·t is modified by w(k)

n·
T

× x·t , where w(k)
n·

denotes the vector of column n of the coefficient matrix
W . This is where the anatomical information is used,
which is translated in having a vector ln extracted from the
connectivity matrix estimated in Section II-B1 that contains
the indices of those connections not discarded for source n.
That is, those connections are most likely and correspond
to the estimated delay. Using this vector, we calculate the
mean of the Gaussian of the source n; and we can write it as
w(k)
nln

T
× xlnt , where these variables correspond to a subset

of w(k)
n· and x·t respectively, based on the indices of ln. With

this modification, Equation (3) becomes Equation (4).

log
(
P(yt |W , 8, st , τt )

)
=

M∑
k=1

D∑
d=1

N∑
n=1

δ
(
(st , τt ), (k, d)

)
× log

(
N (ynt |w

(k)
nln

T
× xlnt , φ

(k)
n

−1
)
)

(4)

3) HsMM-MAR-AC PRIORS
We model the MAR coefficients using a zero mean multi-
variate Gaussian and precision matrix with only elements
on the diagonal, which considers independence among the
coefficients (see Equation (5)).

P(W |3) =

M∏
k=1

P(W (k)
|3(k))

=

M∏
k=1

N∏
n=1

N
(
w(k)
nln

|0,Diag(λ(k)
nln

)
−1)

(5)

where λ
(k)
nln

represents a subset of λ
(k)
n. according to the index

of ln in state k .
The Gaussian distribution dimension that describes w(k)

nln
represents the total number of indices contained in ln.

P(3) =

M∏
k=1

P(3(k))

=

M∏
k=1

N∏
n=1

∏
j∈ln

Gam(λ(k)
nj |b̂nj, ĉnj) (6)

where λnj represents the j-component of the vector λnln .
In addition, b̂nj and ĉnj define the shape and scale parameters
of the Gamma distribution. We use a non-informative prior
with b̂nj = 1000 and ĉnj = 0.001, based on [47]. We assumed
that the noise of the signal was distributed according to
a Gaussian distribution with a zero mean and a diagonal
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covariance matrix.

P(8) =

M∏
k=1

P(φ(k))

=

M∏
k=1

N∏
n=1

P(φ(k)
n )

=

M∏
k=1

N∏
n=1

Gam(φ(k)
n |ên, f̂n) (7)

where ê and f̂ represent the shape and scale parameters of the
Gamma distribution. Those values are set to 1 000 and 0.001,
respectively.

For the description of the other model parameters (i.e.,
transition, duration of the states, and initial state), see [2].

4) MODEL PARAMETERS ESTIMATION
No analytical solutions were found in the parameters model
estimation. Thus, the estimation of the parameters was
performed using an approximate inference method called
Variational Bayes (VB) [30], [48]. VB uses an auxiliary
function q(x) to approximate the posterior distribution of the
parameters and/or hidden variables as closely as possible.
The Mean Field Approximation (MFP) approach proposed
in [49] allowed for the selection of a factorizable q(x). We use
conjugate priors to calculate the analytical expression of
updated parameters and hidden variables in time. The MFP
used for the joint probability was:

q(y1:T , s1:T , τ1:T , 0,W , 3,A, µ, ρ)

= q(y1:T ) × q(s1:T , τ1:T ) × q(8) × q(W )

× q(3) × q(A) × q(U ) × q(Z ) (8)

For complete details about model parameters and their
estimation, see Appendix A.

B. ANATOMICAL CONSTRAINT
1) ANATOMICAL CONNECTOME CALCULATION
Whole-brain probabilistic tractography was reconstructed
using the software MRtrix, based on the spherical decon-
volution model proposed by [50]. Anatomically-Constrained
Tractography (ACT) [51] was calculated with: step size =

0.1 × voxelsize, angular threshold= 90◦, minimum length =

30mm, maximum length = 250mm, cutoffvalue = 0.06, and
30million streamlines. Each tractography dataset was filtered
with SIFT tool (Spherical-deconvolution Informed Filtering
of Tractograms) presented in [52], maintaining 3 million of
fibers. The tractographywas computed using dMRI data from
106 subjects from the HCP database 1 and each subject was
normalized to the MNI space [53], using the corresponding
non-linear transformation.

Figure 3(a) shows the pipeline used for calculating the
average weighted connectivity matrix. We computed the
connectivity matrix the probabilistic tractography datasets

1http://www.humanconnectomeproject.org

and the anatomical Desikan Killiany (DKT) atlas [29]. This
matrix contains the number of fibers (Fij) connecting ROIi
and ROIj. Figure 3(b) illustrates the approach for calculating
the anatomical connectivity. We chose the most repeated
ROI evaluating a neighborhood of 5 mm for each fiber
extreme point. This approach, combined with ACT, obtains
better labeling than when using only the extreme point
or all the voxels intersecting the path of the fiber [54].
Hence, we constructed the individual connectivity matrices
(62×62) representing the Fij of each pair of anatomical ROIs.
We calculated the individual weighted connectivity matrix
(wsubjecti ), based on the connection strength (w) between each
pair of ROIs (see Equation (9) and [55], [56]), where ni and
nj are the volume of ROIi and ROIj, respectively.

wij =
2Fij
ni + nj

(9)

The average weighted connectivity matrix wmean was
calculated, from the 106 individual weighted connectivity
matrices. We usedwmean and different thresholds for defining
the percentage of connections, which we used to define
different ACs, including the referenceAC (see Section II-B4).

2) CALCULATION OF THE MAR LAGS
We calculate the conduction delay between two connected
regions as the average path length of connecting fibers
divided by the conduction velocity for myelinized axons of
6 m/s [57]. Additionally, the conduction velocity for self-
connections is set to 3m/s [35]. The path length of each fiber
(L) was calculated by adding the Euclidean distance between
consecutive points (see Figure 3(c)). The conduction delay is
converted to MAR lag by dividing the delay by the temporal
resolution of the data, here 5 ms.

3) RESTING STATE NETWORKS
We employed the seven most reported RSNs. These are the
Default Mode Network (DMN) [13], [14], [58], [59], [60],
[61], Sensori-motor Network (SMN) [13], [62], [63], Execu-
tive Control Network (ECN) [15], Visual Network (VN) [13],
[16], [64], [65], [66], Fronto-Parietal Network (FPN) [13],
[60], [67], [68], [69], [70], Auditive Network (AN) [17], [71],
[72] and Temporo-Parietal Network (TPN) [17], [72], [73].
Also, the network regions were defined according to the most
reported cases, and finding their correspondence with the
ROIs of DKT atlas.

4) ANATOMICAL CONSTRAINT
We selected a threshold forwmean, which guaranteed that each
node of the seven networks is connected, without considering
of the self-connection. Under this condition, we obtained
a matrix with 28% of connections, which was used to
construct the reference AC with the delay matrix. In addition,
AC matrices were constructed with different percentages of
connections (i.e., 15%, 20%, 35%, 40%, and 100%).

50220 VOLUME 11, 2023



H. H. Larzabal et al.: Efficient Estimation of Time-Dependent Brain Functional Connectivity

FIGURE 3. a) Calculation of the average weighted matrix wmean. Subject connectivity matrices are first calculated based on
the tractography dataset and anatomical ROIs in MNI space. Then, individual weighted connectivity matrices (wsubjecti ) are
computed based on the calculation of the connection strength (w) between each pair of ROIs. Finally, wmean matrix is
computed as the average of each matrix. b) Method for calculating anatomical connectivity using a radius at the ends of
the fiber. c) Method for calculating the length of each fiber.

C. SIMULATIONS
Two experiments to evaluate the performance of HsMM-
MAR-AC were performed. The first used synthetic data
generated from a small generic system. The second used
synthetic data as close as possible to the real brain functional
data in terms of the magnitude and composition of the
networks. It consisted of 10 non-stationary signals composed
of the 7 most reported RSN in the literature. This simulation
aimed to determine the limitations and advantages of the
model in a real usage scenario. The methodology is explained
in more detail in the following sections.

1) EXPERIMENT 1 (MODEL VALIDATION)
The first simulation generated data using a 10-node and
generative HsMM-MAR-AC with a maximum delay of 3.
Simulations were performed using 3, 4, and 5 states, and each
state’s network utilized 6 of the 10 nodes. ThesesMARs were
created randomly under the condition that they were stable
according to the procedure explained in [74].We used a single
delay for each connection between nodes (there was only
one connection per lag). We incorporated a random ranking
system to establish uniform weights for the connections, and
subsequently eliminated those with lower weights depending
on a predetermined percentage. This allowed us to define
a percentage of AC for the removal process based on the
ranking. The data was performed using a 50% of AC, i. e.,
with 50 of 100 possible connections (10×10 nodes). Then we
used the generated data to train an HSMM-MAR-AC model,
which is evaluated according to Section II-D. The model
was trained using different AC (25%, 50%, 75%, and 100%)

and different data lengths. For each evaluation, 10 runs were
executed with different MAR configurations.

2) EXPERIMENT 2 (SIMULATION AND ESTIMATION OF RSN)
Figure 1(b.4) shows the approach used to generate the
realistic synthetic signals. Ten non-stationary signals were
generated based on the reference connectivity (28%), which
included the seven most reported RSNs; refer to Section II-
B3. HsMM generative model [2] was used to generate the
signals. Each network was represented by aMAR (Ai), where
i is the ith RSN. Each network i had a Si28% matrix, which
contains only the lags for the regions in network i. In addition,
each network had a stable MAR process Ãi with all ROIs
connected for all lags. A MAR process is stable when the
module of all its eigenvalues is inferior to 1.0 [74].

The final MAR of each RSN (Ai) was obtained using the
Equation 10, in which the operator ⊙ means point-to-point
multiplication. The longer average fiber was 239.8mm. Thus,
the maximum connection delay was 40ms, and the maximum
lag was k = 8, considering a velocity of conduction of 6 m/s
and a temporal resolution of the signal 1t = 5 ms (see
Section II-B4). The DKT atlas has 62 ROIs, therefore, the
dimensions for Si28% were (62 × 62 × 8). The probability
distribution of state duration was a Log-Normal constructed
with a mean of 3.84 and 0.4% of standard deviation. These
values were chosen to achieve an average state duration of
50 ms and a Log-Normal distribution with a tail extending
to 150 ms, consistent with previous studies reported in the
literature [28]. The transition probability matrix was designed
with a non-symmetric structure, avoiding favoring particular
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transition paths.

Ai = Ãi ⊙ Si28% (10)

Figure 1(b.5) illustrates the estimation stage, in which
the signals generated in the simulation stage were used
to estimate the model parameters. We used separately six
different ACs (refer to Section II-B4). We increased the size
of the estimated signals in steps of 120 s, from 240 s to
600 s. The initialization of the algorithm was random. The
model estimated the number of states, the state sequence, the
transition probability matrix, and the auto-regressors ofMAR
states (Ai).

D. MODEL EVALUATION
1) SIMILARITY MATRIX
The MSS similarity matrix proposed in [75] was used to
evaluate the performance in estimating the MAR of each
state and the transition matrix. This metric is defined in
Equation (11), where M is the simulated matrix and M̂ is
the estimated one. The values range from 0 to 1, being 1 for
identical matrices.

MSS = 1 −
∥ M − M̂ ∥

∥ M ∥ − ∥ M̂ ∥
(11)

2) KULLBACK-LEIBLER DIVERGENCE
Analytical Kullback-Leibler divergence (KL) proposed
in [76], was used to evaluate the performance of the
algorithm for recovering the state duration distribution (see
Equation (12)).

D(f i||f j) =
1

2σ 2
j

(
(µi + µj)2 + σ 2

i − σ 2
j
)
+ ln(

σj

σi
) (12)

where f i is the simulated state duration distributionwithmean
µi and variance σi; and f j is the estimated state duration
distribution with mean µj and variance σj.

3) G-TEST
G-test [77] was used to determine if the estimated duration
parameters significantly differed from the design parameters
(see Equation (13)).

G = 2
∑
i

Oi log(
Oi
Ei

) (13)

where Oi and Ei were the observed and expected values,
respectively.

E. COMPARISON WITH CURRENT METHODS OF RSN
ESTIMATION
We compared the recovering of the RSNs obtained by
HsMM-MAR-AC, as described above, to the estimation by
the standard HMM-MAR [28]. We applied the implemen-
tation at the following link2 and used the data described in
Section II-C2 with 600 s of data duration.

2https://github.com/OHBA-analysis/HMM-MAR

In addition, we applied the sliding window method, which
is widely used to estimate functional connectivity from fMRI
data [78], [79]. We estimated the functional connectivity
between the nodes of the DKT atlas [29] using Pearson
correlations [80]. We used the sliding sindow approach with
different window sizes: 125 ms, 250 ms, 500 ms, 1 s, and
1.50 ms, with 75% overlap. Furthermore, we tested the
algorithm with the K-means [78] and Principal Component
Analysis (PCA) [79] approaches for network extraction,
to the data described in Section II-C2, with 600 s of
data duration. In addition, we adapted the algorithm to
use anatomical connectivity as a constraint, not considering
the correlation between nodes that are not anatomically
connected.

III. RESULTS
A. EXPERIMENT 1: MODEL VALIDATION
In this simulation, the performance of the HsMM-MAR
model was evaluated using simulated data from a small
network (10 nodes), a maximum lag of three, and an
Anatomical Constraint (AC) of 50%. Performance evaluation
was based on the training data length and the AC used in
model training. In addition, the evaluation of the model was
carried out considering two aspects: the verification of the
parameter recovery of the original model and the evaluation
of the prediction capacity of the model in new data. See
Section II-D for more details of the evaluation process.
The first parameter to be evaluated is the structural type

corresponding to the number of states. This parameter is
crucial since its incorrect estimation involves the impossi-
bility of recovering the other parameters of the model. For
this evaluation, data with 3, 4, and 5 states (networks) and
a data sequence length of 5 s and 20 s were generated.
Then, based on the data, the models were trained, and the
convergence curves of the models’ selection were obtained,
allowing us to estimate the number of states. The result of the
convergence curves can be seen in Appendix B (Figure 11).
Here, the HsMM-MAR model with AC correctly estimates
the number of states for all cases. On the other hand, without
AC, it correctly estimates the number of states only for the
case of 20 s.

Two essential variables to evaluate the performance of the
models are the percentage of AC and the length of the data
sequences used in estimating the model parameters. For this
reason, we evaluate the recovery of these parameters based
on these two variables using a matrix where the color will
indicate the model’s performance. Therefore, the first step is
to evaluate the performance of the recovery of states, which
can be seen in Figure 4(a). In addition, the recovery of the
MAR coefficient matrix can be seen in Figure 4(b). These
figures show how using AC allows the model to provide a
good performance with a much shorter data length than the
case of not using AC. This is consistent with the fact that not
using an AC implies estimating more parameters; therefore,
more data is required.
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FIGURE 4. Experiment 1: Accuracy of model estimation for varying levels of Anatomical Constraints and signal
durations. (a) Shows the success in recovering the correct number of states over 10 runs. With 50% AC and
5 seconds of data, the number of states is accurately estimated. To achieve the same accuracy at 100% AC (i.e.,
all the connections are included, each with only one lag), 7 seconds of data were needed. Without AC, the NO
row, the data requirement for accurate recovery of the states increases to 20 seconds. (b) Accuracy of the
estimated MAR coefficient matrix as a distance between the real and estimated (MSS). MSS, which ranges
from 0 to 1, was calculated only when the number of states was accurately recovered. Performance was poor
when no AC applied, or the AC was too severe (only 25% of connections were included). (c) Predictive power of
the model. Predictive power is poorer without AC or with excessive AC.

FIGURE 5. Illustration of the anatomical connections in the DMN and ECN designed for 15%, 20%,
and 28% AC. For each case, the lower right corner shows the percentage of connections by respect
to the reference connectivity (28%). Note the loss of connections for 15 and 20% of AC (in dashed
lines).

Concerning the recovery of the parameters associated with
the transition matrix and duration distribution of the models,
a good performance is observed, with no differences between
the different cases. To see the details of this performance, see
the Appendix B (Figure 9).

Figure 4(c) shows the predictive power of the model, see
Section II-D for more details about the calculations for this
metric. AC allows reaching values close to the maximum

prediction power with a minor data length requirement.
Finally, it is also verified that the variations of AC between
50% and 100% do not significantly vary the prediction power.

B. EXPERIMENT 2: SIMULATION AND ESTIMATION OF
BRAIN RESTING STATE NETWORKS
For testing the performance of HsMM-MAR, we used ACs
with different percentages of connections (15%, 20%, 28%,
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FIGURE 6. (a) Percentage of success in detecting the number of RSNs. (b) Average MSS of RSNs, varying the
percentage of connections and the signal’s length. (c) Average MSS of the estimated transition matrices versus the
design transition matrix. (d) Estimation computation time for the different ACs with respect to the estimation time
for a 28% AC. (e) KL divergence between the design duration distribution of the states for each RSN and the
duration distributions calculated from the parameters estimated by the algorithm.

35%, 40%, and 100%) with 10 non-stationary signals and
5 iterations for each run. The signals were obtained using the
generative HsMM-MAR with the seven most reported RSN
structure (refer to Section II-B3), and signal length of 240 s,
360 s, 480 s, and 600 s. The reference AC (28%) was selected
for constructing the RSNs structure, which was found by
assuming that each node of each network must be connected
to at least one node. We used a non-symmetric transition
matrix in which probabilities avoided a preferred path. The
probability duration of states was designed with a mean
of 3.84 and 0.4% of standard deviation, see section II-C2.
The reference AC contained 1066 connections. Under these
conditions, the RSNs structure had the following number of
connections: DMN (66), SMN (32), ECN (68), AN (34),
VN (16), FPN (88), TPN (104). The ACs with 15%,
20%, 35%, 40% and 100% had 578, 770, 1346, 1540 and
3844 connections, respectively. The ECN andDMNnetworks
lose connections for ACs of 15% and 20%. Figure 5 shows
the connections for 15, 20 and 28% of connections. For the
15% of connections, the DMN had 44 of 66 connections, and

ECN had 44 of 68 connections. For the 20% of connections,
the DMN had 50 of 66 connections, and ECN had 52 of
68 connections.

The correlation between the delay and the weighted
connectivity is −0.30 with a p-value < 0.01, for details, see
Appendix B (Figure 12). Stronger restrictions eliminate long
connections, which do not significantly affect the connections
among the ROIs of the RSNs.

Figure 6(a) shows the percentage for correctly detecting the
number of RSNs. HsMM-MARwas able to detect the correct
number of networks with ACs of 15 and 20% of connections.
For ACs larger than 20%, HsMM-MAR needed signals with
at least 360 seconds. Higher accuracy was reached for larger
signals and smaller connections in theACs. Figure 6(b) shows
the MSS metrics of the estimated versus simulated networks.
The NA values correspond to cases where the correct number
of networks was not found. Networks were matrices that
represented a MAR process. Higher MSS values were found
for the reference AC (28%) and larger signals. Both DMN
and ECN networks had smaller MSS for ACs of 15 and
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FIGURE 7. Illustration of the structure of the simulated networks and the structure of the networks that were estimated
using the state-of-art algorithms. a) HMM-MAR algorithm. The algorithm automatically decides the number of detected
networks, in this case it detected 6 networks. The results show that the Executive Control Network was mixed with the
Visual Network. b) Sliding window algorithm with K-means.c) Sliding window algorithm with PCA. d) Sliding window
algorithm with K-means with AC. e) Sliding window algorithm with PCA with AC.

20% of connections. Figure 6(c) shows the MSS metrics of
the estimated versus simulated transition probability matrix.
The NA values involve cases where the correct number of
networks was not found. Higher metrics were obtained for
larger signals.

HsMM-MAR explicitly estimated the duration of the states
through a probability distribution. The states were designed
with a Log-Normal duration distribution. Figure 6(e) shows
the KL divergence between the recovered and design duration
distributions for the RSNs, with the 600 seconds signals and
varying the AC. The black dashed line indicates the critical
KL distance value. All the divergences were under the critical
threshold. Also, We assessed the computation time needed
for estimations. The HsMM-MARwas forced to detect seven

states to guarantee equality of conditions in each iteration.
Figure 6(d) illustrates the estimation computation time for
the different ACs, with respect to the reference AC (28%),
for different signal lengths. As observed, the computation
time increased with AC allowing a higher percentage of
anatomical connections. In addition, we calculated the
cumulative distribution function (CDF) of the state’s duration
to evaluate the accuracy of estimating the state duration’s
probability distribution. In appendix B, the figure 10 plots
the function 1 − CDF , estimated for the 600 second
signals, varying the percentage of AC, for each RSN. The
x-axis was in logarithmic scale. The black dashed lines
indicated the cumulative distribution function obtained with
the performance test (analysis performed with G-test, refer
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to Section II-D), defining the reliability range. Distributions
outside the reliability range are considered different from the
duration distribution of the simulated signals. It can be seen
that the duration probability of each estimated network did
not present significant differences with the designed duration
distribution.

C. COMPARISON WITH CURRENT METHODS OF RESTING
STATE NETWORKS ESTIMATION
1) HMM-MAR
Figure 7(a) shows the structure of the networks extracted
by the HMM-MAR algorithm. HMM-MAR can decide the
number of networks it estimates. For this experiment, the
algorithm estimated 6 of the 7 networks. Themissing network
was the VN, which was mixed with the Executive Control
Network.

2) SLIDING WINDOWS
Figures 7(b) and 7(c) show the structure of the networks
extracted by the sliding windows algorithm with K-means
and PCA, respectively. Figures 7(d) and 7(e) show the
structure of the networks extracted by the sliding windows
algorithm with K-means and PCA, respectively, using the
AC. The figure shows the most favorable results achieved by
each algorithm, based on the window size. For recovering the
networks, the sliding window with K-means achieves greater
accuracy with a window size of 250 ms, and the sliding
window with PCA achieves greater accuracy with a window
size of 1.50 s. When using AC, both sliding window with K-
means and sliding window with PCA recover networks more
accurately using a window size of 250 ms.

IV. DISCUSSION AND CONCLUSION
We present an efficient method for detecting the RSNs and
their dynamics using functional brain signals. Identifying
these dynamic patterns has relevant applications in studying
brain diseases such as Alzheimer’s, Schizophrenia, Epilepsy,
and brain lesions [21]. The temporal dynamics of brain
networks are modeled with a generative HsMM model that
allows the modeling of state duration through probability
distributions. In addition, each network is characterized by
a MAR, enabling the spectral analysis of the network and
the temporal interactions between its ROIs. The MARs were
constrained using anatomical connectivity and the connection
delay between ROIs. These constraints were extracted using
diffusion MRI data from the HCP database. Both anatomical
connectivity and connection delays were represented jointly
using a sparse matrix considering the connection delay
between ROIs. The performance of the algorithm was first
evaluated using a simple simulation with 10 nodes to validate
the correct implementation of the model. Next, we used a
more complex simulation based on 62 anatomical ROIs and
the 7 most reported RSNs. In both experiments, we assessed
the algorithm’s performance for detecting the number of
networks, the state duration distributions, and the sequence

of states for the simulated signals, using different ACs and
signal lengths. We used simulated signals because there is no
gold standard in real signals. RSNs emerge as hidden states
that an expert cannot observe. Therefore, it is impossible
to measure the proposed method’s performance with real
signals.

The first experiment validated the model implementation’s
correct functioning, integrating connectivity constraint and
connection delay information to the HsMM-MAR model.
It is verified that the model can recover the correct number
of states using the free energy curve and recover the other
parameters correctly.

The second experiment demonstrated that the AC with
a low percentage of connections enabled faster algorithm
convergence, even for short signals. On the other hand,
when we used all the connections (100% of connections),
the algorithm could not estimate the correct numbers of
RSNs, for the simulated signal lengths. Note that a 100%
of AC contains all the connections but only one delay
per connection, which is still a sparse matrix. If we
do not use the AC, the delay matrix is full, and the
algorithm is not computationally feasible. Compared to
the 100% of AC, the reference connectivity (28% of
connections) reduces the effort of the model, requiring
shorter signals. Furthermore, it reduces the computational
cost by around 2 times. In addition, the results also demon-
strated the algorithm’s robustness since, over a minimum
signal length for a given constraint, it showed a stable
behavior.

Moreover, the state duration parameters were recovered
with high accuracy when the algorithm correctly detected the
number of states. For these cases, the estimated transition
probability matrices had a MSS by respect to the design
matrices greater than 0.91. In addition, the KL divergence
and the G-test between the recovered and design duration
distributions showed that the state duration parameters were
obtained with a wide confidence interval for all RSNs.

Functional brain data are time series; therefore, they can be
modeled by aMultivariate Autoregressive Regression (MAR)
model. Other data-drivenmethods can be used to analyze time
series. The research of [81] compares different measures of
data-drivenmethods on simulated data by using three systems
(Hénon maps, MARs, and simulated EEG). They reported
that no measure shows superior performance. However,
MARs are helpful because they perform spectral signal
analysis. Also, several studies have used these models to
analyze fMRI signals. The work of [46] was the first group to
apply MAR to model fMRI signals. A multi-scale generative
model for EEG was proposed in [82], which assumes that
a MAR model can model the mesostates. However, they
characterize the mesostates as stationary. Therefore [1] pro-
posed adding a level of flexibility by using temporal clusters
characterized by MARmodels. Nevertheless, it is impossible
to obtain a transition probability betweenmesostates with this
approach. Subsequently, [35] proposed a method for source
reconstruction with a MAR model representing interactions
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among brain regions, defining the model order based on the
connection lag.

Previous studies did not consider the dynamics of brain
activity in estimating the models. Using a Hidden Markov
Model (HMM), it is possible to define the observation
model as a MAR, as proposed by [28]. However, in HMM,
the distributions of state durations are geometric, assigning
high probabilities to faster changes among states. In this
regard, [83] demonstrated that a Markov process’s Auto
Information Function (AIF) differs critically from an AIF
of the real data. Hence, the Hidden semi-Markov Model
(HsMM) arises as an excellent tool to model the distribution
of state duration [2]. Nevertheless, the MAR observation
model may be excessively complex and computationally
unapproachable.

The number of parameters to estimate can be calculated as
(n×n×d), where n is the number of nodes and d is the order
of the MAR. In addition, complex models can suffer from
overfitting. This occurs when the model cannot correctly
generalize from the training data and performs poorly for
the testing data [31]. In some cases, overfitting occurs by
building a model with little data for training in relation to
the number of parameters to be estimated [30], [31]. As a
result, the model may be unidentifiable in extreme cases
when the training set needs to be larger to converge to a
single solution. In these cases, it is possible to apply model
constraints to reduce the parameters to be estimated [84].
For this reason, we proposed an HsMM-MAR-AC approach
that allows a considerable reduction in the parameters to be
estimated.

Functional integration between different areas in the
brain is mediated by White Matter (WM) connections [34].
The study of [38] found that high anatomical connectivity
involves high functional connectivity. Later, several studies
have reported that functional dynamics reflect anatomical
connectivity [39]. These findings suggest that anatomical
connectivity can be used as a constraint in studying functional
connectivity. In works such as [44], [45], and [35], anatomical
connectivity is applied as a constraint to MAR models of
high complexity. Recently, in [85], an autoregressive model
was used for studying the association between anatomical
connectivity and functional brain activity by using a multi-
lag autoregressive constrained for the AC. They studied the
relationship between the structure and functionality of the
brain. They found that effective connectivity better describes
the functional interactions, keeping the original anatomical
organization and discriminating between cases and controls.

The authors used the Akaike information criterion [86]
for defining the MAR order. We determined the MAR order
based on themaximumfiber length. On the other hand, in [35]
an arbitrary threshold was applied to define the AC. In our
work, we used the average weighted connectivity matrix
(Equation 9) for thresholding the AC.

The AC discards the weakest connections, which may
cause the loss of some RSN connections. In this work,
we used a reference threshold, where all the RSN connections

are preserved, leading to a connectivity matrix with 28%
connections. In addition, most restrictive ACs eliminate some
long (a higher proportion of long connections than short)
connections of the whole matrix. This behavior suggests that
the connection weights are stronger for short connections in
RSNs. However, the correlation between the delay matrix
and the average weighted connectivity matrix is low (−0.30).
This occurs because very long connections are not important
in RSNs, which have low connection weights.

When removing connections of some RSNs, the MSS
between the simulated and estimated networks is lower for
the affected networks. However, even if connections are
lost, it is possible to provide with high accuracy, both the
temporal dynamics of the networks and the probability of
state transition. In addition, shorter signals are needed to
obtain the dynamics, which is relevant since the functional
activity is generally measured by short signals., and In many
cases, it is required to concatenate signals from several
subjects. We may avoid the loss of connections by using a
100% AC. However, the accuracy for recovering the number
of RSNs decreases to 40%. Besides, the MSS between the
simulated and estimated networks decreases, requiring larger
signals to obtain the same performance as constraints with
fewer connections. The best performance is obtained for
the reference connectivity (28%), which demonstrates the
relevance of validating a method to assess the accuracy for
obtaining the optimal AC. Finally, it is possible to use only
the RSN connections. In this scenario, the performance of
the algorithm should be better. However, to avoid introducing
a bias, we were as objective as possible in defining the
thresholds of the ACs guided by the biological information
(connection weight).

Finally, we compare the performance of the proposed
algorithm with the most commonly used algorithms in the
state-of-the-art. We used the HMM-MAR algorithm [3], [28],
which is the current standard, with our simulated signals
and without AC. The results can be seen in Figure 7(a),
which shows that HMM-MAR is not able to retrieve the
number of states. However, HMM finds the structure of the
networks. The Visual Network is mixed with the Executive
Control Network; this behavior can be avoided using longer
signals. Another way to avoid omitting networks is to adapt
the algorithm to use the AC matrix, as it has proven useful
in HsMM. On the other hand, HMM-MAR, unlike HsMM-
MAR, can converge without using the AC. However, HMM-
MAR cannot correctly estimate the duration of states because
they are inherently modeled by a geometric distribution,
which differs significantly from a Log-Normal distribution.
In addition, we used the sliding window approach using K-
means and PCA. The results show that this approach is able
to detect the structure of the networks. However, the sliding
window approach has the disadvantage of a priori choice
of window size. Very small windows may provide spurious
activities among ROIs, and very large windows may omit
functional activity. Another disadvantage is that this approach
makes it impossible to model the states’ duration.
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FIGURE 8. Nodes of the Resting State Networks [RSN] based on the Desikan-Killiany atlas thresholded at 28% of all
anatomical connections as described in Section II-B4, which conserved all RSNs. Abrreviations: CAM (Caudal Anterior
Cingulate), CMF (Caudal Middle Frontal), CN (Cuneus), ENT (Entorhinal), FUS (Fusiform), InfP (Inferior Parietal), InfT (Inferior
Temporal), IC (Isthmus Cingulate), LOcc (Lateral Occipital), LOrb (Lateral Orbitofrontal), LinG (Lingual), MOrb (Medial
Orbitofrontal), MT (Middle Temporal), PH (Parahippocampal), PCen (Paracentral), POper (Pars Opercularis), POrb (Pars
Orbitalis), PTria (Pars Triangularis), Pcal (Pericalcarine), PostC (Postcentral), PostCin (Posterior Cingulate), Prec (Precentral),
PCun (Precuneus), RAC (Rostral Anterior Cingulate), RMF (Rostral Middle Frontal), SupF (Superior Frontal), SupP (Superior
Parietal), SupT (Superior Temporal), Supra (Supramarginal), TT (Transverse Temporal), Ins (Insula).

In order to test the advantages of the AC, we adapted the
AC to apply to the sliding window approach. Applying the
AC improves the results of losing connections or maintaining
spurious connections. The largest differences are obtained
in the DMN and the parietal networks (FPN and TPN).
Although the AC improves the results, it is necessary to adapt
it for this type of algorithm by disregarding the information of
the connection delay contained in the AC. This may represent
a disadvantage because the connection delay information has
the potential to reveal the workings of functional dynamics in
the brain.

In real data, the delay of connections may be variable
among different people due to diseases [87], aging, or the
natural development of brain connections resulting from
their experiences. However, [87] modeled the conduction
delays in the corpus callosum and did not find differ-
ences with age. In our work, we used a single delay

for each connection, which may be a simplistic approach.
Nevertheless, we used 5 ms of temporal resolution; thus,
we may assume that the sample rate absorbs the delay
variability.

A significant aspect to consider in the connection delay
representation is the number of ROIs to characterize the
networks. If more ROIs are used, we may obtain better
descriptions of the interactions. However, it may be required
to use very restrictive AC due to the increased model
complexity. In any case, we used an ROI atlas extensively
used in the literature. In addition, our approach has the
flexibility to add an autoregressive if the parcellation is
considered to have multimodal regions. This occurs when
a region consider several nodes that can be separated
with more fined-grained parcellations. Future work could
explore different atlases and evaluate the impact of the atlas
selection.
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FIGURE 9. a) Illustration of the MSS of the simulated networks versus the networks
estimated with HMM using a 600-second signal. The x-axis shows the networks
estimated by HMM-MAR, and the y-axis shows the simulated networks. HMM, without
anatomical constraint, is not able to detect the 7 states present in the simulated
non-stationary signal. The results show that the networks do not recover correctly. (b) In
the three graphs, the y-axis indicates the % of AC used, and the x-axis the duration in
seconds of experiment 1 (Section III-A). Left panel shows the recovery performance of
the transition matrix by means of the MSS distance between the real matrix and the
estimated one. The range of this metric is from 0 to 1, and it was obtained only for
those cases where the number of states was correctly determined. The black color
indicates that it is not possible to calculate this metric because there are no cases
where it converges to the correct number of states. In most cases, the recovery is very
good, resulting in values around 0. Center panel shows the recovery performance of the
durations distribution by means of the KL distance between the real distribution and
the estimated one. In most cases, the recovery is very good, resulting in values around
0.1. Right panel shows the % recovery of the state sequence. In most cases, the recovery
is very good, resulting in values around 98%.

The results prove the impact of the AC on the algorithm’s
performance. The accuracy of estimating the number of
states decreases with a more relaxed AC. Obtaining a better
performance would require longer signals and estimation
times. In any case, AC turns the effort of the algorithm com-
putationally approachable. For more restrictive constraints
that lead to the loss of some RSN connections, the algorithm
can still recognize all 7 RSNs, which shows the algorithm’s
robustness to errors in the definition of AC. Furthermore,
the accuracy in estimating the state duration distributions
demonstrates a correct estimation of the signal dynamics.

The proposed method enables an efficient and feasible
tool to analyze brain dynamics. In addition, using AC can
improve the performance of other algorithms, such as sliding
windows. The data used in this work are freely available at
the following link.3

3https://u.pcloud.link/publink/show?code=kZRPYBVZn1CFk5iJGtjRv
drdh2JVwk1hvRrX

APPENDIX A
VARIATIONAL BAYES INFERENCE
In order to infer the parameters of the model, we utilize
the variational approach [2], [30], which requires alternating
between an E-step and an M-step. The E-step is responsible
for estimating the probabilities of the hidden states, while
the M-step estimates the model parameters. This type of
algorithm ensures convergence and can be tracked using the
model’s free energy. To begin, we will outline the M-step.
A.1. M-Step
a) W Coefficient MAR

q(w(k)
nln ) = (N (w(k)

nln |w̄
(k)
nln , ϒ

(k)
n

−1
) (14)

With:

w̄(k)
nln =

T∑
t=1

γ
(k)
t × φ̄(k)

n × ϒ (k)
n

−1
× xlnt

T
× ynt (15)
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FIGURE 10. The plots display 1-CDF for the states of the seven RSNs, where CDF is the cumulative distribution
function of the state duration, estimated by the algorithm, varying the AC for a signal size of 600 seconds. The red
dashed lines indicate the design CDF, the continuous lines show the CDF for the different RSNs, and the black
dashed lines delimit the reliability area. The y-axis is on a logarithmic scale.

FIGURE 11. Free Energy convergence curve in training: The estimated number of states corresponds to the maximum of the Free Energy
function, in this case marked with the figure of a red triangle. Each graph shows the curve with the model with and without the use of RE.

ϒ (k)
n = (

T∑
t=1

γ
(k)
t × λ̄

(k)
nln × φ̄(k)

n × xlnt × xlnt
T )−1

(16)

where w̄(k)
nln and ϒ

(k)
n correspond to the mean and

Precision of Normal distribution, γ
(k)
t corresponds to

the probability that state k is active at time t, which is
obtained in E-Step.
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FIGURE 12. (a) Histogram of the connection weight. The colors show the histogram of the different AC. (b) The minimum, mean and
maximum value of the connection delay (in millimeters) corresponding to each AC. With stronger restrictions, some long connections were
lost. However, with the 15% AC, only short connections of the ECN and DMN were lost.

b) MAR Coefficient Precision

q(λ(k)
nj ) = Gam(λ(k)

nj |b(k)nj , c(k)nj ) (17)

With:

b(k)nj = b̂nj +
1
2

(18)

c(k)nj =

( 1
ĉnj

+
1
2

×
(
w̄(k)T
n × w̄(k)

n + Tr(ϒ (k)
n )

))−1

(19)

where b(k)nj and c(k)nj correspond to the shape and scale of
Gamma distribution.

c) Observation Noise Precision

q(φ(k)
n ) = Gam(φ(k)

n |e(k)n , f (k)n ) (20)

With:

e(k)n = ên +

∑N
t=1 γ

(k)
t

2

f (k)n =

{ 1

f̂n
+

N∑
t=1

1
2

× γ
(k)
t ×

(
(ynt − w̄(k)

nln

T
× xlnt )

2

+ xlnt
T

× ϒ (k)
n

−1
× xlnt

)}−1
(21)

where e(k)n and f (k)n correspond to the shape and scale of
Gamma distribution.

A.2. E-Step
To estimate the probabilities of the HMM hidden state
sequence in the variational E-step of the algorithm,
we can use regular forward-backward recursions [2].
This process requires the calculation of conditional

likelihoods.

P(yt |W , 8, st , τt ) = exp(
N∑
t=1

−
1
2

× log(2 × π)

−
1
2

× (9(e(k)n ) + log(f (k)n ))

−
1
2

× ((ynt − w̄(k)
nln

T
× xlnt )

2

+ xlnt
T

× 8(k)
n

−1
× xlnt ) (22)

where 9 corresponds to the Digamma function.

APPENDIX B
SUPPLEMENTARY IMAGES
See Figs. 8–12.
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