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Abstract

Brain connectivity analysis begins with the selection of a parcellation scheme that

will define brain regions as nodes of a network whose connections will be studied.

Brain connectivity has already been used in predictive modelling of cognition, but it

remains unclear if the resolution of the parcellation used can systematically impact

the predictive model performance. In this work, structural, functional and combined

connectivity were each defined with five different parcellation schemes. The resolu-

tion and modality of the parcellation schemes were varied. Each connectivity defined

with each parcellation was used to predict individual differences in age, education,

sex, executive function, self-regulation, language, encoding and sequence processing.

It was found that low-resolution functional parcellation consistently performed above

chance at producing generalisable models of both demographics and cognition. How-

ever, no single parcellation scheme showed a superior predictive performance across

all cognitive domains and demographics. In addition, although parcellation schemes

impacted the graph theory measures of each connectivity type (structural, functional

and combined), these differences did not account for the out-of-sample predictive

performance of the models. Taken together, these findings demonstrate that while

high-resolution parcellations may be beneficial for modelling specific individual differ-

ences, partial voluming of signals produced by the higher resolution of the parcella-

tion likely disrupts model generalisability.

K E YWORD S

brain connectivity, cognition, demographics, parcellation, prediction

1 | INTRODUCTION

Neuroimaging research has demonstrated that adaptive behaviour

relies not only on localised activation in the brain but also on effective

coordination of activity across remote neuronal populations

(Alvarez & Squire, 1994; Seeley et al., 2007). To understand how

information is exchanged in the human brain, research investigates

the white matter connections between regions (structural connectiv-

ity [SC]) and the statistical associations between their activity (func-

tional connectivity [FC]) (Park & Friston, 2013). SC and FC have been

related to healthy cognitive function throughout the lifespan (Salami

et al., 2014), whereas their disruption has been demonstrated to char-

acterise many psychiatric, developmental and clinical diagnostics

(de Kwaasteniet et al., 2013; Guye et al., 2010; Hahn et al., 2013;
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Keller et al., 2007; van den Heuvel & Fornito, 2014). Consequently,

the study of the relationship between brain connectivity and cogni-

tion has become increasingly popular (Farahani et al., 2019;

Hoppenbrouwers et al., 2014; Manca et al., 2018).

One of the most central questions in the analysis of brain connec-

tivity is how to define the brain regions (i.e., brain parcellation) used

for connectivity analysis (Eickhoff et al., 2018; Yao et al., 2015). In the

analysis of brain connectivity, the brain is idealised (modelled) as a set

of interconnected nodes each representing a brain region that is

assumed to constitute a coherent unit of activity. The connectivity

pattern between regions is then studied and often used to explain and

predict cognitive function. Therefore, brain parcellation is a key step

of any connectivity analysis. Nearly two dozen different brain parcel-

lations are now available (Arslan et al., 2018; Dickie et al., 2017;

Eickhoff et al., 2018; Lawrence et al., 2021). Each parcellation has

been defined using different neuroimaging data and parcel generation

algorithms based on different parcellation criteria. Consequently, each

parcellation offers different node locations, sizes and shapes therefore

leading to different representations of the activity units used for anal-

ysis. However, clinical and cognitive neuroimaging research does not

yet have a standard or most common parcellation. In addition, it is

unlikely that a ‘one size fits all’ standard will emerge because every

parcellation method has been defined to highlight specific properties

of the brain (Eickhoff et al., 2018). To illustrate, we may choose to

parcellate the brain based on histological boundaries (Amunts &

Zilles, 2015; Brodmann, 1909) or clustering of a group of similarly

active voxels (Cohen et al., 2008). Such choices appear to impact con-

sistency of research findings (Dhamala et al., 2021; Mellema

et al., 2020; Ota et al., 2014; Pervaiz et al., 2020).

Despite the lack of an accepted standard, parcellation choice is an

important decision in network analysis and it carries profound conse-

quences for interpretation of results and comparison across different

studies. It has been empirically demonstrated that parcellation can

impact the properties of the estimated brain networks. For example,

the parcellation used can impact the small world coefficient of SC and

FC, which refers to the network's tendency to segregate into clusters

of strongly connected nodes relative to its tendency to produce short

paths between any pair of nodes (Fornito., 2010; Wang et al., 2009;

Zalesky et al., 2010). In addition, the ability to produce highly con-

nected nodes (aka degree distribution) can also be affected by the

specific parcellation used (Fornito., 2010; Wang et al., 2009; Zalesky

et al., 2010). Similarly, the choice of parcellation resolution has also

been demonstrated to impact the similarities between structural and

functional connectivity (Akiki & Abdallah, 2019; Ashourvan

et al., 2019; Honey et al., 2009).

Parcellation choice alone has been demonstrated to impact the

explanatory and predictive power of neuroimaging models of cogni-

tion in healthy and clinical populations (Dhamala et al., 2021; Mellema

et al., 2020; Ota et al., 2014; Pervaiz et al., 2020). In particular, some

evidence suggests that high-resolution parcellations may benefit the

predictive power of connectivity models of cognition (Mellema

et al., 2020; Pervaiz et al., 2020). The difference in predictive power

of various brain parcellations may be related to the properties of the

networks that become more prominent with specific parcellations. For

example, increased small world characteristics of FC have been

related to high intelligence (Hilger et al., 2017; Langer et al., 2012).

Therefore, if one brain parcellation tends to generate networks with

increased specific properties, then this parcellation may influence the

accuracy of model predictions. However, it is also possible that differ-

ence in predictive power of specific models of cognition is related to

whether specific parcellations generate accurate connectivity profiles.

For example, it is likely that a functionally-defined parcellation is less

prone to partial voluming of functional signals as compared to

structurally-defined parcellation. In contrast, a structurally-defined

parcellation that considers anatomical boundaries of regions may be

better suited to define SC. In support of this proposal, Dhamala et al.

(2021) have found a trend that SC defined with structural parcellation

yielded more effective models of crystallised cognition than SC

defined with activation-based parcellation.

However, no work has yet been conducted to assess if the parcel-

lation method systematically influences network architecture and the

explanatory and/or predictive power of models of cognition. The pre-

sent work investigated this question by defining SC and FC with a

variety of parcellations: the resting state activity-defined parcellation

with either 93, 184 and 278 parcels (Shen et al., 2013), the

structurally-defined parcellation (Rolls et al., 2020) and a functional

parcellation (Fan et al., 2016). Our work then produced connectivity-

based predictive models of cognition and used graph theory to assess

the global differences in network properties that may explain model

differences in model performance. Doing so, we tested the hypothe-

ses that (1) SC-based models of demographics and cognition will be

more effective when connectivity is defined with a structural parcella-

tion (Rolls et al., 2020) than with a parcellation based on a functional

activation (Fan et al., 2016; Shen et al., 2013), (2) FC-based models of

demographics and cognition will be more effective when connectivity

is defined with a parcellation based on brain function (Fan

et al., 2016; Shen et al., 2013) than with a parcellation based on struc-

ture, (3) use of high-resolution parcellation will improve explanatory

and predictive power of models of demographics and cognition

regardless of connectivity type, (4) differences in model explanatory

and predictive power will systematically map with differences in net-

work organisation, as measured by graph theory.

2 | METHODS

2.1 | Participants

Neuroimaging and cognitive data were obtained for 250 unrelated

subjects from the 1200-subject release of the Human Connectome

Project (HCP). The subjects were blindly selected from the HCP data-

set by only including those subjects who have complete behavioural

data and neuroimaging data (i.e., at least one T1-weighted image,

resting-state fMRI and diffusion MRI). For consistent treatment of

behavioural and neuroimaging subjects' data selection, one subject

was excluded from the neuroimaging analysis due to incomplete
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behavioural data. The sample consisted of 138 females and 111 males

in the age range of 22 and 36 years.

2.2 | Measures of cognition

The present work used the same measures of cognition as our previous

work (Litwi�nczuk et al., 2022). Analysed tasks included: Picture

Sequence Memory, Dimensional Change Card Sort, Flanker Inhibitory

Control and Attention Task, Penn Progressive Matrices, Oral Reading

Recognition, Picture Vocabulary, Pattern Comparison Processing Speed,

Delay Discounting, Variable Short Penn Line Orientation Test, Short

Penn Continuous Performance Test, Penn Word Memory Test and List

Sorting. These assessments were obtained from the Blueprint for Neu-

roscience Research–funded NIH Toolbox for Assessment of Neurologi-

cal and Behavioral function (http://www.nihtoolbox.org) and tasks from

the Penn computerised neurocognitive battery (Gur et al., 2010). Princi-

pal component analysis (PCA) with VARIMAX rotation was then used as

a feature extraction method and applied to the behavioural dataset. The

extracted PCA rotated components reflected specific latent cognitive

domains, interpreted as Executive Function, Self-regulation, Language,

Encoding and Sequence Processing. The present work uses the PCA

scores obtained previously for each cognitive domain.

2.3 | Minimally processed neuroimaging data

The HCP provides minimally processed neuroimaging data that was

used here, the data acquisition and processing pipeline has been dis-

cussed in detail by Glasser et al. (2013). All neuroimaging data were

collected with a 3T Siemens ‘Connectome Skyra’ scanner that uses

the Siemens 32-channel RF receive head coil and with an SC72 gradi-

ent insert (Ugurbil et al., 2013). Here, we utilised Version 3 of the min-

imal processing pipeline implemented with FSL 5.0.6 (Jenkinson

et al., 2012) and FreeSurfer 5.3.0-HCP (Dale et al., 1999).

T1 weighted MR images were acquired with a 3D MPRAGE

sequence (TR = 2400 ms, TE = 2.14, TI = 1000 ms, flip angle = 8�,

FOV = 224 by 224 mm, voxel size = 0.7 mm isotropic). Rs-fMRI data

was collected using the gradient-echo EPI (TR = 720 ms, TE = 33.1 ms,

flip angle = 52�, FOV = 208 by 180 mm, 70 slices, thickness = 2.0 mm,

size = 2.0 mm isotropic). Scans were collected in two sessions, each

lasting approximately 15 min. All four rs-fMRI scans were used, the rs-

fMRI scans were collected both in left-to-right and right-to-left direc-

tions. In addition, in the original data, spin echo phase reversed images

were acquired for registration with T1 images and the spin echo field

maps were acquired for bias field correction. Diffusion-weighted MR

images were acquired with spin-echo EPI sequence (TR = 5520 ms,

TE = 89.5 ms, flip angle = 78�, refocusing flip angle = 160�,

FOV = 210 by 180 mm, 111 slices, thickness = 1.25 mm,

size = 1.25 mm isotropic). Each gradient consisted of 90 diffusion

weighting directions plus 6 b = 0. There were 3 diffusion-weighed shells

of b = 1000, 2000 and 3000 s/mm2. SENSE1 multi-channel image

reconstruction was used (Sotiropoulos et al., 2013).

2.4 | Additional processing of neuroimaging data

The Neuroimaging data were further processed following the same pro-

cessing pipeline as in our previous work (Litwi�nczuk et al., 2022). This

pipeline is summarised for completeness in the next two sub-sections.

Both SC and FC were defined with five parcellation schemes that var-

ied in their modality and resolution. For clarity, throughout this work

the parcellation name will be assisted with the number of parcels:

1. Low-resolution resting-state functional parcellation composed of

93 parcels (Shen et al., 2013)

2. Structural parcellation known as automated anatomical labelling

(AAL3) composed of 166 parcels (Rolls et al., 2020)

3. Moderate-resolution resting-state functional parcellation com-

posed of 184 parcels (Shen et al., 2013)

4. Functional parcellation known as Brainnetome composed of

246 parcels (Fan et al., 2016).

5. High-resolution resting-state functional parcellation composed of

278 parcels (Shen et al., 2013)

2.4.1 | Structural data and structural connectivity
calculation

The diffusion data were further analysed using the BEDPOSTX proce-

dure in FSL, which runs Markov Chain Monte Carlo sampling to esti-

mate probability distributions on diffusion parameters at each voxel.

This information was used in the FDT module of FSL to run ROI-

to-ROI probabilistic tractography with ProbtrackX. Tractography was

run between parcels in each of the five parcellations.

During tractography, 5000 streamlines were initiated from each

voxel with step length of 0.5 mm (Behrens et al., 2003; Behrens

et al., 2007; Jenkinson et al., 2012). Streamlines were constrained

with curvature threshold of 0.2, maximum of 2000 steps per stream-

line and volume fraction threshold of subsidiary fibre orientations of

0.01. A SC matrix between regions was constructed by first counting

the number of streamlines originating from a seed region i that

reached a target region j (Sij). These counts are asymmetric since the

count of streamlines from region i to j is not necessarily equal to

the count of streamlines from region j to i (Sij ≠ Sji), but they are highly

correlated for all subjects (lowest Pearson's Correlation was 0.76,

p < 0.001). Based on these counts, the weight Wij (entries of the SC

matrix) between any two pairs of regions i and j was defined as the

ratio of the total streamline counts in both directions (SijþSji), to

the maximum possible number of streamlines that can be shared

between the two regions, which is NiþNj

� ��5000 (where Ni and Nj

are the number of seed voxels in regions i and j, respectively):

Wij ¼
SijþSji
� �

NiþNj

� ��5000 :

Similar to previous studies, the weight Wij can be interpreted as

capturing the connection density (number of streamlines per unit
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surface) between nodes i and j, which accounts for possible bias due

to different sizes of the seed regions (Hagmann et al., 2008;

Ingalhalikar et al., 2013). Note that the SC matrix defined based on

these weights is symmetric because swapping around the regions'

indices does not change the result; and it is also normalised between

0 and 1, because the maximum value of the numerator can only be

reached when all streamlines originating from each of region reach

the other region, so that Mij ¼Ni �5000 and Mji ¼Nj �5000, which

gives Wij ¼1.

2.4.2 | Functional data and functional connectivity
calculation

The minimally processed rs-fMRI data were obtained and then fur-

ther processed (Glasser et al., 2013), as recommended by Nieto-Cas-

tanon (2020) using the CONN Toolbox (Whitfield-Gabrieli & Nieto-

Castanon, 2012). Briefly, images were realigned, a slice-timing cor-

rected and outlier detection of functional images for scrubbing was

performed with artefact detection tools (ART, https://www.nitrc.

org/projects/artifact_detect/). Grey matter, white matter, cerebro-

spinal fluid and non-brain tissues were then segmented. Images were

normalised and smoothed with a 6 mm full width at half maximum

Gaussian kernel. Next, the data were denoised with default Conn

denoising options using the anatomical component-based noise cor-

rection procedure (Behzadi et al., 2007). This procedure removes

artefactual components from the data, including noise components

from cerebral white matter and cerebrospinal areas, subject-motion

parameters (Friston et al., 1996), identified outlier scans (Powell

et al., 2006) and constant and first-order linear session effects

(Whitfield-Gabrieli & Nieto-Castanon, 2012). Then standard denois-

ing steps were applied including scrubbing, motion regression and

application of a high pass filter (0.01 Hz cut-off ), and a low pass filter

(0.10 Hz cut-off ).

FC analysis was performed based on the same five parcellations.

The average blood oxygenation level-dependent signal in each parcel

was obtained and the pairwise (parcel-to-parcel) correlation of the

averaged signals was calculated. Since the CONN toolbox produces

Fisher's Z-scores (Fisher, 1915), a hyperbolic tangent function was

used to reverse Fisher's transformation and obtain original correlation

values ranging between �1 and 1.

2.5 | Model construction

Predictive models of five cognitive domains and three demographic

variables were separately constructed using FC, SC or concatenated

SC and FC matrices (referred to as combined connectivity [CC]) as

predictors. Models also differed in the brain parcellation scheme used

to define the network nodes for connectivity calculations. This led to

a total of 120 models to be analysed ([5 cognitive domains +3 demo-

graphic characteristics]*3 connectivity types*5 parcellation schemes).

Prior to model estimation, for each cognitive domain, the confounding

effect of age, gender and education was regressed out of the

response variable. Meanwhile, for each demographic, the remaining

demographics were included in the main model as covariates of no

interest. Then, all models were estimated using a principal component

regression (PCR) approach with elastic net regularisation of the

regression coefficients in latent space (EN-PCR). The overall estima-

tion procedure consisted of the following steps:

1. PCA decomposition was used to orthogonalise the predictors'

(connectivity) matrix

2. A regression model in latent (PCA) space was fitted with elastic net

regularisation for the regression coefficients

3. Regression coefficients obtained in PCA space were projected

back to the original connectome space and used to produce pre-

dicted responses.

To tune the elastic net regularisation hyper-parameters alpha and

lambda and evaluate the out-of-sample model performance, a Boot-

strap bias corrected cross-validation (BBC-CV) approach was used

(Tsamardinos et al., 2018). In brief, the BBC-CV consisted in a

repeated (50 times) 5-fold cross-validation with hyperparameter tun-

ing (CVT), followed by a Bootstrap bias correction procedure (5000

bootstrap samples). The later Bootstrap step accounts for optimistic

biases in the estimation of model performance introduced by using

the same data for both hyperparameter tuning and model evaluation

in the CVT step (Tsamardinos et al., 2018). The explained variation

(coefficient of determination) between the predicted and observed

responses was used as the statistic for both hyperparameter tuning

and out-of-sample performance evaluation of the model (Poldrack

et al., 2020). The resultant population of bootstrapped statistics was

used to produce mean performance estimates of the EN-PCR learning

strategy and corresponding confidence intervals. For a similar applica-

tion of the BBC-CV method in the context of predictive modelling of

cognition based on connectivity we refer the authors to our previous

paper (Litwi�nczuk et al., 2022).

Finally, a permutation test was used to assess how likely it is to

get the observed models' performance by chance. Specifically, the

out-of-sample predictions produced by the CVT (249 participants)

were sampled without replacement 5000 times. Each time, the entries

in the observed response variable were permuted. Then, the models'

coefficient of determination was estimated. This permuted distribu-

tion was compared with the distribution of coefficients of determina-

tion obtained for the non-permuted data. That is, the p-value for

testing the significance of models' performance was determined by

computing the proportion of permuted statistics at least as high as or

greater than the observed statistics.

2.6 | Model comparison

All following analysis was done separately for each cognitive domain

and connectivity type, and the analysis compared the effects of par-

cellation choice.
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To compare the models' whole-sample explanatory power, the

Akaike information criterion (AIC) for each model was obtained.

The AIC balances the goodness-of-fit of the model (model accu-

racy) against its complexity (the number of estimable parameters

of the model) so that a reduced AIC is associated with improved

model quality. Given any two models M1 and M2, a positive differ-

ence (ΔAIC = AIC [M1]�AIC [M2]) is interpreted as weak (1–

2 units), strong (2–4 units), considerably strong (4–7 units) and

decisive (>10) evidence against evidence against M1 (Burnham &

Anderson, 2016). We used the AIC difference to compare the

explanatory power of alternative models of the same response var-

iable (cognitive or demographic) with the same connectivity

modality as predictor (SC, FC or CC). The models under compari-

son only differed in the type of parcellation used to compute the

connectivity predictors. Consequently, if two parcellations had

similar explanatory power but one was coarser than the other, the

coarser parcellation was favoured due to requiring fewer parame-

ters (number of connectivity predictors) to model the same

response data.

To compare the models' out-of-sample predictive performance,

the models' out-of-sample predictions (generated during repeated

BBC-CVT) were used to obtain a bootstrapped (5000 samples) esti-

mates of the models' performance statistics (coefficient of determina-

tion). Additionally, the non-parametric Wilcoxon rank sum test for

equal medians was used to assess the significance of differences in

performance between different models. These comparisons were only

done for models which performed better than chance.

2.7 | Graph theory measures

Graph theoretic measures were calculated based on the weighted,

undirected SC and FC matrices of every subject, using The Brain

Connectivity Toolbox (http://www.brain-connectivity-toolbox.net).

Measures of global network organisation included small-world pro-

pensity, global efficiency, assortativity, modularity statistic, transi-

tivity and coreness statistic resulting from core-periphery partition.

Small world propensity requires computation of the clustering coef-

ficient and the shortest path length of the network (Muldoon

et al., 2016). The clustering coefficient was obtained using Onnela's

algorithm (Muldoon et al., 2016; Onnela et al., 2005) whereas the

shortest path length was obtained using the Floyd–Warshall Algo-

rithm applied to the weighted graph obtained from the inverse of

each connectivity matrix. Modularity statistic requires computation

of network modules, which were defined with Newman's algorithm

(Newman, 2006).

To study the impact of the parcellation on global network organi-

sation, a series of paired t-tests were used to test for significant dif-

ferences between the same global graph theoretic measure computed

for two different parcellation schemes. To explore the impact of

global network architecture yielded by each parcellation on predictive

modelling, regression models were fitted to each observed cognitive

domain using graph theory. Graph theory models were fitted and

compared in the same manner as for connectivity but without elastic-

net regularisation.

3 | RESULTS

3.1 | Connectivity

3.1.1 | Predictive modelling of demographics

Results of the cross-validation of models of demographics are pre-

sented in Figures 1–3. Cross-validation results demonstrated that only

FC defined using Shen (278) parcellation did not produce above

chance out-of-sample predictions of Education. All remaining models

of all demographic variables performed above chance regardless of

the parcellation schemes or the connectivity modality used as

predictor.

Results of Wilcoxon rank sum test comparing out-of-sample

models' performance are shown in Table S1, where the false discovery

rate (FDR) adjusted significance threshold equals 0.0095 (Benjamini &

Hochberg, 1995). The following results and effect sizes (Rosenthal

et al., 1994) have been written for significant pair-wise comparisons

presented in Table S1.

Out-of-sample predictive performance of age was significantly

higher for models using AAL3 (166) parcellation in SC than any other

parcellation, for Shen (278) in FC and for Shen (184) in CC. In the case

of education, out-of-sample predictive performance was also signifi-

cantly higher for models using AAL3 (166) parcellation in SC than

alternative parcellations. In FC, highest out-of-sample predictive per-

formance for education was found for both Shen (184) and Brainne-

tome (246), and there was no significant difference between their

prediction performance. For CC, Brainnetome (246) parcellation per-

formed more effectively at predicting education than alternative par-

cellations. Finally, Sex was most effectively predicted using Shen

(93) parcellation in SC, and Shen (184) in both FC and CC.

3.1.2 | Predictive modelling of cognition

Results of the cross-validation of models of cognition are presented in

Figures 4–8. It was found that the Shen (93) parcellation consistently

produced out-of-sample predictions of cognition that explained more

variance in unseen samples than chance. This was observed across

SC, FC and CC.

All pairwise comparisons of the cross-validation performance are

presented in Table S2. The probability of pairwise comparisons was

adjusted with FDR (Benjamini & Hochberg, 1995). All following com-

parisons have passed the significance threshold of 0.0184.

Despite consistently explaining more variance in unseen sample

than chance, Shen (93) rarely outperformed other parcellations at pro-

ducing effective predictions of cognition (vs. Shen 184 Self-regulation

structural connectivity, Language versus Brainnetome (246) structural

connectivity, functional connectivity and combined connectivity,
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Language versus AAL3 (166) with CC and Language versus Shen

278 with CC). Next, AAL3 (166) consistently produced the most effec-

tive predictions of Executive Function utilising FC and CC. Similarly,

Brainnetome (246) consistently produced the most effective predic-

tions of Self-regulation utilising SC. Shen (184) parcellation

consistently produced the most effective predictions of Language uti-

lising FC. Shen (278) parcellation consistently produced the most

effective predictions of Encoding utilising SC. There was no other par-

cellation scheme that consistently outperformed other parcellation

schemes for any given type of connectivity or any cognitive construct.

F IGURE 1 Results of bootstrap bias corrected cross-validation of age models constructed with structural connectivity, functional
connectivity and combined connectivity, as measured by the coefficient of determination. The solid lines show the median scores, the boxes
show the interquartile range and ticks outside of the whiskers indicate outlier scores across all bootstrap samples. Filled boxes illustrate above-
chance predictive performance and unfilled boxes illustrate below-chance prediction.

F IGURE 2 Results of bootstrap bias corrected cross-validation of education models constructed with structural connectivity, functional
connectivity and combined connectivity, as measured by the coefficient of determination. The solid lines show the median scores, the boxes
show the interquartile range and ticks outside of whiskers indicate outlier scores across all bootstrap samples. Filled boxes illustrate above-chance

predictive performance and unfilled boxes illustrate below-chance prediction.
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F IGURE 3 Results of bootstrap bias corrected cross-validation of sex models constructed with structural connectivity, functional connectivity
and combined connectivity, as measured by the coefficient of determination. The solid lines show the median scores, the boxes show the
interquartile range and ticks outside of whiskers indicate outlier scores across all bootstrap samples. Filled boxes illustrate above-chance
predictive performance and unfilled boxes illustrate below-chance prediction.

F IGURE 4 Results of bootstrap bias corrected cross-validation of executive function models constructed with structural connectivity,
functional connectivity and combined connectivity, as measured by the coefficient of determination. The solid lines show the median scores, the
boxes show the interquartile range and ticks outside of whiskers indicate outlier scores across all bootstrap samples. Filled boxes illustrate above-
chance predictive performance and unfilled boxes illustrate below-chance prediction.
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F IGURE 5 Results of bootstrap bias corrected cross-validation of self-regulation models constructed with structural connectivity, functional
connectivity and combined connectivity, as measured by the coefficient of determination. The solid lines show the median scores, the boxes
show the interquartile range and ticks outside of whiskers indicate outlier scores across all bootstrap samples. Filled boxes illustrate above-chance

predictive performance and unfilled boxes illustrate below-chance prediction.

F IGURE 6 Results of bootstrap bias corrected cross-validation of language models constructed with structural connectivity, functional
connectivity and combined connectivity, as measured by the coefficient of determination. The solid lines show the median scores, the boxes
show the interquartile range and ticks outside of whiskers indicate outlier scores across all bootstrap samples. Filled boxes illustrate above-chance
predictive performance and unfilled boxes illustrate below-chance prediction.
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F IGURE 7 Results of bootstrap bias corrected cross-validation of encoding models constructed with structural connectivity, functional
connectivity and combined connectivity, as measured by the coefficient of determination. The solid lines show the median scores, the
boxes show the interquartile range and ticks outside of whiskers indicate outlier scores across all bootstrap samples. Filled boxes illustrate

above- chance predictive performance and unfilled boxes illustrate below-chance prediction.

F IGURE 8 Results of bootstrap bias corrected cross-validation of sequence processing models constructed with structural connectivity,
functional connectivity and combined connectivity, as measured by the coefficient of determination. The solid lines show the median scores, the
boxes show the interquartile range and ticks outside of whiskers indicate outlier scores across all bootstrap samples. Filled boxes illustrate above-
chance predictive performance and unfilled boxes illustrate below-chance prediction.
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3.2 | Graph theory

3.2.1 | Comparison of global organisation across
parcellations

Figures S17 and S18 show the distribution of scores obtained for each

participant's global graph theory measures for each parcellation.

Tables S3 and S4 present pair-wise comparisons made to assess dif-

ferences in global graph theory measures across parcellations. It was

generally found that parcellation schemes significantly impacted net-

work organisation, as measured by all six graph theory measures.

However, the direction of this impact was not necessarily shared

across SC and FC. For example, structural parcellation scheme (AAL3,

166) produced high modularity statistic in SC, but low modularity sta-

tistic in FC. Further, high resolution scheme (Shen, 278) produced

lowest global efficiency and transitivity in SC, whereas in FC a lower

resolution parcellation (AAL3, 166) produced lowest global efficiency

and transitivity.

3.2.2 | Predictive modelling of demographics and
cognition

Results of the cross-validation of models of demographics are pre-

sented in Figures S19–S26. It was found that graph theory measures

of global organisation of SC, FC and CC could not produce out-

of-sample predictions of demographics or cognition that would

explain more variance in unseen samples than chance.

4 | DISCUSSION

Currently available brain parcellation schemes vary in the neuroimag-

ing data and the node-generation algorithms used to obtain them.

Consequently, the obtained parcellations vary in the number, size and

shape of the nodes. These differences have been demonstrated to

largely impact the predictive power of connectivity-based models of

cognition (Dhamala et al., 2021; Mellema et al., 2020; Ota et al., 2014;

Pervaiz et al., 2020). However, to date, it remained unclear if the

method of parcellation is systematically impacting predictive models.

To fill this gap in the literature, the present research defined SC, FC

and CC with five different popular parcellation schemes and then con-

structed predictive models of demographics and cognition based on

models using each connectivity modality and parcellation scheme as

predictors. Results of AIC-based model comparison did not show a

notable benefit to choosing a specific parcellation to model sample

demographics. However, there was some trend towards the benefit of

using the low-resolution functional parcellation (Shen 93) to model

cognition. Analysis of the out-of-sample performance of the models

showed that most parcellations produced above-chance predictive

performance of demographics for all connectivity modalities. The only

exception to this was the model of educational level using FC with

the Shen 278 parcellation. In addition, it was found that models of

demographics showed higher performance when using FC defined

with functional parcellations. There was no consistent benefit to using

low or high-resolution parcellations for this connectivity modality.

When SC was used to model age and education, AAL3 (166) parcella-

tion produced the highest out-of-sample performance. In contrast,

models of sex based on SC modality benefitted from using low-

resolution functional parcellation (Shen, 93). When out-of-sample pre-

dictions of cognition were assessed, it was found that no parcellation

scheme would consistently produce significantly higher predictive

performance than the others, even when the connectivity and parcel-

lation corresponded to the same modality (functional or structural).

However, out-of-sample predictions of cognition were consistently

above chance when using connectivity defined with the Shen 93 par-

cellation scheme. This was the only parcellation scheme that achieved

such consistency in performance.

Prior research has demonstrated that effective modelling of cog-

nition to some extent depends on parcellation. For example, Dhamala

et al. (2021) reported that SC defined with low-resolution FreeSurfer

parcellation succeeded in producing predictions of crystallised intelli-

gence in an unseen sample. However, the same connectivity failed to

produce effective predictions when in-house high-resolution parcella-

tion (CoCo 439) was used instead. In contrast, FC tended to benefit at

predicting cognitive abilities when CoCo 439 parcellation was used.

Their CoCo 439 parcellation was defined from functional data sug-

gesting a benefit of using a parcellation that corresponds to the

modality of connectivity. However, in the present report, when indi-

vidual cognitive domains were analysed, such benefits were lost. For

example, we found that Executive Function was most effectively

modelled with FC (as reflected by out-of-sample predictions), when

FC was defined with AAL3 (166) parcellation—a parcellation defined

with neural anatomy. In addition, similarly to the report from Dhamala

et al. (2021), this work could not identify a single superior parcellation.

Such inconsistency of findings warrants caution when interpreting

results obtained with predictive modelling. Authors must consider that

any superiority of a given model defined with a given set of data may

be related to the parcellation scheme used. It does remain possible

that some alternative publicly available parcellation scheme exists that

would emerge as superior to others, but so far there is no evidence to

suspect that such parcellation exists.

In another seminal report, Pervaiz et al. (2020) demonstrated that

the most accurate predictions of fluid cognition were produced with

models defined with high-resolution parcels generated by spatial inde-

pendent component analysis. With this algorithm, parcels can overlap

and are not necessarily contiguous. This contrasts with publicly avail-

able parcellations used in the present work, which were defined to

identify non-overlapping, contiguous parcels. Consequently, the par-

cellations offered with fewer constraints may prove to produce more

accurate parcels with coherent signals (i.e., avoid partial voluming of

signals). For example, recent work has demonstrated graded changes

in connectivity patterns across cortex (Bajada et al., 2017; Cloutman

et al., 2020), which suggests that smooth parcel boundaries may bet-

ter describe connectivity of the system. This need for overlapping par-

cels may explain why the results presented by Pervaiz et al. (2020)
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identified high resolution to benefit modelling of fluid cognition, while

our results could not identify this pattern. However, Pervaiz et al.

(2020) have not assessed the predictive value of various parcellation

schemes in modelling done with different parcellations with SC or

CC. The present work adds to the field the finding that SC and CC do

not benefit in predictive power from modality-corresponding parcella-

tion or a specific resolution of parcellation.

A key consideration in the future may be the choice of parcella-

tion scheme. In the present work, we found that demographics and

cognition were well predicted by a low-resolution functional parcella-

tion scheme (Shen, 93). This was observed regardless of whether SC,

FC or CC was used to predict demographics and cognition. One expla-

nation of this finding is that low resolution parcellations may be less

prone to partial voluming of signals, due to individual differences in

neural anatomy and function. However, we also found that some

high-resolution parcellation schemes, when accurate, always produced

more generalisable models. This highlights that low-resolution parcel-

lations may offer some insights into neural substrates of cognition and

high-resolution parcellations further complement this information. In

addition, specific parcellation schemes had been shown to lead to dif-

ferences in identifying functionally homogeneous regions which could

impact on accuracy of predictive modelling (Peng et al., 2023;

Schaefer et al., 2018). Future work can systematically explore exactly

how different parcellation schemes impact prediction accuracy.

A key finding of this work was that although parcellation schemes

impacted the global architecture of brain networks, the global archi-

tecture of the networks had no out-of-sample predictive power with

demographics or cognition. This suggests that global brain organisa-

tion measures reflect changes in the organisation across parcellation

schemes but this change alone cannot account for the reason why

specific parcellation schemes excel at modelling demographics or cog-

nition. At the moment, partial voluming of signals presents a much

stronger explanation of why specific parcellations succeed at model-

ling cognition and others fail. In the future, it will be possible to imple-

ment in-house parcellations that allow for overlapping parcels and

manipulate the resolution of parcellation (e.g., spatial Independent

Component Analysis, spectral clustering and spectral-reordering algo-

rithm), to generate different parcellations and investigate further if

organisational properties revealed by specific resolution of parcella-

tion relate to demographics and cognition.

One key limitation of the present work is that we have not con-

sidered alternative resolutions of parcellations defined with anatomi-

cal or a hybrid of anatomical and functional information. In particular,

we have investigated four resolutions of functional parcellation but

only a single resolution of anatomical parcellation. It is possible that

investigations of alternative resolutions in these corresponding modal-

ities of connectivity would reveal a distinct benefit for predictive

modelling with SC or CC. For example, it is possible that high- or low-

resolution SC is particularly important for the prediction of cognitive

domains, and we failed to capture these benefits because we only var-

ied resolution for the functional parcellation scheme. A functional par-

cellation scheme is likely poorly suited to accurately identify parcel

volumes in structural connectivity and it may have missed the benefit

of various resolutions of structural parcellations. Another key caveat

is that in principle some of the quantitative results might differ by

employing different regression methods. However, it is expected that

the main message of this work (i.e., that parcellation schemes do not

introduce a systematic bias to modelling) would remain valid. This is

evidenced by the fact that the accuracy results presented here are

comparable to the ones obtained using other linear regression

methods (Dhamala et al., 2021; Rasero et al., 2021).

Overall, this paper has investigated whether the method of par-

cellation is systematically related to the efficiency of predictive

models of cognition and parcellation. By investigating the generali-

sability of SC, FC and CC predictive models defined with five differ-

ent parcellations, we have found that low-resolution parcellation

(Shen 93) was consistently able to produce generalisable models of

demographics and cognition. However, when alternative parcella-

tions succeeded at producing generalisable models then these par-

cellations outperformed the Shen 93 parcellation. It remained

challenging to identify a superior parcellation scheme. As a result of

this work, it is important that from here onwards authors provide a

cautious interpretation of superior models of cognition based on

connectivity, as specific parcellation schemes may unsystematically

impact the results.
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