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A B S T R A C T   

Background: The recently discovered glymphatic system may support the removal of neurotoxic proteins, mainly 
during sleep, that are associated with neurodegenerative diseases such as Alzheimer’s and Parkinson’s Disease. 
Diffusion tensor image analysis along the perivascular space (DTI-ALPS) has been suggested as a method to index 
the health of glymphatic system (with higher values indicating a more intact glymphatic system). Indeed, in 
small-scale studies the DTI-ALPS index has been shown to correlate with age, cognitive health, and sleep, and is 
higher in females than males. 
Objective: To determine whether these relationships are stable we replicated previous findings associating the 
DTI-ALPS index with demographic, sleep-related, and cognitive markers in a large sample of participants from 
the UK Biobank. 
Methods: We calculated the DTI-ALPS index in UK Biobank participants (n = 17723). Using Bayesian and Fre-
quentist analysis approaches, we replicate previously reported relationships between the DTI-ALPS index. 
Results: We found the predicted associations between the DTI-ALPS index and age, longest uninterrupted sleep 
window (LUSWT) on a typical night, cognitive performance, and sex. However, these effects were substantially 
smaller than those found in previous studies. Parameter estimates from this study may be used as priors in 
subsequent studies using a Bayesian approach. These results suggest that the DTI-ALPS index is consistently, and 
therefore predictably, associated with demographics, LUWST, and cognition. 
Conclusion: We propose that the metric, calculated for the first time in a large-scale, population-based cohort, is a 
stable measure, but one for which stronger links to glymphatic system function are needed before it can be used 
to understand the relationships between glymphatic system function and health outcomes reported in the UK 
Biobank.   

The glymphatic system is a brain-wide vascular network that may 
remove toxic proteins, and is therefore proposed to slow the formation 
of plaques (including those associated with neurodegenerative condi-
tions like Alzheimer’s [1]), and other waste materials from the brain 
parenchyma [1,2]. This system is proposed to become more active 
during sleep [3–5], and may therefore explain the relationship between 
impaired sleep and increased risk of neurodegenerative disease [6]. 
Since sleep could represent a population-level, modifiable risk factor for 
progression of neurodegenerative cognitive conditions, it is necessary to 
explore relationships between sleep, the glymphatic system, and 

cognitive ability in a large population. 
A proposed method for measuring glymphatic system health is the 

calculation of the Diffusion Tensor Imaging Along the Perivascular 
Space (DTI-ALPS) index [7]. This method mathematically isolates the 
diffusion of fluid towards in the anterior-posterior direction using the 
Apparent Diffusion Coefficients (ADC) of water molecules in regions 
within projection and association fibers at the level of the lateral ven-
tricles. By isolating movement in the anterior-posterior direction, a 
single value (the DTI-ALPS index) that is proportional to the degree of 
diffusivity may be calculated to reflect glymphatic system integrity. 
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Indeed, the DTI-ALPS index has been closely associated with the clas-
sical measure of glymphatic activity using clearance of intrathecal 
gadolinium [8]. Clearance of this tracer has been shown to be slower in 
sleep deprived subjects than in subjects who had a normal night’s sleep 
[9]. 

Previous research indicates the DTI-ALPS index is lower in people 
with Mild Cognitive Impairment (MCI) and Alzheimer’s disease (AD) 
than those without [7,10]. It is positively correlated with global cogni-
tive ability as measured by the Mini-Mental State exam [7], negatively 
correlated with progression of Parkinson’s disease [11], and negatively 
correlated with severity of vascular conditions [12]. In addition, the 
DTI-ALPS index has been shown to mediate the relationship between 
white matter hyperintensity volume, amyloid beta deposition, and 
memory in participants with AD [13]. These studies imply that a 
reduction of the DTI-ALPS index may increase risk of neurodegenerative 
conditions, and lead to more serious symptoms in those who develop 
them. 

There is pre-clinical and human evidence that sleep plays a large role 
in the activation of glymphatic clearance of cerebral waste materials [3, 
5]. More specifically, an increase in efficacy of protein removal during 
slow wave activity stage 3 NREM sleep state has been reported [14]. 
Indeed, time spent in NREM stage 3 sleep decreases with increasing age 
[15], and there is evidence of a relationship between poor quality of 
sleep and the development of dementia [6]. 

Although previous research has yielded promising findings, the 
studies using the DTI-ALPS index have drawn valid criticism for making 
causal claims from associative research and the simplified use of water 
molecule movement within a small region of interest to represent a 
brain-wide complex process [16]. Moreover, current recommendations 
are that the DTI-ALPS index should not be described as a proxy for 
glymphatic system efficacy, and should be interpreted cautiously until 
further validation has been achieved [17]. The inclusion of the 
DTI-ALPS index in a large-scale dataset will give researchers the statis-
tical freedom to either corroborate the indexes relationship to glym-
phatic function or investigate alternative explanations for the previous 
findings that demonstrate its utility. 

Therefore, in the current study we calculated the DTI-ALPS index in a 
subset of the participants in the UK Biobank who provided seven days of 
wrist-worn accelerometer data. This can be used to estimate the longest 
time period spent in uninterrupted sleep [18,19]. Sample sizes in studies 
using the DTI-ALPS index range between 31 [7], and 146 [12]. The 
purpose of this paper is to determine if findings from studies with 
smaller sample sizes are stable in a large population-based cohort. This 
would provide the necessary confirmation that the DTI-ALPS index is a 
meaningful research tool that behaves consistently across larger sam-
ples. As such, we expect to see reductions in the DTI-ALPS index asso-
ciated with age, poorer cognitive performance, and worse sleep. Based 
on previous findings we also expect to see larger values in women than 
men [12]. 

A synthetic dataset and all analysis scripts are available to access htt 
ps://osf.io/6twca/. 

1. Methods 

1.1. Participants 

Participant data was accessed from the UK Biobank [20]. Partici-
pants were included if they had data for both sleep and MRI imaging. Of 
the 44073 participants with DWI images that had been preprocessed 
according to the above pipeline, 17723 had wrist-worn accelerometer 
derived sleep estimates provided by Doherty et al. [18]. There were 
9812 females and 7911 males available for this analysis. Several par-
ticipants had incomplete cognitive ability so sample sizes for each task 
may be found in the sections that describe the cognitive tasks. All par-
ticipants were included regardless of dementia status. 

1.2. Imaging data 

Diffusion- Weighted Images (DWIs) were collected following the 
published protocol (https://biobank.ctsu.ox.ac.uk/crystal/refer.cgi? 
id=2367). Participants were scanned using one of three identical 3T 
Siemens Skyra scanners with a Siemens 32 channel RF receiver head 
coils. MRI scans took place from 2014 in Cheadle, Manchester until 2017 
when two identical centres were set up in Reading and Newcastle. The 
use of identical scanners precluded the need to adjust data for variations 
in scanner hardware [21]. At the time of the current analysis there were 
44073 first instance images available. Images were processed using the 
Oxford fsl pipeline [21] which included registration, eddy correction, 
and DTI Tensor fitting. 

1.2.1. DTI-ALPS index 
The DTI-ALPS index was calculated using the fMRIB software library 

[22,23] for both left and right hemispheres following Taoka et al. [7]. 
The size of the UK biobank precludes manual identification of regions of 
interest. Instead, 5 mm spherical regions of interest (ROI) were created 
in MNI 152 space (Montreal Neurological Institute, Montreal, Québec, 
Canada) centered on co-ordinates for association (Left: x = 50, y = 104, 
z = 100; Right: x = 128, y = 104, z = 100) and projection areas (Left: x 
= 62, y = 104, z = 100; Right: x = 116, y = 104, z = 100) reported by Y. 
Zhang et al. [12]. The anatomical locations are presented in Supple-
mental Image S1. Then, for each participant, the affine transformations 
and non-linear warps that were available on the UK Biobank as part of a 
tract-based spatial statistics pre-processing pipeline were applied to the 
MNI space ROI images to transform them to individual subject space. 
Next, the b1000 shell was isolated from the pre-processed DWI (based on 
the recommendations of [7]) and fsl’s dtifit was executed with the -save 
tensor flag to create Apparent Diffusion Coefficients (ADC) in six di-
rections (xx, xy, xz, yy, yz, zz) Finally, mean ADC within each of the ROIs 
described above were extracted for calculation of the DTI-ALPS index 
(below). A selection of images were visually inspected by first and last 
authors to ensure that the MNI space ROIs were accurately transformed 
into subject space. DTI-ALPS indexes for left and right hemispheres were 
then calculated for each participant using the equation: 

DTI ALPSIndex =
mean(Projectionx,Associationx)

mean
(
Projectiony,Associationz

) (1) 

In line with Y. Zhang et al. [12], the mean average of the left and 
right DTI-ALPS index was used as the final value which provides an 
estimate of the diffusivity of water in the anterior-posterior direction. 

1.3. Sleep data 

The calculated sleep metric was based on probabilities derived from 
accelerometer data using machine learning [18,19], and validated in a 
study on cardiovascular risk factors [24]. Data were collected between 
June 2013 and December 2015, and the derived data yielded a set of 
per-hour probabilities averaged over 7 consecutive 24 h periods [19]. 
Because the glymphatic system is reported to be most active during 
slow-wave sleep [3] the sleep predictor used in this study was longest 
period of uninterrupted sleep (hereafter longest uninterrupted sleep 
window on a typical night, or LUSWT). That is, a person might sleep for 
8 h in one day, but this might be broken before they enter NREM3 sleep. 
The low resolution of the derived metric (one reading per hour) means 
that pinpointing the most likely period of N3 sleep is impossible. Instead 
we assume thata person with a longer uninterrupted sleep window on a 
typical night is likely to have spent more time in NREM3 sleep than 
someone who sleeps in shorter bursts. To estimate the longest uninter-
rupted sleep window on a typical night, 1-h periods in which the 
probability that the participant was asleep exceeded 0.9 was treated as 
an hour in which they were solidly asleep. One-hour periods in which 
the probability of sleep was below 0.9 was treated as either awake or 
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interrupted sleep. A string of consecutive 1-h periods where the proba-
bility of sleep was above 0.9 was treated as a window of uninterrupted 
sleep. The longest stretch of probabilities exceeding 0.9 averaged over 
seven days was taken to be the longest uninterrupted sleep window. An 
example may be found in Supplemental Table S2. We favoured this 
method over other measures of sleep such as sleep efficiency (ratio of 
time actually spent asleep to time spent and time dedicated to sleeping) 
since this would rely on the unstandardised sleep-related items provided 
in the UK Biobank. 

Out of 17723 participants participants in this study, 150 had extreme 
values of either 0 h or over 15 h daily total sleep. These participants were 
removed from further analysis. 

1.3.1. Cognitive tasks 
In all cases, cognitive tests were conducted at the first scanning 

session. The following tests from the UK Biobank were included: 
Numeric memory (n = 12026), Paired associate learning (n = 11789), 
Prospective memory (n = 16677) (binary outcome of success/not suc-
cessful on first attempt), Picture Vocabulary test (n = 11153), Fluid 
Reasoning (n = 16383), Matrix completion, (n = 11666), and the Trail 
Making Task Part A and B were completed (n = 11789). Participants 
who did not complete the trail were scored as 0 and were not included in 
the completion time analysis (numeric trail: n = 121; alpha-numeric 
trail: n = 356). 

Field numbers and short descriptions of how the metrics were 
calculated are presented in the Supplemental Materials (Table S1). 

2. Statistical analysis 

Correlations between the DTI-ALPS index and all study variables 
were calculated using the correlation package in R [25]. To examine the 
relationship between the DTI-ALPS index and demographics (age, sex), 
longest uninterrupted sleep window on a typical night, and cognitive 
health we used a combination of frequentist and Bayesian approaches. 
To make results comparable with previous literature, variables were z 
transformed. Frequentist linear regressions were fitted using the lm 
function from base R [26]. The brms package [27] was used to convert 
the models to the stan language [28] and provide Bayesian posterior 
distributions for the regression parameters. Posterior distributions were 
estimated over 8 chains each with 10,000 iterations (5000 iteration 
burn-in). 

First, bi-variate correlations were run to examine the zero order 
correlations between the DTI-ALPS index and age, longest uninterrupted 
sleep window on a typical night, and cognitive tasks. In addition, a 
between-groups t-test was used to compare the DTI-ALPS index between 
males and females. To determine whether the DTI-ALPS index could be 
predicted by sex, age, and longest uninterrupted sleep window on a 
typical night, these variables were entered into a regression model, and 
relevant interactions were explored in a separate follow-up model. In the 
Bayes analysis, priors for sex and age were normal distributions centered 
on the standardised beta estimates for these two variables reported by Y. 
Zhang et al [12] with a liberal standard deviation of 0.2 to reflect the 
smaller sample size in their study. Priors for the relationship between 
longest uninterrupted sleep window and the DTI-ALPS index were taken 
from estimates reported by Saito et al. [29]. Their overall self-reported 
sleep quality estimate for using the Pittsburgh Sleep Quality Index 
(PSQI) was − 0.27, where the subscale for sleep duration yielded a 
non-significant standardised beta of − 0.051. Given the uncertainty 
around the duration estimate and the fact that the measure was 
self-reported, a weakly informative prior of N(0.1, 0.2) was chosen to 
favour the positive parameter space (a lower score on the PSQI scale 
means healthier sleep), but also allow the Monte Carlo algorithm to 
explore negative values. Both p values (with a liberal alpha level of 0.05) 
and Bayes Factors using the simplified cutoffs suggested by Royall were 
used to draw inferences (BF < 8 being weak evidence, 8<BF < 32 being 
moderate evidence, and BF > 32 being strong evidence for the 

hypothesis, [30]). 
Finally, to determine if cognitive health could be predicted by the 

DTI-ALPS index independently of age, sex, and longest uninterrupted 
sleep window on a typical night, we first selected all cognitive tasks that 
were found to be significantly associated at a corrected p < .05 with DTI- 
ALPS index in the bivariate correlations for further analysis. Age, sex, 
and longest uninterrupted sleep window on a typical night were then 
entered alongside DTI-ALPS index to predict each of the selected 
cognitive tasks (in separate models for each task). Here we carried out 
frequentist analysis only as there was no prior information available on 
the relationship between the DTI-ALPS index and the cognitive tasks 
used by the UK Biobank. For the cognitive task analysis p values were 
Bonferrioni corrected to 0.005 to account for multiple analyses. The 
parameters reported here may be used to inform future Bayesian 
analyses. 

Data were analysed using the R programming language. The lm 
function was used to model the data where responses were expected to 
follow a normal distribution. In cases where responses would not be 
expected to fit a normal distribution, generalised Poisson models were 
applied to count metrics, and binomial regression to dichotomous 
metrics using the glm function in R. 

3. Results 

3.1. Demographics 

After removal of extreme values there were 17573 participants 
entered into the final analysis. Of these 9724 were female and 7849 were 
male. 

Table 1 presents the descriptive statistics for all study variables split 
by sex. 

3.2. Bivariate correlations 

Bivariate correlations between all study variables and the DTI-ALPS 
index are presented in Table 1. Scatter plots for DTI-ALPS and Age and 
DTI-ALPS and longest uninterrupted sleep window on a typical night are 
presented in Figs. 1 and 2. In brief, the DTI-ALPS index significantly 
correlated with participant age (r = − 0.27, 95 % CI [− 0.28, − 0.25], t 
(11431) = − 29.52, p < 0.001), and there was a significant difference in 

Table 1 
Means and standard deviations for age, longest uninterrupted sleep window on a 
typical night, DTI-ALPS index, and performance on cognitive tasks grouped by 
sex.  

Variable Female  Male  Pearsons r 

Mean SD Mean SD 

Age 63.98 (7.50) 65.75 (7.89) r = − 0.27, p < 0.001*** 
LUSWT 5.29 (1.79) 5.06 (1.83) r = 0.03, p < 0.001*** 
ALPS 1.62 (0.20) 1.50 (0.19) – 
Prosp 0.12 (0.31) 0.12 (0.31) r = − 0.05, p < 0.001*** 
Picv 0.40 (0.08) 0.41 (0.08) r = − 0.06, p < 0.001*** 
Fintel 6.64 (1.94) 6.84 (2.05) r = 8.00e-03, p = .393 
Ntrail 5.34 (0.61) 5.39 (0.62) r = − 0.15, p < 0.001*** 
Atrail 6.24 (1.13) 6.28 (1.12) r = − 0.15, p < 0.001*** 
Passo 7.50 (2.48) 6.55 (2.57) r = 0.13, p < 0.001*** 
Matrix 8.06 (2.08) 8.24 (2.13) r = 0.06, p < 0.001*** 
BDS 6.69 (1.38) 6.83 (1.44) r = 0.04, p < 0.001*** 

Note. Age = Participant age at scan session; LUSWT = Longest uninterrupted 
sleep window on a typical night; ALPS = Mean DTI-ALPS index over two 
hemispheres; Prosp = Binarised prospective memory; Picv = Derived intelli-
gence score from picture vocabulary task; Fintel = Number of fluid intelligence 
questions answered; Ntrail = Log completion time on numeric trail making task; 
Atrail = log completion time on alpha-numeric trail making task; Passo =
Number of correct responses on verbal paired associates task; Matrix = Number 
of correct answers on matrix reasoning task; BDS = Maximum number of digits 
recalled on backward digits span task. 
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DTI-ALPS index between males and females (ΔM = 0.13, 95 % CI [0.12,
0.13], t(17062.86) = 42.82, p < .001). A higher DTI-ALPS index was 
associated with a longer uninterrupted sleep window on a typical night 
(r = 0.03, 95 % CI [0.01, 0.05], t(11431) = 3.34, p < 0.001). Correla-
tions with cognitive tasks were mostly weaker but, with the exception of 
fluid intelligence (r = 8.00e-03, 95 % CI [− 0.01, 0.03], t(11378) = 0.85, 
p = .393) and prospective memory (r = − 0.05, 95 % CI [− 0.07, − 0.03], 
t(11431) = − 5.39, p < 0.001), a higher DTI-ALPS index was associated 
with better performance. 

3.3. Linear regression 

Linear regression with age, sex and longest uninterrupted sleep 
window entered together revealed that all these variables could inde-
pendently predict the DTI-ALPS index (Age: b = − 0.17, 95 % CI [ −
0.19, − 0.16], t(17569) = − 23.83, p < .001; Sex: b = − 0.49, 95 % CI 
[ − 0.52, − 0.46], t(17569) = − 33.90, p < .001; LUSWT: b = 0.02, 95 
% CI [0.01,0.03], t(17569) = 2.70, p = .007). 

No significant interaction was found between age and LUSWT (b =

0.01, 95 % CI [ − 0.01, 0.02], t(17568) = 0.97, p = .330). The full 

regression tables for these analyses may be found in Supplemental Table 
S3. 

3.3.1. Bayesian analysis 
The Bayesian analysis replicated the frequentist analysis in that the 

distribution of possible parameters did not cross zero in cases where 
frequentist analysis showed a non-significant estimate. Parameter point 
value and 95 % credible interval estimates can be found in Supplemental 
Table S4. 

Parameters of interest from the Bayesian models were tested against 
a null hypothesis of zero using the hypothesis function of the brms 
package. 

We found very strong evidence for the hypothesis that there would 
be sex differences the DTI-ALPS index (β = − 0.49, SE = 0.01, 95 % CI 
[− 0.51, − 0.47], EvidenceRatio > 1000 , PosteriorProbability > 0.99). 

We found very strong evidence for the hypothesis that age predicts 
the DTI-ALPS index (β = − 0.17, SE = 0.01, 95 % CI [− 0.18, − 0.16], 
EvidenceRatio > 1000 , PosteriorProbability > 0.99). 

We found strong evidence that longest uninterrupted sleep window 
on a typical night was associated with the DTI-ALPS index (β = 0.02, SE 
= 0.01, 95 % CI [0.01, 0.03], EvidenceRatio = 297.51, 
PosteriorProbability = 1.00). 

There was only very weak evidence to support an interaction be-
tween age and longest uninterrupted sleep window (β = 0.01, SE = 0.01, 
95 % CI[0.00, 0.02], EvidenceRatio = 4.88, PosteriorProbability =

0.83). 

3.4. Cognitive tasks 

Parameters are reported in Table 2 for all tests. Bonferroni correc-
tions were applied to the alpha level such that the threshold for signif-
icance was 0.005. In brief, after controlling for age, sex, and LUSWT, the 
DTI-ALPS index significantly predicted backwards digit span (p < .001), 
verbal paired associates (p < .001), log completion times for numeric 
(p < .001) and alpha-numeric (p < .001) trail making tasks. 

4. Discussion 

In this study we calculated a proposed index of glymphatic activity 
(DTI-ALPS index) on a large number of MRI scans from the UK Biobank. 
To validate the calculation of the index, we replicated previously 
established relationships between age, sex, and the DTI-ALPS index, and 
investigated the association between the index and longest uninter-
rupted sleep window on a typical night. Finally, we established a posi-
tive, independent relationship between several of the cognitive tasks 
completed by UK Biobank participants and the DTI-ALPS index. 

Although yielding smaller effect sizes, our findings in this very large 
sample, are consistent with previous reports in studies with smaller 
samples showing that the DTI-ALPS index decreases with age [31], and 
is greater in female participants [12,29]. We also found that longest 
uninterrupted sleep window on a typical night was positively associated 
with the DTI-ALPS index which supports previous findings [3,29] and is 
consistent with findings from studies that used more direct measures of 
glymphatic efficacy [5]. Importantly, all these findings are independent 
of one another, therefore each variable can be assumed to be providing a 
unique contribution to variance in the ALPS-index. 

The effect sizes in our study were smaller than those reported pre-
viously on the relationship between the DTI-ALPS index, age and sex. 
Although this is in agreement with previous meta-scientific findings in 
which sample size negatively correlates with effect size [32,33], the 
explanations offered may not be compatible. For instance, it is claimed 
that publication bias and selective reporting is largely responsible for 
inflated effect sizes in psychological literature [32], and the correlation 
between standard errors and effect sizes is a function of appropriately 
powering studies [33]. There are still too few studies available to 
determine whether this might be the case, but future meta-analytic 

Fig. 1. Plot of correlations between age and DTI-ALPS index split by sex.  

Fig. 2. Plot of correlations between longest uninterrupted sleep window on a 
typical night and DTI-ALPS index split by sex. Regression line controls for age. 
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research would contribute to this explanation. 
It must be noted that the effect sizes we find for the relationship 

between sleep and DTI-ALPS is very small. Indeed, other studies report 
no association between self-reported sleep and global grey matter vol-
ume in the UK Biobank despite using a sample that was twice the size of 
ours [34]. It is possible that our measure of sleep (LUSWT) was either 
more sensitive or measured a more relevant sleep phenotype than the 
self-report measures available on the Biobank. With increasingly sensi-
tive and specific sleep metrics, findings between studies may become 
more consistent. 

The relationship between age and the DTI-ALPS index is consistent 
with previously reported negative associations between age and glym-
phatic activity [35]. This association has been explained as being driven 
by age-related factors such as loss of arterial wall integrity and senescent 
astrocyte pathology. There are fewer attempts at explaining sex differ-
ences in glymphatic activity, with one possibility being differences in 
CSF influx between sexes [12]. A recent mouse study found no associ-
ation between biological sex and glymphatic influx [36], and a subse-
quent study found that female mice produced more CSF, but that the 

transport kinetics of the fluid did not vary between sexes [37]. The 
calculation of the DTI-ALPS index in the UK Biobank dataset will allow 
the exploration of lifestyle (e.g. alcohol and tobacco consumption) and 
socio-demographic (e.g. education) factors which may yield useful 
findings; especially since these factors are absent from mouse models. 

Taoka et al. [7] did not control for age and sex in their analysis of the 
relationship between the MMSE and the DTI-ALPS index. Given the 
strength of association between these demographic variables and the 
DTI-ALPS index we recommend that, as a minimum, age and sex be 
controlled for in future studies using this measure. 

We also explored whether age would modify the impact of sleep on 
the DTI-ALPS index, under the assumption that glymphatic health may 
deteriorate more quickly due to changes in sleep patterns in older peo-
ple. However, we found no interaction between age and longest unin-
terrupted sleep window on a typical night. This was confirmed via a 
combination of a non-significant frequentist interaction in such a large 
sample and a Bayes Factor of above 1, but below our lower threshold. 
That said, our sleep metric does not comprehensively capture sleep 
integrity, and exploring this interaction within more detailed analysis of 
sleep may be warranted. 

We found that the DTI-ALPS index significantly correlated with 
performance on a range of neuropsychological tests. Upon follow-up 
analysis this relationship was also present when controlling for age, 
sex, and longest uninterrupted sleep window on a typical night. A higher 
DTI-ALPS index was associated with shorter log completion time in both 
numeric and alphanumeric versions of the trail making task, the number 
of words correctly recalled in the verbal paired associates task, and 
backwards digit span. Previous research has shown a relationship be-
tween the DTI-ALPS index and global screening measures of cognitive 
ability (e.g. the MMSE), however these were not corrected for age [7]. 
Unfortunately, no screening tasks were available on the UK Biobank 
dataset, however our findings are consistent with the expected perfor-
mances based on previous research on correlations between MMSE 
scores and more in-depth cognitive tasks (e.g. Ref. [38]) even after ac-
counting for age and sex. 

Categorisation of dementia was not an aim of this study, however it is 
promising that the DTI-ALPS index predicted performance on versions of 
several measures that are sensitive to cognitive decline and are regularly 
used to assess cognitive decline and in the assessment of dementia [39, 
40]. Performance on the trail making task has been shown to be sensitive 
to cognitive changes in the early stages of neurodegeneration ([39,41], 
p. p373; [42]), and the numeric trail alone is sensitive to early or pro-
dromal stages of disease [43]. Likewise, impaired verbal associate 
learning has been shown to be an early indicator of dementia ([39,44], 
p. p442). Our findings also reflect known relationships between 
white-matter integrity and cognition [45], and are importantly still 
present when controlling for age which is known to sometimes mask 
smaller white matter effects [46]. The small but independent relation-
ship between the DTI-ALPS index and behaviour demonstrate that, as 
with other white matter indices, age alone is not sufficient to explain 
cognitive decline. Although there is debate about the relationship be-
tween the DTI-ALPS index and glymphatic activity, this finding parallels 
reports of glymphatic activity being associated with cognitive decline 
[1], and provides evidence for the utility of the DTI-ALPS index as a tool 
in neuroscience research.With the DTI-ALPS index now available on the 
UK Biobank there is an opportunity to explore more complex relation-
ships such as genetic predictors, longitudinal survival analysis for both 
dementia and mortality, associations with lifestyle factors, brain age, or 
other physiological conditions such as cardiovascular disease. More 
importantly, it is now possible to explore its relationship with thera-
peutically modifiable factors [47]. 

4.1. Limitations 

The use of probabilities to estimate length and longest uninterrupted 
window of sleep likely oversimplified the complexities of sleep 

Table 2 
Inferential test statistics for each cognitive task by domain.  

Task Domain Sex Age LUSWT ALPS 
Index 

Fluid 
Reasoning 

Executive b = 0.30, 
95 % CI 
[0.24, 
0.37] 

b =
− 0.03, 
95 % CI 
[-0.03, 
− 0.03] 

b = 0.02, 
95 % CI 
[0.00, 
0.04] 

b = 0.05, 
95 % CI 
[-0.12, 
0.21] 

Matrix 
Reasoning 

Executive b = 0.34, 
95 % CI 
[0.27, 
0.42] 

b =
− 0.07, 
95 % CI 
[-0.07, 
− 0.06] 

b = 0.05, 
95 % CI 
[0.03, 
0.07] 

b = 0.18, 
95 % CI 
[-0.02, 
0.38] 

Prospective 
Memory 

Memory b =
− 0.16, 
95 % CI 
[-0.32, 
− 0.01] 

b =
− 0.06, 
95 % CI 
[-0.08, 
− 0.05] 

b = 0.04, 
95 % CI 
[0.00, 
0.07] 

b = 0.34, 
95 % CI 
[-0.05, 
0.73] 

Verbal 
Paired 
Associates 

Memory b =
− 0.76, 
95 % CI 
[-0.86, 
− 0.67] 

b =
− 0.07, 
95 % CI 
[-0.07, 
− 0.06] 

b = 0.04, 
95 % CI 
[0.02, 
0.07] 

b = 0.46, 
95 % CI 
[0.22, 
0.70] 

Word 
Naming 

Memory b = 0.00, 
95 % CI 
[0.00, 
0.01] 

b = 0.00, 
95 % CI 
[0.00, 
0.00] 

b = 0.00, 
95 % CI 
[0.00, 
0.00] 

b =
− 0.01, 
95 % CI 
[-0.02, 
0.00] 

Trail Making 
A - Finish 

Visuo 
Spatial 

b = 0.18, 
95 % CI 
[-0.20, 
0.56] 

b =
− 0.08, 
95 % CI 
[-0.11, 
− 0.05] 

b =
− 0.02, 
95 % CI 
[-0.11, 
0.08] 

b = 0.41, 
95 % CI 
[-0.54, 
1.37] 

Trail Making 
A - Time 

Visuo 
Spatial 

b = 0.02, 
95 % CI 
[0.01, 
0.03] 

b = 0.01, 
95 % CI 
[0.01, 
0.01] 

b = 0.00, 
95 % CI 
[-0.01, 
0.00] 

b =
− 0.04, 
95 % CI 
[-0.07, 
− 0.02] 

Trail Making 
B - Finish 

Visuo 
Spatial 

b = 0.27, 
95 % CI 
[0.04, 
0.49] 

b =
− 0.10, 
95 % CI 
[-0.12, 
− 0.09] 

b = 0.02, 
95 % CI 
[-0.04, 
0.07] 

b = 0.10, 
95 % CI 
[-0.47, 
0.67] 

Trail Making 
B - Time 

Visuo- 
Spatial 

b =
− 0.01, 
95 % CI 
[-0.02, 
0.00] 

b = 0.02, 
95 % CI 
[0.02, 
0.02] 

b =
− 0.01, 
95 % CI 
[-0.01, 
0.00] 

b =
− 0.08, 
95 % CI 
[-0.11, 
− 0.04] 

Digit Span 
Backwards 

Working 
Memory 

b = 0.25, 
95 % CI 
[0.20, 
0.29] 

b =
− 0.02, 
95 % CI 
[-0.03, 
− 0.02] 

b = 0.00, 
95 % CI 
[-0.01, 
0.02] 

b = 0.26, 
95 % CI 
[0.14, 
0.38]  
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behaviour. For instance, there was no distinction between night and day 
sleeping, no consideration of napping, or distinction between lifestyle- 
related and physical sleep interruption (e.g. Obstructive Sleep 
Apnoea). A recent study by Katori, Shi, Ode, Tomita, and Ueda [48] used 
accelerometer data from the UK Biobank to calculate 23 sleep indices (e. 
g. average lengths and variances in sleep and wake time, short and long 
sleep windows, etc). They subsequently categorised participants into 
sleep phenotype groups such as ‘irregular sleep schedule’, ‘insomnia 
with short sleep duration’, and ‘sleep without day-time sleep window’. 
We believe that using more sophisticated indices of sleep will yield more 
conclusive findings. 

The calculation of the DTI-ALPS index from unsupervised extraction 
of ROIs mean that the estimate of the scores is liable to be noisy. A semi- 
automated calculation of the DTI-ALPS index has been previously 
described [49], although this still required some user input which is 
unfeasible for large datasets. A key difficulty is in locating the medullary 
vein [50], which we achieved by relying on a standardised template. The 
size of the sample and consistency with previous findings suggest that 
any bias is minimal. However, there is room for improvement. For 
instance, multiple estimates of measurements could be made at several 
sites. Jiang et al. [51] used DTI-ALPS index estimates from anterior, 
middle, and posterior cortical areas. They also estimated glymphatic 
efficacy using three different methods: Choroid Plexus volume to 
establish CSF generation propensity; DTI-ALPS index to estimate diffu-
sion in perivascular space; and CSF-Global Blood Oxygen Level Depen-
dent coupling to estimate CSF influx. In future studies multiple 
measurements and triangulation would facilitate investigation into 
glymphatic activity. 

In a recent critique of the DTI-ALPS index Ringstad [16] presents 
several limitations of the measure including the use of perivascular 
space which is rarely observable, and the liklihood that water diffusivity 
in a small white-matter ROI does not fully capture brain-wide clearance 
of large molecules from the cortex. Ringstad [16] then warns against 
making causal assumptions about the measure between the DTI-ALPS 
index and glymphatic clearance based on association studies alone, 
suggesting that observed relationships may be due to age- and/or 
disease-related changes to DTI indices. Our estimation of the DTI-ALPS 
index in the UK Biobank will allow for further exploration of these 
criticisms. 

Although benefiting from a large number of participants, the UK Bio-
bank sample is limited in its representation of the diversity of UK society. 
Approximately 95 % of participants are white, with 86 % being white- 
British (https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=21000). Par-
ticipants in the UK Biobank are also on average healthier and more 
educated than the general population [52–54], meaning that the ranges of 
several variables may be restricted, thus masking true population effects. 
Moreover, selection bias may result in unobserved causal pathways which 
may lead to unexpected confounds or collider biases when variables are 
controlled for [53]. 

4.2. Conclusion 

We have demonstrated that our estimate of the DTI-ALPS index in the 
UK Biobank can replicate previous findings from smaller studies. We 
have also shown that in addition to sex and age, longest uninterrupted 
sleep window on a typical night is positively associated with the DTI- 
ALPS index. Finally we have shown that the DTI-ALPS index has 
investigative utility since it is inversely associated with performance on 
a range of neuropsychological tasks. The inclusion of the DTI-ALPS 
index in the UK Biobank showcase data will facilitate future study into 
risk factors associated with perivascular diffusion and the development 
of dementia. We encourage researchers to contact us for collaborative 
projects using this metric. 
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