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A B S T R A C T   

The post-COVID-19 landscape has propelled the global telemedicine sector to a projected valuation of USD 91.2 
billion by 2022, with a remarkable compounded annual growth rate (CAGR) of 18.6% from 2023 to 2030. This 
paper introduces an analytical wearable healthcare monitoring device (WHMD) designed for the timely detection 
and seamless transmission of crucial health vitals to telemedical cloud agents. The fractional order modeling 
approach is employed to delineate the efficacy of the WHMD in pregnancy-related contexts. The Caputo frac-
tional calculus framework is harnessed to show the device potential in capturing and communicating vital health 
data to medical experts precisely at the cloud layer. Our formulation establishes the fractional order model’s 
positivity, existence, and uniqueness, substantiating its mathematical validity. The investigation comprises two 
major equilibrium points: the disease-free equilibrium and the equilibrium accounting for disease presence, both 
interconnected with the WHMD. The paper explores the impact of integrating the WHMD during pregnancy 
cycles. Analytical findings show that the basic reproduction number remains below unity, showing the WHMD 
efficacy in mitigating health complications. Furthermore, the fractional multi-stage differential transform 
method (FMSDTM) facilitates optimal control scenarios involving WHMD utilisation among pregnant patients. 
The proposed approach exhibits robustness and conclusively elucidates the dynamic potential of WHMD in 
supporting maternal health and disease control throughout pregnancy. This paper significantly contributes to the 
evolving landscape of analytical wearable healthcare research, highlighting the critical role of WHMDs in 
safeguarding maternal well-being and mitigating disease risks in edge reconfigurable health architectures.   

1. Introduction 

Reconfigurable device architectures for emerging health systems 
require new computational models for health analytics. Wearable 
Healthcare Monitoring Device (WHMD) represents an edge telemetry 
innovation designed for non-intrusive placement on the user’s body. 
This device operates as an actionable standard for monitoring pertinent 
health indicators. Positioned on the wrist or other body locations, 
WHMD leverages biosensors to collect diverse physiological data such as 
heart rate, blood pressure, sleep patterns, and physical activity [1]. 

These biosensor devices may capture data via non-invasive physiolog-
ical tracking or minimally invasive substrate sensing methods. The 
direct detection of specific bodily substrates by biosensors offers sup-
plementary risk stratification information, circumventing delays and 
costs associated with traditional laboratory procedures. A typical 
application is the Google Fit and Samsung app, etc. These applications 
highlight the variety of ways that technology can be applied to real-time 
health monitoring and improvement. 

A computational model for real-time tracking of user activity and 
health data could facilitate seamless data transmission to healthcare 
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professionals and physicians [2]. This dynamic interaction enables cli-
nicians to gain deeper insights into patient well-being and disease 
management. This aggregated data sharing among multiple patients to a 
centralized point optimizes resource allocation and timeliness by 
enabling early identification of illness. 

Globally, the healthcare and wellness sector has continued show 
growing trend towards personalized and monitored healthcare, driven 
by advancements in mobile technology [3]. Contemporary tools like 
artificial intelligence [4], robots [5], smart sensors [6], big data ana-
lytics [7], and digital wearables [8] play pivotal roles in disease pre-
vention and management. These technologies facilitate the estimation of 
key parameters like blood pressure, body temperature, heart rate, and 
respiration, enabling the early detection of health deterioration, disease 
exacerbation, and critical events such as spikes in blood pressure or 
respiratory issues [9]. 

Pregnancy, being a sensitive phase for both the mother and fetus, 
demands meticulous health monitoring. As such, wearable devices 
tailored for expectant mothers offer continuous monitoring over 
extended periods, transmitting real-time insights to healthcare providers 
[10]. These wearables enhance maternal health by promptly identifying 
health deviations and enabling data sharing with medical professionals. 

This shared data empowers care providers to recommend specific 
interventions for improved health outcomes. There are various ways 
proposed for wearable telemedicine such as data-driven telemedicine 
[11–13]. 

Computational operators like fractional differential operators have 
recently been applied in health modeling [14,15]. Traditional operators 
like the Newtonian and Riemann-Liouville fractional cannot explain 
complicated real-world problems like pregnancy telemedicine [16]. 
However, these new operators have shown promise and are likely to 
become a crucial part of solving real-world problems. This because of its 
ability to allow mathematical models consider long-term connections 
caused by memory resources. 

Till date, most computational models represent these real-world 
scenarios [17–19]. The use of fractional dynamics and nonlocal nature 
of fractional order models enhances predictive accuracy for physical 
systems [9,10]. Because fractional models accurately represent 
non-integer order kinetics, it is a valuable tool in the modeling of 
complicated health systems [20]. It helps establish long-term de-
pendencies in health-related processes by introducing memory into 
mathematical models [21]. Fractional order controllers are used in 
medical equipment to improve control efficiency, particularly in systems 
that are naturally complicated. For instance, such models improve the 
design of drug delivery devices by enabling more precise predictions and 
optimization [21]. Fractional model non-locality helps analyze complex 
vital signals. It provides a sophisticated explanation of physiological 
parameter changes over time, making it an invaluable tool for 
researching antenatal and degenerative processes [23]. Its use in 
biomedical imaging improves the precision of diagnosis and image 
quality [24]. Fractional model is useful in the field of disease progression 
modeling [25]. Its fractional order derivatives and non-local dynamics 
give more accurate predictive models. 

In this context, the differential transform method (DTM) [25] pro-
vides approximate solutions for linear and nonlinear problems in most 
complex design analysis. Employing the Caputo fractional operator en-
hances model realism by incorporating traditional initial values and 
considering interactions with past information [26,27]. Fractional cal-
culus accommodates non-integer derivatives, often nonlocal, in 
modeling real-world problems. 

This study employs a six-compartmental fractional order Caputo 
model to leverage wearable healthcare devices designed monitoring 
pregnant patient health. This approach capitalizes on the efficiency of 
the Caputo fractional operator. 

The paper is structured as follows. Section 2 covers preliminary as-
pects and model formulation, transitioning from classical derivatives to 
non-classical orders using the Caputo approach. Section 3 presents 

quantitative findings for the fractional order model, encompassing 
equilibrium solutions, the basic reproduction number, and sensitivity 
analysis thereof concerning wearables. Section 4 addresses optimal 
control of the fractional order problem, while Section 5 delves into 
numerical solutions of model variables via the Fractional Multi-Stage 
Differential Transform Method (FMSDTM) [28]. Numerical simula-
tions and their discussions are provided in Section 6, culminating in 
conclusions in Section 7. 

1.1. Problem statement 

This paper has highlighted five potential problem statements in 
respect of maternal health monitoring:  

⁃ Inadequate Maternal Health Monitoring during Pregnancy: In 
Ref. [29], the existing healthcare monitoring methods lack contin-
uous and real-time tracking capabilities, leading to potential delays 
in detecting and addressing health issues in pregnant individuals.  

⁃ Optimal Integration of Wearable Devices in Maternal Care: This the 
challenge lies in determining the most effective ways to integrate 
such devices into the prenatal care routine to ensure timely detection 
of health deviations and appropriate medical interventions.  

⁃ Modeling the Efficacy of Wearable Devices in Disease Control: A 
model that accurately represents the impact of wearable healthcare 
devices on disease prevention and management during pregnancy is 
useful.  

⁃ Fractional order healthcare Dynamics: Using fractional order to 
model healthcare dynamics innovative.  

⁃ Implementing Optimal Control Strategies for Maternal Health: 
Identifying and implementing optimal control strategies using 
wearable devices during pregnancy require overcoming challenges 
related to data interpretation, decision-making, and resource allo-
cation for effective maternal care. 

In this paper, four contributions are highlighted, and these demon-
strate an innovative approach to using fractional calculus and wearable 
healthcare devices in the context of maternal care and telemedicine. 
These contributions:  

⁃ Transition to Fractional Calculus: We establish a novel transition 
from classical derivatives to non-classical orders using the Caputo 
approach.  

⁃ Fractional Order Model for Maternal Health Monitoring: We derive a 
fractional order model for monitoring the health of pregnant women 
using WHMDs. This modeling approach represents a novel contri-
bution to the field of telemedicine and maternal care.  

⁃ Optimal Control Strategies are identified for maternal health using 
WHMDs. This will explore the use of data interpretation, decision- 
making, and resource allocation.  

⁃ Numerical Solutions with FMSDTM: The paper utilise the Fractional 
Multi-Stage Differential Transform Method (FMSDTM) to numeri-
cally solve the fractional order model. 

2. Telemedicine edge preliminaries and antenatal model 
formulation 

In this section, fractional derivatives used to consider a pregnant 
patient with health complications. Let’s start with baseline preliminaries 
in Section 2.1. 

2.1. Preliminaries 

Definition 2.1. LI and Ma, [30]; Ogunmiloro [28], the Riemann – 
Lioville integral of order ε > 0 of function f(t) is defined by the integral 
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Dε
0,t f (t) =

1

Γ(ε)
∫t

0

(t − ϑ)ε− 1f (ϑ)dϑ

t > 0 (1)  

Definition 2.2. Alkhudhari et al, [31]; Ogunmiloro et al. [32], Given a 
well-defined continuous function f(t) ∈ Cn[0, tf ] with ε > 0, the Caputo 
fractional derivative of f(t)is defined by 

C
a Dε

0,t f (t)=
1

Γ(n − ε)
∫t

0

(t − ϑ)n− ε− 1f n(ϑ)dϑ

,where n − 1 < ε ≤ n (2) 

n ∈ N, such that if ε→1, then C
a Dε

0,t f(t)→f′(t)if t ∈ (0,1), then one ob-
tains Equ (3) 

C
a Dε

0,t f (t)=
1

Γ(n − ε)

∫t

0

f n(ϑ)
(ε − ϑ)t dϑ (3)  

2.2. Edge model formulation 

This Section discussed the edge layer of the telemedicine infra-
structure and presented a comprehensive model. We aimed at moni-
toring the health status of pregnant women through the utilisation of 
Healthcare Sensory Device Intelligence (HSDI). Introducing specialized 
compartments (referred to as Classes) within this model serves the 
purpose of clearly delineating both the pregnant women under obser-
vation and the populace of wearable healthcare devices (WHMD). The 
model is governed by the following assumptions.  

1. There is no immigration of infected pregnant women.  
2. The total pregnant women population N(t) is constant.  
3. The coefficient of transmission of diseases is constant and does 

not vary with diseases.  
4. After given birth, the women are no more pregnant, and leave the 

population under study at a rate μg and this is equal in all classes.  
5. Death is neglected, as the period of pregnancy is nine months 

(about 40 weeks) which is much smaller than the mean lifespan 
of humans.  

6. Pregnant women are assumed to be put on wearable healthcare 
monitoring devices during pregnancy.  

7. Recovered pregnant women after medical consultation and 
treatment return to the susceptible class due to weak immunity at 
a rate φ.  

8. Susceptible pregnancy after normal medical consultation due to 
data transmitted from the wearables return to susceptible class at 
a rate ξ.  

9. The wearable devices collect the health data of pregnant women 
and share it with the healthcare provider or qualified doctors.  

10. The Cloud healthcare provider immediately utilizes the data 
received from the edge to make decisions about specific measures 
that can improve pregnant women’s health status. 

2.3. Parameters and variables 

This subsection provides and explains the parameters as well as the 
variables that describe the model for monitoring pregnant women’s 
health using WHMDs. Table 1 shows the description of Parameters for 

wearable Telemedicine device. 
However, for large classes, it is more realistic to consider the wear-

ables that do not depend on the total population but on their fraction 
(individual classes) with respect to the total population N(t). Now, let’s 
consider that 

λ= π(S+ η(E + I)) (4)  

Where λ is the force of sharing data associated with pregnant women’s 
health using wearable devices with healthcare providers. π is the 
effective data transmission rate, that is the rate at which the wearables 
after detecting health imbalances of pregnant women-share them with 
healthcare providers. The modified parameter η accounts for the rate at 
which data collected from the exposed and infected pregnant women are 
shared with the healthcare provider. Let the objective function of the 
wearable devices as used in Ref. [33] be denoted as 

Δ=
A + P + t + h

ρ (5)  

where A is the identification of infection, P is pregnant women with 
different type of diseases or infections, t is the period and h is infirmaries 
of identification. Also, κ is the energy of the wearable devices, while δ is 
the working functionality of the device which is a reducing function that 
reduces the workload of the device. α, γ and φ illustrates the rate at 
which the biosensor of the wearable devices collect data from suscep-
tible, exposed and infected pregnant women with wearables respec-
tively. ξ is the rate movement of pregnant women with wearables who 

Table 1 
Description of Parameters for wearable telemedicine device.  

Parameters Description 

ψ Recruitment rate of susceptible pregnant women with wearable device 
ξ The rate movement of pregnant women with wearables who after 

normal consultation with the healthcare providers return to the 
susceptible class 

φ The rate at which the recovered pregnant women with wearables move 
to the susceptible class because of impaired immune function 

α, γ, ∅ The rate at which the biosensor of the wearable devices collect data 
from susceptible, exposed, and infected pregnant women with 
wearables respectively 

η Modified parameter that accounts for the rate at which data collected 
from the exposed and infected pregnant women are shared with the 
healthcare provider 

τ, τ1, τ2 The rate of movement of susceptible, exposed, and infected pregnant 
women with wearables respectively to consultation and treatment 
class 

β The rate at which susceptible pregnant women with wearables become 
exposed to diseases or infections 

μg The rate at which women leave the population under study after 
delivery because such patient is no longer pregnant 

ρ Persistent use of wearable devices 
d Death due to pregnancy complications 
σ Rate at which exposed pregnant women with wearable can become 

infectious 
Λ The rate constant at which the exposed may recover 
π The effective data transmission rate 
υ The rate constant at which the Monitored and Treated Pregnant 

Women with wearables recover 
κ The energy of the wearable devices 
A The identification of infection 
h Is infirmaries of identification 
P Is pregnant women with different type of diseases or infections 
δ Is the work functionality of the device 
t Time  
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after normal consultation with the healthcare providers return to the 
susceptible class. τ, τ1, and τ2 is the rate of movement of susceptible, 
exposed, and infected pregnant women with wearables respectively to 
consultation and treatment class. φ is the rate at which the recovered 
pregnant women with wearables move to the susceptible class because 
of impaired immune function. β is the rate at which susceptible pregnant 
women with wearablesbecome exposed to diseases or infections. 
Exposed pregnant women with wearable can become infectious at the 
rate σ. The exposed may recover at a rate constant Λ. The susceptible 
pregnant women with wearables are recruited into the population at a 
rate constant ψ . 

From the assumptions and description of the parameters and vari-
ables, the model flow diagram is shown in Fig. 1. The variables are 
denoted as. 

S(t) = Susceptible Pregnant Women with WHMDs 
E(t) = Exposed Pregnant Women with WHMDs 
I(t) = Infected Pregnant Women with WHMDs 
M(t) = Monitored and Treated Pregnant Women with WHMDs 
R(t) = Recovered Pregnant Women with WHMDs 
W(t) = WHMDs 
The total population of pregnant patients with WHMDs at time t is 

given by Equ. (6) 

N1(t) = S(t) + E(t) + I(t) + M(t) + R(t) (6) 

The wearable healthcare device population at time t is denoted 
byEqu (7). 

N2(t) =W(t) (7) 

Therefore, we have the entire population of the proposed model at 
time t as 

N(t)=N1(t) + N2(t) (8)  

N(t)= S(t) + E(t) + I(t) + M(t) + R(t) + W(t) (9) 

Therefore, the classical model is given by Equ (10). 

dS(t)
dt

= ψ + ξM + φR −
(
βI + αW + τ + μg

)
S

dE(t)
dt

= βIS −
(
γW + σ + Λ + τ1 + μg

)
E

dI(t)
dt

= σE −
(
φW + τ2 + μg + d

)
I

dM(t)
dt

= τS + τ1E + τ2I + λW −
(
υ + ξ + μg

)
M

dR(t)
dt

= ΛE + υM −
(
φ + μg

)
R

dW(t)
dt

= Δ + (αS + γE + φI)W − (λ + κδ)W

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10)  

Where λ = π(S + η(E + I)) and Δ = A+P+t+h
ρ . 

Transformation of Equ. (10) into fractional order model under the 
Caputo sense yields. 

C
a Dε

0,tS(t) = ψ + ξM + φR −
(
βI + αW + τ + μg

)
S

C
a Dε

0,tE(t) = βIS −
(
γW + σ + Λ + τ1 + μg

)
E

C
a Dε

0,tI(t) = σE −
(
φW + τ2 + μg + d

)
I

C
a Dε

0,tM(t) = τS + τ1E + τ2I + λW −
(
υ + ξ + μg

)
M

C
a Dε

0,tR(t) = ΛE + υM −
(
φ + μg

)
R

C
a Dε

0,tW(t) = Δ + (αS + γE + φI)W − (λ + κδ)W

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11) 

along with the initial value conditions S(t) ≥ 0, E(t) ≥ 0, I(t) ≥ 0,
M(t) ≥ 0,R(t) ≥ 0,W(t) ≥ 0. 

Hereafter, this work will make active reference to Equ (11). 

Fig. 1. Flow Diagram of Model for Monitoring Pregnant Women’s Health using WHMDs.  
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3. Fractional order model design 

3.1. Existence of the fractional order model and its uniqueness 

In this subsection, we aim to rigorously establish the existence and 
uniqueness of the model utilizing the Caputo operator. This will be 
accomplished by directing the focus towards a real-valued, continuous 
function represented as Q (Y ),. It’s noteworthy that Q (Y ), is situated 
within the framework of a Banach space on Y [0, q] and is endowed with 
a norm that conforms to standard norms in functional analysis as 
follows. 

‖S,E, I,M,R,W‖=‖S‖ + ‖E‖ + ‖I‖ + ‖M‖ + ‖R‖ + ‖W‖

Where ‖S‖ = Supt∈Y |S(t)|,‖E‖ = Supt∈Y |E(t)|,‖I‖ = Supt∈Y |I(t)|,‖M‖ =

Supt∈Y |M(t)|,‖R‖ = Supt∈Y |R(t)| and ‖W‖ = Supt∈Y |W(t)|. 
Using the Caputo integral operator on Equ (11), we have 

S(t) − S(0) = C
a Dε

0,t

{
ψ + ξM + φR −

(
βI + αW + τ + μg

)
S
}

E(t) − E(0) = C
a Dε

0,t

{
βIS −

(
γW + σ + Λ + τ1 + μg

)
E
}

I(t) − I(0) = C
a Dε

0,t

{
σE −

(
φW + τ2 + μg + d

)
I
}

M(t) − M(0) = C
a Dε

0,t

{
τS + τ1E + τ2I + λW −

(
υ + ξ + μg

)
M
}

R(t) − R(0) = C
a Dε

0,t

{
ΛE + υM −

(
φ + μg

)
R
}

W(t) − W(0) = C
a Dε

0,t{Δ + (αS + γE + φI)W − (λ + κδ)W}

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12) 

We, therefore, have the model expression in system (12) referred to 

S(t) − S(0) = V(v)
∫ t

0
(t − k)− vU1(v, k, S(k))dk

E(t) − E(0) = V(v)
∫ t

0
(t − k)− vU2(v, k,E(k))dk

I(t) − I(0) = V(v)
∫ t

0
(t − k)− vU3(v, k, I(k))dk

M(t) − M(0) = V(v)
∫ t

0
(t − k)− vU4(v, k,M(k))dk

R(t) − R(0) = V(v)
∫ t

0
(t − k)− vU5(v, k,R(k))dk

W(t) − W(0) = V(v)
∫ t

0
(t − k)− vU6(v, k,W(k))dk

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13) 

Thus, the kernels are defined as follows. 

U1(v, k, S(k)) = ψ + ξM + φR −
(
βI + αW + τ + μg

)
S

U2(v, k,E(k)) = βIS −
(
γW + σ + Λ + τ1 + μg

)
E

U3(v, k, I(k)) = σE −
(
φW + τ2 + μg + d

)
I

U4(v, k,M(k)) = τS + τ1E + τ2I + λW −
(
υ + ξ + μg

)
M

U5(v, k,R(k)) = ΛE + υM −
(
φ + μg

)
R

U6(v, k,W(k)) = Δ + (αS + γE + φI)W − (λ + κδ)W

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(14) 

From (14), Ui(i= 1, 2,…,6) must ensure the validity of the Lipschitz 
condition by: S(t),E(t), I(t),M(t),R(t) and W(t) as upper bounds. By 
considering S(t) and Ŝ(t), we obtain 

‖U1(v, k, S(k)) − U1(v, k, Ŝ(k))‖=
⃦
⃦ −

(
βI + αW + τ+ μg

)
S − Ŝ(t)

⃦
⃦

If we assume that Π̂1 =
⃦
⃦ − (βI + αW + τ + μg)

⃦
⃦, we therefore 

obtain. 

‖U1(v, k, S(k)) − U1(v, k, Ŝ(k))‖ ≤ ‖Π̂1S(t) − Ŝ(t)‖

Thus, applying the same process to the remaining sub-equations in 
(14), we obtain 

‖U2(v, k,E(k)) − U2(v, k, Ê(k))‖ ≤ ‖Π̂2E(t) − Ê(t)‖
‖U3(v, k, I(k)) − U3(v, k, Î(k))‖ ≤ ‖Π̂3I(t) − Î(t)‖

‖U4(v, k,M(k)) − U4(v, k, M̂(k))‖ ≤ ‖Π̂4M(t) − M̂(t)‖
‖U5(v, k,R(k)) − U5(v, k, R̂(k))‖ ≤ ‖Π̂5R(t) − R̂(t)‖

‖U6(v, k,W(k)) − U1(v, k, Ŵ (k))‖ ≤ ‖Π̂6W(t) − Ŵ (t)‖

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(17) 

In this form, the Lipschitz condition for the kernels is then estab-
lished. Furthermore, Equ (17) can recursively be expressed as 

S(t) = V(v)
∫ t

0
(t − k)− vU1(v, k, Sn− 1(k))dk

E(t) = V(v)
∫ t

0
(t − k)− vU2(v, k,En− 1(k))dk

I(t) = V(v)
∫ t

0
(t − k)− vU3(v, k, In− 1(k))dk

M(t) = V(v)
∫ t

0
(t − k)− vU4(v, k,Mn− 1(k))dk

R(t) = V(v)
∫ t

0
(t − k)− vU5(v, k,Rn− 1(k))dk

W(t) = V(v)
∫ t

0
(t − k)− vU6(v, k,Wn− 1(k))dk

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(18) 

Jointly with the initial conditions S ≥ 0, E ≥ 0, I ≥ 0, M ≥ 0, R ≥ 0,
W ≥ 0, we thus get  

J Sn(t) = S(t) − Sn− 1(t) = V(v)
∫ t

0
(t − k)− v

(U1(v, k, Sn− 1(k)) − U1(v, k, Sn− 2(k)))dk

J En(t) = E(t) − En− 1(t) = V(v)
∫ t

0
(t − k)− v

(U2(v, k,En− 1(k)) − U2(v, k,En− 2(k)))dk

J In(t) = I(t) − I(t) = V(v)
∫ t

0
(t − k)− v

(U3(v, k, In− 1(k)) − U3(v, k, In− 2(k)))dk

J Mn(t) = M(t) − Mn− 1(t) = V(v)
∫ t

0
(t − k)− v

(U4(v, k,Mn− 1(k)) − U4(v, k,Mn− 2(k)))dk

J Rn(t) = R(t) − Rn− 1(t) = V(v)
∫ t

0
(t − k)− v

(U5(v, k,Rn− 1(k)) − U5(v, k,Rn− 2(k)))dk

J Wn(t) = W(t) − Wn− 1(t) = V(v)
∫ t

0
(t − k)− v

(U6(v, k,Wn− 1(k)) − U6(v, k,Wn− 2(k)))dk

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(19)   
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It is relevant to think about 

S(t)=
∑n

i=0
J Si(t),E(t) =

∑n

i=0
J Ei(t), I(t) =

∑n

i=0
J Ii(t),M(t)

=
∑n

i=0
J Mi(t),R(t) =

∑n

i=0
J Ri(t),W(t)=

∑n

i=0
J Wi(t)

Suppose that 

J Sn− 1(t) = Sn− 1(t) − Sn− 2(t), J En− 1(t) = En− 1(t) − En− 2(t), J In− 1(t)

= In− 1(t) − In− 2(t), J Mn− 1(t)

= Mn− 1(t) − Mn− 2(t), J Rn− 1(t)

= Rn− 1(t) − Rn− 2(t), J Wn− 1(t)

= Wn− 1(t) − Wn− 2(t)

and from Equ. (14) and (15), we obtain Equ (20) 

‖J Sn(t)‖ ≤ V(v)r 1

∫ t

0
(t − k)− v

‖J Sn− 1(k)‖dk

‖J En(t)‖ ≤ V(v)r 2

∫ t

0
(t − k)− v

‖J En− 1(k)‖dk

‖J In(t)‖ ≤ V(v)r 3

∫ t

0
(t − k)− v

‖J In− 1(k)‖dk

‖J Mn(t)‖ ≤ V(v)r 4

∫ t

0
(t − k)− v

‖J Mn− 1(k)‖dk

‖J Rn(t)‖ ≤ V(v)r 5

∫ t

0
(t − k)− v

‖J Rn− 1(k)‖dk

‖J Wn(t)‖ ≤ V(v)r 6

∫ t

0
(t − k)− v

‖J Wn− 1(k)‖dk

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(20)  

Theorem 3.1. The governing model for monitoring the health of 
pregnant women with WHMDs possesses a unique solution for t ∈ [0,q], 
if V(v)

V qvr i < 1, i = 1,2,…,6. 

Proof. The boundedness and existence of (S(t),E(t), I(t),M(t),R(t),
W(t)) have been established andEqu (15) and (16) are Lipschitz. 
Therefore, combining Equ.(20) with a recursive hypothesis, we obtai-
nEqu (21). 

‖J Sn(t)‖ ≤ ‖S0(t)‖
(

V(v)
V

qvr 1

)n

‖J En(t)‖ ≤ ‖E0(t)‖
(

V(v)
V

qvr 2

)n

‖J In(t)‖ ≤ ‖I0(t)‖
(

V(v)
V

qvr 3

)n

‖J Mn(t)‖ ≤ ‖M0(t)‖
(

V(v)
V

qvr 4

)n

‖J Rn(t)‖ ≤ ‖R0(t)‖
(

V(v)
V

qvr 5

)n

‖J Wn(t)‖ ≤ ‖W0(t)‖
(

V(v)
V

qvr 6

)n

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(21) 

Imposing triangular inequality for any k from Equ (21), we have 

‖Sn+k(t) − Sn(t)‖≤
∑n+k

b=n+1
di

1 =
dn+1

1 − dn+k+1
1

1 − d1  

‖Sn+k(t) − Sn(t)‖ ≤
∑n+k

b=n+1
di

1 =
dn+1

1 − dn+k+1
1

1 − d1

‖En+k(t) − En(t)‖ ≤
∑n+k

b=n+1
di

2 =
dn+1

2 − dn+k+1
2

1 − d2

‖In+k(t) − In(t)‖ ≤
∑n+k

b=n+1
di

3 =
dn+1

3 − dn+k+1
3

1 − d3

‖Mn+k(t) − Mn(t)‖ ≤
∑n+k

b=n+1
di

4 =
dn+1

4 − dn+k+1
4

1 − d4

‖Rn+k(t) − Rn(t)‖ ≤
∑n+k

b=n+1
di

5 =
dn+1

5 − dn+k+1
5

1 − d5

‖Wn+k(t) − Wn(t)‖ ≤
∑n+k

b=n+1
di

6 =
dn+1

6 − dn+k+1
6

1 − d6

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(22) 

It can be deduced hypothetically that k i =
V(v)

V qvr i < 1. Thus, Sn, En,

In,Mn,Rn,Wn are known as the Cauchy sequence in Q (Y ) and are uni-
formly convergent. Applying the proposition on the limit in system (15) 
as n→∞ shows that Equ (11) is unique. 

3.2. Invariant region 

The fractional order model Equ (11) is analyzed in a feasible region, 
such that the model is considered in two-part, N1(t) = S(t) + E(t) +
I(t) + M(t) + R(t) for the total population of pregnant women with 
wearable healthcare devices and N2(t) = W(t) for the wearable health-
care devices population. 

Theorem 3.2. The region Ω = Ω1 × Ω2 where Ω1 =
{
(S(t), E(t), I 

(t),M(t),R(t)) ∈ R5
+ : 0≤ N1 ≤

ψ
μg

}
and Ω2 =

{
W(t) ∈ R1

+ : 0≤ N2 ≤
Δ
κδ

}
is 

positively invariant. 

Proof. The total population of pregnant patients with WHMD is considered 
such that in the absence of any disease during pregnancy, we have 

C
a Dε

0,tN(t)=ψ − (S+E + I +M +R)μg  

= ψ − μgN1 (23)  

d
dt
(N1eμgtε )=ψ (24)  

N1(t)=
ψ
μg

(1 − e− μgtε ) (25) 

Similarly, for the WHMDs we then have 

N2(t)=
Δ
κδ

(1 − eκδtε ) (26) 

As t→∞ in systems (25) and (20), the total population of pregnant 
women with WHMDs and the wearable devices respectively starts and in 
the feasible regions. 

Ω1 =

{

(S(t),E(t), I(t),M(t),R(t)) ∈ R5
+ : 0 ≤ N1 ≤

ψ
μg

}

and Ω2 =
{

W(t) ∈ R1
+ : 0 ≤ N2 ≤

Δ
κδ

}

⎫
⎪⎬

⎪⎭
(27) 

Therefore, Equ (27) shows that S(t), E(t), I(t),M(t),R(t) and W(t) are 
bounded for all t > 0 and are not capable of leaving Ω which implies that 
the fractional order model Equ (11) is positively invariant. 

Theorem 3.3. The fractional order model solutions of Equ (15) and 
initial value conditions S(t) ≥ 0,E(t) ≥ 0, I(t) ≥ 0,M(t) ≥ 0,R(t) ≥ 0,
W(t) ≥ 0 are non-negative for all t > 0. 
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Proof. From the first sub-equation of the model system (11) we have 

C
a Dε

0,tS(t)=ψ + ξM +φR −
(
βI +αW + τ+ μg

)
S ≥ −

(
βI + αW + τ+ μg

)
S

(28)  

C
a Dε

0,tS(t) ≥ −
(
βI + αW + τ+ μg

)
dt (29)  

∫
C
a Dε

0,tS(t) ≥ −

∫
(
βI + αW + τ+ μg

)
dt (30) 

Equ (30) yields 

C
a Dε

0,tS(t) ≥ S(0)e(βI+αW+τ+μg)t > 0 (31) 

Applying the same computation process to the remaining sub- 
equations of system (11) gives 

C
a Dε

0,tE(t) ≥ E(0)e(γW+σ+Λ+τ1+μg)t > 0
C
a Dε

0,tI(t) ≥ I(0)e(φW+τ2+μg+d)t > 0
C
a Dε

0,tM(t) ≥ M(0)e(υ+ξ+μg)t > 0
C
a Dε

0,tR(t) ≥ R(0)e(φ+μg)t > 0
C
a Dε

0,tW(t) ≥ W(0)e(λ+κδ)t > 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(32) 

Thus, the solutions of Equ (11) are positive. 

3.3. Equilibrium solution of the model 

In this section, we observe that Equ (11) has two equilibria namely, 
disease-free equilibrium and disease–present equilibrium among preg-
nant patients with WHMD solution. To obtain the equilibrium solutions, 
we equate the left-hand side of Equ (11) to zero and we have the disease- 
free equilibrium solution for pregnant patients with device given byEqu 
(33) 

E0
q =(S,E, I,M,R,W)=

(
ψ
μg
, 0, 0, 0, 0,

Δ
κδ

)

(33) 

Similarly, the disease–present equilibrium solution for pregnant 
patients with wearable healthcare devices is given as 

E∗
q =(S∗,E∗, I∗,M∗,R∗,W∗)=

S∗ =
ψ + ξM∗ + φR∗

βI∗ + αW∗ + τ + μg

E∗ =
βS∗I∗

γW∗ + σ + Λ + τ1 + μg

I∗ =
σE∗

φW∗ + τ2 + μg + d

M∗ =
τ2I∗ + λW∗

υ + ξ + μg

R∗ =
ΛE∗ + υM∗

φ + μg

W∗ =
Δ

λ + κδ − (αS∗ + γE∗ + φI∗)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(34)  

3.4. Basic reproduction number RW computation 

The basic reproduction number RW of diseases among pregnant pa-
tients with WHMD denotes the average rate at which new health cases 
among these categories of patients occur in the population. The next 
generation matrix method FV− 1 [32,34,35] is engaged in computing RW 
of model system (11) and is given byEqu (35). 

RW =
βψ

μg
(
γW + σ + Λ + τ1 + μg

) (35) 

The threshold in (33) implies that, when RW < 1, wearable health-
care monitoring devices were able to collect and transmit data in real- 
time to enable healthcare providers or qualified doctorsto direct preg-
nant patient on the necessary specific measures to improve their health 
and control the disease in the population. 

3.5. Sensitivity analysis of RW in the presence of WHMD 

To control diseases among pregnant patients, WHMD must be able to 
track pregnant patients health data, (i.e., collect personal health data of 
pregnant patients and transfer same to cloud-based healthcare pro-
fessionals/doctors in real-time). Such expert systems will help doctors 
better understand their instant health state and provide seamless in-
terventions. From the data aggregated, healthcare providers can identify 
health challenged patients quickly and offer quick solutions. This will 
help in the control of new cases complications among pregnant patients 
in the population such that RW < 1. 

We, therefore, find the rate of change of RW with respect to γW from 
the normalized sensitivity index given by 

ZRW
γW =

∂RW

∂γW
.
RW

γW
= −

(βψ)2

γW
(
μg
)2( γW + σ + Λ + τ1 + μg

)3 (36) 

We observe that the sensitivity index Z(γW) is negative and this in-
dicates that the rateat which new cases of disease among pregnant pa-
tients with WHMD (RW) decreases in the presence of wearable devices. 

4. Fractional optimal control problems (FOCPs) 

The control variables are strategies that detect data (u1) of the sus-
ceptible, exposed, and infected pregnant patients with health imbal-
ances (diseases) using WHMD, the effective data transmission rate (u2)

and reduction of these health imbalances (diseases) among pregnant 
patients via treatment (u3) from healthcare experts in real-time. In the 
model, WHMD detects pregnant patients with health problems (u1) is 
incorporated in the compartments S,E and I. Furthermore, effective data 
transmission (u2) and treatment (u3) control functions are employed on 
compartments S, E and I. This process aims to reduce the number of 
exposed and infected pregnant patients by moving them to the recovered 
category. By considering the state Equ. (11) in R6

+, we let 
W = {u1(t), u2(t), u3(t) are Lebsegue measurable,0≤ u1(t), u2(t), u3(t)
≤ 1 ∀ t∈ [0, tf ]} be the admissible control set. The objective functionis 
defined as follows: 

J (u1, u2, u3)=

∫ tf

0

(
AS(t)+Bu2

1(t)+Cu2
2(t) +Du2

3(t)
)
dt (37)  

Where A is the weight constant of susceptible pregnant patient with 
WHMD. Also, B and C are respectively the weight constant for detection 
and transmission of health imbalances among pregnant patient, while D 
isthe weight constant for treatment by healthcare providers or qualified 
doctors. In order words, we aim to minimize the following objective 
function in Equ (36). 

J (u1, u2, u3)=

∫ tf

0
ζ(S,E, I,M,R,W, t)dt (38) 

Subject to the constraints 

C
a Dε

0,tS(t)= l 1,
C
a Dε

0,tE(t) = l 2,
C
a Dε

0,tI(t) = l 3,
C
a Dε

0,tM(t) = l 4,
C
a Dε

0,tR(t)

= l 5,
C
a Dε

0,tW(t) = l 6  

Where l i = l (S,E, I,M,R,W, t), i = 1,2,…,6, with the following initial 
conditions S(0) = S0,E(0) = E0,I(0) = I0,M(0) = M0,R(0) = R0,W(0) =
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W0. 
We define the modified objective function using Sweilam and Al- 

Mekhlafi [36], 

Ĵ

∫ tf

0

[

Ha(S,E,I,M,R,W,u1,u2,u3, t) −
∑6

i=1
λil i(S,E,I,M,R,W,u1,u2,u3, t)

]

dt

(39) 

Therefore, the Hamiltanain is given as follows 

Ha(S,E, I,M,R,W, u1, u2, u3, λi, t) = ζ(S,E, I,M,R,W, u1, u2, u3, t)

+ λil i(S,E, I,M,R,W, u1, u2, u3, t) (40) 

From Equ. (37) and (38), we have that the necessary conditions for 
fractional optimal control Problems [37–40] are 

C
t Dε

tf
λS = −

∂Ha

∂S
, C

t Dε
tf

λE = −
∂Ha

∂E
, C

t Dε
tf

λI = −
∂Ha

∂I
, C

t Dε
tf

λM = −
∂Ha

∂M
, C

t Dε
tf

λR

= −
∂Ha

∂R
, C

t Dε
tf

λW = −
∂Ha

∂W
(41)  

Moreover,
∂Ha

∂uj
= 0 (42)  

C
0 Dε

t S= −
∂Ha

∂λS
, C

0 Dε
t E = −

∂Ha

∂λE
, C

0 Dε
t I = −

∂Ha

∂λI
, C

0 Dε
t M = −

∂Ha

∂λM
, C

0 Dε
t R

= −
∂Ha

∂λR
, C

0 Dε
t W = −

∂Ha

∂λW
(43)  

Also, λi
(
tf
)
= 0 (44) 

Where λi, i = S,E, I,M,R,W, are the Lagrange multipliers. 

Theorem 4.1. If u∗
1, u∗

2, u∗
3 be the optimal controls with corresponding 

states S∗∗,E∗∗, I∗∗,M∗∗,R∗∗ and W∗∗, then there exist adjoint variables λ∗i , i =
S, E, I,M,R,W that meets the following requirements in Equ(44).  

(i) Adjoint Computations 

With the transversality conditions at the time tf such that 

λi
(
tf
)
= 0, i= S,E, I,M,R,W (45) 

The optimality conditions are given as 

Ha(S,E, I,M,R,W, u1, u2, u3, λi)= Min
0≤u1 ,u2 ,u3≤1

Ha(S,E, I,M,R,W, u1, u2, u3, λi)

(46) 

Additionally, the control functions u∗
1, u∗

2, u∗
3 are given as 

u∗
1 =

W∗∗
[
S∗∗
(
λ∗S − λ∗W

)
+ E∗∗

(
λ∗E − λ∗W

)
+ I∗∗

(
λ∗I − λ∗W

)]

2B

u∗
2 =

(S∗∗ + η(E∗∗ + I∗∗))W∗∗
(
λ∗W − λ∗M

)

2C

u∗
3 =

S∗∗
(
λ∗S − λ∗M

)
+ E∗∗

(
λ∗E − λ∗M

)
+ I∗∗

(
λ∗I − λ∗M

)

2D

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(47)  

u∗
1 =min

{

1,max
{

0,
W∗∗

[
S∗∗
(
λ∗S − λ∗W

)
+E∗∗

(
λ∗E − λ∗W

)
+ I∗∗

(
λ∗I − λ∗W

)]

2B

}}

u∗
2 =min

{

1,max
{

0,
(S∗∗ +η(E∗∗ + I∗∗))W∗∗

(
λ∗W − λ∗M

)

2C

}}

u∗
3 =min

{

1,max
{

0,
S∗∗
(
λ∗S − λ∗M

)
+E∗∗

(
λ∗E − λ∗M

)
+ I∗∗

(
λ∗I − λ∗M

)

2D

}}

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(48)  

Proof. We can claim Equ(44) using the conditions in system (41) 
where the Hamiltonian H∗

a is given by 

H∗
a =A + Bu∗2

1 + Cu∗2
2 + Du∗2

3 + λ∗S
C
a Dε

0,tS
∗∗ + λ∗E

C
a Dε

0,tE
∗∗ + λ∗I

C
a Dε

0,tI
∗∗

+ λ∗M
C
a Dε

0,tM
∗∗ + λ∗R

C
a Dε

0,tR
∗∗ + λ∗W

C
a Dε

0,tW
∗∗ (49) 

Furthermore, λi(tf ) = 0, i = S, E, I,M,R,W holds. The optimality con-
ditions (48) can be claimed from the maximization conditions (46). 
Substituting u∗

1, u∗
2, u∗

3 in Equ (11), we have 

C
a Dε

0,tS
∗∗ =ψ +ξM∗∗ +φR∗∗ −

(
βI∗∗ +αW∗∗ +τ+μg

)
S∗∗

C
a Dε

0,tE
∗∗ =βI∗∗S∗∗ −

(
γW∗∗ +σ+Λ+τ1 +μg

)
E∗∗

C
a Dε

0,tI
∗∗ =σE∗∗ −

(
φW∗∗ +τ2 +μg +d

)
I∗∗

C
a Dε

0,tM
∗∗ = τS∗∗ +τ1E∗∗ +τ2I∗∗ +π(S∗∗ +η(E∗∗ + I∗∗))W∗∗ −

(
υ+ξ+μg

)
M∗∗

C
a Dε

0,tR
∗∗ =ΛE∗∗ +υM∗∗ −

(
φ+μg

)
R∗∗

C
a Dε

0,tW
∗∗ =Δ+(αS∗∗ +γE∗∗ +φI∗∗)W∗∗ − (π(S∗∗ +η(E∗∗ + I∗∗))+κδ)W∗∗

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(50)  

4.1. Existence of the optimal control pair 

The existence of the optimal control pair of the state system (50) can 
be directly obtained using the results in Refs. [41,42]; thus, we use the 
following theorem: 

Theorem 4.1. There exists an optimal control pair (u∗
1, u∗

2, u∗
3) ∈ W such 

that. 

J
(
u∗

1, u
∗
2, u

∗
3

)
= min

(u1 ,u2 ,u2)∈W
J (u1, u2, u2)

Proof. We use the result in Ref. [42] to present the existence of optimal 
control by noting that the control and state variables are non-negative 
values. The necessary convexity of the objective functional in u1, u2, u2 
are satisfied in this minimizing problem and, the set of all the control 
variables (u1, u2, u2) ∈ W is also convex and closed. The boundedness of 
the optimal system determines the compactness needed for the existence 
of the optimal control. Furthermore, the integrand in the objective 
functional Equ (35) AS+ Bu2

1 + Cu2
2 + u2

3, is convex on the control set W. 
More so, we can claim that there exist a constant Φ > 1 and numbers L1,

L2 such that 

J (u1, u2, u2) ≥ L1
(
u2

1 + u2
2 + u2

3

)Φ/2
− L2 

This completes the existence of an optimal control since the state 
variables are bounded. 

5. Numerical technique 

In this section, we used the modified form of the numerical scheme of 
the differential transform method (i.e., FMSDTM) to obtain the 
approximate solution of the fractional order model Equ (11). By 
considering a system of fractional ordinary differential equations in Equ 
(51) 

C
a Dε

0,t1
y1(t) = f1(t, y1, y2,…, yn)

C
a Dε

0,t2
y2(t) = f2(t, y1, y2,…, yn)

.

.

.
C
a Dε

0,tn yn(t) = fn(t, y1, y2,…, yn)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(51) 

Along with the initial value conditions yi(0) = ki,i = 1,2,…,n, where 
C
a Dε

0,t is a Caputo derivative of order 0 < εi ≤ 1 for i = 1, 2, …, n. The 
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interval [t0, tf ] is where we determine the solution of Equ (51). The k+ h 
order approximate solution of Equ (51) is given by the finite series of the 
form Equ (52) 

yi(t)=
∑k

i=0
yi(k)(t − t0)

kεi , tϵ
[
t0, tf

]
(52) 

Having that yi(k) satisfies the recurrence relation; 

Γ((k + 1)εi + 1)
Γ(kεi + 1)

Yi(k + 1)=Fi(k,Y1,Y2,…,Yn) (53) 

We have that Yi(0) = ai and Fi(k,Y1,Y2,…,Yn) are the initial condi-
tions and differential transforms of functions fi(t,y1,y2,…,yn) for i = 1,2,
…,n. Assuming that the interval [t0, tf ] is partitioned into G subintervals 
[tg− 1, tg ],G = 1, 2,…,P of equal step size h = (tf − t0)/G by the use of 
the nodes tg = t0 + gh. We apply the differential transform method to 
carry out the numerical implementation of Equ (54) and obtain  

where S(k),E(k), I(k),M(k),R(k) and W(k) with initial conditions S ≥ 0,
E ≥ 0, I ≥ 0,M ≥ 0,R ≥ 0 and W ≥ 0 are the differential transforms of 
S(t),E(t), I(t),M(t),R(t) and W(t) respectively. With regard to the dif-
ferential inverse transform series solution for Equ (55) as 

S(t)=
∑N

n=0
S(n)tε1,n,E(t) =

∑N

n=0
E(n)tε2,n, I(t) =

∑N

n=0
I(n)tε3,n,M(t)

=
∑N

n=0
M(n)tε4,n,R(t) =

∑N

n=0
R(n)tε5,n,W(t)

=
∑N

n=0
W(n)tε6,n (55) 

At this juncture, we apply the FMSDTM and have Equs (40) and (41) 
given as Equ. (56).  

S(k + 1) =
Γ(kεi + 1)

Γ((k + 1)εi + 1)
(
(ψ + ξM(k − l) + φR(k − l)) −

(
βI(k − l) + αW(k − l) + τ + μg

)
S(k)

)

E(k + 1) =
Γ(kεi + 1)

Γ((k + 1)εi + 1)
(
(βI(k − l)S(k − l)) −

(
γW(k − l) + σ + Λ + τ1 + μg

)
E(k)

)

I(k + 1) =
Γ(kεi + 1)

Γ((k + 1)εi + 1)
(
σE(k − l) −

(
φW(k − l) + τ2 + μg + d

)
I(k)

)

M(k + 1) =
Γ(kεi + 1)

Γ((k + 1)εi + 1)

⎛

⎜
⎜
⎝

( τS(k − l) + τ1E(k − l) + τ2I(k − l)

+π(S(k − l) + η(E(k − l) + I(k − l))W(k − l))

)

−
(
υ + ξ + μg

)
M(k)

⎞

⎟
⎟
⎠

R(k + 1) =
Γ(kεi + 1)

Γ((k + 1)εi + 1)
(
ΛE(k − l) + υM(k − l) −

(
φ + μg

)
R(k)

)

W(k + 1) =
Γ(kεi + 1)

Γ((k + 1)εi + 1)

(
Δ + (αS(k − l) + γE(k − l) + φI(k − l))W(k)

− (π(S(k − l) + η(E(k − l) + I(k − l))) + κδ)W(k)

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(54)   

s(t) =
∑k

n=0
S1(n)tε1,n, t ∈ [0, t1],

∑k

n=0
S2(n)(t − t1)

ε1,n, t ∈ [t1, t2],…,
∑k

n=0
Sg(n)

(
t − tg− 1

)ε1,n
, t ∈

[
tg− 1, tg

]

e(t) =
∑k

n=0
E1(n)tε1,n, t ∈ [0, t1],

∑k

n=0
E2(n)(t − t1)

ε1,n, t ∈ [t1, t2],…,
∑k

n=0
Eg(n)

(
t − tg− 1

)ε1,n
, t ∈

[
tg− 1, tg

]

i(t) =
∑k

n=0
I1(n)tε1,n, t ∈ [0, t1],

∑k

n=0
I2(n)(t − t1)

ε1,n, t ∈ [t1, t2],…,
∑k

n=0
Ig(n)

(
t − tg− 1

)ε1,n
, t ∈

[
tg− 1, tg

]

m(t) =
∑k

n=0
M1(n)tε1,n, t ∈ [0, t1],

∑k

n=0
M2(n)(t − t1)

ε1,n, t ∈ [t1, t2],…,
∑k

n=0
Mg(n)

(
t − tg− 1

)ε1,n
, t ∈

[
tg− 1, tg

]

r(t) =
∑k

n=0
R1(n)tε1,n, t ∈ [0, t1],

∑k

n=0
R2(n)(t − t1)

ε1,n, t ∈ [t1, t2],…,
∑k

n=0
Rg(n)

(
t − tg− 1

)ε1,n
, t ∈

[
tg− 1, tg

]

w(t) =
∑k

n=0
W1(n)tε1,n, t ∈ [0, t1],

∑k

n=0
W2(n)(t − t1)

ε1,n, t ∈ [t1, t2],…,
∑k

n=0
Wg(n)

(
t − tg− 1

)ε1,n
, t ∈

[
tg− 1, tg

]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(56)   
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Here, Si(n),Ei(n), Ii(n),Mi(n),Ri(n) and Wi(n) must satisfy the recur-
rence relation given as   

Having that 

Si(t)= si(ti− 1)= si− 1(ti− 1),Ei(t) = ei(ti− 1)= ei− 1(ti− 1), Ii(t)= ii(ti− 1)

= ii− 1(ti− 1),Mi(t) =mi(ti− 1)=mi− 1(ti− 1),Ri(t)= ri(ti− 1)

= ri− 1(ti− 1) and Wi(t) =wi(ti− 1)=wi− 1(ti− 1).

6. Numerical simulation 

In this section, results obtained are presented first by numerically 
solving the fractional order model Equ. (11) using the FMSDTM scheme 
for the model. MATLAB R2019 (9.6.0.1072779) with license number 
968398 is used for this purpose. The value of the basic reproduction 
number in the presence of a WHMD is given as RW = 0.43282325. The 
effectiveness of wearable telemedicine and the optimal control strate-
gies on the transmission dynamics of infection in pregnant patients was 
explored by simulating the control-related parameters of the model 
system (6) over the time interval [0, 270]. We considered strategies that 
detect the following data: susceptible, exposed, and infected pregnant 
patients with health issues using WHMD. Also captured are the effective 
data transmission rate, and reduction of these health complications 
among pregnant patients via decision experts’ agents in real-time. We 
simulated the proposed model system (11) using the initial conditions 
S(0) = 720, E(0) = 610, I(0) = 30, M(0) = 105, R(0) = 145, W(0) =

343. The parameter values used for model simulation were given in 
Table 2 showing the numerical values for vitals signals and disease 
control during pregnancy with wearable devices. The existing GDPR and 
the act of legislation are assumed in this study [60]. 

The behavior of the basic reproduction number of the model is 
shown in Fig. 2. It was observed that in the presence of WHMD, health 
imbalances during pregnancy are effectively controlled because infected 
individuals n the average will infect less than one other person. This is 
because, with WHMDs, the average rate of new cases of disease among 
pregnant patients in the population decreased. This is as a result of 
effective detection and transmission of data relating to the health of 
pregnant patients for necessary healthcare provider analytics. The re-
sults show convergence to the health imbalance-free equilibrium during 
pregnancy, that is, RW < 1. 

Fig. 3 illustrates a persistent oscillation in the populations of 

susceptible pregnant patients and those with wearable devices 
throughout the pregnancy period. The dynamic interaction between 
population growth and the accurate detection and transmission of 
health-related data plays a pivotal role in influencing the susceptibility 

of pregnant patients. This reciprocal relationship generates the contin-
uous oscillation observed in both compartments. This phenomenon is 
further elucidated in Fig. 4. During the initial trimester, there is a 
noteworthy increase in both the treated and recovered populations 
before reaching a state of equilibrium. Subsequently, from the second to 
the third trimester, these populations exhibit sustained oscillations, 
indicating a stabilized management of health disparities among preg-
nant patients facilitated by the used of WHMDs. 

Conversely, the populations of exposed and infected individuals 
remain relatively stable during the first month of the first trimester. This 
stability is momentarily disrupted by a slight upsurge in the second and 
third months of the first trimester, followed by a consistent oscillation at 
diminished levels during the subsequent trimesters. This pattern un-
derscores the role of enhanced usage, precise detection, and seamless 
transmission of health data from pregnant patients, enabling timely 
consultations and treatments from healthcare experts. Ultimately, this 
approach leads to a reduction in the susceptible pregnant patient’s 
population. 

Si(k + 1) =
Γ(kεi + 1)

Γ((k + 1)εi + 1)
(
(ψ + ξMi(k − l) + φRi(k − l)) −

(
βIi(k − l) + αWi(k − l) + τ + μg

)
Si(k)

)

hEi(k + 1) =
Γ(kεi + 1)

Γ((k + 1)εi + 1)
(
(βIi(k − l)Si(k − l)) −

(
γWi(k − l) + σ + Λ + τ1 + μg

)
Ei(k)

)

Ii(k + 1) =
Γ(kεi + 1)

Γ((k + 1)εi + 1)
(
σEi(k − l) −

(
φWi(k − l) + τ2 + μg + d

)
Ii(k)

)

Mi(k + 1) =
Γ(kεi + 1)

Γ((k + 1)εi + 1)

⎛

⎜
⎜
⎝

( τSi(k − l) + τ1Ei(k − l) + τ2Ii(k − l)

+π(Si(k − l) + η(Ei(k − l) + Ii(k − l))Wi(k − l))

)

−
(
υ + ξ + μg

)
Mi(k)

⎞

⎟
⎟
⎠

Ri(k + 1) =
Γ(kεi + 1)

Γ((k + 1)εi + 1)
(
ΛEi(k − l) + υMi(k − l) −

(
φ + μg

)
Ri(k)

)

Wi(k + 1) =
Γ(kεi + 1)

Γ((k + 1)εi + 1)

(
Δ + (αSi(k − l) + γEi(k − l) + φIi(k − l))Wi(k)

− (π(Si(k − l) + η(Ei(k − l) + Ii(k − l))) + κδ)Wi(k)

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(57)   

Table 2 
Optimal Parameter values for wearable telemedicine device.  

Parameters Values References Sources 

ψ 576.9231 [22] 
ξ 0.002 optimal 
φ 0.05 − 0.14 optimal 
α, γ, ∅ 0.045 − 0.45 optimal 
η 0.08 optimal 
τ, τ1, τ2 0.028 − 0.28 optimal 
β 0.06 − 0.06 [43] 
μg 0.02 optimal 
ρ 32 [33] 
d 0.426 [44] 
σ 0.459 [43] 
Λ 0.4 optimal 
π 0.8 optimal 
υ 0.1109289 optimal 
κ 5 [33] 
A 420 [33] 
h 0.95 [33] 
P 1.3 [33] 
δ 0.55 [33] 
t 270 optimal  
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Fig. 5 illustrates the application of optimal control techniques for 
disease monitoring and prevention utilizing WHMD. In contrast, Fig. 6 
portrays the dynamic behavior of pertinent variables when WHMDs are 
not employed by expectant mothers. In Fig. 4, the integration of wear-
ables significantly enhances the well-being of pregnant patients. By 
promptly detecting health irregularities, these wearables facilitate pro-
active intervention. Moreover, these devices offer functionality to 
seamlessly share gathered health data with healthcare professionals. 
This data empowers care providers to recommend tailored measures 
that ameliorate the health of expectant mothers. Consequently, a 
notable decline in the count of pregnant patient susceptible to and 
afflicted by pregnancy-related ailments is observed. Conversely, Fig. 5 
exhibits a rise in the number of exposed and infected pregnant patients, 
coinciding with the non-utilisation of wearable devices. Upholding the 
sustained functionality of these wearable devices, a judicious 

employment of low-energy protocols is instituted. This strategic energy 
management curtails the depletion rate of wearable devices. Evidently, 
Fig. 5 illustrates a diminishing population of wearable devices due to 
routine usage, while Fig. 6 demonstrates an incessant increase in device 
proliferation. 

Figs. 8–10 present a comparative analysis of the efficacy of WHMDs 
in scenarios involving pregnant patients, contrasting their utilisation 
and non-utilisation. The adoption of WHMDs is correlated with a 
marked reduction in the count of pregnant patients subjected to expo-
sure and subsequent infections, as depicted in Figs. 7 and 8, respectively. 
Conversely, this adoption contributes to an increase in the population of 
pregnant patients undergoing treatment and subsequently recovering, as 
evidenced in Figs. 9 and 10. 

Using the optimal models developed for WHMD, this work is 
currently being applied to existing health monitoring systems. In this 

Fig. 2. Plot of basic reproduction number RW of model (11) with WHMD.  

Fig. 3. Analytical behavior of Susceptible Pregnant patients with WHMD.  
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case, users can monitor their data in real time with a variety of health 
apps. For instance, Fitbit [44,45] tracks heart rate and physical activity; 
MyFitnessPal [46], tracks nutrition and exercise; Apple Health and 
Google Fit [47], integrate all health data. While some specialized ap-
plications, like Strava [48], concentrate on metrics related to cycling 
and running, others, like Sleep Cycle [49], examine sleep habits. Polar 
Flow [50] tracks heart rate and exercise, Garmin Connect syncs with 
wearables [51], Instant Blood Pressure uses a smartphone camera to 
assess blood pressure [52], and Cardiogram focuses on heart rate [53]. 
Real-time insights on various facets of health and wellness are provided 
by these apps. The absence of established computational model for these 
applications now offers an extended proof of concept for WHMD and its 
validations with machine learning algorithms in future research. 

In the realm of telemedicine network routing, the paper [54] 

introduced the Energy Enhanced Threshold Routing Protocol (ETH--
LEACH) as a novel approach aimed at overcoming limitations within 
traditional wireless sensor networks (WSNs), making them viable for 
potential telemedicine integration. Optimizing energy consumption 
through time division multiple access (TDMA) for path estimation could 
significantly augment the WHMD computational model. Another model 
[55] is capable of estimating the anticipated number of health issues 
considering confirmed cases, recoveries, deaths, and active cases in 
weeks. Metrics such as accuracy and error rates, along with Support 
Vector Machine, Logistic Regression, and Convolutional Neural Network 
models, demonstrate efficiency in predicting disease diffusion. 

A machine learning model (MLM) [56] was deployed to assess 
COVID-19 risk in diabetic patients without medical practitioner inter-
vention. This model, akin to the WHMD computational model, identified 

Fig. 5. Optimal control behavior of the compartments for Pregnant Patients with WHMD.  

Fig. 4. Analytical behavior of the exposed, infected treated, and recovered Pregnant Patients with WHMD.  
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eight influential symptoms in diabetic individuals through MLM. Cat-
Boost classifier, logistic regression, and XGBoost were considered, 
ensuring the reliability of the developed model through 
hyper-parameter optimization for evaluating COVID-19 risk in diabetic 
patients. 

Beyond the prerequisites of telemedicine routing, the studies [57,58] 
utilized a Dense Convolutional Neural Network (Dense-CNN) employing 
a novel cross-entropy-based loss function for enhanced COVID-19 pa-
tient classification in CT scans. Compared to existing methods, this work 
offered improved accuracy while reducing false negatives. This 
advancement can significantly enhance diagnosis within the WHMD 
computational model. Similarly, the study [59] concentrated on refining 

predictive analytics and data transmission in StreamRobot for internet 
of things (IoT) applications. It addressed vulnerabilities, node failures, 
and latency issues through edge system models, software-defined opti-
mization, and resilient data transmission mechanisms. While these en-
deavors showcase enhanced reliability in remote monitoring utilizing 
advanced networking and predictive machine learning, resulting in 
improved data prediction accuracy and network scalability, the pro-
posed WHMD analytical prediction model provides a more robust 
analytical framework specifically for telemedicine traffic workloads. 

From the previous findings, important research directions have been 
highlighted below. 

Fig. 6. Optimal control behavior among the compartments of Pregnant Patients without WHMDs.  

Fig. 7. Optimal control behavior of exposed Pregnant Patients with and without WHMDs.  
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1. Integration of WHMD with Existing Health Monitoring Apps:  
• Explore the integration of WHMD computational models with 

popular health apps like Fitbit, MyFitnessPal, Apple Health, Goo-
gle Fit, Strava, Sleep Cycle, Polar Flow, Garmin Connect, Instant 
Blood Pressure, Cardiogram, etc. This could involve creating 
interoperability or collaborative frameworks that leverage the 
strengths of both WHMD and these applications.  

2. Enhancement of Telemedicine Network Routing: 
• Investigate further advancements in telemedicine network rout-

ing, potentially building on the Energy Enhanced Threshold 
Routing Protocol (ETH-LEACH) to optimize energy consumption. 
This could involve integrating WHMD computational models for 
more efficient data transmission from the edge networks.  

3. Disease Prediction Models and Risk Assessment:  

• Expand on the machine learning models for predicting disease 
diffusion and assessing risk in specific populations (such as preg-
nant patients). Further research could involve refining these 
models, possibly incorporating more diverse data sources and 
advanced algorithms to improve accuracy and scalability.  

4. Diagnostic Improvements Using Machine Learning:  
• Explore the integration of advanced machine learning techniques, 

like Dense Convolutional Neural Networks (Dense-CNN) applied to 
CT scans, within WHMD for improved diagnostic accuracy. This 
could involve refining and adapting these models specifically for 
WHMD applications.  

5. IoT Applications for Remote Monitoring:  
• Investigate IoT applications for edge remote monitoring, focusing on 

predictive analytics, data transmission reliability, and network 
scalability. This research could involve incorporating WHMD 

Fig. 8. Optimal control behavior of infected Pregnant Patients with and without WHMDs.  

Fig. 9. Optimal control behavior of treated pregnant patients with and without WHMDs.  
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analytical prediction models to enhance the reliability and accuracy 
of predictive analytics in IoT-based health monitoring systems.  

6. Robust Analytical Framework for Telemedicine Traffic Workloads:  
• Develop a more robust analytical framework specifically designed 

to handle telemedicine traffic workloads. This could involve 
refining existing models or creating new frameworks that specif-
ically address the challenges and complexities of telemedicine 
data. 

These directions showcase new opportunities that can potentially 
contribute to the advancement and application of WHMD in diverse 
healthcare and telemedicine contexts. 

7. Conclusion 

This paper presents the transformative potential of the Fractional- 
Order Multidimensional Telemedicine model (FMDTM) in addressing 
healthcare challenges for pregnant patients in underserved commu-
nities. The shift from traditional integer-order systems to fractional- 
order differential equations is not only theoretically promising but 
also practically advantageous. The WHMD model introduces a ground-
breaking solution for proactive pregnancy care, monitoring vital health 
indicators and enabling informed decision-making for both healthcare 
providers and expecting mothers. This proactive approach allows 
anticipation and prediction of potential health issues, reducing com-
plications and contributing to stabilized health management. The 
analysis of the basic reproduction number demonstrates that WHMDs 
effectively control health imbalances during pregnancy, leading to a 
reduction in new disease cases. The integration of WHMDs into preg-
nancy care significantly reduces exposure and infections while 
increasing treatment and recovery rates. This shift from reactive to 
proactive healthcare improves overall health outcomes for pregnant 
individuals, potentially reducing hospitalizations and suffering. The 
research suggests wearable devices can predict diseases before escala-
tion, offering a crucial window for timely intervention. Furthermore, 
future research will investigate into the experimental application of 
machine learning techniques for WHMD analytics. 

Finally, the combination of fractional-order modeling and WHMDs 
presents a promising trajectory for the future of pregnancy care, 
particularly in underserved communities, emphasizing the potential 

societal impact of proactive, personalized, and preventative healthcare. 
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