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A B S T R A C T   

Based on the characteristics of the 5 G standard defined in Release 17 by 3GPP and that of the emerging Beyond 
5 G (or the so-called 6 G) network, cyber-physical systems (CPSs) used in smart transport network in-
frastructures, such as connected autonomous vehicles (CAV), will significantly depend on the cellular networks. 
The 5 G and Beyond 5 G (or 6 G) will operate over millimetre-wave (mmWave) bands. These network standards 
require suitable path loss (PL) models to guarantee effective communication over the network standards of CAV. 
The existing PL models suffer heavy signal losses and interferences at mmWave bands and may not be suitable for 
cyber-physical (CP) signal propagation. This paper develops an Agile Gravitational Search Algorithm (AGSA) 
that mitigates the PL and signal interference problems in the 5G–NR network for CAV. On top of that, a modified 
Okumura-Hata model (OHM) suitable for deployment in CP terrestrial mobile networks is derived for the CAV- 
CPS application. These models are tested on the real-world 5 G infrastructure. Results from the simulated models 
are compared with measured data for the modified, enhanced model and four other existing models. The 
comparative evaluation shows that the modified OHM and AGSA performed better than existing OHM, COST, 
and ECC-33 models by 90%. Also, the modified OHM demonstrated reduced signal interference compared to the 
existing models. In terms of optimisation validation, the AGSA scheme outperforms the Genetic algorithm, 
Particle Swarm Optimisation, and OHM models by at least 57.43%. On top of that, the enhanced AGSA out-
performed existing PL (i.e., Okumura, Egli, Ericson 999, and ECC-33 models) by at least 67%, thus presenting the 
potential for efficient service provisioning in 5G-NR driverless car applications.   

1. Introduction 

Intelligent transport systems (ITS) are now increasingly explored in 
recent times due to the availability of Sub-6 GHz and millimetre wave 
(mmWave) agile optimisation techniques for path loss (PL). For 
example, a UK tech company Oxbotica has recently tested their first 
autonomous fleet on British streets in London [1]. In addition, the £13.6 
million investment in driverless automobiles, which the UK government 
partially supports, is another step towards showing how autonomous 
vehicles may function in large European cities [1]. Such evidence shows 
that the ITS as a part of Cyber-Physical Systems (CPS) can be fully 
powered by 5/6 G networks [2]. In these systems, an electromagnetic 
wave’s power density fluctuates along its course as it travels across space 
due to signal attenuation and PL [3]. Therefore, in the research and 

design of a CPS link budget, PL models play a significant role, for 
example, in connected and automated vehicular technologies [4,5]. The 
reason is that the design of cellular networks requires propagation PL 
models which are crucial for defining major system characteristics 
including transmission power, frequency, antenna heights, and so forth. 

Several PL models are developed for different propagation environ-
ments, such as (indoor, outdoor, urban, suburban, and rural). For 
instance, alpha-beta-gamma (ABG) and the close-in (CI) free-space 
schemes have been proposed for 5 G network design in urban micro 
and macro-cellular situations [6]. In [7], the authors highlighted a 
signal-denoising network as a localisation strategy for non-line-of-sight 
(NLOS) propagation in complicated indoor situations. Such signal 
interference and attenuation along the propagation path lead to PL 
concerns [8]. This has a significant effect on CPS-CAVs. For instance, 
most self-driving automobiles are now hindered by inclement weather. 
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Their sensors are hampered by heavy rain, obstructive massive objects, 
and even snow on the ground making it challenging for cars to discern 
lane markings. The functions of cameras and lidar on self-driving cars 
may be significantly reduced in bad weather. Ground-penetrating radar 
has been proposed by MIT researchers [9]. Self-driving cars use cameras 
and lidar to navigate, along with extremely detailed maps. The issue is 
that as visibility declines in weather like rain, snow, fog, and others, so 
does the use of those devices. 

Path loss mitigation in 5 G/6 G RAN and core networks will further 
deliver ultra-low latency, high bandwidth, flexibility, and smart service 
provisioning required in CPS deployment use cases. The work [10] 
achieved novel application service interaction in the 5 G network but 
suffered greater signal deviation in the channel due to PL. For precise 
link budget calculations and robust system design, optimal PL modelling 
is crucial. As noted in [11], poor optimisation with capacity discrep-
ancies resulted from using several appropriate models in current 5 G 
mmWave propagation within indoor environments. Optimisation efforts 
in [12] and [13] pointed out that the search space for optimisation (i.e., 
high dimensional search space) grows exponentially with the size of the 
PL problem. This makes it impossible to solve these problems using 
standard optimisation algorithms. 

Finding a set of inputs to an objective function that yields a 
maximum or minimal function evaluation is desirable. Within the 5G- 
NR CPS, the use of global optimisation algorithms (GOA) to locate the 
global minima or maxima of the PL function on a given set has not been 
explored. Employing the Gravitational Search Algorithm (GSA) as a 
nature-inspired algorithm (NIA) is therefore significant since it explores 
the gravitational laws as well as laws of motion. While modern deter-
ministic algorithms cannot deliver complex solutions, these optimisa-
tion issues are solved using NIA, which has shown considerable success 
over the past 20 years, particularly when applied to nonlinear real-world 
optimisation problems [12,13]. 

A major reason for global optimisation in CPS is that the 5 G CAV 
deployment enables the multiplexing of virtualised and independent 
resources on the same physical infrastructure as seen in vehicular- 
assisted CPSs [14]. Considering a typical smart city application, the 
CPS offers real-time and gives quality performance within safety-driven 
transport applications. This is useful in cooperative-heterogeneous 

mobile wireless CPSs (CHMCPSs). When applied in transport networks, 
PL affects the control and coordination of associated aerial-ground 
mobile systems as a CPS. Typical of this scenario is in the decentral-
ised vehicular dynamics model where mobile swarm-routers are clus-
tered in a communication domain [14]. An obvious intervention is to 
leverage routing optimisation to transmit signals seamlessly using 
vehicular drive tests. As a meta-heuristic intelligent optimisation 
scheme, the advantages of GSA include structural simplicity, fewer pa-
rameters, and excellent global optimisation capabilities, algorithm ac-
curacy, amongst others. The GSA method is better than other algorithms 
[12]. The existing GSA still has issues such as premature convergence, 
limited local search ability, and a lack of efficient acceleration mecha-
nisms, even though GSA has several advantages over other intelligent 
calculation approaches. 

However, replacing existing PL empirical models with a global 
optimisation model is crucial. This is a valuable strategy for the current 
CPS network design and deployment. Most work on 5 G driverless cars 
and other CPS have not practically explored GSA in context. As a result 
of the terrain and transmission frequency, existing models cannot pre-
dict attenuation and signal interference in 5 G and 4 G LTE-A CPS. This 
may not be suitable for emerging standards, such as the 6 G. There is a 
need to highlight and address PL mitigation in CPS, especially in the 
context of CAV and 5 G networks. The existing global optimisation al-
gorithms lack optimal exploration, and there is a lack of detailed 
modelling of PL sensitivity based on GSA. 

In addition, access control and security aspects for 5 G CAV networks 
are critical [15,16]. Interesting evidence has shown that the security of 
channels, applications, and data usage control in 5 G CAV networks must 
be considered in threat defence-in-depth approaches [17,18]. However, 
this work focuses on PL modelling considering more precise parameters, 
regional topology, antenna heights, and other link budget factors that 
would facilitate attainable CAV 5 G radio coverage. 

This paper, therefore, develops an enhanced Agile GSA that can 
mitigate the effect of PL and signal interference in CP 5 G new radio 
networks. A typical use case is presented in Wales and can be adapted to 
high-density traffic environments such as Manchester, London, etc. 
Finally, an improved cyber-physical PL AGSA has been developed for 5 
G radio network service at Sub-6 GHz spectrum frequency. 

Nomenclature 

AGSA Agile Gravitational Search Algorithm 
ABG Alpha-beta-gamma 
ARQ Automatic repeat request 
BPSA Binary particle swarm algorithm 
BGP Binary gravity algorithm 
BS Base Station 
CAV Connected Autonomous Vehicles 
CPS Cyber-Physical Systems 
CI Close-in 
5G CP-PL Cyber-Physical Path loss 
CP-AGSA Cyber-physical gravitation search algorithm 
CPRA Cyber-Physical regression analysis 
CHMCPSs Cooperative-heterogeneous mobile wireless CPSs 
CP-AGSA Cyber-Physical Gravitational Search Algorithm 
CLO Clouded leopard optimisation 
DL Deep learning 
EISPA Efficient edge-intelligent service placement algorithm 
ECCM Electronic Communication Committee Model 
FEC Forward error correction 
GSA Gravitational Search Algorithm 
GOA Global optimisation algorithms 
GA Genetic Algorithms 

GPS Global positioning system 
GUI Graphics user interface 
HARQ Hybrid Automatic Repeat reQuest 
HPDT Highly provisioned drive Test 
ITS Intelligent transport systems 
LOS line of sight 
LTE Long term Evolution 
MAPE Mean Absolute Percentage Error 
MIMO Multiple-Input, Multiple-Output 
OHM Modified Okumura-Hata model 
mmWave Millimetre-wave 
MAPE Mean Absolute Percentage Error 
NIA Nature-inspired algorithm 
NLOSLB Non-LOS link budgets 
GA Optimised Genetic Algorithm 
PL Path Loss 
PSO Particle Swarm Optimisation 
PDMDD Particle distance, mutual distribution dispersion 
RANs Radio access networks 
RMSE Root Mean Square Error 
STNI Smart transport network infrastructures 
SOM Self-organising map 
CUE 5G CAV equipment  
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1.1. Main contributions 

The main contributions of this paper are:  

• CP-AGSA optimisation method proposed for legacy PL models in 
CAVs. The optimisation approach addresses PL problems in CPS and 
works well within 5 G and edge-Fog computing networks.  

• Node-Link problem is formulated as a control problem using the 
proposed CP-AGSA. We incorporated input-to-state traffic parame-
ters and control strategies for effective path planning.  

• empirical modelling and analysis of PL prediction using regression 
analysis. The proposed scheme improves PL estimation accuracy, 
leading to better signal strength prediction models for CAVs. 

• parameter settings and their performance in optimising PL are dis-
cussed. Comparative scenarios are used to demonstrate the algo-
rithm’s superiority over other optimisation methods in terms of 
optimized PL values and convergence speed. 

• global optimisation performance validation of the CP-AGSA algo-
rithm with existing models in terms of predictive accuracy. Perfor-
mance metrics such as MAPE and RMSE are used to validate the 
effectiveness of CP-AGSA. 

The remaining parts of this paper are organised into sections. A re-
view of the related works is introduced in Section 2. In Section 3, an 
existing empirical model is presented. Section 4 discussed the proposed 
CP-AGSA. In Section 5, a use case scenario was described alongside the 
data collection methods. Section 6 presented a regression analysis of the 
path loss models. In Section 7, the Cyber-Physical propagation model 
validation is discussed. Section 8 presented the result discussions. The 
global optimisation performance validation was presented in Section 9. 
Section 10 detailed the noise interference wider implications for this 
work. Section 11 concludes the paper with specific future directions. 

2. Related work 

In this section, detailed leading efforts on global optimisation will be 
discussed while pointing out the limitations. The authors [13,19] pro-
vided discussions on NIA including its application contexts in optimi-
sation problems without considering 5 G CAVs. For instance, the paper 
[20] proposed clouded leopard optimisation (CLO) as a new meta-
heuristic algorithm inspired by nature with two exploration and 
exploitation phases. A similar NIA was studied in energy harvester 
networks [21] but offered no insight into 5 G PL incidents. Baseline 
efforts on GSA were studied in [21,22] though the works lack discus-
sions on PL modelling. In [23], the authors presented an efficient 
edge-intelligent service placement algorithm (EISPA). This turns the 

service placement problem into finding a globally optimal solution 
through particle swarm optimisation (PSO). The paper [24] used un-
supervised self-organising map (SOM) learning to provide an intelligent 
approach for coverage planning as well as a performance optimisation. 
In terms of evolutionary algorithms/genetic algorithms, significant ef-
forts have been made to date. A good example is discussed in [25] where 
the authors focused deeply on problems with constrained optimal 
characteristics using GA. The limitation is the absence of CP PL explo-
ration. In [26], the authors explored searched-based differential evolu-
tion maps without emphasis on PL mitigations. The authors [27], 
applied Swarm-based optimisation algorithms to elastic collision, 
especially for coding optimisation without any reference to CP PL 
mitigation. In [28], ant colony optimisation was applied in identifying 
the shortest path problem space without PL considerations. The authors 
[29] proposed memetic algorithms in vehicular networks, especially for 
task offloading but failed to look at PL optimisation benefits in their 
models. In [30], an artificial bee colony was applied in a multi-strategy 
construct for path location with no emphasis on 5 G CP-PL intervention. 
In [31], the PSO-GSA hybrid was explored in a power despatch chal-
lenge. However, the algorithm was not adapted to CP-PL models. The 
authors [32] focused on graduated optimisation for optical flow pre-
diction leveraging global matching design. This optimisation algorithm 
also failed to capture PL improvement within the 5 G CP context. 

Authors [33,34] however pointed out the benefits of GSA such as low 
solution precision, trapping in local optima, and low convergence rates. 
For instance, the paper [35] explored binary GSA to fuse advanced 
convergent schemes such as the binary particle swarm algorithm 
(BPSA), binary gravity algorithm (BGP), particle distance, mutual dis-
tribution dispersion (PDMDD), and chaotic mutation (CM). These were 
used to improve convergence performance without considering the 
computational complexity of PL scenarios. 

In non-NIA, extensive research has been conducted to optimise 
existing 5 G networks in major metropolitan areas [36,37]. Notably, the 
prevailing PL prediction models employed for network analysis 
encompass standards such as COST-231, Egli, Okumura-Hata, Ecc-33, 
and Ericsson models [38]. However, many of these conventional PL 
models exhibit sluggish responsiveness when confronted with diverse 
terrains and are ill-suited for the demands of 5 G New Radio (NR) net-
works deployed for autonomous vehicles [39]. Their inefficiency be-
comes particularly evident when attempting precise PL analysis in urban 
settings, largely due to PL variations and signal interference challenges 
[40]. 

A summary of most related works has been highlighted in Table 1. It 
equally shows that the global optimisation algorithms with various gaps 
in PL improvements and speed convergence in CAV and other CPS 
applications. 

Table 1 
Summary of related works.  

Author (Year) Focus and Coverage Research Gap Remarks 

Lee et al., 
(2021) [41] 

overlapping multi-state PL model selection for 
indoor RSS. The GA is applied to reduce the 
complexity so that the proposed method can be 
executed in real-time. 

PL mitigation strategy suffers from outdoor channel error 
(severe channel blockage) in 5 G mm-wave. 

A more compact PL algorithm is necessary to 
achieve better performance and compensate 
for signal loss in CAV full duplex transactions. 

Khalid et al., 
(2020) [42] 

Evolutionary algorithm (EA) based methods, such as 
Artificial Bee Colony (BEE) and PSO algorithms for a 
hybrid pre-coding system 

Interference cancellation, signal blockage, and PL issues 
were not considered. 

An agile model with 5 G network parameters 
is needed for performance upscaling. 

Santana et al., 
(2022) [43] 

Infusion of PL machine Learning optimisation with 
Bagging and Genetic Algorithms (GA) 

PL optimisation in 5 G and beyond encountered a massive 
surge in network traffic due to more service load demands. 

Signal optimisation with an improved PL 
model is needed to mitigate signal 
interference. 

Chiroma et 
al., (2023) 
[44] 

ML and DL algorithms to predict PL in wireless 
systems. 

Non-compensation for signal interference, attenuation, 
path loss, delay, and multipath effect. 

An agile cyber-physical PL model is needed to 
achieve resource optimisation 

Mittal et al., 
(2021) [45] 

Comparative analysis amongst ten GSA variants 
with parameters optimisation. 

Poor network connections were identified due to delay and 
blockage in the channel. The variant of the GSA was not 
deployed to solve the PL problem in the 5 G NR network. 
The effect of PLs and interference was not considered 

A new CP PL model is necessary to achieve 
better performance.  
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2.1. Research gaps 

From the existing global optimisation algorithms, PL mitigation in 
CPS such as CAV in transport systems is yet to be fully addressed. There 
is no established evidence of optimal global exploration and the fastest 
convergence resolution, especially with PL in 5 G CPS. Although most of 
the NIA offers good computation methods, the generic GSA still suffers 
from premature convergence, poor local search ability, and a lack of 
effective acceleration mechanisms. It is equally clear that PL is a key 
factor that gives an idea of the network coverage for CP application 
provisioning. Hence, the design of a reliable CP wireless system de-
mands precise PL prediction models. The works failed to highlight that 
future CP networks will depend on extra super high frequency and mm- 
wave spectrum frequency because of scalable and massive bandwidth 
demand. However, most PL studies on 5 G lack detailed modelling of CP 
sensitivity based on GSA. Also, the propagation models often fail to 
highlight new empirical improvements needed for characterising 
communication channels in both indoor and outdoor environments for 
SHF and mm-wave services. In Section 3, various empirical models are 
modified for PL stability and sensitivity, especially for CP applications. 

3. Empirical propagation models 

This section discusses the empirical propagation models needed for 
CP service provisioning. These baseline standards are designed for the 
analysis of CP mobile radio signals in different terrains. The following 
signal propagation models are investigated for the initial CP model 
deployment [46]. 

3.1. CP Okumura- Hata 

The Okumura-Hata PL model is an empirical model for modelling 
urban signal propagation. It applies over a frequency range of 150 MHz 
to 1500 MHz. The height of the Base Station (BS) antenna (hbt) can vary 
up to 200 m depending on the terrain characteristics [46,47]. The path 
loss model (PLP) is expressed as follows: 

PLP (dB) = 69.61 + 26.21 ∗ log10fc − 13.81 ∗ loghbt − y(hmts) + Psys (1)  

where: 

Psys = [44.92 − 6.62 ∗ log10(hmt)] ∗ log10(d)

fc is the transmission frequency (MHz), hbt is the BS antenna height 
(m), hmt is the MS antenna height (m), y(hmts) is the mobile antenna 
correction factor, d is the distance between the BS and MS (km). 

The antenna correction factor y(hmts) for large cities is given by: 
For fc ≤ 300 MHz: 

y(hmts) = 8.3 ∗ [log10(1.54 ∗ (hmts)]
2
− 1.1dB (2) 

For fc > 300 MHz: 

y(hmts) = 3.2 ∗ [log10(11.75 ∗ (hmts)]
2
− 4.97dB (3) 

The antenna correction factor a(hmts) for medium-sized cities is 
expressed as: 

y(hmts) = 1.1 ∗ [log10(fc) − 0.7]∗ hmt − [1.56 ∗ log10(fc) − 0.8]dB
(4) 

For suburban areas, the Okumura-Hata PL calculation is given as: 
PLP (dB) = PLP (urban)dB - 2 * [log10(fc/28)]2 - 5.5 
This model is valuable for estimating PL in various urban environ-

ments, considering antenna heights, frequency, and correction factors 
for different city sizes. 

3.2. CP cost 231- Hata 

The Okumura model, which was created initially by a European 

cooperative research team, is expanded upon in the COST 231-Hata 
model. This model runs in the frequency range of 1500–2000 MHz 
and considers base station (BS) antenna heights of 30–200 m, as well as 
distances of 1–20 km between the BS and MS antennas [48]. In this 
model, the PL is written as follows: 

PLP (dB) = P0 − 13.81loghbt − y(hmts) + P1 + CACF (6)  

where; 

P0 = 46.3 + 33.9logfc  

P1 = [44.92 − 6.62loghmt]logd 

CACF denotes the environmental correction factor, i.e., (0 dB = sub-
urban areas and 3 dB = urban areas). Additionally, the correction factor 
for the antenna, denoted as y(hmts), depends on whether the city is 
highly populated or small-sized and is defined by eqs. (2) and (3), 
respectively. 

3.3. CP-Ericsson model 

The Ericsson 9999 model employs a predictive approach to estimate 
the Path Loss (PL) by dynamically adjusting network parameters based 
on the characteristics of the propagation terrain. This model operates 
within a carrier frequency range of up to 1900 MHz [49]. The PL model 
is defined in Eq. (7). 

PLP(dB) = k0 + k1log(d) + k2loghbt + Kj − 3.2
[
log(11.8 hmt)

2]
+ G(fc)

(7)  

where G(fc) = 44.5log(fc) − 4.8[log(fc)
2
]

Kj = [k3log(hbt)log(d)]
g(fc) = frequency correction factor. 
Table 2 shows the main terrain correction details for PL. 

3.4. CP-Electronic communication Committee- Model 

The ECC model extrapolates Okumura measurements, with certain 
assumptions that were adjusted as detailed in [50]. The PL model is 
represented by eq. (9). 

PLP(dB) = AFSA + AMPL − Gtx − Grx (8)  

where, 
AFSA denotes free space PL, AMPL = PL median variable, Gtx= BS 

antenna gain, Grx= Mobile Station (MS) antenna gain. 
The parameter definitions are summarised in (9), (10), and (11). 

AFSA = 92.35 + 20log(d) + 20log(fc) (9)  

AMPL = 20.4 + 9.8log(d) + 7.9log(fc) + 9.6 [log(fc)]
2 (10)  

Gtx = log
(

hbt

200

)
[
13.9+ 5.8(logd)2] (11)  

Where hbt represents the BS antenna height above the terrain and d is the 
distance. 

For the CAV MS, antenna gain factor in suburban and rural areas, we 
have: 

Grx = [42.6+ 13.7 log (fc) ] [log (hmt) − 0.59] (12) 

Table 2 
Ericsson model Terrain Parameters.  

Deployment Environment k0 k1 k2 k3 

PL_Urban 37.21 30.19 12.10 0.11 
PL_Suburban 43.21 67.92 12.10 0.12 
PL_Rural 46.96 100.5 12.10 0.13  
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Table 3 
Summary of Path Loss propagation Models, limitations, and optimisation schemes.  

PL Propagation Models Model Description/Attributes Considerations Limitations 

Okumura-Hata [46,47]  – Empirical model for macrocellular 
environments and urban areas.  

– Designed for urban signal propagation 
(150 MHz to 1500 MHz).  

– Accounts for Base Station (BS) antenna 
height variations.  

– Formula includes PL calculation and 
correction factors  

– First created for conditions that were 
macrocellular, which limits its applicability to 
small cells and interior settings for driverless 
cars.  

– Inaccurate forecasting of signal behaviour in 
challenging urban canyons or uneven terrain.  

– Assumes that the surroundings are littered 
uniformly.  

– does not account for parameter sensitivity  
– slow convergence  
– unsuitable for complex real-time problems.  
– inappropriate for high-dimensional spaces.  
– does not account for PL repulsion parameters. 

COST 231-Hata [48]  – Empirical model for cellular network 
planning, primarily used in certain 
frequency bands.  

– An extension of the Okumura model 
(1500–2000 MHz).  

– Considers BS antenna heights and 
distances.  

– PL calculation incorporates environmental 
correction and antenna correction factors.  

– May not sufficiently account for variations in 
geography, such as hilly or mountain-based 
locations.  

– designed for specific frequency bands and may 
not be suitable for other bands.  

– In cities with tall structures and difficult 
propagation circumstances, precision is limited. 

– The effectiveness for long-range and compli-
cated urban situations is limited due to its 
applicability to a narrow frequency range, flat 
terrain assumptions, absence of building shad-
owing consideration, and so on. 

Ericsson [49]  – Empirical model used in cellular network 
planning, suitable for specific frequency 
bands.  

– Predictive approach for PL estimation.  
– Adapts network parameters based on 

terrain characteristics.  

– May not be easily adapted for scenarios 
involving driverless cars because it was 
developed for specialised cellular network 
design.  

– Limited accuracy in settings with shifting 
vegetation or challenging terrain.  

– Propagation Condition Fine-tuning.  

– Non-simplicity  
– Convergence issues,  
– Non-population based.  
– Lack of simultaneous exploration of multiple 

solutions. 

ECC-33 [50] An empirical model with application in 
specific frequency bands.  

– Its application is limited since it is designed 
primarily for a limited range of frequencies.  

– May not capture granularities/fine-grained 
variations caused by various environmental 
factors.  

– Limited ability to account for unusual channel 
circumstances.  

– Lacks global optimisation.  
– Suitable only for rural and suburban settings,  
– Applies to a small frequency range, and t it 

doesn’t take complicated urban areas into 
account.  

– Might not effectively depict optimal PL in 
crowded urban areas. 

Egli [51] Empirical model used for predicting radio 
wave propagation in various environments.  

– Limited coverage for specific environments or 
terrains.  

– Inability to account for various obstacle types 
and reflections in complex urban environments.  

– Inappropriate for higher frequency bands.  

– Unscaled parameter tuning.  
– Unsuitable for high-dimensional problems. 

COST 231 Walfish- 
Ikegami (COST-WI) 
[52] 

Empirical model designed for cellular 
network planning, with a specific focus on 
PL.  

– Primarily designed for cellular network 
planning – Inability to account for the dynamics 
of CAV environments.  

– Limited accuracy in NLOS scenarios and 
complex urban environments.  

– Sensitive to numerous fluctuations in the 
terrain.  

– Uses terrain data updates and advanced 
raytracing but lacks global convergence. 

Ubiquitous Satellite 
Aided Radio 
Propagation 
(USARP) Model [53] 

Uses satellite data to predict radio wave 
propagation, making it suitable for remote 
areas.  

– Relying too heavily on satellite data, which 
could not always deliver real-time information.  

– Coverage restrictions in remote or poorly 
satellite-visible places.  

– Depending on the quality of the satellite data 
that is available, accuracy may vary.  

– Employs real-time data which may not always be 
available.  

– Integration and Kalman filtering with unclear 
computational cost. 

Terrain Integrated 
Rough Earth Model 
(TIREM) [54] 

Numerical model designed for predicting 
radio wave propagation over long distances. 

– Has a focus on long-range radio wave propa-
gation prediction.  

– Might not be appropriate for applications 
involving short-range CAVs. 

– Requires in-depth familiarity with the topog-
raphy and surrounding surroundings.  

– When the weather is rapidly changing, accuracy 
might be compromised.  

– Suitability for certain frequency bands and 
overwater propagation, Limited applicability in 
complex terrains and urban settings.  

– Requirements for accurate input data may not 
always be available.  

– Needs more parameter tuning and adjustments. 

Data-driven PL (PL) 
[55] 

Empirical model enhanced by real-world 
data and machine learning for adaptability.  

– May not be useful in locations with little data or 
for situations not covered by the training 
dataset if there is not enough data available.  

– Sensitive to long-term changes in the 
environment.  

– Limited generalizability to different situations  
– Necessity for considerable and accurate data  
– Potential biases in the training data. 

Lee PL [56] Empirical model suitable for specific 
frequency bands with adjustable parameters.  

– May have limited applicability as it is primarily 
developed for specific frequency bands.  

– May not consider fine-grained differences in 
urban or complicated situations.  

– Choosing the right model parameters and input 
data might affect accuracy.  

– Does not account for sensitivity to repulsion 
parameters.  

– Offers parameter optimization with challenges 
in high-dimensional spaces. 

GSA-PL [31] A heuristic optimization algorithm for PL 
optimisation was created to address 
challenging optimisation issues but was 
inspired by the gravitational laws.  

– Sensitivity to parameter settings, a lack of 
complex theoretical framework, potential slow 
convergence, difficulties in high-dimensional 
spaces, sensitivity to repulsion parameters, 
weak adoption, and potential challenges in 
effectively exploring some search spaces.  

– Uses global nature-based optimisation (i.e., 
exploitation and exploration) but has near- 
convergence and adaptation issues.  

– Challenges in high-dimensional spaces.  
– Sensitivity issues to repulsion parameters. 

(continued on next page) 
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And for MS gain factor in dense urban areas: 

Grx = 0.76 (hmt) − 1.86 (13)  

Where hbt represents the MS antenna height above the terrain. 

3.5. CP-Egli propagation model for path loss prediction 

The Egli model is a valuable tool for predicting PL in various terrain 
scenarios. This model excels in scenarios where there are no significant 
obstructions within the communication channel. It applies to operation 
frequencies ranging from 45 MHz to 900 MHz, offering reliable pre-
dictions for communication distances of up to 50 km [51]. The mathe-
matical formulation of the Egli model is as follows: 

PLEgli(dB) = 20logfc + Psys + 76.5 − 10loghmt, for hmt ≤ 15m (14)  

PLEgli(dB) = 20logfc + Psys + 86.9 − 10loghmt , for hmt > 15m (15)  

where, 
Psys = 40logd − 20loghbt, Psys is the system factor. 
Eqs. (1) to (15) will be used to derive PL comparison later in Section 

7. 
A summary of several PL Propagation models, their essential char-

acteristics, factors to consider, limitations, and optimization plans for 
these models is given in Table 3. 

In Section 4, this paper introduces CP-AGSA as a novel optimisation 
approach for addressing PL challenges in CPS, while showcasing the 
effectiveness of the algorithm through empirical modelling, analysis, 
and validation against existing models. Its potential applications in 
improving signal strength prediction for CPS scenarios, particularly in 
the context of CAVs in 5 G networks will be discussed. 

4. Cyber-physical gravitation search algorithm (CP-AGSA) 

4.1. Optimisation framework 

We now look at an enhanced optimisation technique (i.e., CP-AGSA) 
proposed to address the PL problem. CP-AGSA facilitates the agile 
movement of mobile objects (denoted as ϑ) in the solution space, 
striking a balance between exploration and exploitation for efficient 
solution search. 

This optimisation method is specifically applied to the CAV optimi-
sation problem, focusing on the gravitational search algorithmic steps 
(A-G) for a population of space-moving node particles. The proposed 
scheme exhibits a notably efficient convergence rate compared to con-
ventional PL approaches. 

In practical terms, the gravitational pull exerted by other node par-
ticles 

∏
gp induces their migration toward the particle with the highest 

mass (μ), representing the ideal position to optimise service efficiency. 
The interplay between exploration (β) and exploitation (γ) is central to 
heuristic search algorithms. β signifies the algorithm’s capacity to 
thoroughly explore the entire solution space, preventing it from getting 
trapped in local optima solutions. In contrast, γ represents the algo-
rithm’s ability to search a limited area for the best solution (δ). These 
two aspects, β and γ, are inversely related, with an increase in 

exploration leading to a decrease in β. 
The dynamic adjustment of γ and β during each algorithm iteration is 

crucial. In the initial stages, a higher emphasis on exploration is neces-
sary to avoid falling into local optima solutions (φ). Thus, exploration 
capability should be set to a high value. However, as the algorithm 
progresses, exploitation capability becomes more critical, aiding the 
algorithm in swiftly converging toward the optimal solution. This 
transition optimally balances the trade-off between exploration and 
exploitation, offering a faster convergence rate and more effective global 
search. Our CP-GSA is based on the principles of gravity and mass 
interaction in CP space. Movement in this space is analogous to global 
movement, wherein heavier masses gravitate toward other objects. The 
gradual movement of heavier masses in CP space facilitates efficient 
signal transmission, resembling the exploitation step. The gravitational 
force (f) between two objects is mathematically expressed as [57]: 

f =
G(MaMb)

D2 (16)  

where G is the constant due to gravity, Ma and Mb are the masses agent, 
while D is the distance between objects. The implementation steps for 
CP-GSA are outlined below: 

Step A: Initialisation: Data (agent) points are randomly initialised. 
The ith position of data denoted as Ui is defined as: 

Ui =
(
u1

i , u2
i , u3

i , u4
i , ……uy

i
)
, for i = 1, 2, 3,……y (17)  

where, ui is the position of ith agent (data points in the channel) 
Step B: Fitness Evaluation: Evaluate the fitness of each agent for jth 

iteration at time t. Define good (t) and poor(t) as follows: 

good (t) = maxfitj(t) jϵ1,…, Y (18)  

poor (t) = minfitj(t) jϵ1,…, Y (19)  

where, fitj(t) is the fitness value. 
Step C: Gravitational Value: The gravitational value Gr(t) is ob-

tained at iteration t, 

Gr(t) = Gr0e(− at/T) (20)  

where, Gr0 = 90, α = 15 [58]. 
Gr0 and αt/T reduces with time to control search accuracy, Gr0 is the 

initial gravity value, t is the current iteration, α is the decay rate, and T is 
the total iterations. The force on the agent i from agent j at time t, 

Fx
ij(t) = Gr(t)

Mpi(t) ∗ Maj(t)
Rij(t)

(21a)  

where, Fx
ij is the applied force on the agent, Rij(t) is the distance between 

particle jth to ith. 
In this case, it is important to give stochastic characteristics to the 

algorithm by proposing that the total force that acts on agent i in a 
dimension d be a random weighted sum of dth components of the forces 
exerted by other agents, 

Table 3 (continued ) 

PL Propagation Models Model Description/Attributes Considerations Limitations 

AGSA-PL (proposed)  – Ease of implementation.  
– adaptability to domains.  
– flexibility for a range of complex problems.  
– quick convergence to solutions.  
– population-based exploration  
– global optimization. capabilities.  
– intuitive behaviour inspired by 

gravitation. 

The overall objective of the AGSA optimization 
technique is to repeatedly update the positions of 
driverless agents according to gravitational forces, 
which results in the identification of optimal 
solutions (i.e., best PL) within the predetermined 
search space. The limitation is that the 
optimisation follows a set of established 
constraints and exit conditions. 

No evidence has been established yet.  
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Fx
i (t) =

∑N

j=1, j∕=i

randjFx
ij(t) (21b)  

where, randj is the random variable in the interval [0,1] 
To obtain a good compromise between β and γ which reduces the 

number of agents with the time lapse in (21a), only a set of agents with 
better mass can apply forces on the other. 

However, this condition is carefully deployed as it may reduce β 
power and increase γ. To avoid trapping in a local optima state, the al-
gorithm must use the β at the initial stage since it prevents the whole 
search space from falling into the local optima solution. Hence, β 
capability should be high. However, toward the end of the algorithm, 
the γ capability should be high enough to enable the algorithm to 
converge toward the best solution. By the lapse of iteration, β must fade 
out, and γ increases. Therefore, by controlling β and γ, only the kBest 
agents will attract other agents thereby improving the performance of 
AGSA. 

In this instance, kBest is a function of time, with the initial value k0 at 
the initial stage and decreasing with time. At the initial stage), all agents 
will apply the force, and as time goes on, kBest is decreased. In the end, 
only one agent applies the force to the others. Therefore, (21a) can be re- 
written as (21c). 

Fx
i (t) =

∑N

j∈kBest , j∕=1
randjFx

ij(t) (21c)  

where kBest is the set of first K agents with the best fitness value and 
bigger mass. 

Step D: Agent’s Masses: Calculate the Gravitational mass, mi(t), and 
inertia mass, Mii(t) of agent i at iteration t using (22) and (23). 

mi(t) =
fiti(t) − good(t)

good(t) − poor(t)
(22)  

Mii(t) =
mi(t)

∑n
j=1mj(t)

(23)  

where, mj(t) is the mass of agent j. 
Step E: Agent’s Acceleration: Apply Newton’s 2nd law to compute 

the acceleration (a). The resulting applied force (f) is directly propor-
tional to mass (M) and is expressed as (24) and (25). 

f = kma (24)  

where constant (k) is equal to 1. 
Acceleration of agent in the direction xth, according to the law of 

motion is expressed as 

ax
i (t) =

Fx
i (t)

Mii(t)
(25)  

where, ax
i (t) is the acceleration, and Fx

i (t) the total applied force on the 
agent ith. 

Step F: Agent’s Velocity and Position: Update the velocity and 
position of the agent at the next iteration (t+1) using eqs. (26) and (27). 

velx
i (t+ 1) = randi ∗ vx

i (t) + ax
i (t) (26)  

xx
i (t+ 1) = xx

i (t) + velx
i (t+ 1) (27)  

where; velxi (t) and velxi (t+1) are the velocities of ith agents during the 
iteration t & (t+1) respectively, randi is a random variable in the in-
terval [0,1], ux

i (t), and ux
i (t+1) are the positions of ith agents during 

iteration t and (t + 1). 
Step G: Repeat Steps B to F: Iteratively repeat Steps B to F, allowing 

each agent to update its position to reach the maximum limit and meet 
the end criterion. The computational framework for the AGSA algorithm 
in CAV scenarios is illustrated in Fig. 1. AGSA relies on two key pa-
rameters to control the search process: the number of applied agents 
(kBest) and the gravity constant (G). Initially, kBest explores β, and as the 
algorithm progresses, G is reduced to enhance the γ capabilities of the 
algorithm. This approach aligns with the principles of strengthening 
CAV exploration during the early stages and intensifying exploitation in 
the later stages. The dynamic adjustment of kBest affects the number of 
considered CAV objects on the road. This ultimately leads to better 
trade-offs and ensures high stability in both time and frequency do-
mains, similar to frequency responses discussed in Jing et al. [53]. 

4.2. CP GSA node-link formulation 

This subsection considered the CAV as a CPS control problem whose 
formulation is resolved with AGSA. It solves the problem of link pre-
dictive control (LPC) for PL in both the time and frequency domains. In 
this case, the input-to-state traffic parameters are introduced while the 

Fig. 1. Influence of AGSA on CAV PL: (a)Time domain (b) Frequency domain with Leakage factor (7.68%), Relative sidelobe attenuation (− 15.8 dB), and main width 
(− 3 dB): 0.11719. 

K.C. Okafor et al.                                                                                                                                                                                                                               



Vehicular Communications 45 (2024) 100685

8

search control strategy is used to demonstrate the effectiveness of the 
scheme. Now, applying the CAV_node-link design to the issues under-
lying Algorithm 1 will ensure the effective use of available paths in CP- 
AGSA as already established in Section 4. This article provides a 

formulation for the problem below. Assume a non-zero demand between 
CAV-ordered pair CP edge nodes. Now, CP-SA node-link formulations. 

LP: CP-GSA NLF 
CP-GSA 5G Paths Translations - First Step 

Algorithm 1 
Optimal Agile PL Label Algorithm (OAPLA).  

Algorithm 2 
PL Agile Auto-Scaling Non-Saturation Algorithm.  
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Indices: 

d = 1, 2, …, D CAV CPS traffic demands  

e = 1, 2, …, E CAV CPS directed arcs links  

v, v′ = 1, 2, …,V CAV CPS edge nodes 

Constants 

aev = 1 if arc e originates at node v; 0, otherwise  

bev = 1 if arc e terminates in node v; 0, otherwise  

Ce Capacity of link e 

Variables 
Xv, v′ = total CP traffic assigned to demand originating at node v 

and terminating in node v′ 

Sv =
∑

v′
Xv, v′ total traffic demand clustering at node v 

Xev continuous non − negative traffic flow selecting all traffic 
demand coming at node v on arc e 

Algorithm 3 
5 G Resource Allocation Scheme + PL Function.  
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Objective 

Max t (28a) 

Constraints 
∑

e
be, v′ Xev −

∑

e
ae, v′ Xev = Xv, v′, v, v′ = 1, 2, …, V v ∕= v′ (28b)  

Sv =
∑

v′

Xv, v′ v = 1, 2, …V (28c)  

∑

e
ae,v Xev = Sv v = 1, 2, …,V (28d)  

t − Xv, v′ ≤ 0 v, v′ = 1, 2,…,V v ∕= v′ (28e)  

∑

v
Xev ≤ Ce e = 1, 2, …E. (28f) 

In this formulation, constraint (28d) requires that the entire demand 
traffic Sv produced in node v navigate out of node v. The constraint 
(28b) supports that the component of the flow Xv, v′ that originated at 
node v. It is intended for node v′ to remain in v′. 

Keep in mind that Xv, v′ is the same as Xd in the formulation. To use 
the CPS_node-link formulation in CAV-CPS, directed graphs must have 
directed linkages. Therefore, if the links in the legacy network are un-
directed, (i.e., two oppositely directed arcs are attached with each link e 
(e′ and e′ between its end nodes), we then replace constraint (28f) with 
(28g). 
∑

v
(Xe′v +Xe′v) ≤ Ce e = 1, 2, …E. (28g) 

Algorithm 2 shows the pre-flow service provision Algorithm. The 
idea is to constantly update the lookup tables of AGSA at CAV_edge 
(connected vehicles). Assume that the flow network, Nd = (G, c, s, t)
contains a symmetric digraph G that is determined by incidence lists Av. 
Furthermore, by making the rel a Boolean variable, let Q denote a CP- 
GSA path loss priority queue with the PL priority function d. The PL 
Agile auto-scaling non-saturation algorithm reduces latency (execution 
time), channel error, and network size. 

4.3. Implemented 5G network algorithm 

In implementing the 5 G CAV network algorithm, the testbed handles 
wireless communication/networking protocols and signal processing. 
On top of legacy device algorithms, this paper used CAV resource allo-
cation with Hybrid Automatic Repeat reQuest (HARQ) to improve data 
transmission reliability. HARQ is enabled in 5 G CAV to enhance the 
reliability of data transmission. CAV-HARQ integrates forward error 
correction (FEC) and automatic repeat request (ARQ) end-to-end while 
synergistically improving the efficiency of recovering lost or corrupted 
data. Network slicing is another scheme used to divide a single CAV 
physical network into multiple virtual networks while supporting 
various radio access networks (RANs), and its services. For example, 
consider CAV communication. The vehicle requires low latency but not 
necessarily high throughput. On the other hand, a streaming service 

used while driving demands a lot of capacity and needs to minimise the 
delay. To efficiently utilise the physical network, both services are 
offered over the same shared physical network using virtual network 
slices. Network slicing optimises network resources and improves 
overall performance. Algorithm 3 describes the above 5 G algorithm 
where the 5 G parameters are defined while calling the RAN network 
slicer. Once the rates are verified, the PL loss function isolates distance, 
frequency, transmitter height, receiver height, and an optional shadow 
fading standard deviation as inputs. It calculates the PL using the free 
space PL formula and additional terms for height difference and shadow 
fading. More advanced PL models, environmental effects, multipath 
propagation, and other real-world complexities are not considered. 

5. USE case scenario 

This section adopted the highly provisioned drive Test (HPDT) 
method for data collection from the Sub-6 GHz network at the Tesco 
Pontypridd Warehouse study area in Wales. The cell sites in Pontypridd 
City and its surrounding rural areas are larger than mmWave and 

Table 4 
5 G Drive Test Parameters.  

CAV_Carrier Frequency 3.5 GHz 
Tx Power 46 dBm 
Tx height 45 m 
Tx Gain 2.0 dBi 
Rx Gain 1.8 dBi 
Mobile station height 

Radiating power (EIRP) 
Interference Margin (I) 

1.6 m 
55dbm 
3.0  

Table 5 
CAV drive Test locations.  

(Locations) Area in Wales 

L1 Tesco- Pontypridd Park 
L2 Wood Road 
L3 Graig Street  

Table 6 
Measurement Study at Pontypridd Terrain.  

Dist. 
(km) 

Measured 
PLP(d0) (dB) L 1 

Measured 
PLP(d0) (dB) L 2 

Measured 
PLP(d0) dB L 

3 

Average 
Measured 
LPM(d0) dB 

0.1 95.1 87.20 100.10 94.13 
0.2 103.1 124.00 102.00 109.70 
0.3 149.0 116.10 118.10 127.73 
0.4 112.2 102.20 168.30 127.57 
0.5 140.0 152.00 112.20 134.73 
0.6 116.0 120.30 141.20 125.83 
0.7 150.1 104.10 114.10 122.77 
0.8 111.3 131.10 134.10 125.50 
0.9 180.2 107.20 150.30 145.90 
1.0 138.1 119.30 123.10 126.83 
1.1 116.0 105.10 135.10 118.73 
1.2 102.0 128.20 101.30 110.50 
1.3 145.0 116.00 142.10 134.37 
1.4 130.0 130.30 110.20 123.50 
1.5 104.0 122.10 121.10 115.40  

Table 7 
CP Regression Analysis for L1 with Measured Data.  

Dist. 
(m) 

Measured PL 
PLPM(d0) dB 

Predicted PL 
PLPR(di) dB 

PLPM(d0) −

PLPR(di)

100 95.1 95.1 0 
200 103.1 95.1 + 3.01 x 008 - 3.01 x 
300 149.0 95.1 + 4.77 x 053.9 - 4.77 x 
400 112.2 95.1 + 6.02 x 017.1 - 6.02 x 
500 140.0 95.1 + 6.99 x 044.9 - 6.99 x 
600 116.0 95.1 + 7.78 x 020.9 - 7.78 x 
700 150.1 95.1 + 8.45 x 0055 - 8.45 x 
800 111.3 95.1 + 9.03 x 016.2 - 9.03 x 
900 180.2 95.1 + 9.54 x 085.2- 9.54 x 
1000 138.1 95.1 + 10.00 x 042.9 - 10.0 x 
1100 116.0 95.1 + 10.41 x 020.9 - 10.41 x 
1200 102.0 95.1 + 10.79 x 006.9 - 10.79 x 
1300 145.0 95.1 + 11.14 x 049.9 - 11.14 x 
1400 130.0 95.1 + 11.46 x 034.9 - 11.46 x 
1500 104.0 95.1 + 11.76 x 08.9 - 11.76 x  
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function at 5 G speeds (i.e., sub-6 GHz standard). Hence, CP-AGSA for an 
interactive autonomous car used radio link budget parameters obtained 
from [40] for effective data collection. In this case, the principle of the 5 
G radio link budget for the estimation of maximum usable PL between 
the 5 G NodeB (gNB) and 5 G CAV equipment (CUE) is considered. It 
illustrates the cell radius both in uplink and downlink locations. In this 
effort, the signal strength and CP PL were recorded on a log file using 
TEM 15.0 installed on the Corei3, 2.4 GHz, 8 G laptop. Three 
Sony-Ericsson Xperia Z3 D6603 devices are used to initiate different 
network calls with CP software integration. Other equipment interfaced 
with the laptop are the global positioning system (GPS), and power 
supply unit. The network parameters employed during the CP driving 
test are shown in Table 4. 

The network has sufficient adaptability and long-range needed for 
CAV networks. To illustrate the impact of PL on CAVs, this experiment 
seeks to justify further generalisations on 5 G CAV networks. However, 
for carrier frequencies: 28 GHz, 39 GHz, 60 GHz, and 72 GHz, PL model 
equations can be applied for line of sight (LOS) and Non-LOS link 
budgets. 

In this scenario, a low-powered gNB offers indoor coverage of a few 
tens of meters in crowded metropolitan areas (i.e., Pontypridd City 
center) to a few hundred meters in more open NLOS conditions, 
including positions near semi-open market squares. The LOS scenario 
provides 100Mb/s and 1Gb/s up to around 3.5 km. Now, the recorded 
data on the log files are later processed with Actix software [59] for 
further analysis. CPS AGSA optimisation algorithm was then employed 
to enhance the developed OHM for better performance. The CPS drive 
test routes and measured data for L1, L2, and L3 are shown in Tables 5 
and 6, respectively. 

6. Cyber-physical regression analysis 

This section introduces Cyber-Physical (CP) regression analysis as a 
method to analyse the acquired datasets. The PL data obtained from 
three distinct locations underwent regression analysis. The PL value 
recorded at 100 m served as the reference measurement, denoted as 
PLpM d0 at distance d0. Subsequently, the PL exponent (n) was deter-
mined using the quadratic solution technique. Table 7 presents the 
regression analysis results for distance L1. 

In the terrestrial CP radio scenario, the baseline signal strength re-

duces with increasing distance as a result of various channel constraints, 
including PL, object-obstruction, multipath-fading, and signal-level 
shadowing effects. The PL (PL(di)) equation for such terrestrial free 
space is given as [31]: 

PL(di) = PLPM(d0) + 10(x)log
(

di

d0

)

(29)  

where x represents the PL exponent, di gives the distance and d0 is the 
distance reference point. To calculate the predicted PL [PLP(di)], we 
incorporate Model Modified Factor (MMFsys) and mobile antenna 
correction factor an (hmts) into Equ (29) as; 

PLP(di) dB = LPM(d0) + MMFsys + 10(x)log
(

di

d0

)

− an (hmts) (30)  

where, 

MMFsys =
[
26.1logfcf − 13.8loghbt

]

a(hmts) = 3.2 [log(1.53hmt)]
2
− 4.96dB.

Considering the distance from 0.1 km to 1.5 km, the model 
[PLPM(d0) − PLPR(di)]

2 is the summation square error obtained as: 

1139.919x2 − 7242.69x + 19, 989.57. (31) 

From (31), the PL exponent (x) is determined using the quadratic 
solution method1139.919x2 − 7242.69x+ 19,989.57 = 0, so that x =

3.18. The shadowing error due to channel obstruction resulted in signal 
deviation. This deviation (δSDf ) is evaluated using the sum of square 
errors. 

δSDf =
1
N

(∑(
[PLPM(d0) − PLPR(di)]

2)1
2
)

(32) 

Therefore, the shadowing error correction factor, δSDf (dB), around a 

mean value is computed as δSDf =

1
15([(1139.919)(3.2)2

− 7242.69(3.2) + 19,989.57] )
1
2 = 23.7 dB. 

By introducing PLPM(d0)Ref , MMFsys, x and adding δSDf (dB) to 
compensate for terrain error in (30). the modified cyber-physical PL 
model for L1 is given as: 

Table 8 
Measured, Predicted, Modified, and Enhanced CP-AGSA PL values for L1.  

Dist. (km) OHM (dB) COST 231 (dB) Erics (dB) Egli (dB) ECC-33 (dB) Measured PL (dB) Modified (L1) (dB) Enhanced (AGSA) dB 

0.1 100.3 102.8 135.5 190.1 300.5 95.1 109.3 109.0 
0.2 110.8 116.2 144.6 202.1 309.5 103.1 113.9 113.6 
0.3 116.9 122.4 149.9 209.2 314.7 149.0 117.5 117.2 
0.4 121.2 126.7 153.7 214.2 318.4 112.2 120.4 120.2 
0.5 124.6 130.1 156.7 218.1 321.3 140.0 123.5 123.2 
0.6 127.4 132.8 159.1 221.2 323.7 116.0 126.0 125.1 
0.7 129.7 135.2 161.1 223.9 325.7 150.1 128.2 127.8 
0.8 131.7 137.2 162.9 226.2 327.4 111.3 130.0 129.7 
0.9 133.5 138.9 164.4 228.3 328.9 180.3 131.6 131.3 
1.0 135.1 140.5 165.8 230.1 330.3 138.1 133.1 132.8 
1.1 136.5 142.0 167.1 231.8 331.5 116.0 134.4 134.1 
1.2 137.8 143.3 168.2 233.3 332.7 102.0 135.6 135.3 
1.3 139.0 144.5 169.3 234.7 333.7 105.0 136.7 136.4 
1.4 140.2 145.6 170.2 236.0 334.7 130.0 137.7 137.4 
1.5 141.2 146.7 171.2 237.9 335.6 104.0 138.7 138.4  

Table 9 
RMSE Analysis of Existing, Modified and Enhanced Models.  

Location Error Metric OHM (dB) COST (dB) Ericsson (dB) Egli (dB) ECC (dB) Modified Model (dB) Enhanced AGSA (dB) 

L1 RMSE 4.903 10.17 36.49 98.99 201.1 4.290 3.998 
L2 RMSE 10.77 16.04 42.36 104.9 206.9 9.875 8.859 
L3 MASE 3.497 8.765 35.08 97.58 199.7 2.231 1.870 
Average Value RMSE 6.39 11.66 37.98 100.5 203.6 5.465 4.909  
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PL(L1) = 95.1 + [26.1logfc − 13.8loghbt] + 10(3.2)log
(

di

d0

)

− a(hmts)

+ 23.7 dB
(33) 

Substituting the model parameter factors (i.e., PLPM(d0)Ref - initial 
measured PL at 100 m away from 5 G base station), PL exponents (x) and 
shadowing deviation(δSDf )), the modified PL models for L2 and L3 are 
presented in equ (34) and (35) as: 

PL(L2) = 87.2 + [26.1logfc − 13.8loghbt] + 10(3.5)log
(

di

d0

)

− a(hmts)

+ 15.4 dB
(34)  

PL(L3) = 100.1 + [26.1logfc − 13.8loghbt] + 10(2.9)log
(

di

d0

)

− a(hmts)

+ 19.1 dB
(35) 

Therefore, replacing the system baseline parameter factor, the 
modified PL (i.e., generalised modified) model for the use case is ob-
tained from Equs (33), (34), and (35). Equ. (36) now shows the final use 
case model. 

PL(Gen) = 94.1 + [26.1logfc − 13.8loghbt] + 10(3.2)log
(

di

d0

)

− a(hmts)

+ 19.4 dB
(36) 

In this paper, Eq. (36) now represents the modified OHM suitable for 

Table 10 
MAPE Analysis of Existing, Modified, and Enhanced AGSA models.  

Location Error Metric OHM (%) COST (%) Ericsson (%) Egli (%) ECC (%) Modified Model (%) Enhanced AGSA 

L1 MAPE 0.265 0.549 1.970 5.344 10.86 0.231 0.216 
L2 MAPE 0.611 0.909 2.401 5.943 11.73 0.559 0.502 
L3 MAPE 0.187 0.468 1.872 5.209 10.66 0.119 0.110 
Average Value MAPE 0.354 0.642 2.081 5.498 11.08 0.303 0.276  

Fig. 2. Results of PL empirical model and measured data (L1) without AGSA.  

Fig. 3. Optimal PL model using empirical and measured datasets for CAV Networks (L1).  
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deployment in complex CP terrestrial mobile networks. In addition, 
Table 8 provides CP path loss predicted results in relation to the 
enhanced CP-AGSA models for L1. 

7. Cyber-physical propagation model validation 

In this section, we employ two performance metrics, Root Mean 
Square Error (RMSE) and Mean Absolute Percentage Error (MAPE), to 
assess the accuracy of both the existing and modified models [31]. The 
RMSE is represented by Equ (37) as follows: 

RMSE =

[
1
n
∑n

i=1
(PLPMi − PLPRi)

2

]1
2

(37)  

MAPE =
1
n

∑n

j=1

⃒
⃒
⃒
⃒
PLPMi − PLPRi

PLPMi

⃒
⃒
⃒
⃒x 100% (38)  

where, PLPMi(dB) represents the measured data,  PLPRi(dB) corresponds 
to the estimated data (i.e., predicted), and "n" stands for summary data 
point numbers. The RMSE and MAPE result analysis for various models, 
including the optimised AGSA, are highlighted in Tables 9 and 10. 

8. Results discussions 

In this section, we present the results of the PL models for CPS service 
provisioning in the context of 5 G network. We conducted simulations 
using MATLAB R2018a software and compared the measured data, our 
modified and enhanced AGSA, as well as existing models. The results are 
graphically depicted in Figs. 2 through 7, corresponding to different 
propagation scenarios labelled as L1 to L3. 

An illustration of measured PL incidence with existing models is 
shown in Fig. 2. According to the measured PL scenario, ground re-
flections are analogous to non-line-of-sight (NLOS) radio propagation, 
which happens outside the conventional line-of-sight (LOS) between the 
CAV transmitter and receiver. The innermost Fresnel zone of the park is 
partially blocked by cars, trees, and other physical objects, therefore the 
NLOS circumstances appear to be favourable. Specifically, at 0.60 km 
from the Base Station (BS), we obtained the following PL model values: 
OHM (127.4 dB), COST (132.8 dB), Erics (159.1 dB), Egli (221.2 dB), 
and ECC (323.7 dB). Similarly, the model accuracy was computed with 
MAPE results as follows: 0.265%, 0.549%, 1.970%, 5.344%, and 10.86% 
respectively. Also, the RMSE was computed to yield OHM (4.903 dB), 
COST (10.17 dB), Erics (36.49 dB), Egli (98.99 dB), and ECC (201.1 dB) 
respectively. Notably, the analysis reveals that the ECC-33 model 

significantly overestimates the PL due to signal interference and 
blockage, attributed to the high population density of vehicular users in 
the 5 G network context. 

Fig. 3 illustrates the relationship between PL values and the distance 
at L1. At 0.60 km from the Base Station (BS), the recorded PL values 
were as follows: Okumura-Hata (127.4 dB), COST-231 – (132.8 dB), 
Ericsson (159.1 dB), Egli (221.2 dB), ECC-33 (323.7 dB), Modified 
(126.0 dB), and Enhanced GSA (125.1 dB). Corresponding MAPE values 
were calculated as Okumura-Hata (0.265%), COST-231 (0.549%), 
Ericsson (1.970%), Egli (5.344%), ECC-33 (10.86%), Modified 
(0.231%), and Enhanced GSA (0.216%). Additionally, RMSE results 
were determined to be Okumura-Hata (4.903 dB), COST-231 (10.17 dB), 
Ericsson (36.49 dB), Egli (98.99 dB), ECC-33 (201.1 dB), Modified 
(4.290 dB), and Enhanced GSA (3.998 dB). Notably, the modified model 
outperformed the existing model in the absence of signal interference. 
Furthermore, the Enhanced AGSA model exhibited superior perfor-
mance when compared to all other models. Therefore, it stands as a 
robust solution to address the challenges associated with inter-symbol 
interference and signal loss within the 5 G NR network, thereby 
ensuring seamless connectivity for Connected Autonomous Vehicles 
(CAVs). 

Fig. 4 illustrates a plot of PL responses at Location 2. At 0.60 km from 
the base Station (BS), the obtained PL values are as follows: 127.4 dB for 
OHM, 132.8 dB for COST, 159.1 dB for Erics, 221.2 dB for Egli, 323.7 dB 
for ECC, 126.3 dB for the Modified model, and 125.3 dB for Enhanced 
GSA. The MAPE results corresponding to these PL values are 0.611%, 
0.909%, 2.401%, 5.943%, 11.73%, 0.559%, and 0.502%, respectively. 
Additionally, the RMSE values for the same set of PL values are 10.77 dB, 
16.04 dB, 42.36 dB, 104.90 dB, 206.90 dB, 9.875 dB, and 8.859 dB. 
These results highlight significant insights for CAVs. ECC-33 appears to 
have overestimated the PL due to the high traffic density and signal 
attenuation caused by available shops and tall structures in the terrain. 
On the other hand, the modified model demonstrates its ability to 
mitigate network interference and improve signal coverage. Notably, 
the enhanced AGSA outperforms existing models, offering the lowest PL 
values in this case study, thereby justifying the convergence expectation 
for CAVs. 

Fig. 5 illustrates the PL observations at location L3. At 0.6 km from 
the Base Station (BS), the PL responses for different models are as fol-
lows: OHM (127.4 dB), COST (132.8 dB), Erics (159.1 dB), Egli (221.2 
dB), ECC (323.7 dB), Modified GSA (125.4 dB), and Enhanced GSA 
(124.0 dB). In terms of MAPE results obtained, the values are 0.187%, 
0.468%, 1.872%, 5.209%, 10.66%, 0.119%, and 0.010% for OHM, 
COST, Erics, Egli, ECC, Modified GSA, and Enhanced GSA, respectively. 

Fig. 4. Optimal PL model using empirical and measured datasets for CAV Networks (L2).  
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Corresponding Root Mean Square Error (RMSE) results are 3.488 dB, 
8.675 dB, 34.99 dB, 98.58 dB, 198.80 dB, 2.322 dB, and 1.881 dB. 
Remarkably, the improved AGSA outperforms all other models in this 
scenario. It’s worth noting that there was no network interference, 

which contributed to efficient service delivery. Consequently, this model 
exhibits promise for estimating and deploying 5 G NR networks in high- 
density terrains for CAVs. 

Fig. 6 illustrates the PL response at the three different locations, 

Fig. 5. Optimal PL model using empirical and measured datasets for CAV Networks (L2).  

Fig. 6. Optimal PL model using empirical datasets for CAV Networks (L1, L2, and L3).  

Fig. 7. Generalised OHM PL Performance against distance (L3).  
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namely L1, L2, and L3. At 0.6 km from the BS, the PL responses are 
obtained as follows: 324.7 dB for Existing ECC, 159.1 dB for Existing 
Erics, 221.2 dB for Existing Egli, 128.0 dB for Modified OHM (L3), 122.8 
dB for Modified OHM (L2), and 126.0 dB for Modified OHM (L1). 
Notably, the Mean Modified OHM exhibits superior performance in this 
measurement environment. Furthermore, it is worth mentioning that no 
network interference was observed. The model exhibits the potential to 
alleviate issues such as inter-symbol interference and signal attenuation 
within the study area. Consequently, it proves to be well-suited for 
estimating and deploying 5 G NR networks in complex urban terrains 
like those found in Manchester or Lagos. In this context, it is essential to 
understand that the PL component represents the reduction in power 
density experienced by an electromagnetic wave as it propagates 

through space. Reducing this path loss can enhance the safety, security, 
and sustainability of CPS. Moreover, in the context of 5/6 G technolo-
gies, an improved path loss algorithm can significantly impact the 
achievement of three key design objectives. For instance, by reducing its 
environmental impact in terms of PL, a CAV can become safer. The 
inherent non-deterministic nature of CAV in an unpredictable physical 
environment can be addressed with optimal PL schemes. 

Fig. 7 depicts the plot of PL values against distance with the Gener-
alised OHM and existing model at L1, L2, and L3. At 0.60 km from BS, 
the PL responses obtained are 324.7 dB, 221.2 dB, 160.01 dB, 132.8 dB, 
127.4 dB, and 124.7 dB, for Existing ECC, Egli, Erics, COST, OHM, and 
Generalized OHM, respectively. The modified model was observed to 
perform better than the existing one without symbol interference. The 
Generalised OHM has the potential to stabilize the effect of inter-symbol 
interference and signal attenuation in the study area. Hence, the model 
is reasonable for 5 G CAV deployment in similar terrain. The implication 
is that PL can be provisioned for service efficiency with modified OHM 
in context. 

9. Global optimisation performance validation 

CP-AGSA parameter settings were completed in an experiment with 
CPU (Intel TM Core i5, 3.8Ghz, 8 G RAM, the following parameters were 
deployed based on [45], viz: population size, N = 15, the minimum 

Fig. 8. AGSA Optimised PL deployment against distance (L1).  

Table 11 
Summary Analysis of Global optimisation schemes.  

Location Error 
Metric 

OHM 
(%) 

GA 
(%) 

PSO 
(%) 

Enhanced AGSA 
(%) 

L1 MAPE 25.55 25.07 24.87 24.51 
L2 MAPE 25.22 25.12 24.93 24.73 
L3 MAPE 25.24 25.14 25.05 24.57 
Average 

Value 
MAPE 59.18 58.57 58.15 57.43  

Fig. 9. AGSA Optimised PL deployment against distance (L1).  
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number of iterations T = 90, the gravitational constant, Gr0 = 90, and 
the decay rate α = 15. The global optimisation performance validation 
was done after the successful completion of the AGSA iterations based 
on data settings in Section 4. The correspondent data values were ob-
tained per the agent’s distance and measured path loss. Afterward, the 
MATLAB graphics user interface (GUI) was used to obtain the compar-
ative plots of the selected three global algorithms as presented in Figs. 8– 
10 while table 11 highlighted the findings. 

Fig. 8 shows the optimised PL response against distance with 
measured PL for L1. At 0.70 km from the BS, the PL values are 131.5 dB, 
129 dB, 128 dB, and 126 dB for modified OHM, Optimised GA, PSO, and 
AGSA algorithms, respectively. In this case, the result shows that the 
optimised AGSA algorithm performs better than all other algorithms. It 
was observed that there was no network interference leading to efficient 
service delivery. As such, the algorithm is satisfactory for 5G-CAV 
deployment in high-density terrains. In this case, real-time safety ap-
plications can benefit from AGSA 5 G connected vehicular communi-
cation because it offers faster data rates—up to 10 Gbps and significantly 
reduces latency. 

Fig. 9 depicts the optimised result of PL values against distance with 
measured PL for L2. At 0.70 km from the BS, the PL values obtained are 
129.5 dB, 129 dB, 128 dB, and 127 dB for modified OHM, optimised GA, 
PSO, and AGSA algorithms, respectively. The results show that the AGSA 
algorithm performed better than GA and PSO algorithms at that terrain. 
This means that the modified model shows the capacity to mitigate 
network interference and signal coverage issues when deployed in 
driverless CPS. 

Fig. 10 illustrates a plot showcasing the optimised Path Loss (PL) 
values in comparison to the measured PL for the L3 scenario. When 
situated 0.70 km away from the Base Station (BS), the PL values ac-
quired were as follows: 130 dB for the modified OHM model, 129.5 dB 
for the Optimised Genetic Algorithm (GA), 129 dB for Particle Swarm 
Optimisation (PSO), and 126.5 dB for Gravitational Search Algorithm 
(GSA). It is worth noting that the AGSA outperformed both the GA and 
PSO algorithms in this context. Consequently, the modified model 
demonstrates promise for accurate estimation and deployment in 5 G NR 
networks within the studied terrain. This suggests that the utilisation of 
the modified OHM model can significantly enhance service efficiency. 

From Table 11, this work has identified safe applications of the 
proposed scheme, namely:  

i Full-scale Autonomous Vehicles (AVs) for self-driving operations.  

ii Smart Transportation Systems include traffic management, vehicle- 
to-infrastructure (V2I), and vehicle-to-vehicle (V2V) 
communications.  

iii 5 G and beyond for reducing noise interference and optimizing data 
transmission, benefiting various industries beyond autonomous 
vehicles.  

iv IoT and Industrial Automation: Noise interference reduction can 
improve the performance of Industrial Internet of Things (IIoT) ap-
plications, such as factory automation, robotics, and critical infra-
structure monitoring, where reliable communication is essential. 

10. Noise interference wider implications 

Driverless cars face signal transmission issues due to noise interfer-
ence from 4 G, 5 G, and 6 G networks, leading to path loss concerns, 
especially in edge-driven networks [60]. Results have shown that noise 
weakens the signal as it propagates, negatively impacting Connected 
Autonomous Vehicles (CAVs). Noise sources in 4 G/LTE contribute to PL 
by adding unwanted energy, further deteriorating signal quality during 
propagation [7,15,40]. To address these noise concerns, an AGSA with 
error correction coding, adaptive modulation, and interference cancel-
lation could mitigate noise interference and enhance the Signal-to-Noise 
Ratio (SNR). In 5 G networks, especially at millimetre-wave frequencies, 
noise interference becomes a significant challenge due to factors like 
atmospheric absorption and rain attenuation [50]. This paper suggests 
using AGSA Beamforming, Massive Multiple-Input, Multiple-Output 
(MIMO), and advanced interference management to combat noise 
interference in these scenarios, maintaining signal quality, especially in 
CAVs. Looking ahead to 6 G networks operating in higher frequency 
bands, potentially reaching terahertz (THz) frequencies, noise interfer-
ence may arise from various sources like atmospheric gases and elec-
tromagnetic interference. This paper recommends advanced AGSA 
techniques with AI-driven adaptive beamforming, THz band-specific 
noise filtering, and possibly quantum communication to ensure reli-
able, high-capacity data transmission. These will address the increasing 
challenges posed by noise interference in CAVs. 

11. Conclusion 

This paper introduces the Agile Gravitational Search Algorithm 
(AGSA) for Connected Autonomous Vehicles (CAV) and assesses its ef-
ficiency in optimising path loss in three different locations in Wales, UK. 
Data was collected over a 5 G network infrastructure for CAVs on the 
three distinct routes. PL incidences were analysed using CP regression 

Fig. 10. AGSA Optimised PL deployment against distance (L3).  
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methods to determine the loss exponent for the terrain. The paper 
highlights the importance of reducing PL in urban environments where 
both 5 G New Radio and legacy networks coexist to enhance CAV data 
processing. amongst the empirical models considered, the Okumura- 
Hata model was selected and further modified for improved perfor-
mance. The modified model demonstrated the smallest propagation 
error compared to other existing empirical models. Evaluation metrics 
like Root Mean Square Error (RMSE) and Mean Absolute Percentage 
Error (MAPE) were introduced to assess both existing and enhanced 
models. Additionally, the paper implemented parameter adjustments for 
the CP-AGSA algorithm to enhance particle diversity, convergence 
speed, and accuracy. These adjustments allow the algorithm to escape 
local optima more efficiently during position updates, ultimately 
improving convergence performance. The findings indicate that the 
enhanced AGSA outperforms other nature-inspired algorithms with 
minimal signal interference. The paper concludes by suggesting future 
work involving spike neural learning techniques for lightweight path 
loss optimisation and a deeper investigation into noise interference 
optimisation. 
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