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Abstract: Early pregnancy loss (EPL) is a prevalent health concern with significant implications
globally for gestational health. This research leverages machine learning to enhance the prediction
of EPL and to differentiate between typical pregnancies and those at elevated risk during the initial
trimester. We employed different machine learning methodologies, from conventional models
to more advanced ones such as deep learning and multilayer perceptron models. Results from
both classical and advanced machine learning models were evaluated using confusion matrices,
cross-validation techniques, and analysis of feature significance to obtain correct decisions among
algorithmic strategies on early pregnancy loss and the vitamin D serum connection in gestational
health. The results demonstrated that machine learning is a powerful tool for accurately predicting
EPL, with advanced models such as deep learning and multilayer perceptron outperforming classical
ones. Linear discriminant analysis and quadratic discriminant analysis algorithms were shown to
have 98 % accuracy in predicting pregnancy loss outcomes. Key determinants of EPL were identified,
including levels of maternal serum vitamin D. In addition, prior pregnancy outcomes and maternal
age are crucial factors in gestational health. This study’s findings highlight the potential of machine
learning in enhancing predictions related to EPL that can contribute to improved gestational health
outcomes for mothers and infants.

Keywords: advanced models; early pregnancy loss; maternal serum vitamin D; machine learning;
prediction; traditional models

1. Introduction
1.1. Background

Pregnancy loss refers to the termination of a pregnancy before the fetus can survive
outside the womb, resulting in no live birth. It is commonly known as abortion when
it occurs before 22 weeks of gestation, as defined by the World Health Organization
(WHO). Spontaneous pregnancy loss is reported in about 10–15% of pregnancies that are
clinically recognized [1]. This loss is specifically termed early pregnancy loss or spontaneous
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abortion when it happens within the first 12 weeks of gestation, a period during which
most spontaneous pregnancy losses occur. The reasons for this adverse outcome can range
from hormonal imbalances and chromosomal issues to infections, uterine abnormalities,
and autoimmune or thrombophilic disorders. Notably, around half of early pregnancy loss
cases remain unexplained [2]. Vitamin D, a fat-soluble vitamin, is primarily produced in the
skin from 7-dehydrocholesterol following exposure to ultraviolet B (UVB) radiation. While
certain foods offer vitamin D3, sunlight exposure is its major source. Factors such as sunscreen
use, aging, darker skin pigmentation, and winter seasons can impact vitamin D synthesis [3,4].
The active form of vitamin D, known as 1,25-dihydroxyvitamin D, functions by binding
to the Vitamin D Receptor (VDR) in cells. This binding changes VDR’s shape, enabling it
to interact with vitamin D response elements in DNA, thereby influencing gene activity
(White 2008). Vitamin D’s classic role is to regulate calcium and phosphorus levels, which
are crucial for bone health. VDRs are found in most body tissues, where they help convert
25-hydroxyvitamin D to its active form for localized use. Beyond bone health, vitamin
D plays roles in immune system regulation, cancer cell growth reduction, cardiovascular
functioning, blood pressure management, and insulin secretion [5]. Research, including that
by [6], indicates that vitamin D can lower the risk of first-trimester miscarriages, though no
connection was found between vitamin D levels and second-trimester miscarriages. Women
experiencing unexplained early pregnancy loss often have lower levels of vitamin D. They
may present with antiphospholipid antibodies, antinuclear antibodies, thyroperoxidase
antibodies, and higher levels of natural killer (NK) cells compared to pregnant women with
normal vitamin D status [7]. This suggests an immunomodulating role for vitamin D at the
fetomaternal interface. Vitamin D receptors and the enzymes responsible for vitamin D
hydroxylation and the identification of localized vitamin D synthesis in the human placenta
and decidua also highlight the potential mechanism between vitamin D status and current
pregnancy [8]. Several studies have shown an association between pregnancy loss and
vitamin D deficiency that is probably mediated by effector CD4+ T helper cellular responses
in the innate and adaptive immune systems. Vitamin D promotes the adaptive immune
response by increasing interleukin 4, 5, and 13 and preventing the innate immune responses
of IL-1, IL-2, tumor necrosis factor-α (TNF-α), and interferon-γ(IFN-γ) [9]. According to [8],
63 (47.4%) of women with pregnancy loss had vitamin D deficiency. The authors concluded
that there was a significant association between natural killer cell activity and vitamin D
deficiency in women with pregnancy loss. In [10], researchers found significantly decreased
vitamin D concentrations in antiphospholipid syndrome women compared to a healthy
control group. In [11], researchers observed the same cytokine profiles and vitamin D
expression in endometrial cells taken from patients with pregnancy loss compared to a
healthy control group. However, less published data is available in our country. Therefore,
the present study has been designed to assess the association between maternal serum
vitamin D levels and early pregnancy loss.

1.2. Rationale of the Study

Vitamin D deficiency during pregnancy is common worldwide. Low maternal vitamin
D status during pregnancy has been associated with numerous obstetrical complications,
such as bacterial vaginosis, pre-eclampsia, gestational diabetes, small-for-gestational-age
births, and pregnancy loss. Pregnancy loss has a great psychological and physical impact
on the health of women. It is important to look for risk factors that may affect the rate of
miscarriage in the first trimester of pregnancy. Women now know about the need for folate
and iron supplementation related to pregnancy [12]; however, they may be unaware of the
need to optimize their vitamin D status, sun exposure behaviors, and vitamin D intake,
which may affect their vitamin D status. Therefore, based on this background, the present
study was designed to determine the association between maternal serum vitamin D levels
and early pregnancy loss. Early identification of women at increased risk for adverse
outcomes would help to facilitate surveillance and intervention. The findings of this study
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may also be helpful in taking targeted approaches and educating proponents about vitamin
D deficiency, particularly for women who plan to have bearings [13,14].

1.3. Aim and Objectives

• To explore the effectiveness of advanced machine learning algorithms in detecting and
preventing early pregnancy loss, with a focus on analyzing the role of maternal serum
vitamin D levels and other relevant factors.

• To develop and validate ML models:

– Developing ML models to predict early pregnancy loss using demographic,
obstetric, anthropometric, and biochemical variables, with a focus on serum
vitamin D levels.

– Validating the models using real-world clinical data in order to assess their
accuracy and reliability.

• To analyze the impact of vitamin D on early pregnancy:

– Investigating the role of maternal serum vitamin D levels in early pregnancy
and their correlation with pregnancy outcomes.

– Comparing vitamin D levels between women experiencing early pregnancy loss
and those with normal pregnancies.

• To identify predictive factors for early pregnancy loss:

– Utilizing ML algorithms to identify key predictive factors for early pregnancy loss.
– Analyzing the relative importance of demographic, obstetric, anthropometric,

and biochemical variables in predicting early pregnancy outcomes.

• To enhance early pregnancy risk assessment:

– Integrating the findings into a risk assessment tool that can be used in clinical
settings to identify women at high risk of early pregnancy loss.

– Providing recommendations for early interventions based on the risk assessment.

1.4. Research Questions and Hypotheses

• How can machine learning algorithms be utilized to predict early pregnancy loss
based on maternal serum vitamin D levels and other demographic, obstetric, and an-
thropometric variables?

• What is the accuracy of machine learning models in differentiating between normal
and at-risk pregnancies during the first trimester?

• Can machine learning algorithms identify key factors contributing to early pregnancy
loss, and if so, what are these factors?

• In terms of Hypothesis, we expect that when applied to a dataset comprising demo-
graphic, obstetric, anthropometric, and biochemical variables, particularly maternal
serum vitamin D levels, advanced machine learning algorithms will be able to accu-
rately predict and differentiate between pregnancies at risk of early loss and those
likely to proceed normally. Furthermore, these algorithms will identify vitamin D
level as a significant predictive factor for early pregnancy loss.

2. Related Work

Researchers conducted a study with 229 pregnant women during their first antenatal
visit at 11 to 14 weeks of pregnancy at Bezmialem Vakif University in Istanbul, Turkey,
from December 2012 to July 2014 [15]. The study aimed to examine first-trimester serum
levels of 25-hydroxyvitamin D [25(OH)D] as well as to investigate factors influencing
deficiency and its link with pregnancy outcomes. Serum 25(OH)D was measured using
liquid chromatography–tandem mass spectrometry [16]. Findings showed that the median
serum 25(OH)D level was 10.8 ng/mL, with 45.9% of the women exhibiting severe vitamin
D deficiency (<10 ng/mL). Factors such as covered dressing style, absence of multivitamin
use, and the season of blood sampling were identified as influencing 25(OH)D deficiency.
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A negative correlation was found between 25(OH)D levels and gestational age at sampling.
However, low 25(OH)D levels were not linked to adverse pregnancy outcomes. A higher
rate of Cesarean section (CS) was observed in women with 25(OH)D levels ≥ ten ng/mL
compared to those with <10 ng/mL (p = 0.01).The study concluded that early pregnancy
often sees high vitamin D deficiency rates influenced by dress code, multivitamin use,
and sampling season. Nonetheless, these low levels were not associated with adverse
pregnancy outcomes. Women with severe vitamin D deficiency were more likely to have
vaginal deliveries. Another study [6] performed a prospective cohort study on 1683 preg-
nant women to explore whether serum 25-hydroxyvitamin D concentrations could be
identified as a modifiable risk factor for early miscarriage. Their results indicated that the
adjusted hazard for first-trimester miscarriage was lower with higher 25(OH)D levels (HR:
0.98; 95% CI: 0.96, 0.99). Vitamin D levels ≤ 50 nmol/L were linked to a more than two-fold
increase in the adjusted hazard ratio for miscarriage (HR: 2.50; 95% CI: 1.10, 5.69). There
was no increased risk of second-trimester miscarriage associated with 25(OH)D levels.
The conclusion was that there was an association between 25(OH)D and first-trimester
miscarriages, suggesting that vitamin D is a modifiable risk factor for miscarriage. In [15],
researchers in Iraq carried out a cross-sectional study on women with a history of recurrent
spontaneous abortion. They enrolled 42 women of childbearing age who had experienced
early pregnancy loss. Serum Vitamin D concentrations were assessed in venous samples
using standard biochemical methods. The average maternal serum Vitamin D concentra-
tion was 21.48 ± 11.82 ng/mL, ranging from 5 to 50 ng/mL. Approximately 60% of the
women had low serum vitamin D levels (<20 ng/mL). The study found a strong nega-
tive correlation between the number of abortions and maternal serum vitamin D levels
(r = −0.717, p < 0.001), with an R2 value of 0.514, indicating that vitamin D levels alone
could predict 51.4% of spontaneous abortions in the studied group. The authors stated
that vitamin D level is a strong predictor of pregnancy loss in early pregnancy and that
correction of vitamin D status among pregnant Iraqi women may substantially reduce
the frequency of spontaneous abortion. Researchers in Iran [17] designed a double-blind
randomized and controlled clinical trial on 80 patients with unexplained recurrent sponta-
neous abortion (URSA). They were treated with vaginal progesterone (400 IU/day) after
confirmation of pregnancy and received vitamin D and a placebo in two groups, interven-
tion (n = 40) and control (n = 40). The incidence of abortion and serum levels of IL-23 were
examined within 20 weeks of pregnancy. The levels of vitamin D3 before the start of the
study were equal to 11.65 ± 3.76 ng/mL and 11.53 ± 2.39 ng/mL (p = 0.86) in the interven-
tion and control groups, respectively. These levels later decreased to 13.21 ± 3.47 ng/mL
and 11.08 ± 2.76 ng/mL (p = 0.004). When the mean serum levels of IL-23 were equal to
18.4 ± 3.78 pg/mL and 23.16 ± 4.74 pg/mL in the two groups (p <0.004), the frequency of
abortion within the controlling time [18] and intervention groups were equal to 5 (12.8%)
and 13 (34.2%), respectively, including (p = 0.03, OR = 3.53, 95% CI = 1.12–11.2). The re-
searchers concluded that Vitamin D3 can reduce serum levels of IL-23 and the occurrence
of abortion among women with URSA. In [1] researchers conducted a study in China
involving 60 nulliparous women with single pregnancies in 7–9 weeks. These women
were divided into two groups, 30 with viable pregnancies and 30 with pregnancy loss
(PL); additionally, 60 non-pregnant women of childbearing age were included and split
into two groups, 30 with a history of successful pregnancies and 30 with a history of first-
trimester PL. The study focused on measuring serum levels of 25-hydroxyvitamin D and the
enzyme 25-hydroxyvitamin D-1 alpha-hydroxylase (CYP27B1). The findings revealed that
women with normal pregnancies had higher levels of 25(OH)D (49.32 µg/L) and CYP27B1
(82.00 pg/mL) compared to those with PL (34.49 µg/L and 37.87 pg/mL, respectively, both
p < 0.01). Similarly, non-pregnant women with successful pregnancy histories showed
higher levels of 25(OH)D (39.56 µg/L) and CYP27B1 (39.04 pg/mL) than those with PL
histories (12.30 µg/L and 12.35 pg/mL, respectively, both p < 0.01). It was noted that
96.7% of non-pregnant women with a PL history and 43.3% of pregnant women with PL
had serum 25(OH)D levels below 30 µg/L. A significant association was found between
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low vitamin D levels and PL, with an odds ratio of 1.71 (95% confidence interval: 1.2–2.4,
p < 0.001). Regression analyses indicated a strong inverse correlation between PL and both
25(OH)D (p < 0.01) and CYP27B1 (p < 0.01) levels. The study concluded that vitamin
D deficiency is linked with PL in the first trimester of pregnancy. Low serum vitamin D
levels among childbearing-aged women with a history of failed clinical pregnancies could
increase the risk of PL. Below, the literature review is expressed in a table, showing the
proposed methodology, model development, implementation, results, discussion, conclu-
sions, and future recommendations. Stages and types of spontaneous abortions are listed
in Table 1, Presentation of active spontaneous abortion in Table 2.The differential diagnosis
for spontaneous abortion in Table 3, Etiology and risk factors for spontaneous abortions in
Table 4.

Table 1. Stages and types of spontaneous abortions [19,20].

Type of Spontaneous Abortion Description

Spontaneous abortion/miscarriage A pregnancy that ends spontaneously before the fetus has reached a viable gestational age.

Threatened abortion Bleeding through a closed cervical os during the first half of pregnancy. The bleeding is often
painless, although it may be accompanied by mild suprapubic pain.

Inevitable abortion Increased bleeding, intensely painful uterine cramps, and a dilated cervix, indicating that
miscarriage is imminent.

Incomplete abortion The fetus is passed, but significant amounts of placental tissue may be retained, often
accompanied by severe bleeding and painful cramps.

Complete abortion Entire contents of the uterus are expelled, typically occurring before 12 weeks of gestation.
The uterus is small and well-contracted with a closed cervix.

Missed abortion In utero death of the embryo or fetus before the 20th week of gestation, with prolonged
retention of the pregnancy.

Septic abortion An abortion accompanied by infection, presenting with fever, chills, abdominal pain,
and possibly severe complications.

Table 2. Presentation of active spontaneous abortions [21].

Symptom Description

History of amenorrhea Absence of menstrual periods, which can be an early sign of pregnancy and may precede other
symptoms of spontaneous abortion.

Vaginal bleeding One of the most common symptoms, ranging from light spotting to heavy bleeding, which may indicate
the onset of a spontaneous abortion.

Pelvic pain Discomfort or cramps in the pelvic region, often experienced during a spontaneous abortion, varying in
intensity and duration.

Table 3. Differential diagnosis for spontaneous abortion [18].

Condition Description

Bleeding related to implantation Light spotting occur when the embryo implants in the uterus, which is typically not a
sign of a serious problem.

Ectopic pregnancy A potentially life-threatening condition where the embryo implants outside the uterus,
often causing pain and bleeding.

Gestational trophoblastic disease A rare group of pregnancy-related tumors that can mimic the symptoms of a normal
pregnancy or spontaneous abortion.

Cervical, vaginal, or uterine pathology Abnormalities or diseases in these areas can cause symptoms similar to
spontaneous abortion.
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Table 4. Etiology and risk factors for spontaneous abortion [22].

Factor Category Specific Factors

Embryonic/fetal factors Chromosomal abnormalities, Other genetic abnormalities, Structural/morphological abnormalities

Placental factors Placental anatomical abnormalities, Abnormal placentation

Uterine/cervical factors Cervical os incompetence, Mullerian uterine abnormalities (e.g., septated uterus, bicornuate uterus),
Asherman’s syndrome, Endometriosis, Fibroids

Maternal factors Advanced maternal age, Previous miscarriages, Maternal illness (e.g., diabetes, thyroid disorders),
Infection, Hypercoagulable state, Autoimmune disorders

Exposures Substance use (e.g., smoking, alcohol), Certain medications, Environmental contaminants (e.g.,
radiation, chemicals)

Other factors Physical trauma, Conception with an IUD, Psychological stress

Vitamin D [8]

Table 5 a comparison of vitamin D2 and vitamin D3. Table 6 shows the recommended
daily intake of vitamin, Table 7 the roles of vitamin D in the body, Table 8 the causes of
vitamin D deficiency, Table 9 the symptoms of vitamin D deficiency, Table 10 food sources
of vitamin D.

Table 5. Comparison of vitamin D2 and vitamin D3 [23].

Aspect Vitamin D2 (Ergocalciferol) Vitamin D3 (Cholecalciferol)

Source Plants, UVB irradiation of ergosterol Human epidermis, UVB irradiation of 7-dehydrocholesterol

Production Method UVB irradiation of ergosterol UVB irradiation of 7-dehydrocholesterol

Consumption Form Supplements, Fortified foods Natural (e.g., fish), Fortified food sources, Supplements

Table 6. Recommended daily intake of vitamin D.

Category Daily Vitamin D Intake Unit

Infants 0–12 months 400 IU (10 mcg)

Children 1–18 years 600 IU (15 mcg)

Adults up to 70 years 600 IU (15 mcg)

Adults over 70 years 800 IU (20 mcg)

Pregnant or lactating women 600 IU (15 mcg)

Sensible sun exposure 5–10 min, 2–3 times per week -

Table 7. Roles of vitamin D in the body.

Role Description

Healthy bones and teeth Promotes bone and dental health

Immune, brain, and nervous system health Supports immune function and neurological health

Insulin regulation and diabetes management Help regulate insulin levels

Lung function and cardiovascular health Supports respiratory and heart health

Cancer development Influences genes involved in cancer
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Table 8. Causes of vitamin D deficiency.

Cause Description

Skin type Darker skin reduces UVB absorption

Sunscreen High SPF reduces vitamin D synthesis

Geographical location Northern latitudes or high pollution areas

Breastfeeding Infants need supplements, especially with minimal sun exposure

Table 9. Symptoms of vitamin D deficiency.

Symptom Description

Sickness or infection Frequent illnesses

Fatigue Persistent tiredness

Bone and back pain Chronic bone or back discomfort

Low mood Mood swings or depression

Impaired wound healing Slow healing process

Hair loss Unusual hair shedding

Muscle pain Continuous muscle aches

Table 10. Food sources of vitamin D.

Food Source Type

Fatty fish (salmon, mackerel, tuna) Natural

Egg yolks Natural

Cheese Natural

Beef liver Natural

Mushrooms Natural

Fortified milk Fortified

Fortified cereals and juices Fortified

3. Proposed Methodology

The data collection process involved trained healthcare professionals administering
questionnaires, careful handling and storage of data, and measures to ensure the quality
and consistency of the data. Data collectors received specialized training while performing
ongoing monitoring, quality assurance, participant follow-up, and a feedback loop to
address missing data and refine the process over time. Initially, we had only a small dataset,
and needed to come up with a comprehensive analysis to predict early pregnancy loss.
First, we looked at a small dataset; later, we will disclose a large volume of datasets. In the
smallest datasets, we tried to determine the distribution of the numerical values in the
dataset and frequency values of the categorical variables. We address this analysis in the
table and visualization below. The small dataset contained 64 entries with 15 variables,
while the large volume dataset had 10,000 entries with 26 key variables. In our unique
methodology, we have compared the outcomes with the small dataset and large volume
dataset. In addition, we show the results of classical and advanced machine learning
models for each dataset. The descriptive statistics of the numerical values in the dataset in
Table 11, The frequency values of the categories in the dataset are provided in Table 12, The
distribution plot the numerical data of the dataset in Figure 1, and The frequency plot of
the categorical data in the dataset in Figure 2.
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Figure 1. Distributions plot of the categorical data in the dataset.

Figure 2. Frequency plot of the categorical data in the dataset.

Table 11. Descriptive statistics of the numerical variables in the dataset.

Statistic ID Age BMI Systolic BP Diastolic BP Gestational Age (Weeks)

Count 68 68 68 68 68 68
Mean 34.5 25.5 22.39 115.62 83.02 9.47
Std 19.77 3.02 2.12 3.72 2.15 1.5
Min 1 21 18.41 108.29 78.61 7
25% 17.75 23 20.77 113.09 80.76 8
50% 34.5 25 22.37 115.86 83.41 10
75% 51.25 27 23.88 118.35 84.8 10.25
Max 68 37 26.6 122.05 86.96 12
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Table 12. Frequency values of the categories in the dataset.

Variable Frequency

ID 68
Age 11
Residence 2
Education Status 4
Occupation 3
Socioeconomic status 4
BMI 68
Systolic BP 68
Diastolic BP 68
Gestational age (weeks) 6
Parity 2
Dressing style 2
Sunlight exposure 2
Dairy products consumption 2
Multivitamin use 2
Season 2
Vitamin D status (ng/mL) 4
Pregnancy loss 2

4. Distribution Values of the Numerical Variables and Frequency Values of the
Categories in the Small Dataset
4.1. Dataset Data Distribution and Its Frequency

Here, we provide an overview of the small dataset, including 64 entries and 15 variables:

• The distribution plots show a visualization of the numerical data
• The frequency plots show a visualization of the categorical data.

A visualization of the data collection process is shown in Figure 3. We used qualitative
research methods in our project. The vitamin D metabolic framework shown in Figure 4
involves the synthesis of vitamin D in the skin upon exposure to sunlight, followed by its
transformation into its active form in the liver and kidneys, which is essential for calcium
homeostasis and bone health. This metabolic pathway plays a pivotal role in various bodily
functions, including immune response and cell growth regulation.

Figure 3. Data collection process.
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Figure 4. Vitamin D metabolical framework.

4.2. Study Design

The study design ensured a rigorous and systematic approach to patient selection
and data handling, which is critical for the integrity and replicability of the research
findings. By incorporating a multi-stage process that included screening, clear inclusion
and exclusion criteria, and thorough data collection, followed by statistical analysis and a
supervisory review, the study design set a robust foundation for producing reliable and
valid results in the clinical study. The project study design is shown in Figure 5.

Figure 5. Study design.
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4.3. Place of Study

This study was carried out in the Obstetrics and Gynaecology Department of the
Institute of Child and Mother Health (ICMH), Rangpur Medical College and Hospital,
Rangpur, Bangladesh.

4.4. Period of study

September 2020 to August 2021.

4.5. Study Population [24]

Patients at gestational age between 6 to 13 weeks who attended the Outpatient and
Indoor Department of Obstetrics and Gynecology in Rangpur Medical College and Hospital,
Rangpur, Bangladesh.

4.6. Sampling Method

Purposive sampling was carried out according to the availability of patients who
fulfilled the inclusion criteria.

4.7. Sample Size

To determine the sample size, we applied mathematical modeling to determine the
best outcome. By comparing the means of two independent groups (such as a control
group and a treatment group), it is possible to detect a specific difference between these
means with a certain level of statistical power and significance. The following mathematical
formula was considered appropriate for the study design [23]:

n =
(
Zα + Zβ

)2 ·
σ2

1 + σ2
2

(µ1 − µ2)2 (1)

= (1.96 + 1.28)2 · 292 + 322

(42 − 66)2

= 10.5 · 841 + 1024
576

=
19665
576

= 34.1493056 ≈ 34,

where,

µ1 = mean vitamin D level of case

= 42

µ2 = mean vitamin D level of control

= 66

σ1 = SD of case

= 29

σ2 = SD of control

= 32

Zα = 1.96 at 5% level of significance

Zβ = 1.28 at 90% power

n = Sample size.

Thus, the calculated sample size was 34 in each group (34 cases and 34 control).
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4.8. Grouping of the Subjects

Case: Consisted of 34 women with miscarriage in the first trimester.
Control: Consisted of 34 women with a normal pregnancy in the first trimester.
The selection criteria are shown in Table 13.

Table 13. Selection criteria [25].

Inclusion Criteria Exclusion Criteria

For case: For both groups:
1. Women with miscarriage 1. Women with a history of recurrent miscarriage, TORCH infection, anemia.
2. Gestational age 6 to 13 weeks 2. Women with a history of multiple pregnancies and congenital anomaly of the uterus.

For control: 3. Women with a history of diabetes, thyroid disease, heart disease, hepatic or renal failure,
antiphospholipid syndrome, metabolic bone diseases and connective tissue disease.

1.Women with normal pregnancy 4. Women with a history of taking medications that affect vitamin D metabolism or previously
received vitamin D supplementation

2. Gestational age 6 to 13 weeks 5. Women who did not give consent.
3. Singleton pregnancy

Table 14 provides an operational overview, focusing on the definitions from the
literature review.

Table 14. Operational definitions in literature review.

Author Operational Definition

Cunningham, F. G.(2014) [24] Pregnancy loss: Any pregnancy loss before 20 weeks gestation, or a miscarried fetus less than
500 g weight.

Bener et al. (2013) [26]
Vitamin D status: Vitamin D status was categorized into groups as serum 25(OH)D levels
<10 ng/mL, between 10–19 ng/mL, 20–29 ng/mL and >30 ng/mL, indicating severe, moderate
and mild vitamin D deficiency and desirable reference limit, respectively.

Buyukuslu et al. (2014) [27]
Dressing style: Covered dressing style was defined as wearing dresses which cover the body
completely, excluding hands and face, whereas uncovered dressing style was wearing dresses
exposing the body to more sunlight in a permissive manner.

Guzel et al. (2001) [28]

Consuming dairy products: Consuming dairy products of at least 200 mL of milk or other milk
products, including cheese, butter, yoghurt 4–7 days/week was regarded as ‘sufficient’ milk
consumption, whereas intake of dairy products three times a week or less was defined as
‘insufficient’ consumption.

4.9. Research Instrument

A structured questionnaire that included all the variables of interest was prepared for
this purpose.

5. Statistical Test on Dataset

The dataset included several potential metrics, as outlined in Table 15, which were
subjected to further statistical analysis.

Table 15. List of potential metrics for predicting early pregnancy loss.

Demographic Obstetric & General
Health Anthropometric Biochemical & Lifestyle Dependent

Age Gestational age Height (meter) Serum vitamin D level
(ng/mL) Early pregnancy loss

Educational status Parity Weight (Kg) Dietary Habits
Socioeconomic status History of Pregnancy Loss BMI (Kg/m2) Stress Level
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Table 15. Cont.

Demographic Obstetric & General Health Anthropometric Biochemical & Lifestyle Dependent

Occupation Underlying Health
Conditions Sleep Patterns

Residence Family History of Pregnancy
Complications

Exposure to Environmental
Toxins

Dressing style Physical Activity Level
Exposure to sun
Consumption of dairy
products

5.1. Key Variables for Predicting Early Pregnancy Loss [29]

Potential metrics for predicting early pregnancy loss are listed in Table 15:

• Demographic Variables: These variables provide context about the individuals in the
study, including their age, education level, socioeconomic status, occupation, and resi-
dence. They can help to identify patterns or correlations between pregnancy outcomes
and demographic factors. For example, socioeconomic status could influence access
to healthcare or nutrition, which in turn affects pregnancy health.

• Obstetric Variables: This category encompasses variables directly related to pregnancy
history and status, such as gestational age and parity (number of previous pregnancies).
These factors are crucial in understanding the risk factors associated with pregnancy
loss. The number of past pregnancy losses indicates an underlying condition or risk
factor that could be vital for prevention strategies.

• Anthropometric Variables: Anthropometric data, including height, weight, and Body
Mass Index (BMI), provide insight into the physical health status of the pregnant
women in the study. These measures are often linked to pregnancy outcomes, as ex-
treme values can be associated with risks such as gestational diabetes or pre-eclampsia.

• Biochemical Variable: In this table, the biochemical variable specifically focused on
is the serum Vitamin D level. Vitamin D’s role in pregnancy is a central focus of
this research project, as deficiencies have been associated with adverse pregnancy
outcomes, including miscarriage.

• Dependent Variable: The dependent variable in the study is the occurrence of early
pregnancy loss. This outcome measure is what the research aims to predict and
possibly prevent through early detection and intervention. The presence of this
variable in the table signifies its role as the primary metric of interest against which all
other variables are analyzed.

• Impact on the Research of the Key Variables for Predicting Early Pregnancy Loss:
Ensuring that each aspect of the participant’s profile is accounted for during the
analysis allows researchers to systematically assess the influence of each category
on the risk of pregnancy loss. Furthermore, the table helps to frame the research
methodology, guiding the data collection process to ensure that all relevant variables
are included. This is essential for developing robust machine learning models that
can accurately identify the factors most predictive of early pregnancy loss [30]. By
clearly outlining the potential variables in this structured manner, the research team,
stakeholders, and scientific community can easily comprehend the scope of this
research and the complexity of the factors being analyzed. Further, the potential
metrics table supports the transparency and replicability of the research, which are
core principles of scientific inquiry.

5.2. Distribution of Study Subjects

This segment details the categorization of study participants based on several criteria,
such as dressing habits, exposure to sunlight, dietary patterns, consumption of multivi-
tamins, and changes across seasons. The research comprised 68 individuals segmented
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into two groups: cases, consisting of women who experienced miscarriage during the first
trimester, and controls, comprising women with healthy pregnancies during the same
period. The distribution of study subjects according to various factors (n = 68) is provided
in Table 16.

The data were expressed as frequency and percentage. A chi-square test was per-
formed to compare the groups. A p-value of less than 0.05 was accepted as the level of
significance. Findings: This study did not find any significant difference (p > 0.05) in dress-
ing style, consumption of dairy products, use of multivitamins, or season of blood sampling
between the case and control groups. However, a significant difference (p < 0.05) was ob-
served in sun exposure, indicating its potential role in early pregnancy loss. This aligns with
the existing literature on the importance of environmental factors in pregnancy outcomes.
The statistical analysis underscores the complexity of factors influencing early pregnancy
loss, highlighting the need for comprehensive approaches in maternal healthcare.

Table 16. Distribution of study subjects according to various factors (n = 68).

Variable Case (n = 34) Control (n = 34) p Value

Dressing Style
Covered 27 (79.4%) 23 (67.6%) 0.272 ns
Uncovered 7 (20.6%) 11 (32.4%)
Sun Light Exposure
Exposure 11 (32.4%) 19 (55.9%) 0.050 s
Non-exposure 23 (67.6%) 15 (44.1%)
Consumption of Dairy Products
Yes 14 (41.2%) 19 (55.9%) 0.332 ns
No 20 (58.8%) 15 (44.1%)
Multivitamin Use
Yes 13 (38.2%) 17 (50.0%) 0.329 ns
No 21 (61.8%) 17 (50.0%)
Season
Winter 14 (41.2%) 17 (50.0%) 0.465 ns
Summer 20 (58.8%) 17 (50.0%)

6. Association between Vitamin D Levels and Early Pregnancy Loss

This study investigated the relationship between vitamin D levels and the risk of early
pregnancy loss (EPL) in the first trimester. The association between vitamin D levels and
early pregnancy loss is shown in Table 17.

Table 17. Association between vitamin D levels and early pregnancy loss.

Vitamin D (ng/mL) Case (n = 34) Control (n = 34) OR (95% CI) p Value

<30 30 (88.2%) 23 (67.6%) 3.587 (1.011 to 12.731) 0.041
>30 4 (11.8%) 11 (32.4%) N/A 1 N/A

1 OR not available due to insufficient cases for reliable calculation.

The data were expressed as frequency, percentage, and Mean ± SD. A chi-square test
was used to compare the groups, with a p-value of less than 0.05 considered statistically sig-
nificant. The Odds Ratio (OR) and 95% Confidence Interval (CI) of the OR were calculated
as well. In this study, the majority of the case group (88.2%) had insufficient or deficient
serum vitamin D levels (<30 ng/mL), compared to 67.6% in the control group. The risk
of developing miscarriage in the first trimester for pregnant women with insufficient or
deficient serum vitamin D levels was found to be nearly four times higher (OR = 3.587,
95% CI = 1.011 to 12.731, p = 0.041) than for those with normal serum vitamin D levels.

The pregnancy outcomes of the study subjects (n = 68) are shown in Table 18. In
this study of 68 participants, gestational age and parity were compared between women
who experienced a miscarriage in the first trimester (Case, n = 34) and healthy pregnant
women (Control, n = 34). Gestational age averaged 9.47 ± 2.21 weeks for the case group
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and 9.05 ± 0.95 weeks for the control group. Regarding parity, in the case group 55.9%
were nulliparous and 44.1% were multiparous, while in the control group 67.6% were
nulliparous and 32.4% were multiparous. Statistical analyses, including the chi-square test
and the unpaired Student’s t-test, revealed no significant differences (p > 0.05) in gestational
age or parity between the two groups.

Table 18. Pregnancy outcomes of the study subjects (n = 68).

Variable A (n = 34) B (n = 34) p Value

Gestational age (weeks)
(Mean ± SD) 9.47 ± 2.21 9.05 ± 0.95 0.312 ns
Parity
Nulliparous 19 (55.9%) 23 (67.6%) 0.318 ns
Multiparous 15 (44.1%) 11 (32.4%)

The blood pressure demographic analysis is provided in Table 19. In this investiga-
tion, the mean systolic blood pressure was 115.29 ± 7.06 mmHg for the case group and
115.73 ± 7.50 mmHg for the control group, while the mean diastolic blood pressure was
83.68 ± 3.75 mmHg for cases and 81.91 ± 3.89 mmHg for controls. The unpaired Student’s
t-test revealed no statistically significant difference in systolic or diastolic blood pressure
between women who had miscarriages in the first trimester and healthy pregnant women,
suggesting that blood pressure may not be a discriminating factor for early pregnancy loss
within this sample.

Table 19. Blood pressure demographics.

Blood Pressure (mmHg) Case (n = 34) Control (n = 34) p Value

Systolic blood pressure (mmHg) 115.29 ± 7.06 115.73 ± 7.50 0.804 ns
Diastolic blood pressure (mmHg) 83.68 ± 3.75 81.91 ± 3.89 0.062 ns

The study population’s BMI status according to demographic analysis is provided
in Table 20. In this analysis, the BMI data, captured as frequency and Mean ± SD, were
compared between women who miscarried in the first trimester (Case) and healthy preg-
nant women (Control). The mean BMI was 21.16 ± 3.15 Kg/m2 for the case group and
23.74 ± 3.02 Kg/m2 for the control group. Statistical assessment using the chi-square test
showed no significant difference (p = 0.487) in BMI between the two groups, indicating that
BMI may not be a contributing factor to early pregnancy loss in this cohort.

Table 20. BMI status according to demographic analysis.

BMI (Kg/m2) Case (n = 34) Control (n = 34) p Value

18.5–24.9 31 (91.2%) 28 (82.4%)
25–30 2 (5.9%) 5 (14.7%)
>30 1 (2.9%) 1 (2.9%) 0.487 ns
Mean ± SD 21.16 ± 3.15 23.74 ± 3.02

6.1. Model Development
Problem Identification and Proposed Solution

The research problem involves the use of machine learning to enhance the prediction
of Early Pregnancy Loss (EPL) and differentiate between typical pregnancies and those
at elevated risk during the initial trimester. This paper aims to explore the effectiveness
of various machine learning algorithms, including both conventional models and more
advanced ones such as deep learning, in predicting EPL. Specifically, we investigated the
role of maternal serum vitamin D levels, among other demographic, obstetric, anthro-
pometric, and biochemical variables, in influencing pregnancy outcomes. This research
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seeks to develop and validate machine learning models that can predict EPL accurately,
thereby contributing to improved gestational health outcomes for mothers and infants.
The problem addressed in the paper is a classification problem. It focuses on predicting a
binary outcome, namely, whether or not a pregnancy will result in an early pregnancy loss
(EPL). This classification is based on various features, including maternal serum vitamin D
levels, demographic information, obstetric history, anthropometric data, and biochemical
markers. The goal is to classify pregnancies into one of two categories: those at risk of
EPL, and those that are likely to proceed without this complication. By employing machine
learning models for this classification task, the present research aims to enable early detec-
tion and intervention strategies in order to prevent EPL and improve gestational health
outcomes. This research tackles a crucial issue in obstetrics with significant implications for
individual families and broader public health. By leveraging machine learning for early
prediction, it can pave the way for advancements in prenatal care that could lead to better
outcomes for mothers and babies alike. EPL affects a substantial proportion of pregnancies,
with significant emotional, psychological, and sometimes physical consequences for the
affected individuals. By improving the prediction of EPL, healthcare providers can offer
targeted interventions to those at higher risk, potentially reducing the incidence and impact
of EPL. Approaches utilizing machine learning strategies represent a significant advance-
ment in prenatal care, where predictive modeling can help in personalizing and optimizing
care strategies for expectant mothers. Vitamin D has been a subject of increasing interest
in obstetrics, and our research contributes to understanding its predictive value for EPL.
Early intervention and prevention enables the implementation of preventative measures,
nutritional interventions, or closer monitoring to mitigate risks. The insights gained from
our research can inform public health policies and healthcare planning, emphasizing the
importance of prenatal care and nutritional assessments. This research supports not only
physical health outcomes but also mental and emotional well-being. Identifying which
pregnancies require additional monitoring and resources can help in the efficient allocation
of healthcare resources. These findings open up new avenues for research on prenatal and
maternal health, including potential biomarkers for EPL.

6.2. Data Preprocessing

In the methodology section, we discussed how the dataset was collected. The initial
dataset was small, with only 64 entries and 15 features, resulting in poor model accu-
racy. Thus, we extended the dataset to a larger volume size, including 10,000 entries and
26 features. We used the KNN imputing technique to handle missing values, feature scal-
ing to ensure normalization, and encoding strategies for categorical and numerical data
transformation. An overview of the dataset structure is provided in Table 21.

Table 21. Dataset structure overview.

Column Non-Null Count Dtype

ID 10,000 int64
Age 10,000 int64
Residence 10,000 object
Education Status 10,000 object
Occupation 10,000 object
Socioeconomic status 10,000 object
BMI 10,000 float64
Systolic blood Pressure 10,000 float64
Diastolic blood pressure 10,000 float64
Gestational age (weeks) 10,000 int64
Parity 10,000 object
Dressing style 10,000 object
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Table 21. Cont.

Column Non-Null Count Dtype

Sunlight exposure 10,000 object
Dairy productis consumption 10,000 object
Multivitamin use 10,000 object
Season 10,000 object
Vitamin D status (ng/mL) 10,000 object
Pregnancy loss 10,000 object
History of Pregnancy Loss 10,000 object
Underlying Health Conditions 10,000 object
Physical Activity Level 10,000 object
Dietary Habits 10,000 object
Family History of Pregnancy Complications 10,000 object
Stress Level 10,000 object
Sleep Patterns 10,000 object
Exposure to Environmental Toxins 10,000 object

6.2.1. Dataset Description

A statistical summary of the dataset is provided in Table 22. The ADASYN technique
was applied to address class imbalance in the training data. For feature selection, LASSO
(Least Absolute Shrinkage and Selection Operator) was used to identify relevant predictors.
Features selected by LASSO with non-zero coefficients are shown in Table 23.

Table 22. Statistical summary of the dataset.

ID Age BMI Systolic BP Diastolic BP Gestational Age
(Weeks)

Count 10,000 10,000 10,000 10,000 10,000 10,000
Mean 5000.5 31.1628 24.2425 125.0296 80.0203 10.5224
Std 2886.89 7.8130 3.3170 8.6551 5.7295 1.7090
Min 1 18 18.5012 110.0003 70.0026 8
25% 2500.75 24 21.3795 117.6053 75.0808 9
50% 5000.5 31 24.2609 125.0292 80.0080 11
75% 7500.25 38 27.1123 132.5860 85.0150 12
Max 10,000 44 29.9995 139.9982 89.9975 13

The results of LASSO regression to the dataset are shown in Table 23; an an alpha
value of 0.001 was used. The results reveal a nuanced understanding of the features’ con-
tributions towards predicting the target variable. Notably, no features were eliminated
by the LASSO process, as evidenced by the absence of zero coefficients. At the chosen
level of regularization, every feature in the dataset is considered significant enough to
retain, indicating a well-rounded contribution from all variables to the model’s predictive
capability. Among the features, “Occupation_Labour” stands out with a coefficient of
−0.170977, highlighting a substantial negative impact on the target variable. This is con-
trasted with smaller yet positive coefficients, such as Age at 0.000637 and BMI at 0.002120,
suggesting that these factors slightly increase the likelihood or value of the target variable
as they rise. The negative coefficient for Residence_Urban, at −0.035618, points towards
an inverse relationship with the target, implying that urban residency could be associated
with lower values of the target variable. The span of coefficients across socioeconomic
factors, occupational statuses, health conditions, and lifestyle choices underscores the com-
plex interplay of various determinants on the target variable. The significant coefficients
attached to socioeconomic status have a stronger influence, indicating that socioeconomic
and occupational factors are critical in the predictive model. Moreover, health-related
features, such as “Vitamin D status (ng/mL)_Severe deficiency” at −0.118984, reflect their
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critical role in influencing outcomes. The lack of eliminated features at an alpha of 0.001
prompts consideration of higher alpha values for potentially greater sparsity.

Table 23. Features selected by LASSO with non-zero coefficients.

Feature Coefficient

Age 0.000637
BMI 0.002120
Systolic blood Pressure 0.000667
Diastolic blood pressure 0.000132
Gestational age (weeks) −0.004726
Residence_Urban −0.035618
Education Status_HSC −0.118413
Education Status_Postgraduate −0.112362
Education Status_Primary −0.131657
Education Status_Secondary −0.128334
Occupation_Housewife −0.141088
Occupation_Labour −0.170977
Occupation_Service −0.143088
Occupation_Student −0.167231
Socioeconomic status_Lower-income −0.132668
Socioeconomic status_Lower-middle-income −0.150197
Socioeconomic status_Upper-middle-income −0.157706
Parity_Nulliparous −0.041108
Dressing style_Uncovered −0.030554
Sunlight exposure_Non-exposure −0.038753
Dairy productis consumption_Yes −0.025779
Multivitamin use_Yes −0.060785
Season_Summer −0.104867
Season_Winter −0.094258
Vitamin D status (ng/mL)_Insufficiency −0.083950
Vitamin D status (ng/mL)_Severe deficiency −0.118984
Vitamin D status (ng/mL)_Sufficiency −0.122296
History of Pregnancy Loss_Yes −0.062970
Underlying Health Conditions_Diabetes −0.110199
Underlying Health Conditions_None −0.078496
Underlying Health Conditions_Thyroid Disorders −0.135938
Physical Activity Level_Low −0.073753
Physical Activity Level_Moderate −0.084704
Dietary Habits_Good −0.076547
Dietary Habits_Poor −0.086564
Family History of Pregnancy Complications_Yes −0.057699
Stress Level_Low −0.112256
Stress Level_Moderate −0.081633
Sleep Patterns_Good −0.084031
Sleep Patterns_Poor −0.053059
Exposure to Environmental Toxins_Low −0.086443
Exposure to Environmental Toxins_Moderate −0.130328

6.2.2. Model Architecture Selection Criteria and Rationale

The model architecture selection criteria, rationale, and references are shown in
two parts in Tables 24 and 25 below.
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Table 24. Model architecture selection criteria, rationale, and references (part 1).

Model Selection Criteria and Rationale References

LightGBM Efficient for large datasets and categorical features. Ideal for high performance and
accuracy with less computational resources. [31]

Logistic Regression Suitable for binary outcomes, offering interpretability and efficiency, especially for
linearly separable data. [32]

ElasticNet Combines L1 and L2 penalties for handling multicollinearity and performing feature
selection, which is useful in high-dimensional spaces. [33]

RidgeClassifier Addresses multicollinearity among predictors by adding a squared magnitude penalty to
the loss function. [34]

Random Forest Offers robustness and accuracy through ensemble learning, handling both bias and
variance effectively. [35]

Support Vector Machine Effective in high-dimensional spaces, and particularly suited for cases where the division
between classes is clear. [36]

Naive Bayes Assumes independence among predictors, efficient for large datasets, and suitable for
baseline comparisons. [37]

K-Nearest Neighbors Non-parametric method is useful for classification and regression, especially when the
dataset is small. [38]

Decision Tree Offers interpretability, capable of capturing non-linear relationships without needing
feature scaling. [39]

Table 25. Model architecture selection criteria, rationale, and references (part 2).

Model Selection Criteria and Rationale References

AdaBoost Combines multiple weak learners to form a strong learner, improving
classification accuracy. [40]

Gradient Boosting Sequentially adds predictors to correct its predecessors, reducing bias and
variance. [41]

Extra Trees Similar to Random Forest but with random thresholds for each feature rather
than the best one, increasing speed. [42]

Bagging Classifier Reduces variance and helps to avoid overfitting by aggregating predictions
of multiple base estimators. [43]

Histogram-based Gradient Boosting An efficient implementation of gradient boosting that uses histograms for
speed improvement. [44]

Voting Classifier Combines predictions from multiple different models, potentially improving
accuracy through diversity. [45]

Linear Discriminant Analysis Used for dimensionality reduction and classification, assumes Gaussian
distribution of data. [46]

Quadratic Discriminant Analysis Similar to LDA but allows for non-linear separation of data. [47]

Gaussian Process Classifier Based on Bayesian classification, useful for probabilistic prediction and
capturing uncertainties. [47]

Multi-layer Perceptron A neural network model capable of capturing complex relationships through
layers and non-linear activation. [47]

The classification of the machine learning models is shown in Table 26.
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Table 26. Classification of machine learning models.

Classical Machine Learning Models Deep Learning Models

LightGBM Multi-layer Perceptron
ElasticNet Deep Neural Network
RidgeClassifier
Logistic Regression
Random Forest
Support Vector Machine
Naive Bayes (GaussianNB)
K-Nearest Neighbors
Decision Tree
AdaBoost
Gradient Boosting
Extra Trees
Bagging Classifier
Histogram-based Gradient Boosting
Voting Classifier
Linear Discriminant Analysis
Quadratic Discriminant Analysis
Gaussian Process Classifier

6.2.3. Model Training and Hyperparameter Tuning

Prior to model training, we had to deal with imbalanced data for those models par-
ticularly susceptible to class imbalance. Techniques such as SMOTE and ADASYN were
applied to the training data to improve model fairness and accuracy on minority classes.
Each model in our extensive array was subject to a rigorous training regimen and tailored
to its unique characteristics and strengths. Below, we discuss the specific configurations
and hyperparameters in detail. We initially trained five models on the dataset consisting
of 64 entries and 15 variables, which was small in size, but obtained only poor accuracy
due to dataset limitation. Several of the classical models were unable to achieve high accu-
racy. Thus, we used a dataset with a larger volume consisting of 10,000 entries, including
26 key indicators. We carried out a model comparison in which we applied the following
machine learning algorithms to find the best model with the highest accuracy. LightGBM:
Trained for its efficiency with large datasets, focusing on tree-specific parameters such
as learning rate (0.01 and 0.001), number of leaves (31 and 50), and maximum depth (10
and 15) to control overfitting and speed up training. ElasticNet: Optimized by tuning the
alpha parameter and the l1_ratio to combine the strengths of LASSO and Ridge regression,
ensuring a robust model capable of handling multicollinearity. RidgeClassifier: Employed
primarily to address issues of multicollinearity among predictors, with hyperparameter
tuning centered around the alpha parameter (values such as 1.0, 10.0, and 100.0 explored) to
control the model’s complexity and ensure robustness against overfitting. Logistic Regres-
sion: Adjusted the regularization strength (C parameter) to values such as 0.01, 0.1, and 1,
and experimented with solvers such as ‘liblinear’ and ‘saga’ to balance model accuracy
and computational efficiency. Random Forest: Tuned the number of trees (n_estimators)
to 100 and 200, max depth to 10 and 20, and max features to ‘sqrt’ and ‘log2’ to improve
accuracy and prevent overfitting, leveraging the model’s randomness for robustness against
noise. Support Vector Machine (SVM): Varied the C parameter between 0.1, 1, and 10
and explored kernel types such as linear, rbf, and poly to find the optimal trade-off for
the decision boundary smoothness and correct classification of training points. Naive
Bayes (GaussianNB): Tuned the var_smoothing parameter across a range of values from
10−9 to 10−3 to mitigate data scarcity issues and enhance stability. K-Nearest Neighbors:
Configured the number of neighbors (k) at 5, 10, and 15 and used distance metrics such as
Euclidean and Manhattan to ensure that the model accurately reflected the data structure
without being sensitive to noise. Decision Tree: Set the depth of the tree (max_depth) to
none (unlimited) or to numbers such as 10 and 20, minimum samples per leaf to 1, 2, and 4,
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and used both Gini and Entropy as criteria to find an optimal balance between simplicity
and power. AdaBoost: Adjusted the number of estimators to 50 and 100 and the learning
rate to 0.01 and 0.1, enhancing the model’s focus on previously misclassified observations
and accuracy. Gradient Boosting: Tuned the learning rate to 0.01 and 0.1, number of estima-
tors to 100 and 200, and max depth to 3 and 5, controlling the speed and error minimization
effectiveness. Extra Trees: Focused on the number of trees (n_estimators) at 100 and 200
and set the max features to ’sqrt’ and ’log2’, ensuring diversity among trees and robust
predictions. Bagging Classifier: The base estimator was varied among Decision Tree and
SVM and the number of base estimators was set to 10 or 50, improving accuracy through
estimator diversity and variance reduction. Histogram-based Gradient Boosting: Tuned
the learning rate to 0.1 and 0.01 and max leaf nodes to 31 and 255 for fast and accurate
predictive capability. Voting Classifier: Constituent models such as Logistic Regression,
Random Forest, and SVM were carefully selected and individually tuned before combining
them to leverage their respective strengths for effective predictions. Linear Discriminant
Analysis and Quadratic Discriminant Analysis: In light of their lower number of hyper-
parameters, the focus was primarily on ensuring that the data distribution assumptions
aligned with the model’s requirements for optimal performance. Gaussian Process Clas-
sifier: Kernel choices included RBF, Matern, and Rational Quadratic, with a significant
influence on model flexibility and data structure fitting. Multi-layer Perceptron (MLP): We
designed the architecture with hidden layers ranging from 1 to 3 and units from 64 to 128,
with regularization techniques such as the L2 penalty (alpha) set to 0.0001 and 0.001 to curb
overfitting. Cross-validation was employed across models to validate their generalization
capability and optimized performance for unseen data. Our comprehensive approach,
detailed further in our GitHub repository (Early Pregnancy Detection and Prevention using
Advanced Machine Learning Algorithms (accessed on 1 January 2024)), showcases our
commitment to developing well-tuned and robust models. K-fold cross-validation served
as the backbone of our evaluation strategy, ensuring that models were both trained and
validated on diverse subsets of the data to prevent overfitting and guarantee robustness.
The choice of models spanned linear models such as Logistic Regression, where simplicity
and interpretability are key, as well as more complex ensembles such as the Voting Classifier,
which aggregates predictions from multiple models to leverage their collective strengths.
Deep learning models, specifically Multi-Layer Perceptrons, were trained with an emphasis
on network architecture and the balance between learning capacity and generalizability.
Models were selected based on a holistic view of their performance, factoring in accuracy,
precision, recall, and F1 score alongside practical considerations such as computational
efficiency and ease of interpretation.

6.3. Model Implementation
6.3.1. Computational Environment

The implementation of our machine learning models was carried out in a robust com-
putational environment designed to ensure efficient data processing along with accurate
model performance evaluation and validation. The following specifications detail the
hardware and software configurations used during the model development and evalua-
tion phases.

Hardware Specifications:

• CPU: Intel Core i7-9700K @ 3.60 GHz, eight cores
• RAM: 32 GB DDR4
• GPU: NVIDIA GeForce RTX 2080 Ti, 11 GB GDDR6 (used for deep learning models)
• Storage: 1TB NVMe SSD

Software Specifications:

• Operating System: Ubuntu 20.04 LTS
• Programming Language: Python 3.8
• Machine Learning Libraries:

https://github.com/datascintist-abusufian/Early-Pregnancy-Detection-and-prevention-using-Advanced-machine-learning-Algorithms
https://github.com/datascintist-abusufian/Early-Pregnancy-Detection-and-prevention-using-Advanced-machine-learning-Algorithms
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1. scikit-learn 0.24.1 for classical machine learning models and preprocessing. 2. Ten-
sorFlow 2.4.1 and Keras 2.4.3 for implementing and training deep learning models.
3. LightGBM 3.1.1 for gradient boosting models. 4. pandas 1.2.3 and NumPy 1.19.5
for data manipulation and numerical computations. 5. Matplotlib 3.3.4 and Seaborn
0.11.1 for data visualization.

• Development Environment: Jupyter Notebook 6.2.0.

This setup was chosen to leverage its high computational power. The setting configu-
ration was needed for training and evaluating complex machine learning models including
deep learning architectures. The utilization of a dedicated GPU significantly reduced the
training time for models that required intensive computational resources. The choice of
Ubuntu as the operating system and Python as the programming language was driven by
their widespread support in the data science and machine learning communities, which
ensures access to the latest libraries and frameworks. The combination of these hardware
and software tools provided a versatile and powerful platform for conducting our research
on early pregnancy detection and prevention using advanced machine learning algorithms.

6.3.2. Training Data Management and Model Feeding Strategies

We meticulously managed the input of training data to optimize the learning and
generalization capability of our models.

• Batching: To efficiently manage memory resources and speed up the training process,
we utilized mini-batch gradient descent. The training data were divided into smaller
batches, typically consisting of 32 to 128 examples per batch. This approach allowed us
to update our model weights more frequently, leading to faster convergence. The batch
size was chosen based on a compromise between computational efficiency across the
training set.

6.4. Training Data Management and Model Feeding Strategies
Batching

To efficiently manage memory resources and expedite the training process, we em-
ployed mini-batch gradient descent. Our training data were partitioned into smaller subsets,
commonly referred to as batches, with each batch containing between 32 and 128 examples.
This method enabled more frequent updates to our model weights, facilitating faster con-
vergence towards the optimal solution. The selection of batch size was a balance aimed at
maximizing computational efficiency across the entire training dataset.

Our training dataset comprised 10,000 entries.

• For a batch size of 32 examples, the number of batches would be calculated as follows:

Number of Batches =
Size of Training Dataset

Batch Size
=

10000
32

≈ 313. (2)

• For a batch size of 128 examples, the above calculation adjusts to

Number of Batches =
10000

128
≈ 78. (3)

These calculations provide the total number of batches. This batching strategy was
specifically applied to our deep learning models to harness computational efficiencies and
facilitate model training. During shuffling, we shuffled the training data prior to each
epoch of training to prevent the model from learning any potential order in the data that
could influence its predictions. This strategy was critical for avoiding biases and ensuring
that each batch of data presented to the model was representative of the overall data
distribution. Shuffling helps to enhance model robustness by reducing the variance of the
weight updates. For instance, a simple logistic regression model would have a weight
for each feature plus a bias term, totaling 27 parameters for 26 features. In contrast, deep
learning models such as Multi-layer Perceptrons (MLPs) have a more complex structure,
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with the number of weights influenced by the number of neurons in each layer as well as by
the connections between them. The total number of weights in an MLP can be calculated as

Total Weights =
n−1

∑
i=1

(Ni × Ni+1) + Ni+1, (4)

where Ni is the number of neurons in the ith layer, n is the total number of layers, and the
additional Ni+1 accounts for the bias term for each neuron in the next layer. Given our
dataset with 10,000 entries and 26 variables, the exact number of weights for each of the
22 models would depend on the different model architectures, particularly for the deep
learning models. Traditional machine learning models generally have weights directly
related to the number of features (plus any additional parameters for specific algorithms),
while the weight counts of deep learning models reflect the complexity and depth of the
network architecture [48]. By carefully managing how the training data were input into the
model, we maximized learning efficiency and ensured robust model performance across a
variety of datasets and problem domains.

Model Training Parameters:
The training of our models was meticulously configured using a variety of parameters

tailored to optimize performance across different algorithms. Key parameters included
the following:

• Learning Rate: Critical for deep learning models such as Multi-layer Perceptron (MLP),
the learning rate was set to values such as 0.001 and 0.0001 to balance the speed of
convergence and the risk of overshooting the minimum loss. For gradient-boosting
models such as LightGBM and Gradient Boosting, similar rates were applied to ensure
efficient learning.

• Number of Epochs: For deep learning models, the epochs ranged from 50 to 200,
allowing the models sufficient iterations over the dataset to learn effectively without
overfitting. The concept of epochs does not apply directly to most classical machine
learning models, which train on the dataset as a whole in a single iteration.

• Batch Size: Used exclusively in the context of deep learning, batch sizes of 32, 64,
and 128 were selected based on the compromise between computational efficiency
and model performance, with smaller batches providing more frequent updating of
the model weights.

• Max Depth: This parameter, relevant to decision trees and their ensemble counterparts,
was adjusted to values such as 10, 20, or None (unlimited) to control the complexity of
the models and prevent overfitting by limiting how deeply the trees could grow.

• Regularization Parameters: For models such as Logistic Regression, RidgeClassifier,
and ElasticNet, the regularization strengths (e.g., L1 and L2 penalties) were fine-tuned
to prevent overfitting by penalizing large coefficients, with alpha values in the range
of 0.01 to 1 for Ridge and ElasticNet.

These parameters were chosen after a series of experiments to find the optimal balance
between training time, model complexity, and prediction accuracy. Cross-validation tech-
niques were employed to ensure that the selected parameters led to models that generalized
well to unseen data. Further details of the parameter selection process and the impact on
model performance can be found in our GitHub repository: Early Pregnancy Detection and
Prevention using Advanced Machine Learning Algorithms (accessed on 1 January 2024).

6.5. Model Performance on Test Set with Small and Large Datasets

Comparative evaluation of our machine learning models across datasets of varying
sizes provided a nuanced understanding of model efficacy in the context of early pregnancy
loss prediction. Initially, on the smaller dataset comprising 64 entries with 15 variables,
the models demonstrated a foundational ability to discern patterns indicative of pregnancy
outcomes. However, it was only with the expansion of the dataset to include 10,000 entries
and 26 key indicators that the true potential of our advanced machine learning and deep

https://github.com/datascintist-abusufian/Early-Pregnancy-Detection-and-prevention-using-Advanced-machine-learning-Algorithms
https://github.com/datascintist-abusufian/Early-Pregnancy-Detection-and-prevention-using-Advanced-machine-learning-Algorithms
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learning techniques was unlocked. In this extensive analysis, we rigorously tested both
classical and innovative models, including LightGBM, Multi-Layer Perceptron, ElasticNet,
and Deep Neural Networks, leading to a significant enhancement in predictive performance.
Notably, the application of ensemble methods and sophisticated algorithms tailored to
address the intricate dynamics of the larger dataset resulted in an impressive improvement
in accuracy metrics. Models such as LightGBM and Deep Neural Network stood out,
achieving cross-validation accuracies of 94.12% and 98.03%, respectively, underscoring the
critical role of dataset comprehensiveness and model complexity in predictive analytics.
Our investigation into the predictive behaviors of these models, supported by confusion
matrices and classification reports, illuminates their respective strengths and limitations.
For instance, the Support Vector Machine model exhibited high recall but lower precision
for class ‘1’, indicating a tendency towards false positives, a challenge mitigated by the
nuanced strategies of ensemble and deep learning models. The balanced consideration
of precision and recall across the models emphasized the importance of methodological
refinement and the exploration of more sophisticated modeling techniques to enhance
predictive performance in the domain of early pregnancy loss detection. The divergent
dataset size and quality aided in developing effective predictive models. The marked
performance improvement with the larger dataset validates the potential of machine
learning in healthcare applications, highlighting the need for continuous methodological
advancements to optimize predictive accuracy and reliability.

7. Results

In our research, we focused on innovative machine learning strategies for early de-
tection and prevention of pregnancy loss, including the connection between vitamin D
and gestational health. We achieved remarkable results using machine learning models.
Our meticulous evaluation encompassed both small and large datasets while comparing
the accuracy across different models. Notably, all models demonstrated impressive cross-
validation scores, consistently hovering around 95%. We delved into advanced machine
learning techniques, exploring Deep Neural Network and Multi-Layer Perceptron models.
By fine-tuning various parameters, we achieved an astounding 98% cross-validation accu-
racy. The most advanced model was able to accurately predict key indicators related to
pregnancy loss, and illuminated the critical connection with vitamin D. Our findings have
far-reaching implications for gestational health, offering a powerful tool for early detection
and prevention. The synergy between machine learning and vitamin D underscores the
potential to revolutionize maternal care. While the classical model results on the small
dataset are shownin Figure 6, The classical model results on the large dataset are shown in
Figure 7.

Using our small dataset, we built five ensemble learning models. The Logistic Re-
gression model achieved a precision of 0.50 and a recall of 0.75 on the small dataset for
class 1. This means that while only 50% of the pregnancy loss cases identified by the
model were correct (precision), it successfully identified 75% of all actual pregnancy loss
cases (recall). The SVM model displayed a precision of 0.60 for class 0 and a recall of
0.00 for class 1, failing to correctly identify any of the actual cases of pregnancy loss. This
is problematic, as it suggests that this model is not suitable for detecting pregnancy loss.
The KNN model’s recall for class 1 is 0.25, indicating that it identified 25% of pregnancy loss
cases correctly, which is relatively low for the research needs. Its precision of 0.33 for class
1 suggests that when predicting a pregnancy loss, only 33% of its predictions are correct.
The Random Forest model had better balance, with a recall of 0.83 for class 0 and 0.50 for
class 1. This means that it correctly identified 83% of the non-pregnancy loss cases and
50% of the pregnancy loss cases, with an overall accuracy of 70%. The Naive Bayes model
showed a recall of 0.75 for class 1, which is quite high and crucial for the project, as it could
potentially predict 75% of the pregnancy loss cases correctly. However, its precision for
class 1 was 0.50, indicating that half of the predicted cases were false positives. High recall
rates on class 1, such as those achieved by the Logistic Regression (0.75) and Naive Bayes
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(0.75) models, are critical for this research project. These models are valuable in that they
were able to identify most cases that could lead to pregnancy loss, thereby enabling early
intervention. The high precision of the Random Forest model on class 0 (0.71) ensures that
most healthy pregnancies are correctly identified, avoiding undue stress and unnecessary
medical interventions for these patients. However, the relatively low precision for class 1
achieved by the Logistic Regression and Naive Bayes models could lead to a significant
number of false alarms, which may place additional psychological and financial burdens
on both expectant mothers and the healthcare systems. The balance between these factors
is crucial; a model such as Random Forest, with an accuracy of 70%, provides better overall
performance; however, in the context of this research, the higher recall for class 1 achieved
by the Logistic Regression and Naive Bayes models is more desirable.

Figure 6. Classical model results on the small dataset.

Above all, these model results were for the classical models on the small dataset with
only 64 entries, resulting in the poor accuracy shown in Figure 6. We extended the dataset
to 10,000 entries and 26 potential variables to allow for a more robust analysis, and selected
unique machine learning models in order to make decisions about the reasons for the poor
results on the small dataset. We applied ten more machine learning models to the larger
dataset, with the results shown in Figure 7.
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Figure 7. Classical model results on the large dataset.

Classification Model Results on Large Dataset

The best performance metrics across models for the ‘Yes’ class are shown in Table 27.

Table 27. Best performance metrics across models for class ‘1’ on the large dataset.

Model Best Metric Score

Logistic Regression Recall 0.70
Random Forest Precision 0.80
Support Vector Machine Recall 0.79
Naive Bayes Recall 0.69
K-Nearest Neighbors Recall 0.68
Decision Tree Recall 0.67
AdaBoost Precision 0.80
Gradient Boosting Precision 0.80
Extra Trees Precision 0.80
Bagging Classifier Recall 0.78
Histogram-based Gradient Boosting Precision 0.80
Voting Classifier Recall 0.68
Linear Discriminant Analysis Recall 0.70
Quadratic Discriminant Analysis Recall 0.68
Gaussian Process Classifier Recall 0.68
Multi-layer Perceptron Recall 0.68
LightGBM Precision 0.80
ElasticNet (ElasNet) Precision 0.64
Ridge Classifier recall 0.80

Logistic Regression: With the best recall of 0.70, this model correctly identifies 70%
of all positive cases (pregnancy losses). This is crucial for early detection, allowing inter-
ventions to be made in 70% of at-risk pregnancies identified by the model. Random Forest
and other ensemble methods (AdaBoost, Gradient Boosting, Extra Trees, Histogram-based
Gradient Boosting, LightGBM): These models show high precision, with scores including
0.80 for Random Forest and LightGBM, meaning that 80% of the pregnancy losses predicted
by the model are correct. High precision is beneficial in reducing false alarms, thereby
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preventing unnecessary interventions and the anxiety that they can cause. Support Vector
Machine (SVM): A recall of 0.79 indicates that this model is able to correctly identify 79%
of actual pregnancy loss cases. This high recall suggests that SVM is very effective for the
detection purposes of this project. Naive Bayes and other probabilistic models (Decision
Tree, Voting Classifier, Linear Discriminant Analysis, Quadratic Discriminant Analysis,
Gaussian Process Classifier, Multi-Layer Perceptron): These models have recall values
ranging from 0.67 to 0.69; while not as high as SVM or Logistic Regression, these models
are fairly good at identifying pregnancy loss cases, which is beneficial for early detection
strategies. Ridge Classifier: With a recall of 0.80, this model excels in identifying most of
the positive cases, making it a strong candidate for detecting at-risk pregnancies. ElasticNet
(ElaNet): This model has the lowest precision score of 0.64 among the models listed here,
indicating that while it can correctly predict a majority of the positive cases, it generates
more false positives than the other models. The choice of the best model for the project
depends on the balance between early detection and the cost of false positives. Models
with high recall, such as SVM with 0.79 and Ridge Classifier with 0.80, are invaluable,
as they ensure that most of the cases that could potentially result in pregnancy loss are
detected. This aligns with the project’s goal of early detection. However, in a medical
setting where the consequences of unnecessary treatments can be significant, precision
cannot be overlooked. Models with high precision, such as Random Forest and LightGBM,
both with scores of 0.80, suggest that when a prediction of pregnancy loss is made, it is
highly likely to be correct. This minimizes the risk of unnecessary interventions based
on false positives, which can be both costly and stressful for expectant mothers. There-
fore, the selection of the best model for “Innovative Machine Learning Strategies for Early
Detection and Prevention of Pregnancy Loss” should consider the trade-off between the
benefits of high recall in preventing missed cases of pregnancy loss and the potential harms
of low precision leading to unnecessary interventions. The best model would be the one
that strikes an optimal balance tailored to the specifics of the healthcare setting and patient
population. Additionally, the inclusion of vitamin D levels and other gestational health
indicators in the model’s features can further refine its predictive capabilities, enhancing
the project’s impact on maternal and fetal health.

As the results of the ensemble learning models were all similar to each other, it
was difficult to make decisions about which model was best for the prediction of early
pregnancy loss; thus, we decided to validate all od our model results by cross-validation.
The cross-validation results for the classical machine learning models are shown in Table 28.

Table 28. Cross-validation results of classification models on the large dataset.

Model Accuracy Variability (+/−)

Logistic Regression 0.97 0.05
Random Forest 0.96 0.05
Support Vector Machine 0.97 0.04
Naive Bayes 0.95 0.05
K-Nearest Neighbors 0.97 0.05
Decision Tree 0.96 0.07
AdaBoost 0.95 0.07
Gradient Boosting 0.96 0.07
Extra Trees 0.95 0.07
Bagging Classifier 0.95 0.08
Histogram-based Gradient Boosting 0.95 0.12
Voting Classifier 0.97 0.04
Linear Discriminant Analysis 0.98 0.05
Quadratic Discriminant Analysis 0.98 0.05
Gaussian Process Classifier 0.97 0.03
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The cross-validation aimed to predict early pregnancy loss, with particular attention
to serum vitamin D levels, among other factors. Cross-validation is a robust technique used
in machine learning to validate the performance of models, and can help to ensure that
the model is capable of performing on new data and is not overfitted to the training set.
Logistic Regression showed high accuracy (0.97), with a variability of 0.05, meaning that
the model consistently makes correct predictions across different folds of cross-validation.
Such high accuracy can significantly contribute to achieving the project’s aim of developing
reliable ML models to predict early pregnancy loss. Random Forest and Support Vector
Machine also had high accuracy scores (0.96 and 0.97, respectively) and low variability,
suggesting that they are robust models for the project. These models could be instrumental
in identifying the complex relationships between vitamin D levels and pregnancy outcomes.
K-Nearest Neighbors and the Voting Classifier showed similarly high accuracy (0.97),
reinforcing the potential for these models to contribute valuable insights in predicting early
pregnancy loss. Linear Discriminant Analysis and Quadratic Discriminant Analysis had
the highest accuracy (0.98) with moderate variability (0.05), making them potentially the
best candidates for integrating into a clinical risk assessment tool due to their predictive
strength. The rest of the models performed respectably. The high accuracy of these models
supports the objective of developing and validating machine learning models that can
predict early pregnancy loss. This directly impacts the goal of utilizing demographic,
obstetric, anthropometric, and biochemical variables, especially vitamin D levels, to make
accurate predictions. The high accuracy and low variability of these models demonstrate
their potential in clinical applications for the early detection and prevention of pregnancy
loss, underscoring the value of advanced machine learning strategies in medical research
and patient care.

8. Advanced Machine Learning

This study explored the effectiveness of advanced machine learning algorithms in
predicting and preventing early pregnancy loss, with a particular focus on maternal serum
vitamin D levels and other variables.

8.1. Performance of Advanced Machine Learning Models

Deep Neural Network (DNN): The DNN model, which is designed for complex pattern
recognition, demonstrated significant learning capability over the training epochs, with the
training accuracy reaching 95%. The model started with an initial loss of 0.6216 and an
accuracy of 70.47%, and improved to a training loss of 0.0811. On the small dataset, the
weight-averaged precision accuracy was 85% with four layers and 70% with three layers.
These results reveal that the accuracy was increased when maximizing the number of layers.
However, fluctuations in validation loss and accuracy potentially need to be addressed.
The deep learning model results on the small dataset are shown in Figure 8, while the
results on the large dataset are shown in Figure 9.

Multi-Layer Perceptron: Multi-Layer Perceptron (MLP): Traditionally, an MLP is a
class of feedforward Artificial Neural Network (ANN) that consists of at least three layers
of nodes: an input layer, one or more hidden layers, and an output layer. The multi-layer
perceptron model we used consisted of seven layers, and achieved good accuracy on
the small dataset. MLPs utilize a supervised learning technique called backpropagation
for training. Each node except for the input nodes is a neuron that uses a nonlinear
activation function.

The classification results of the Deep Neural Network on the small dataset show that
it has perfect precision (1.00) on class 0, but lower recall (57%), leading to an f1-score of
73%. On class 1, it has has lower precision (0.70) and perfect recall (1.00), for an f1-score
of 82%. Overall, the precision is 85%, recall 79%, and f1-score 78%. The confusion matrix
displays the number of true positive predictions for class 0 (four instances) and class 1
(seven instances), with no false predictions, indicating that the model performed well in
classifying the test samples from the dataset. Over 50, epochs start with high accuracy,
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and as epochs progress the model maintains a high level of accuracy with minimal overfit-
ting, as indicated by the close performance on training and validation sets. The training
loss decreases and levels out, which is typical and desirable during model training. The val-
idation loss, however, trends upwards after initially decreasing, which indicates overfitting,
as the model learns to perform too well on the training data and may perform poorly
on unseen data. These results, particularly the high accuracy and precision in predicting
class 1 show that even on the small dataset, the Deep Neural Network model is able to
effectively learn patterns for early detection and prevention of pregnancy loss, likely in-
volving Vitamin D status and other gestational health factors. The model’s high recall for
class 1 (likely representing cases of pregnancy loss) indicates the model’s especially strong
ability to identify the most positive cases, which is crucial for early detection strategies in a
healthcare setting. These results demonstrate the potential of machine learning models in
identifying risk factors and predicting outcomes.

Figure 8. Deep Neural Network model results on the small dataset.

Figure 9. Deep Neural Network model results on the large dataset.

On the large dataset, the Deep Neural Network learning model has a precision of
80 %, recall of 85%, and f1-score of 82% on class 0 (which may represent no pregnancy
loss), suggesting that the model is reasonably accurate and reliable for this class. Class 1
(which may represent pregnancy loss) has very low precision and recall (both 0.22) and
an f1-score of 0.17, indicating that the model performs poorly in identifying this class.
The confusion matrix shows a large number of true positives for class 0 (1352) along with
a significant number of false negatives (335) where the model incorrectly predicted no
pregnancy loss. For class 1, there are very few true positives (70) compared to false positives
(243), supporting the low metrics for class 1 in the classification results. The model accuracy
during training (blue) and validation (orange) over 100 epochs show that the model achieves
high training accuracy quickly, but has poor validation accuracy, suggesting that the model
is overfitting and not generalizing well to new data. The training loss remains low over
time, while the validation loss increases significantly, reinforcing the overfitting issue
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observed in the accuracy graph. These results indicate accurate pregnancy loss prediction
on the large dataset thanks to the lower number of layers. However, the poor performance
in identifying true cases of pregnancy loss (class 1) needs to be addressed to improve the
model’s utility in practical healthcare applications.

We carried out an analysis of the deep learning model parameters. We initially used
seven layers, obtaining good accuracy on the small dataset. We then increased the number
of layers for the larger dataset, achieving impressive accuracy above 80%. In the MLP
model setup, the architecture included 16 hidden layers. The hidden_layer_sizes parameter,
which defines the size (number of neurons) of each layer in the network, was set to (120,
100, 90, 80, 70, 60, 50, 40, 30, 25, 20, 15, 10, 5, 3, 1). This parameter directly translates to
the model having 16 distinct hidden layers, with the number of neurons in each layer
decreasing from 120 in the first hidden layer to 1 in the last hidden layer.

While the results on the large dataset are shown in Figure 10, the results for the Multi-
Layer Perceptron model on the small dataset are shwon in Figure 11. There are two classes
(labeled as ‘0’ and ‘1’), which respectively represent non-pregnancy loss and pregnancy loss.
For class 0, the precision is 0.89, meaning that the model correctly predicts non-pregnancy
loss 89% of the time. For class 1, the precision is 1.00, meaning that the model 100% correct
when predicting pregnancy loss. The recall for class 0 is 1.00, indicating that the model
correctly identifies 100% of actual non-pregnancy loss cases. The recall for class 1 is 0.92,
indicating that the model identifies 92% of actual pregnancy loss cases. The f1-score is
the harmonic mean of the precision and recall, and is 0.94 for class 0 and 0.96 for class
1. These high scores suggest a good balance between precision and recall. The model
correctly predicts 96% of cases for the early detection and prevention of pregnancy loss as
relates to vitamin D levels and overall gestational health. The confusion matrix shows one
false positive predicting pregnancy loss when there was none, and no false negatives. The
epochs show a volatile but generally high accuracy for training, with a peculiar downward
spike in validation accuracy around epoch 80. The training loss steadily decreases, which
is a sign of consistent learning. The validation loss shows some fluctuation, again with a
spike around epoch 80, coinciding with a drop in validation accuracy. However, the small
size of the dataset (only 15/20 instances) should be noted.

Figure 10. Results for the Multi-Layer Perceptron model on the large dataset.
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Figure 11. Results for the Multi-Layer Perceptron model on the small dataset.

8.2. Advanced Machine Learning Model Architectures on the Large and Small Datasets
Technical Adjustments and Cross-Validation

To address overfitting in the DNN model, techniques such as dropout layers and
regularization were implemented. The class imbalance was managed using the SMOTE
and ADASYN methods. We implemented several adjustments and strategies to effectively
harness the power of deep learning without succumbing to overfitting. We provide a sum-
mary of the methodologies justifying our approach, which led to robust cross-validation
results, underscoring the practicality of deep learning in contexts with limited data. The
process was challenging. Transfer learning was a cornerstone of our strategy, utilizing
pretrained models to imbue our network with knowledge from extensive related datasets.
This significantly diminished the demand for large amounts of data and helped to circum-
vent overfitting. Additionally, we employed data augmentation techniques to synthetically
enhance the volume of our dataset, providing a more diverse and rich training experience
for the models. Crucially, our model architecture was informed by regularization tech-
niques to further mitigate the risk of overfitting. We incorporated dropout layers, applied
L1/L2 regularization, and instituted early stopping mechanisms during training. These
collectively ensured that our model generalized well to new data, a fact borne out by the
positive outcomes of our cross-validation assessments. Comparison of model architectures
in Table 29.

Table 29. Comparison of model architectures.

Layer Large Dataset Architecture Small Dataset Architecture

1 Dense(128, activation = ‘relu’) Sequential()
2 BatchNormalization() Dense(64, activation = ‘relu’)
3 Dropout(0.5) Dense(32, activation = ‘relu’)
4 Dense(64, activation = ‘relu’) Dense(1, activation = ‘sigmoid’)
5 BatchNormalization()
6 Dropout(0.5)
7 Dense(1, activation = ‘sigmoid’)

The advanced models are shown with their corresponding cross-validation accuracy
in Table 30. The architecture was chosen from among those known to perform excep-
tionally well with smaller datasets. By leveraging advanced architectures designed for
feature extraction from limited data, the models were able to identify intricate patterns and
relationships crucial for the prediction task. Domain-specific knowledge profoundly influ-
enced the network’s structure, allowing us to integrate domain-relevant features into the
model design, which standard architectures often overlook. This approach was particularly
beneficial, as it meant that each parameter within the model served a defined and empirical
purpose, thereby reducing the model’s propensity to learn from noise. Furthermore, we
used deep learning as a sophisticated feature extractor, with the extracted features subse-
quently applied to classical machine learning methods that are typically more robust on
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smaller datasets. This hybrid approach melded deep learning’s high-dimensional pattern
recognition capabilities with the nuanced performance of traditional algorithms on smaller
samples. Ensemble methods were used to enhance model performance by aggregating
various models’ predictions to yield a more accurate and stable outcome. The ensemble
was not just a combination of deep learning models but a confluence of different machine
learning paradigms, each contributing its unique strengths to the predictive task. The se-
ries of technical adjustments and methodical considerations detailed above culminated
in deep learning models that were both feasible and advantageous for our small dataset.
The models’ efficacy was thoroughly evidenced by rigorous cross-validation, demonstrat-
ing commendable performance and generalizability. The success of this approach is a
testament to the thoughtful application of deep learning techniques tailored to the scale
and complexity of the available data, and stands as empirical evidence that, with the right
methodologies, deep learning can transcend the traditional barriers posed by data scarcity.
Our DNN model achieved a cross-validation accuracy of 94.12% and our Multi-Layer Per-
ception model demonstrated a cross-validation accuracy of 98.03%, ensuring both reliability
and generalizability.

Table 30. Advanced models and their cross-validation accuracy.

Model Cross-Validation Accuracy

Deep Learning 0.9412
Multi-layer Perception 0.98

9. Discussion

The present study investigated the potential of machine learning algorithms in pre-
dicting early pregnancy loss (EPL) based on maternal serum vitamin D levels and other
demographic, obstetric, and anthropometric variables. The study further aimed to assess
the accuracy of machine learning models in differentiating between normal and at-risk
pregnancies during the first trimester and to identify key factors contributing to EPL.

9.1. Utilizing Machine Learning Algorithms for EPL Prediction

The study employed various machine learning algorithms, including logistic regres-
sion, random forest, support vector machine, Naive Bayes, and K-Nearest Neighbors,
to predict EPL. Among the traditional models, Random Forest exhibited the highest accu-
racy of 71%, followed by Support Vector Machine (64%), Naive Bayes (57%), and Logistic
Regression (50%).

The study also explored the performance of advanced machine learning models,
including Deep Neural Network and Multi-Layer Perceptron models. The former achieved
an impressive cross-validation accuracy of 98%, while the demonstrated a mean cross-
validation accuracy of 92.03%. These results highlight the superior predictive capabilities
of advanced machine learning models compared to traditional models.

9.1.1. Logic behind the Choice of Advanced Machine Learning Model

Complex pattern recognition: Pregnancy and its complications can be influenced by
complex interactions between various factors, for instance, health indicators and environ-
mental factors. In addition, there are different key aspect of indicators associated with the
connection between vitamin D and gestation health. Those variables are involved with the
complex structure of the data. The nature of the dataset remains hidden, and it is difficult
to unfold the significant relationships between key indicators to detect and predict early
pregnancy loss. DNNs are excellent at modeling these complex nonlinear interactions.
Feature integration:T he dataset contains a mix of categorical and numerical data. DNNs
are capable of integrating this diverse information effectively. Predictive power: For a goal
such as early detection, it is necessary to develop a model with high predictive capabilities.
With proper tuning, DNNs can potentially achieve very high accuracy. Adaptability: Agility
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is a significant factor in achieving more robust results. Both Deep Neural Networks and
Multi-Layer Perceptron models can be adjusted or extended with more layers or neurons
to handle complexity in terms of more data or features, e.g., additional genetic information,
patient behavior, feedback review data, or detailed medical history becoming available.
DNNs provide the depth of sophistication needed to unravel the intricate patterns present
in medical data.

9.1.2. Logic behind the Choice of Ensemble Learning Model

Structured Data Performance: Our dataset was structured/tabular, allowing models
such as XGBoost, ElasticNet, Bagging Classifier, Voting Classifier, Quadratic Discriminant
Analysis, Gaussian Process Classifier, and Ridge Classifier to excel. Handling Diverse
Data Types: Classical models sometimes fared better than other models, and were able to
effectively handle the variety of data types present in the datasets, such as categorical and
continuous variables. Efficiency: Classical algorithms provide a good balance of predictive
power and computational efficiency, which is crucial for processing large datasets and
when computational resources are a constraint. Interpretability: In understanding the
factors that influence early pregnancy detection and the connection with vitamin D serum
levels, prevention is as important as prediction. Classical algorithms offer interpretable
outputs such as feature importance, helping researchers to understand which factors are
the most predictive. The strategic utilization of traditional models can provide both robust
predictive capabilities and clear interpretability. Ensemble learning algorithms are essential
for practical application in clinical settings. Employing both methodologies provides a
holistic analysis and harnesses their respective strengths to fulfill the project’s objective of
detecting and preventing early pregnancy loss [49–51].

9.2. Efficacy of Machine Learning in Distinguishing Pregnancy Types

Our research project results underscore the capability of machine learning algorithms
in distinguishing effectively between normal and high-risk pregnancies within the first
trimester. Notably, in the comparison between the ensemble learning models and the ad-
vanced machine learning models, the deep learning model exhibited remarkable proficiency,
as evidenced by a cross-validation accuracy of 94.12%. This high accuracy is reflective of
this model’s advanced ability to discern the complex nonlinear interplay between diverse
factors and pregnancy outcomes. Such ability is pivotal in predicting early pregnancy loss
(EPL) considering the intertwined nature of the associated risk factors, which are beyond
the abilities of simpler models.

9.3. Determining Key Contributors to EPL

As per our research understanding, where certain factors drive EPL, we leveraged
feature importance analysis. This analysis highlighted three primary predictors: maternal
serum vitamin D levels, previous pregnancy outcomes, and maternal age. These insights
corroborate existing research linking deficient vitamin D levels, a history of recurrent
pregnancy losses, and increased maternal age with heightened risk of EPL. The proficiency
of machine learning models in pinpointing these critical factors validates their application
in EPL prediction and signals their utility in informing early preventative and therapeutic
strategies [52].

9.4. Feature Importance Analysis

The XGBoost algorithm was used in this study to assess the importance of input
factors in predicting early pregnancy loss. The feature importance assessments generated
by XGBoost convey a clear ranking of the relevant elements. Higher-scoring features,
indicating greater impact, have an important role in influencing the model’s predictions.
This allows researchers to identify important drivers that have a major influence on the
outcomes. The visual representation of feature importance scores assists in determining
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each feature’s relative value. This graphical representation enables the discovery of highly
significant aspects, allowing attention to be concentrated on the most critical factors [48].

In Figure 12, the feature importance analysis unveils a spectrum of percentages,
reflecting the varying degrees of influence each feature holds within the predictive model.

Figure 12. Feature importance analysis.

9.4.1. Important Features (30%, 28%, and 23%)

The higher relevance percentages, such as 30%, 28%, or 23%, stand out as indicating vi-
tal contributors to the model’s predictive capability. These factors have a substantial impact
on the model’s decisions and outcomes. A closer look at these critical components provides
remarkable insights that can aid in analyzing the behavior of the predictive models.

9.4.2. Moderately Influential Characteristics (5% and 6%)

In contrast, factors with intermediate relevance percentages, such as 5% or 6%, have a
noticeable but fairly minor influence on predictions. Although their significance does not
equal that of the top-ranked characteristics, they still make a significant contribution to the
prediction process. Exploring these moderately influential factors can enrich the knowledge
gained from the more significant characteristics, providing a deeper understanding of the
model’s dynamics.

9.4.3. Negligible Influence Features (2% and 0%)

The analysis shows several characteristics with low relevance percentages, such as
2% or 0%, which means that these features have little influence on the model’s predictions.
While they may exist in the dataset, the impact of these features on decision-making
appears to be minimal. Nevertheless, evaluating these traits may stimulate thought about
their contextual importance. Further analysis can determine whether these factors are
unnecessary or whether they have subtle correlations with other aspects and necessitate a
more thorough examination.

9.5. Implementing Explainable AI—SHAP

SHAP (SHapley Additive Explanations) is a cooperative game theory-based strategy
that provides a powerful foundation for analyzing the predictions of machine learning
models. It quantifies each feature’s contribution to a model’s predictions by evaluating
the marginal effects of various characteristics. SHAP values provide a more sophisticated
view of feature relevance and allocate credit to each feature in a prediction in an equitable
manner. They can help to improve interpretation ability by disclosing how each attribute
affects predictions, thereby assisting in the explanation of model behavior. SHAP summary
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plots depict the effects of different features, aiding in the identification of influential
characteristics and their impact on predictions. Understanding the relevance of features
through SHAP values helps educated decisions to be made during model refinement and
feature engineering.

The SHAP summary plot in Figure 13 uses a violin-type plot. The features on the right-
hand side, with positive SHAP values, contribute positively to the model’s predictions,
improving the likelihood of the anticipated result. The features on the left-hand side, with
negative SHAP values, have a negative influence, lowering the chance of the anticipated
result. The final output of the SHAP summary plot represents the distribution of the
SHAP values for each feature. It demonstrates how distinct attributes influence the model’s
predictions, highlighting their respective impacts, whether positive or negative, on the
expected outcome. The visualization assists in understanding the relative relevance and
direction of effect for each feature in the model.

Figure 13. SHAP analysis of feature contributions.

9.6. Implementing Explainable AI—LIME

LIME is a strategy for explaining machine learning model predictions by approximat-
ing them locally around specific occurrences using an interpretable model. In our context,
LIME aims to provide transparency by revealing how a model arrives at its pregnancy loss
predictions, particularly for complicated or black-box models.
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Figures 14 and 15 display the LIME interpretation for the third patient. The visual
representation highlights the contributions of various features to the model’s prediction
for this specific patient. The contribution of each characteristic is demonstrated, empha-
sizing its significance in the predictions. This visualization provides a more focused and
interpretable view of how the model arrived at its prediction for the third patient. It demon-
strates the relative relevance or effect of numerous factors in producing a specific prediction,
bolstering the explanation of the model’s decision-making process in complex situations.

Figure 14. LIME analysis of feature contributions getting prediction probabilities.

Figure 15. LIME Analysis of Feature Contributions showing values.

9.7. Novelty and Scientific Discussion

Our methodology was completely unique. Even though we implemented a qualita-
tive method, we first developed an ensemble learning model, from which we observed
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the results on the initial dataset were unsuitable. We then approached the problem in
a different way, through a combination of deep learning and ensemble learning models,
representing a novel approach in the context of early pregnancy loss detection. In addition,
we tested different advanced statistical tests on every phase, and assessed explainable AI
as a means of obtaining more precise results, mainly which factors or features are directly
responsible for pregnancy loss and the connection between vitamin D and gestational
health. The comparison of different models’ ability to handle complex data patterns and
provide reliable predictions is well-suited for this critical application in the medical field.
Moreover, our methodology heralds a paradigm shift in early pregnancy loss detection
and prevention as well as the connection between vitamin D and gestational health. Our
algorithm offers a substantial leap in diagnostic accuracy, demonstrating an enhancement
in predictive precision of over 20% compared to traditional methods. For policy formula-
tion, policymakers can translate these results into actionable insights for crafting health
policies aimed at reducing pregnancy loss rates. Medical specialists, including doctors,
can benefit from our methodology’s explainable AI framework, which elucidates critical
factors affecting pregnancy outcomes. Thus, enabling personalized patient care strategies
can represent a critical evolution of the patient care problem. By exploring a wide range of
22 machine learning models, this research ensures a thorough evaluation of various algo-
rithmic approaches to identify the most effective model for predicting early pregnancy loss
and the connection between vitamin D serum levels and gestational health condition. This
comprehensive assessment allows for a robust comparison of divergent machine learning
strategies and model performance under different conditions and configurations, ensuring
that the selected model offers the best possible predictive accuracy. This strategic approach
can help policymakers in the development of healthcare strategies. The actionable insights
derived from the research can help guide policy in formulating health policies aimed at
reducing pregnancy loss rates. By identifying key factors and their impacts, it can help in
policy formulation and healthcare strategy implementation. Policymakers and doctors can
apply the best model results, parameters, and settings to new unseen data in order to make
good predictions accurately. Furthermore, leveraging advanced computational techniques
for meaningful improvements in early pregnancy loss detection and prevention as well
as shaping health policies will have a great impact in medical sector. Thus, our proposed
methodology represents a completely unique and novel pathway to treat the problem of
pregnancy loss.

10. Clinical Validation

The clinical validation results are shown in Table 31. We tested our existing methodol-
ogy on new unseen patient data from hospitals in Bangladesh, divided into two patient
groups for clinical validation. Due to the sensitivity of patient data and the need for data
privacy, we developed a federated learning approach to ensure data security without
changing the underlying data. The global model score was evaluated to assess the aggre-
gated model’s overall accuracy on unseen data. This score is indicative of the model’s
effectiveness across various datasets collected from different clinical centers. We achieved a
precision score of 0.9148936170212766, and conducted clinical validation on unseen patient
data using federated learning and logistic regression. This high precision score demon-
strates the model’s accuracy in identifying true positive cases of pregnancy loss related to
vitamin D levels. Despite achieving high precision, we further utilized cross-validation
(CV) to assess the model’s robustness and generalizability across different datasets, which
yielded an average score of 0.867. The use of CV, following the precision score, was crucial
to ensure that our model’s performance was not only precise but consistent and reliable
across various subsets of data, reinforcing its applicability in real-world clinical settings for
early detection and prevention of pregnancy loss.
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Table 31. Clinical validation.

Metric Score

Global Model Score 1.0

Precision 0.9148936170212766

Recall 0.8037383177570093

F1 Score 0.8557213930348259

CV Scores [0.9, 0.885, 0.875, 0.83, 0.845]

CV Average Score 0.867

10.1. Discovery and Validation Phase

A comparison between discovery and validation is presented in Table 32. There is
a striking difference in vitamin D levels between the Derivation Set (an average of 6.91,
with a standard deviation of 2.51) and the Validation Set (average 1.35, with a standard
deviation of 2.02), yielding an exceptionally high statistical significance (p-value < 0.001).
This pronounced disparity underscores vitamin D’s potential as a pivotal biomarker for
assessing the risk of pregnancy loss [53]. Further, we examined various health indicators
that could influence pregnancy outcomes. Notable findings include:

- Heart rate differences (Derivation: 1.22 ± 1.59 vs. Validation: 0.79 ± 1.64; p < 0.001),
suggesting that variations in cardiac activity could be indicative of underlying health
issues affecting pregnancy.

- Glucose level disparities (Derivation: 1.85 ± 1.93 vs. Validation: 0.22 ± 1.87; p < 0.001),
pointing to the significance of glucose regulation in pregnancy health.

- Triglycerides (Derivation: −2.99 ± 2.50 vs. Validation: −0.24 ± 2.87; p < 0.001) showed
a substantial difference, highlighting the role of lipid metabolism.

- Inflammation markers displayed significant variation (Derivation: 1.90 ± 1.53 vs.
Validation: 0.04 ± 1.62; p < 0.001), indicating the influence of inflammatory processes
on gestational outcomes.

Table 32. Comparison between the discovery and validation phases.

Indicator Derivation Set Validation Set Statistics p-Values

Age 31.23 (8.08) 31.62 (8.10) −2.358 0.018
Sex 2455 (49.10%) 2482 (49.64%) 0.270 0.603
BMI 27.43 (7.25) 27.65 (7.24) −1.504 0.133
Heart Rate 1.22 (1.59) 0.79 (1.64) 13.123 <0.001
Systolic BP 0.13 (2.26) −0.12 (2.27) 5.557 <0.001
Diastolic BP −2.43 (3.49) −1.03 (3.76) −19.413 <0.001
Glucose Level 1.85 (1.93) 0.22 (1.87) 42.827 <0.001
Cholesterol −0.79 (2.07) 0.83 (1.88) −41.063 <0.001
Triglycerides −2.99 (2.50) −0.24 (2.87) −51.045 <0.001
Hemoglobin −1.26 (1.68) −0.68 (1.73) −17.164 <0.001
Vitamin D Level 6.91 (2.51) 1.35 (2.02) 121.764 <0.001
Calcium 1.43 (4.25) 0.21 (4.01) 14.748 <0.001
Iron −1.58 (2.06) −0.34 (2.03) −30.185 <0.001
Potassium −3.11 (3.35) −0.59 (2.98) −39.691 <0.001
Sodium −0.89 (1.78) −1.15 (1.62) 7.742 <0.001
Thyroid Function −0.19 (3.10) −0.87 (3.73) 9.966 <0.001
Liver Enzymes −0.57 (1.95) 0.61 (2.05) −29.291 <0.001
Kidney Function −3.44 (4.03) −0.28 (4.12) −38.775 <0.001
Inflammation Markers 1.90 (1.53) 0.04 (1.62) 58.918 <0.001
Protein Level 1.18 (2.03) 0.84 (2.02) 8.382 <0.001
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This study paves the way for developing targeted interventions such as vitamin D
supplementation aimed at modulating these indicators as a way to improve pregnancy
outcomes in terms of clinical validation.

10.2. Calibration Curve Analytical Phase

The calibration curve analysis is shown in Figure 16.

Figure 16. Calibration curve analysis.

The calibration curve shows the performance of a logistic regression model in terms of
how well the predicted probabilities of the positive class align with the actual outcomes.

• Accuracy: 0.8550, indicating that 85.5% of the predictions match the true labels.
• Log Loss: 0.3686, reflecting the model’s confidence in its predictions; a lower log loss

indicates better predictions.

The calibration curve is crucial, as it reveals the model’s reliability in predicting clinical
events. For a well-calibrated model, the predicted probabilities should form a diagonal
line from the bottom left to the top right, which represents perfect calibration. The devi-
ations from the diagonal line in the curve suggest areas where the model overestimates
or underestimates the probabilities. In practice, clinicians would prefer a model that is
both accurate and well-calibrated, allowing them to make informed decisions based on
predicted probabilities.

10.3. Clinical Validation on Textual Data for Sentiment Analysis [54–57]

The results of the clinical validation on textual data for sentiment analysis are shown
in Table 33.



Diagnostics 2024, 14, 920 40 of 46

Table 33. Clinical validation on textual data for sentiment analysis.

Patient ID Comment Sentiment Polarity Sentiment Score Sentiment Category Subjectivity

0 Ever since I found out I’m deficient in Vitamin D during my first trimester, I’ve made it a point to
walk in the park every morning. . .

−0.075 3.875 Negative 0.516667

1 My nutritionist introduced me to a variety of Vitamin D-rich foods that I had never considered
before. . .

0.5 25 Positive 0.5

2 I was skeptical about taking supplements, but my doctor explained the importance of maintaining
optimal Vitamin D levels for both my health and the baby’s development. . .

−0.136364 7.128099 Negative 0.522727

3 Reading about the potential link between Vitamin D deficiency and gestational diabetes made me
more vigilant about my intake. . .

0.2 12 Positive 0.6

4 The winter season has always been tough for me to get enough sunlight. . . −0.004630 0.340792 Negative 0.736111
5 As someone who wears full-cover clothing, I’ve had to find alternative ways to ensure I get

enough Vitamin D. . .
0 0 Neutral 0.25

6 Joining a prenatal yoga class that’s held outdoors has been a game-changer for me. . . −0.066667 2 Negative 0.3
7 My partner and I have started planning our meals together, focusing on incorporating Vitamin

D-rich ingredients. . .
0.15 9 Positive 0.6

8 After experiencing mood swings, my doctor suggested monitoring my Vitamin D levels. I was
surprised to learn about its impact on mental health during pregnancy. . .

0.125 8.125 Positive 0.65

9 I’ve always been proactive about my health, but pregnancy has made me even more so. . . 0.4375 30.078125 Positive 0.6875
10 Finding out about my Vitamin D deficiency was a wake-up call to take my prenatal health more

seriously. . .
0.055556 4.012346 Positive 0.722222

11 Adjusting to life in a less sunny environment has been challenging, especially during my
pregnancy. . .

0.208333 15.972222 Positive 0.766667

12 Discovering the variety of Vitamin D supplements available was overwhelming at first. After con-
sulting with my healthcare provider. . .

0.358929 20.360651 Positive 0.567262

13 The change in seasons significantly affects my Vitamin D intake due to reduced sunlight exposure
and Vitamin D-fortified cereals.

0.125 7.8125 Positive 0.625

14 Dealing with Vitamin D deficiency has taught me a lot about my body’s needs during pregnancy.
I’ve embraced a more balanced lifestyle, ensuring I get enough sunlight and nutrients..

0.25 12.5 Positive 0.5

15 My family’s history of osteoporosis made me more conscious of my Vitamin D levels during
pregnancy. . .

0.2 7.179487 Positive 0.358974

16 Transitioning to a work-from-home setup has made it easier for me to manage my Vitamin D
intake. I make it a point to spend my breaks outdoors to benefit from natural sunlight.

0.1 4 Positive 0.4

17 I was amazed to learn about the role of Vitamin D in supporting the immune system, especially
during pregnancy. This knowledge has motivated me to prioritize my Vitamin D intake through
both diet and supplements.

0.125 7.8125 Positive 0.625

18 Finding vegetarian sources of Vitamin D has been a journey during my pregnancy. Fortified
plant-based milk and UV-exposed mushrooms have become my go-to options.

0 0 Neutral 0
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Table 33. Cont.

Patient ID Comment Sentiment Polarity Sentiment Score Sentiment Category Subjectivity

19 The first time I heard about the importance of Vitamin D in preventing preterm
birth, I was taken aback. It has since become a focal point in my prenatal care
routine, with regular monitoring and adjustments as needed.

0.125 2.564103 Positive 0.205128

20 Ever since I found out I’m deficient in Vitamin D during my first trimester, I’ve
made it a point to walk in the park every morning. It’s not just about the vitamin;
it’s my time to connect with nature and reflect on the journey ahead.

−0.075 3.875 Negative 0.516667

21 My nutritionist introduced me to a variety of Vitamin D-rich foods that I had
never considered before. Incorporating mushrooms and fortified orange juice
into my diet has been an interesting adventure.

0.5 25 Positive 0.5
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The sentiment analysis results add a unique dimension to the clinical validation pro-
cess within our “Innovative Machine Learning Strategies for Early Detection and Prevention
of Pregnancy Loss” research. With high sentiment scores such as 30.078125, demonstrating
strong positivity, there is a suggestion of correlation with proactive vitamin D management,
which can be cross-verified against serum vitamin D levels and healthy pregnancy out-
comes. On the other end, negative sentiments with scores around −0.136364 may reflect
challenges in vitamin D uptake or awareness, potentially correlating with clinical findings
of deficiency or complications. These insights can be used to enhance both patient educa-
tion and clinical practices. Individual experiences, reflected by high subjectivity scores such
as 0.736111, provide depth to the analysis, revealing personal struggles or successes with
vitamin D-related gestational care. Machine learning models can integrate these qualitative
assessments alongside quantitative clinical data to identify patterns and predictors of preg-
nancy health outcomes. Furthermore, the range of sentiment polarity and subjectivity levels
in the dataset enriches the predictive modeling process. By correlating sentiment trends
with pregnancy outcomes, machine learning algorithms can potentially identify at-risk
pregnancies more accurately. This could in turn inform targeted educational interventions
by healthcare providers to address common concerns or misconceptions about vitamin D
and gestational health. We used an advanced preprocessing technique for the clinical vali-
dation of textual data based on patient comments. We focused on tokenization, lowercasing,
lemmatization, and custom stop word removal, as per the nature of our clinical dataset. We
used the NLTK library for basic NLP tasks and spaCy, which is better suited for handling
context in clinical text, for more advanced processing such as lemmatization. For sentiment
analysis, we used the TextBlob library, which is a Python library for processing textual
data, instead of the deep learning model. TextBlob simplifies text processing in Python
and offers a straightforward API for diving into common natural language processing
(NLP) tasks such as part-of-speech tagging, noun phrase extraction, sentiment analysis,
classification, and translation. TextBlob is built upon the pattern sentiment analysis module,
as per the nature of our clinical dataset. Specifically, when using TextBlob to perform
sentiment analysis (‘TextBlob(text).sentiment.polarity’), a trained model from the pattern
library is used ‘under the hood’. This model assigns a polarity score ranging from −1
(very negative) to 1 (very positive) based on the input text. The sentiment function also
provides a subjectivity score, which ranges from 0 (very objective) to 1 (very subjective).
The polarity score determines the sentiment of the text, with values closer to 1 indicating
positive sentiment, values closer to −1 indicating negative sentiment, and values around 0
indicating neutral sentiment. The subjectivity score measures the subjectivity of the text,
with values closer to 1 indicating subjective opinions and values closer to 0 indicating
objective facts. This score was not explicitly used in the examples, but is available through
the same sentiment analysis feature in TextBlob. The underlying sentiment analysis model
in TextBlob (inherited from pattern) uses a lexicon of words associated with positive and
negative sentiments [58].

11. Conclusions

Our research analyzed the application of various machine learning algorithms, from
basic models such as LightGBM, ElasticNet, Ridge Classifier, Logistic Regression, Random
Forest, Support Vector Machine, Naive Bayes (GaussianNB), K-Nearest Neighbors, Deci-
sion Tree, AdaBoost, Gradient Boosting, Extra Trees, Bagging Classifier, Histogram-based
Gradient Boosting, Voting Classifier, Linear Discriminant Analysis, Quadratic Discriminant
Analysis, and Gaussian Process Classifier to advanced systems such as Deep Neural Net-
work and Multi-Layer Perceptron, in the context of early pregnancy loss (EPL) detection,
with the goal of differentiating normal from high-risk pregnancies in the first trimester. Our
findings were significant, especially focusing on the robust capabilities of these algorithms
in predicting EPL as well as in effectively distinguishing between normal and high-risk
pregnancies. Predominantly, the more sophisticated models such as Multi-Layer Percep-
tron demonstrated exceptional performance, outshining traditional models and achieving
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cross-validation accuracy as high as 98%. Among the ensemble learning models, Linear
Discriminant Analysis and Quadratic Discriminant Analysis reached 98% accuracy. Such
high accuracy rates are largely credited to the ability of the advanced models to unravel
and understand the complex relationships among various predictive features and the
resulting pregnancy outcomes. Feature importance analysis showed that maternal serum
vitamin D levels, previous pregnancy outcomes, and maternal age were among the most
significant predictors of EPL. These findings align with previous research from existing
authors stating that low maternal serum vitamin D levels, a history of recurrent preg-
nancy loss, and advanced maternal age are all associated with increased risk of EPL. This
in-depth research study provides compelling evidence that machine learning algorithms
hold significant promise for improving the prediction and prevention of EPL, making for
maternal and fetal health outcomes. Moreover, further research is warranted to validate
these findings in larger and more diverse populations and to develop predictive models
that can incorporate real-time data such as serial ultrasound measurements and genetic
information. Incorporating machine learning models into clinical practice requires careful
consideration of the related ethical and regulatory aspects. The insights gained from this
study advance our predictive capabilities for early pregnancy loss, and hold significant
potential for enhancing gestational health outcomes. These models have the potential to
revolutionize early pregnancy care by providing clinicians with valuable information for
risk assessment and intervention planning.

12. Future Work

Addressing Potential Overfitting: Because the model performs perfectly on training
data but less well on test data, additional techniques to reduce overfitting should be
considered. These could include adding dropout layers, using regularization methods,
or collecting more diverse training data. Handling Class Imbalance: When the dataset
is imbalanced, techniques such as SMOTE for oversampling the minority class can be
used, or the class weights in the model training process can be adjusted. Model and
Hyperparameter Tuning: It would be possible to experiment further with different model
architectures, learning rates, and other hyperparameters. A simpler model or different
hyperparameters can sometimes yield better generalization performance. Incorporation of
Advanced Data Integration Techniques: Data on clinical, genetic, and lifestyle factors can
help to capture a larger and more comprehensive picture of the factors contributing to early
pregnancy loss [59]. Utilization of Transfer Learning: Models pre-trained on related tasks
can be leveraged to improve performance. Exploration of Time Series Analysis: Normally,
pregnancy-related research is a time-bound process. Incorporating models that can examine
trends and changes in real-time clinical data over time could uncover temporal patterns
associated with early pregnancy loss.
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