
Please cite the Published Version

Zubair, Mohammed , Ghubaish, Ali , Unal, Devrim , Al-Ali, Abdulla , Reimann, Thomas ,
Alinier, Guillaume , Hammoudeh, Mohammad and Qadir, Junaid (2022) Secure Bluetooth
communication in smart healthcare systems: a novel community dataset and intrusion detection
system. Sensors, 22 (21). 8280 ISSN 1424-8220

DOI: https://doi.org/10.3390/s22218280

Publisher: MDPI AG

Version: Published Version

Downloaded from: https://e-space.mmu.ac.uk/634414/

Usage rights: Creative Commons: Attribution 4.0

Additional Information: This is an open access article which first appeared in Sensors, published
by MDPI

Data Access Statement: The BlueTack dataset is available at: IEEE Dataport under the title
BlueTack, doi: https://dx.doi.org/10.21227/skhs-0b39.

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0000-0002-1844-2080
https://orcid.org/0000-0003-3358-7680
https://orcid.org/0000-0003-3146-3502
https://orcid.org/0000-0002-3527-2554
https://orcid.org/0000-0002-8878-8909
https://orcid.org/0000-0003-4255-4450
https://orcid.org/0000-0003-1058-0996
https://orcid.org/0000-0001-9466-2475
https://doi.org/10.3390/s22218280
https://e-space.mmu.ac.uk/634414/
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.21227/skhs-0b39
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines


Citation: Zubair, M.; Ghubaish, A.;

Unal, D; Al-Ali, A; Reimann, T;

Alinier, G; Hammoudeh, M; Qadir, J.

Secure Bluetooth Communication in

Smart Healthcare Systems: A Novel

Community Dataset and Intrusion

Detection System. Sensors 2022, 22,

8280. https://doi.org/10.3390/

s22218280

Academic Editors: Hemant Ghayvat

and Sharnil Pandya

Received: 17 September 2022

Accepted: 19 October 2022

Published: 28 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Secure Bluetooth Communication in Smart Healthcare Systems:
A Novel Community Dataset and Intrusion Detection System †

Mohammed Zubair 1,2,*,‡ , Ali Ghubaish 3 , Devrim Unal 1,‡ , Abdulla Al-Ali 2 , Thomas Reimann 4,5 ,
Guillaume Alinier 6,7,8,9 , Mohammad Hammoudeh 10 and Junaid Qadir 2

1 Kindi Center for Computing Research, Qatar University, Doha P.O. Box 2713, Qatar
2 Department of Computer Science, Qatar University, Doha P.O. Box 2713, Qatar
3 Department of Computer Science and Engineering, Washington University in St. Louis,

St. Louis, MO 63130, USA
4 Copenhagen Emergency Medical Service, 3400 Hillerød, Denmark
5 Department of Emergency Management, Jacksonville State University, Alabama, AL 36265, USA
6 Hamad Medical Corporation Ambulance Service, Doha P.O. Box 3050, Qatar
7 School of Health and Social Work, University of Hertfordshire, Hatfield AL10 9AB, UK
8 Weil Cornell Medicine, Doha P.O. Box 24144, Qatar
9 Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
10 Information and Computer Science Department, King Fahd University of Petroleum and Minerals,

Dhahran 31261, Saudi Arabia
* Correspondence: mz1808904@qu.edu.qa
† This manuscript is an extended version of the conference paper: Zubair, M.; Unal, D.; Al-Ali, A.; Shikfa, A.

Exploiting Bluetooth vulnerabilities in e-health IoT devices. In Proceedings of the 3rd International
Conference on Future Networks and Distributed Systems, Paris, France, 1 July 2019; pp. 1–7.

‡ These authors contributed equally to this work.

Abstract: Smart health presents an ever-expanding attack surface due to the continuous adoption of
a broad variety of Internet of Medical Things (IoMT) devices and applications. IoMT is a common
approach to smart city solutions that deliver long-term benefits to critical infrastructures, such as
smart healthcare. Many of the IoMT devices in smart cities use Bluetooth technology for short-range
communication due to its flexibility, low resource consumption, and flexibility. As smart healthcare
applications rely on distributed control optimization, artificial intelligence (AI) and deep learning (DL)
offer effective approaches to mitigate cyber-attacks. This paper presents a decentralized, predictive,
DL-based process to autonomously detect and block malicious traffic and provide an end-to-end
defense against network attacks in IoMT devices. Furthermore, we provide the BlueTack dataset
for Bluetooth-based attacks against IoMT networks. To the best of our knowledge, this is the first
intrusion detection dataset for Bluetooth classic and Bluetooth low energy (BLE). Using the BlueTack
dataset, we devised a multi-layer intrusion detection method that uses deep-learning techniques.
We propose a decentralized architecture for deploying this intrusion detection system on the edge
nodes of a smart healthcare system that may be deployed in a smart city. The presented multi-layer
intrusion detection models achieve performances in the range of 97–99.5% based on the F1 scores.

Keywords: smart city networks; wireless communications; Bluetooth; artificial intelligence; communication
security

1. Introduction

Cities are being transformed into smart cities via Internet-of-Things (IoT) technology.
Smart cities use technologies for sensing, networking, and computation to enhance the
quality of life and well-being of inhabitants. Such smart cities also require new service-
centric computing paradigms for next-generation networks (5G, 6G, and beyond) [1]. While
there are numerous networking technologies available for long-range communications, the
most widely used technology for close-proximity communications is Bluetooth. Bluetooth
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is well suited for operations on resource-constrained mobile devices due to its low power
consumption, low cost, and support for multimedia, such as data and audio streaming.
Bluetooth is also widely used in smart healthcare systems to enable untethered wireless
communications between smart healthcare devices. Recently, Bluetooth was prominent
in its adoption for contact-tracing applications in the fight against the COVID-19 global
pandemic [2].

By the year 2030 [3], the number of IoT devices is expected to surge by 124 billion.
Moreover, the healthcare economy statistics predict that the market for IoT devices will
grow from USD 20 billion in 2015 to USD 70 billion in 2025. It was also reported that 30.3%
of the IoT devices in use are in the health sector [4]. The massive deployment of IoT
devices in heterogeneous networks with multiple technologies and protocols (such as
Wi-Fi, long-term evolution (LTE), Bluetooth, and ZigBee) makes the task of securing
such networks very complex. Research from the Information Systems Audit and Control
Association (ISACA) [5] on smart cities identified the security of IoT devices as important,
as numerous smart city critical infrastructure (CI) concepts (e.g., intelligent transport,
healthcare system, and energy distribution) rely on the robustness and security of smart
technologies and IoT devices [6].

As the number of Internet of Medical Things (IoMT) devices increases, the network
becomes congested, which leads to bandwidth and latency bottlenecks [7]. For instance, an
IoMT device sends data to a medical professional for regular analysis. This transmission of
data to the cloud can potentially cause latency and bandwidth congestion in the commu-
nication path [8], which could endanger the life of the patient. To address this challenge,
the edge cloud concept has emerged for the IoMT paradigm. An edge cloud improves
efficiency and provides more reliability for the smart healthcare system. The quick response
time and reduced energy consumption will result in longer battery life for medical devices
and reduce the usage of network bandwidth [9,10].

The exponential growth of IoT devices and the massive interconnectivity between
such devices greatly opens up the potential attack surface for smart healthcare services
that may be exploited by malicious actors. IoT devices are vulnerable to various medium-
and high-severity attacks [11]. Various vulnerabilities allow the intruders to perform a
wide range of attacks, such as denial of service (DoS), distributed DoS (DDoS), man-in-
the-middle (MITM), data leakage, and spoofing. These attacks result in the unavailability
of system resources and can lead to physical harm to the individuals when the patient is
ambulance-bound or hospital-bound. According to a report from the Global Connected
Industries Cybersecurity, 82% of healthcare facilities experience cyber-attacks, amongst
which, 30% target IoT devices [11]. The potential weakness in the network, IoT device, and
protocol allows the attackers to access the network completely in an unauthorized way (e.g.,
Mirai attack) [12]. Apart from these cyber-attacks, insecure operating systems, and ap-
plication vulnerabilities are other major threats to the healthcare system. Investigations
show that 83% of IoT devices run on outdated operating systems, and around 51% of the
cyber threats in the health sector concern imaging devices, which lead to the disruption of
communication between patients and medical professionals. Moreover, 98% of IoT device
traffic is in plain text that can be intercepted by adversaries.

Traditional security mechanisms cannot be enforced in the IoT network because the
network protocol stack itself may have numerous vulnerabilities. Zero-day attacks are very
difficult to be detected by traditional security mechanisms due to computational expenses,
which do not go well with the resource-constrained nature of typical IoT devices [13].
Conventional perimeter security controls only defend against external attacks, but they fail
to detect internal attacks within the network. An intelligent and faster detection mechanism
is required to guarantee the security of the IoT network for countering new threats before
the network is compromised.

In this paper, our focus is on the security of Bluetooth communication in smart
healthcare systems. After reviewing the significant security problems, we focus on the
detection of wireless attacks against IoMT. Wireless attacks are performed when the data
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are at rest or in transmission from one device to another device in a wireless medium over
different channels using various protocols, namely Bluetooth low energy (BLE), Bluetooth
basic rate/ enhanced data rate (BR/EDR), Wi-Fi, long-range (LoRA), etc. The openness of
the wireless network poses threats to the entire network and can end up compromising the
entire system. The attacker may perform various attacks, such as peer-to-peer, denial-of-
service, eavesdropping, man-in-the-middle (MITM), and authentication attacks to take over
the IoMT device or complete network. The main contributions of this study are as follows:

1. We curated a novel first-of-its-kind BlueTack dataset for Bluetooth-based IoT attacks.
The BlueTack dataset consists of popular attacks against Bluetooth BR/EDR or Blue-
tooth classic protocols, namely: Bluesmack, DoS, DDoS, and similar attacks, such as
DDoS and MITM attacks on the BLE protocol. To the best of our knowledge, this
is the first intrusion detection dataset for the Bluetooth classic protocol and BLE.
The BlueTack dataset will be made publicly accessible as described in the Dataset
Availability Statement.

2. A secure and scalable framework for the deployment of an intrusion detection sys-
tem(s) (IDS) on the edge nodes of IoT-based healthcare systems in smart cities. The
framework guarantees quicker identification of malicious activities to ensure the
safety of critically ill patients transported by ambulances.

3. A multi-layer intrusion detection model using deep learning (DL) to protect the edge
nodes of the smart healthcare IoMT system. Since IoMT is composed of several
resource-constrained devices, deploying the DL model on the IoMT device itself for
advanced functionality is impractical. Hence, The IDS is divided into two layers:
Layer_1 (where preprocessing is performed on IoMT devices or the edge node) and
Layer_2 (a standalone GPU capability device in which the DL model is deployed).
The proposed DL-based IDS achieves 99% accuracy while being deployed in a real-
time scenario.

The flow of this paper is structured as follows: Section 2 provides an overview of
related work, followed by Section 3, which illustrates the proposed model, architecture,
and dataset in detail. We show the results of the performance evaluation of the proposed
model in Section 4. Finally, the work is concluded with future directions in Section 5.

2. Related Work

Before we introduce the methodology, we discuss the background and related work
available in the literature.

2.1. Security of IoMT

IoMT devices perform diverse tasks in smart healthcare systems, such as recording
electrical impulses through electrocardiograms (ECGs) or monitoring blood glucose or
blood pressure. For ambulance-bound patients, IoMT devices monitor the patient’s activity,
save critical information about the patient’s physiological signals, and trigger alerts to the
medical staff inside the ambulance or a remote monitoring device through the cloud. As
the complete information of the patient flows in and out through the IoMT gateway [14],
securing the IoMT attack surface assumes critical importance. An attacker may target
the IoMT gateway to manipulate information before sending it to the doctor or to launch
denial of service attacks to make the information unavailable. Such malevolent activities
can put the patient’s life at risk. Rasool et al. [15] reviewed various security issues of IoMT
devices. The authors describe the vulnerabilities that exist in these devices, which can be
exploited by attackers easily. In our article, we consider internal and external threats that are
targeted against IoMT infrastructure. Since these devices are severely resource-constrained,
it is easy to render these devices unavailable by draining their battery with devastating
implications [16]. Thus, our focus in this paper is on attacks that may drain the batteries of
these devices or that make the devices unavailable due to multiple ping requests.
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2.2. Communication in Smart Healthcare System

The typical architecture of a smart healthcare system is shown in Figure 1. A typical
smart healthcare system comprises three domains: IoT domain, cloud domain, and user
domain, which generate data, store data, and make diagnoses, respectively. The IoT domain
consists of wireless medical devices, actuators, sensors, gateways, and other devices. Here,
the focus is on acquiring patients’ data from IoMT devices and transmitting it to the cloud
for storage and subsequent access. The cloud domain is stratified by the edge and core
cloud. The edge cloud is placed on the premises of the medical facility to ensure continuous
connectivity and low latency, in addition to quicker diagnosis of acute cases. The core cloud
provides massive storage and comprehensive analysis of data, and it helps in the diagnosis
of current symptoms based on previous related records.

During IoMT communication, the vital information of a patient is maintained by an
electronic patient care record device (EPCRD), which is commonly known as a Toughpad. It
has the capability of integrating different communication protocols and it acts as a gateway
for Bluetooth, Wi-Fi, and long-term evolution (LTE) communication. Furthermore, the
EPCRD acts as an edge device that allows and enables the technologies for computation
at the edge of the healthcare network. It accomplishes the tasks of caching, processing
storage, computation offloading, request distribution, and delivery of the services from the
cloud end to the user end. In our proposed approach, we leverage edge cloud technology
and deploy the IDS on the edge nodes of the healthcare system. The user domain delivers
the processed data from other domains to the authorized clinical staff. Integration and
streaming of vast volumes of data from different sources are visualized in various forms,
such as graphics, images, tabular, and other representations.

Active IoT devices

Passive IoT devices

BLE

BR/EDR

BR/EDR

EPCRD

Edge Device

Edge Cloud

Caregiver

EPCRD

Core Cloud

Bluetooth/
GSM/Wi-Fi

IoT  
Gateway

Bluetooth
/Wi-Fi/GSM

IoT domain
User/action 

domain

cloud domain

Figure 1. The use of Bluetooth and related protocols (BLE: Bluetooth low energy; BR/EDR: Bluetooth
basic rate/enhanced data rate) in a typical smart healthcare system for communication between
electronic patient care record device (EPCRD) and other entities over the edge and the cloud.

Medical devices (such as defibrillators and insulin pumps) that are continuously linked
with the patient for medical treatment are referred to as active medical device(s) (AMD). On
the other hand, medical devices (such as home monitoring devices and medical beds) whose
focus is on periodic monitoring of the patient physical condition and report generation are
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called passive medical device(s) (PMD). Wireless communication technologies are adopted
for communication in IoT devices such as near-field communication (NFC), RFID, Wi-
Fi, Bluetooth, LTE, and LoRA. Various IoMT devices use different wireless technologies.
Most of the AMD and PMD utilize Bluetooth classic, V4.X, and V5. Bluetooth technology
provides a generic profile for medical IoT devices to use the 2.4 GHz frequency band, as
recommended by the international telecommunication unit (ITU) [17]. Some of the basic
differences between BR/EDR and the BLE are showcased in Table 1.

Table 1. Technical details of Bluetooth technology.

Features Bluetooth Classic
(BR/EDR)-2 Bluetooth V4.X (BLE) Bluetooth V5 (BLE)

Medium access technique Frequency hopping Frequency hopping Frequency hopping
Multihop solution Yes Yes (Yes)
Network topology Piconet, Scatternet Star-bus mesh Star-bus mesh
Radio frequency 2.4 GHz 2.4 GHz (2.4 GHz)

Nominal data rate (Mb/s) 1–3 1 2
Distance range (m) Up to 100 Up to 100 Up to 200

Latency(ms) less than 100 less than 6 less than 3
Nodes/slaves 7 Unlimited Unlimited

Message Size (bytes) Up to 358 31 255

Bluetooth-enabled devices have two modes of operation. In the single mode, a BLE
device cannot interface with a device that is operating on BR/EDR, and vice versa. Whereas
in dual-mode, both BR/EDR and BLE devices can communicate with each other. However,
the major concern is about security and privacy in all Bluetooth versions. In this paper, we
focus on the detection of attacks against the BR/EDR and BLE, since the medical sensor
and data collection devices in the considered testbed utilize this version of Bluetooth.

2.3. Vulnerabilities in the Bluetooth Protocols

The major vulnerability factor in Bluetooth devices is the version that is used for
communication. Table A1 in the Appendix A describes the vulnerabilities and security
flaws of Bluetooth devices for different versions [18]. Few of the known vulnerabilities
have been identified by researchers, such as MITM, Bluesmack, battery drain attacks, and
backdoor attacks [19]. Recently, researchers identified the “SweynTooth” vulnerability
affecting implantable medical devices (e.g., insulin pumps, pacemakers, and blood glucose
monitors) and hospital equipment (e.g., patient monitors and ultrasound machines) that
work on BLE [20]. The Bluetooth protocol has problems due to the encryption key length
and improper storage of the link keys can be potentially manipulated by the adversary [12].

2.4. Intrusion Detection Systems

Some prior research studies on intrusion detection system(s) (IDS) dedicated to the
cyber-physical system [21] or smart environments using the Wi-Fi protocol against DoS
attack [21] have adopted various AI techniques, such as ML and DL. One such approach,
Ref. [22], proposed a hybrid model that is based on the principal component analysis (PCA)
and information gain (IG) incorporating the support vector machine (SVM), multi-layer
perceptron (MLP), and instance-based learning models to identify the intrusions in the
network. The model is trained and tested using the NSL-KDD, Kyoto 2006+, and ISCX 2012
datasets, and the optimal features are selected using an ensemble classifier. However, the
performance of the model is evaluated with some publicly available datasets, which are not
real-time datasets. Sawarna et al. [23] proposed an efficient IDS based on the deep neural
network (DNN) using the principle component analysis–grey wolf optimization (PCA-
GWO); it eliminates adversarial activities by providing faster alerts. This research was
conducted to address the problem of data dimensionality for publicly available huge
datasets. They tested the NSL-KDD dataset on various ML and DNN models to detect
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anomalies, among which the best accuracy was attained by the DNN. Baburaj et al. [24]
proposed a cloud-based healthcare system using an SVM model to predict the health
condition of a patient. The confidential data were accessed only by a legitimate user.
This approach focused on data mining techniques using ML models, but not identify the
anomalies in the system.

Likewise, a supervised approach for detecting intrusions in IoT devices in a smart
home was proposed by Eanthi et al. [25]. In this approach, a lightweight standalone three-
layer IDS framework is built using a decision tree (DT) classifier with promising results.
Nevertheless, the evaluation of the proposed model is based on a simulation performed on
the open-source Weka tool and the effectiveness of the IDS is not tested against real-time
traffic and attacks.

2.5. IDS for Bluetooth Enabled Systems

Very few researchers have focused on the security perspective of Bluetooth technology,
especially intrusion detection. Various attacks against Bluetooth devices are discussed
below to emphasize the need for effective intrusion detection for Bluetooth-enabled medical
IoT devices. Bluetooth technology provides a generic profile for the IoMT devices and it
uses the 2.4 GHz frequency. It is identified as an attractive protocol for the healthcare system
due to its robustness, lesser power consumption, low cost, suitability for short-distance
communication, and support for data and audio streaming. Moreover, it helps in the IoT
domain for machine-to-machine (M2M) communication [26]. Compromising the IoMT
devices could lead to sensitive patient information being revealed through the interception
and decoding of the data and audio/video streaming packets. An IDS detects malicious
activities or policy violations that bypass the security mechanism on a network and is the
process of monitoring and detecting unauthorized events intruding on the network. An
intruder is one who escalates the privileges of the users to gain access to data or services or
to control the entire network. Bluetooth-enabled systems require a different approach and
standard IDS developed for other protocols are not effective due to the difference in traffic
patterns and the highly constrained nature of Bluetooth devices [27].

Haataja et al. [28] proposed a Bluetooth intrusion detection and prevention system
based on a set of rules by investigating Bluetooth security to discover malicious commu-
nication on the Bluetooth network. Krzysztoń et al. [29] proposed a detection system to
identify the malicious behavior of Bluetooth traffic in a Bluetooth mesh network. Multiple
watchdog nodes are used for cooperative decisions in different areas of the mesh network.
Malicious activities are detected based on the received signal strength indicator (RSSI).
However, this model encountered the problem of modeling the transmission range and
RSSI parameters with obstacles, such as furniture and walls. This detection mechanism
was not deployed to a variety of attacks and was evaluated in a simulated environment.

Similarly, Satam et al. [30] built a Bluetooth IDS (BIDS), where the normal behavior
of the Bluetooth traffic was defined based on the n-gram approach, and malicious traffic
was classified using traditional ML algorithms. This method attained the highest precision
of about 99.6% and recall of 99.6% against DoS attacks. Yet, the effectiveness of the IDS
was not tested against different datasets and other attacks. An anomaly-based intrusion
detection system was proposed by Psatam et al. [31] to detect multiple attacks on the
Bluetooth protocol using ML models by following the zero-trust principle. Nevertheless,
the model was not tested using different attacks and datasets. Newaz et al. [32] focused on
the detection of the BLE for multiple attacks using ML models to identify the abnormal
behavior of the BLE traffic from the normal traffic pattern. The evaluation of the model was
done on their own real-time traffic for an ideal dataset but was not tested on other datasets.

From the above literature and Table 2, it is observed that the existing IDS approaches
that are dedicated to healthcare IoT systems are at the initial stage of development. Few
of the proposed IDS have validated their models on the data of the network simulation
(dataset) or on a small number of IoT devices, but they have not been tested on multiple
datasets. Moreover, these proposed IDS models detect malicious activities on the network
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by identifying the traffic patterns as normal or abnormal. It is also important to identify the
various types of attacks on the network. In the below subsection, we describe the healthcare
system in use by this paper and the Bluetooth technology (BR/EDR and BLE) deployed.

Table 2. Various BIDS approaches in comparison to our proposed models. Our Bluetooth intrusion
detection covers both Bluetooth classic and Bluetooth low-energy protocols.

Article Description Model Protocol Data Used and
Availability

Problem
Address Deployed

[23]
DNN-based
IDS using

(PCA-GWO)

Deep neural
network (DNN) Ethernet/Wi-Fi

(NSL-KDD)-
Publicly
available

Data
dimensionality
and anomalies

detection

No

[24]
Cloud-based

healthcare
system

Support vector
machine (SVM) -

(Vital
information)-

No

Data mining
techniques No

[25]
Light-weight

three-layer IDS
for Smart home

Decision tree Ethernet/Wi-Fi
(NSL-KDD)-

publicly
available

Simulation of
anomaly
detection

No

[28]
Bluetooth IDS
for Bluetooth

network

Defined set of
rules Bluetooth (BR/EDR)-No Malicious

traffic detection yes

[29]
Bluetooth mesh

IDS-based on
RSSI

Mesh network Bluetooth (BR/EDR RSSI
signals)–No

simulation and
detection of
malicious
patterns

Yes

[30] BIDS for IoT ML models BR/EDR (BR/EDR)-No
Malicious

traffic based on
n-gram

No

[31] BIDS for IoT ML models BR/EDR (BR/EDR)-No

Multiple attack
detections
based on
zero-trust

No

[33] BLE-IDS for
medical devices ML Models BLE (BLE) - No

Multiple attack
detections for

irregular traffic
flow

Yes

Our approach
Bluetooth IDS
for healthcare

system

DL and ML
models

BR/EDR and
BLE

(BR/EDR,
BLE)–yes

Multiple attack
detection of

BR/EDR, BLE
traffic

Yes

3. Methodology

To understand the application of the proposed architecture, we consider a scenario of
an IoMT system (i.e., smart healthcare system) that comprises multiple IoMT devices as
shown in Figure 2. Vital information from the IoMT devices is transferred to edge devices
and the cloud and is further sent to the medical staff.

3.1. Scalable Architecture

By considering the significant security mechanisms, we designed a scalable architec-
ture to deliver appropriate patient details to the medical experts from patient care efficiently
and without manipulation, i.e., tampering. Our ultimate goal is to provide a security mech-
anism to detect malicious activities against Bluetooth communication on the edge node.
The proposed architecture has enforced security policies, and detection mechanisms at the
edge cloud and edge nodes to ensure fast response and secure emergency services. Edge
computing helps to process the data efficiently with a quicker response time and assists
with the deployment of the IDS. Figure 2 represents the proposed architecture of smart
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healthcare for detecting malicious behaviors of ambulance-bound, Bluetooth-enabled IoT
medical devices in the smart healthcare system.

Figure 2. Architecture of the proposed security framework. The proposed system involves an edge
cloud for reducing request/response delays. The IDS is multi-level and suits the resource restrictions
of IoMT devices.

As the complete information of the patient flows in and out through the medical IoT
gateway, it allows for a potential attacking surface to compromise the complete system
by (1) targeting the medical IoT gateway to manipulate information before sending it
to the medical professional or by (2) launching DoS/DDoS or MITM attacks to make
the information manipulated or unavailable. Such malevolent activities can potentially
put the patient’s life at risk. To avoid such abrupt manipulation of the information, we
enforced a multi-layer intrusion detection model on the edge nodes of the healthcare
system. The detection system comprises two layers, namely, Layer_1 and Layer_2. Layer_1
is responsible for gathering patient information through a gateway and performing the
preprocessing, feature engineering, and feature selection techniques using various ML
algorithms. Layer_2 will detect the abnormal activities of the Bluetooth traffic on the edge
node using a DNN classifier. Next, we describe in detail the features of each layer:

3.1.1. Layer_1

Layer_1 receives data from various medical IoT devices. The data from IoT devices
is received at medical IoT gateways to analyze and store on the edge node. The fetched
information is deeply analyzed and processed before it is transmitted to the medical
professional for diagnosis. On this layer, preprocessing, feature engineering, and feature
selection techniques using various ML algorithms are performed. Data preprocessing
helps to provide the privacy of the medical information from the IoT devices because
the information received from IoT devices is in plain text that can be intercepted by
adversaries to perform medium- and high-severity attacks [34]. Data preprocessing is
performed to transform actual data into data compatible with ML/DL models. For this
process, we used numericalization (where a string is converted into integer (stoi), and
then encoded into tokenized sentences before feeding to any model) and normalization.
Data preprocessing helps the model to be trained and tested quickly. It also increases the
accuracy of classification. We provide a detailed explanation of these stages below.
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Eliminating/Dropping features : While capturing the traffic, we eliminated some infor-
mation, such as source and destination information, due to two major issues, firstly, in
some scenarios, it is difficult for the sniffer to collect this information [33], while in other
cases, the adversary may spoof its address giving wrong information. In both cases, the
classifier attempted to misclassify the traffic by replacing the missing values with some
random numbers, giving higher false positives and true negatives. Likewise, we eliminated
some other unimportant and irrelevant features.

Feature selection: In this process, significant features were selected from the dataset
by applying various feature selection techniques [35,36]. Feature selection increases the
model performance, decreases computational cost, and also increases storage efficiency.
Additionally, using appropriate features reduce the problem of overfitting.

There are various ML approaches for selecting features, such as filter-based methods,
wrapper methods, embedded, and statistical methods. In the univariate selection technique,
a statistical test is applied to each feature to select the features, which have a strong bond
with the output variables. We used Chi square (chi-2), in Equation (1), which gives the
level of independence between the features x_t and the label y_t; it differentiates the
chi-distribution, with the degree of freedom as 1.

χ2(xt, yt) =
M.(FZ − PQ)2

(F + P)(F + Q)(P + Z)(Q + Z)
(1)

where F indicates the frequency of the features and their labels in a dataset; P = frequency
of the features emerges without a label; Q = frequency of label emerges without features;
Z = frequency of neither features nor label emerges in the given dataset; and M = no. of
training samples xt = x1, x2, . . . xi and prediction sequence yt = y1, y2, . . . yi.

Recursive feature elimination (RFE) is an effective method to find an optimal set of
features for both regression and classification tasks. Initially, it creates a model dependent
on all the features and estimates the importance of each feature of a given dataset. It
priorities the features based on the rank order and eliminates those features that are of
the least importance based on the evaluation metrics (in our case, we selected accuracy
as a metric to find the optimal features) of the proposed model (DNN), which is depicted
in Figure 3.

Figure 3. Accuracy of the model based on several features. Based on the varying accuracy of the
number of features, we chose nine features from the dataset to train and test the model.

We also utilized logistic regression (LR) and random forest (RF) [37] to determine
which features contributed to the output variable [38]. Tables 3 and 4 show (“True” value),



Sensors 2022, 22, 8280 10 of 23

which indicates that the feature contributed to the output variable, based on each univariate
selection algorithm. The final score is given based on the cumulative of the four algorithms
used. In the BR/EDR and BLE dataset, they contain four and five non-numerical values,
respectively. The non-numerical values are converted to numeric values before they are fed
to the model using one-hot encoders, a process called numericalization. Finally, we only
selected the features that were important for identifying abnormal activities.

Normalization: This is a feature engineering technique used to have the data in one
range for faster processing and classifier accuracy. There are various normalization tech-
niques available, among which Z-score normalization is highly used due to its simplicity
and performance accuracy [33].

Table 3. Univariate selection score of the BR/EDR selected feature.

Features Chi-2 RFE LR RF Score

btl2cap.length True True True True 4
HCI_events True True True True 4
HCI_ACL True True True True 4
Command
Complete True True True True 4

Received direction True True True False 3
Sent Direction True True False True 3
Frame.cap_len True True True False 3

Disconnect
complete True True False True 3

L2CAP True True True False 3

Table 4. Univariate selection score of BLE selected features.

Features Chi-2 RFE LR RF Score

btl2cap.length True True True True 4
Time True True True True 4

Protocol True True True True 4
Advertising_header_length True True True True 4

btle.access.address True True True True 4
PPI.DLT True True True False 3

btatt.opcode.method True True False True 3
btatt.opcode.command True True False True 3

3.1.2. Layer_2

Initially, the medical data from IoT devices is collected and pre-processed on the first
layer, and the collected events from Layer _1 events are sent for detection and identification
to the second layer (the edge node). If any manipulation or deviation in the Bluetooth traffic
is identified, an alert is triggered. On this layer, the events of the IoT medical device are
actively captured and recorded on the events collector and are placed on the EPCRD device.
This traffic is fed in the format of a feature vector, which is represented in Equation (2).

X(t) = (E1, E2, E3, ..., En) (2)

This feature vector is fed to Layer_2 to identify the malicious activities on this device
based on the DL technique, which is deployed on the second layer of the edge node. The
reason for placing two layers of intrusion detection is to protect the IoT system from device-
based attacks and to have full coverage of the IoT healthcare network. The classifier model
gives 99% accuracy, which has been placed on Layer_2. As the preprocessing and intrusion
detection phases are separated on different devices, the resulting system constitutes a
multi-layer IDS. At last, the IDS model triggers an alert for the administrator to take the
required course of action against the intrusion.
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3.2. Dataset Description

We developed a Bluetooth (BR/EDR and BLE) dataset using realistic traffic generated
using the smart healthcare testbed [39] as described above in Figure 2, with the following
specifications: GPU 128-core Maxwell, CPU Quad-core ARM A57 @1.43 GHz, and memory
of 4 GB 64-bit LPDDR4 25.6 GB/s; this device is commonly known as NVIDIA Jetson Nano.
The dataset comprises abstract meta-information from the network traffic flow link layer
(data link) of the Bluetooth-enabled IoMT network. The generated data do not cover the
exact patient vital information but we considered the payload size of the vital during data
generation and transmission.

While generating the data, we used three IoMT devices that were easily available
in the market (SpO2, heart rate, and ECG), which operated wirelessly. During the data
generation process, we considered Bluetooth version.4 and above. We observed some
delays in data transmission for DoS attacks. However, in a DDoS attack, the IoMT device
stops sending the data transmissions, and the device malfunctions. The generated data are
stored in the local drive of the edge node.

We collected 5 GB of BR/EDR and BLE data over about 76 h during normal traffic
patterns and while performing the attacks. Therefore, the data collected included benign
and malicious traffic. The performed attacks were DDoS, Bluesmack, MITM, and DoS
on the L2CAP (link layer control adaption protocol) layer of the Bluetooth protocol stack.
The L2CAP protocol was located in the data link layer of the stack, and it provided
connectionless and connection-oriented data services to the top layer protocols. It allowed
the upper-level protocols and applications to send and receive the data frames.

After analyzing the captured traffic in the preprocessing data, we used a Dell Precision
T5820 workstation having the feature of Intel® Xeon® W-2245 (16.5 MB cache, 8 cores,
16 threads, 3.90 GHz to 4.70 GHz Turbo, 155 W), NVIDIA® RTX™ A4000, 16 GB GDDR6,
4 DP. The data preparation process was done using Python libraries. These libraries are
most efficient in the domain of data science (e.g., Pandas). Pandas supports various
input and output data formats and has strong probabilities in estimating the statics and
elementary visualization [40]. Finally, we selected nine features from each dataset through
statistical methods and correlation analysis as presented in Tables 3 and 4.

3.3. IDS Classifiers

The entire classification process is divided into two main stages—training and testing.
In the training phase, some samples of a dataset are used to train the model. In the testing
phase, new samples are fed to the classifier from the test dataset to evaluate the performance.
To validate the dataset performance, we used existing supervised and unsupervised ML
algorithms in addition to the proposed DL model for training and testing. The reason for
using various ML and the proposed DL models is to benchmark it and to show that the
dataset is free from abnormal results on different classifier models. Many of the datasets
used in the literature are algorithm-dependent [41]. Our dataset produced acceptable
accuracy for supervised and unsupervised ML and DL models. Various experiments with
different classifiers helped us build the most efficient DL model to identify malicious
activities with more than 99% accuracy.

3.3.1. Classifier Using Supervised ML Algorithms

Among the existing supervised ML algorithms, we selected the most popular ones,
namely: logistic regression (LR), decision tree (DT), support vector machine (SVM), and ran-
dom forest (RF). We provide short descriptions of the algorithms that we used in experiments.

3.3.2. Classifier Using Unsupervised ML Algorithms

The selected algorithms are naïve Bayes (NB), isolation forest (IF), K-Means (KM), and
local outlier factor (LOF). Unsupervised algorithms are trained without using the labels
of the features in the dataset. IoMT devices operate on different protocols, and due to
this complexity, vulnerabilities may emerge. Furthermore, with classical ML algorithms,
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many attacks cannot be detected when the attacker does a small manipulation over time.
DL techniques can recognize unknown patterns, outliers, and small changes from the
training model.

3.3.3. Classifier Using DNN

We used the multilayer perceptron (MLP) model, which is one of the categories of
the feed-forward neural network (FNN), with multiple layers: one input layer, one output
layer, and three hidden layers. Each layer consists of a set of neurons. The process of
assembling the hidden layers is known as a DNN, as depicted in Figure 4. The DNN-
IDS training comprises two phases—forward propagation and backward propagation. In
forward propagation, output values are calculated. Whereas, in backward propagation, the
weights are updated by passing the residual. The training of the model is implemented
using Keras (with TensorFlow backend) and Table 5 provides detailed information on
the various functions and parameters used. The combination of all layers is reflected in
Figure 4. The model’s hidden layers are formulated as in the MLP. The vector and the
biases are represented as bh and by.

f (θ) = L(yt : ŷt) (3)

Table 5. DNN architectural hyperparameters.

Description Setting

Hidden Layer 3 (50, 25, 25)
Function ReLU

Regularization L2, dropout
Epochs 1000

Loss function Binary_crossentropy
Optimizer Adam
Batch Size 42

Dropout rate 0.025

X1 

X2 

X3 

Y^

Softmax layer

W1 

W2 

W3 

W4 

 Hidden layer
Input layer

I:9, O:9

I:9, O:50

I:50, O:25

I:25, O:15

Figure 4. DNN architecture for the proposed IDS. It has three hidden layers with softmax as the
output layer.

• Hidden layer:
Hl(x) = Hl1(Hl1 − 1(Hl − 2(. . . (Hl1(x))))) (4)

• Training samples:
xt = x1, x2, x3, x4, . . . , xi−1, xi (5)
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• Hidden states:
ht = h1, h2, h3, h4, . . . , hi−1, hi (6)

• Predictions of sequence:
ŷt = y1, y2, y3, y4, . . . yi−1, yi (7)

• Input-hidden weighted matrix:
Wlx · Wlh (8)

• Output-hidden weighted matrix:
Wly (9)

The objective function of the model, defined as the single pair of the training exam-
ple (xt, yt) is: L is described as the distance calculating the actual yt and ŷt denote the
prediction labels, η denotes the learning rate and k denotes the number of iterations. In
DNN, each hidden layer uses a non-linear activation function to model the gradient error.
Among various activation functions, ReLU gives faster performance and can train the
model with a huge number of hidden layers. For maximizing the efficiency of the DNN,
we built the model by considering the binary-cross entropy loss function, ReLU function,
and softmax function with non-linear activation to achieve greater accuracy among the most
substantial probability value of each class. In addition, we applied dropout techniques, to
counter the problem of overfitting, by ignoring the randomly selected neurons. During
this process, downstream neurons are ignored in the forward propagation and updated
weights are not applied for the backward pass [42]. The neuron weights are settled within
the network and are tuned for specific features. This effect on the network will result in less
sensitivity to the definite weights of the neurons, which makes better generalization and is
less likely to overfit the training data. In the below subsections, we show the experiments
that we performed in the selection of IDS classifiers for the IDS models.

4. Experimental Results

To choose the best classifier for Intrusion detection, we trained and tested the BR/EDR
and BLE Bluetooth datasets with supervised and unsupervised ML algorithms and DNN.
The experimental results and discussion are provided below.

4.1. Unsupervised ML Algorithms
4.1.1. BR/EDR Dataset

The BR/EDR dataset is trained and tested on four unsupervised ML algorithms with
a balanced ratio of DOS attack and normal traffic pattern. We trained the four algorithms
as binary classifiers to identify the DOS attack and normal traffic. The results achieved are
shown in Table 6 and Figure 5. The naïve Bayes algorithm recorded the highest accuracy,
precision, F1-score, and other favorable metrics among all the algorithms. The precision
and recall scores of Isolation Forest achieved an acceptable level of prediction, while K-
means and LOF achieve more than 55% and 30% of precision and recall, respectively.
This suggests that these two algorithms are not suitable to train the IDS using the created
BR/ EDR dataset. Moreover, the reason for lower precision and recall of LOF is a direct
indication that the dataset is fully pre-processed. The dataset does not contain a high
level of deviations and we performed intensive preprocessing on the dataset to make it
normalized and free from outliers (in the Layer_1 of the IDS model). Furthermore, the
features that have been selected are highly significant for the output class. The other three
metrics are the F1 score, area under the ROC curve (AUC), and Cohen’s kappa scores.
These metrics provide a homogeneous pattern to the previous three metrics for the Naïve
Bayes classifier.
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Table 6. Performance analysis of the BR/EDR IDS using unsupervised—ML algorithms.

Metrics Naïve Bayes (NB) Isolation Forest (IR) K-Means LOF

Accuracy (%) 92.4 82.667 78.87 77.67
F1-score (%) 77.15 58.2 59.39 21.9
Recall (%) 63.68 52.34 55.01 38

Precision (%) 97.8 80.9 63.07 30.99
AUC (%) 82 59.38 53.48 51.62

Cohen’s Kappa (%) 72.86 54.34 25.87 15.2

Figure 5. Performance of BR/EDR–Unsupervised ML algorithms. This result shows that the dataset
does not show any deviation irrespective of different models (i.e., the dataset is preprocessed intensively).

4.1.2. BLE Dataset

Similarly, the BLE dataset was trained and tested on the same unsupervised algorithms,
but we modeled those as multiclass classifiers to identify DoS, MITM, and normal traffic
from the samples. The performances of the classifiers are shown in Figure 6. The numeric
scores of each class are visible in Table 7. Among the four unsupervised algorithms, naïve
Bayes records the highest accuracy scores of 98, 78, and 80 for DoS, MITM, and normal
traffic identification, respectively. Recall, precision, and other metrics fall close to the
accuracy scores for the naïve Bayes classifier. Isolation forest, K-means, and LOF classifiers
show better performances than the BR/EDR dataset with an average accuracy of 80% for
three classes.

Table 7. Performance analysis of the multiclass classification of the BLE IDS using supervised—
ML algorithms.

NB-
DoS

NB-
MITM

NB-
Normal IR-DoS

IR-
MITM

IR-
Normal

K-
means-

DoS

K-
means-
MITM

K-
Means-
Normal

LOF-
DoS

LOF-
MITM

LOF-
Normal

Accuracy
(%) 98.78 78 80.44 79.437 70.7 87.09 80.28 74.27 88.23 81 67.43 70.7

F1-
score
(%)

97.55 67 88 57.59 53.58 70.79 60.23 51.1 75 61.4 21.9 21.9

Recall(%) 96.78 95 99 49.2 43.12 63.31 57 47.71 65.78 68 38 38
Precision

(%) 98.23 75 93 76.09 70.66 80.9 65 63.07 87.23 55.99 30.99 30.99

AUC
(%) 97.55 76 80 57.34 55.687 73.93 77.87 72.13 79.43 77.12 52.62 57.62

Cohen’s
Kappa

(%)
96 75.34 79.32 53.56 53.98 72.34 57.23 69.06 78.21 75 35.2 15.2
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Figure 6. Performances of BLE–unsupervised ML algorithms. Multiple attacks were trained on the
same models of BR/EDR; we observe that the models are not biased.

4.2. Supervised ML Algorithms
4.2.1. BR/EDR Dataset

Likewise, the dataset BR/EDR was modeled as a binary classifier using four supervised
ML algorithms each time, namely LR, DT, SVM, and RF to differentiate the DoS attack
and normal traffic. The experimental results depicted in Figure 7 and Table 8 show that
accuracy, precision, and recall are satisfactory for all classifiers. However, the RF classifier
gave the highest score for all three metrics, followed by DT, SVM, and then LR. This is clear
evidence that the classifier model and dataset are efficient in identifying malicious traffic of
DoS attacks on Bluetooth medical IoT devices.

Table 8. Performance analysis of the BR/EDR IDS using supervised–ML algorithms.

Metrics LR DT SVM RF

Accuracy (%) 96.8 98.85 97.89 99.15
F1-score (%) 91.7 98.59 97.8 99.6
Recall (%) 88.32 98.5 96.6 98.6

Precision (%) 95.8 99.7 99.1 99
AUC (%) 94 100 98 100

Cohen’s Kappa (%) 89.7 98.56 95.79 99.5

Figure 7 also records the F1-score, AUC score, and Cohen’s Kappa score, substanti-
ating the inference that we deduced from the previous three metrics. Moreover, we can
conclude that the dataset gives stable results using any of these supervised ML algorithms,
of which RF and DT are the most recommended for general IoT devices and other networks.
However, in the case of medical IoT devices, we need to choose a lightweight computa-
tionally inexpensive model. Among the tested algorithms, K-means (unsupervised) and
SVM (supervised) are lightweight but they are computationally expensive in terms of
training a model that is deployable on medical IoT devices. Nevertheless, the performance
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scores fall short for the real-time IDS model, so we investigated the DNN models using the
created datasets.

Figure 7. Performance of BR/EDR–supervised ML algorithms. The dataset and models are efficient
in identifying malicious traffic behavior. (Deployed models are SVM and K-means).

4.2.2. BLE Dataset

The results of the multi-class model trained using the BLE dataset with four different
algorithms are shown in Figure 8 and Table 9. We observe that, unlike LR, the accuracy
scores of the three supervised algorithms, DT, SVM, and RF lie between 95% and 98%.
Though the average performance of the three algorithms, namely, DoS, MITM, and normal,
is satisfactory, it is difficult to choose the best among these three. Moreover, neither one
of the single classifiers give better performances for the three identification classes to suit
the real-time IDS performance. LR records less than 50% accuracy and unstable scores for
other metrics. Because of these shortcomings, we investigated the use of a DNN model for
both of the datasets.

Table 9. Performance analysis of the multiclass classification of the BLE IDS using supervised–
ML algorithms.

LR-
DoS

LR-
MITM

LR-
Normal

DT-
DoS

DT-
MITM

DT-
Normal

SVM-
DoS

SVM-
MITM

SVM-
Normal

RF-
DoS

RF-
MITM

RF-
Normal

Accuracy
(%) 48 79 94 96.63 98.5 97.29 97.89 94.39 96.86 97.74 96.5 95.78

F1-
score
(%)

37 67 92 96.27 99.12 97.8 96.8 95 92 97.27 96.12 95.66

Recall
(%) 23 95 98 96.3 98.23 95.6 95.7 84 98 97.3 95.56 93.45

Precision
(%) 100 79 95 97.5 98.43 98.1 93.1 89 95 98.5 94.7 96.23

AUC
(%) 45 80 98 98 98.65 98 98 93 96 99 97.8 96.88

Cohen’s
Kappa

(%)
40 72 95 97 97.4 95.37 95.79 91.43 94.55 98 94 94.25



Sensors 2022, 22, 8280 17 of 23

Figure 8. Performances of BLE–supervised ML algorithms. For real-time detection and deployment,
neither of the single classifiers gave a better performance.

4.3. DNN Model

Two DNNs were modeled as binary and multi-class classifiers using BR/EDR and
BLE datasets, respectively. The training accuracies of the two models were between 92%
and 95%, as depicted in Figure 9. The testing accuracies were 98% and above for both
models. From these results, we conclude that the classifier model using DNN was the best
among all the other algorithms we tested. This deduction was bolstered by considering the
training and testing loss scores in Figure 10. The training loss of the two models started
at approximately 0.3 and then reached 0.15 as the learning process went on. Similarly, the
lowest Test loss recorded was 0.01, which is an indication of a stable DNN model.

Additionally, to check the uniformity of the dataset, we tested various ratios of abnor-
mal (malicious) and benign traffic patterns. The ratios of benign and abnormal patterns
considered were 50–50, 75–25, and 80–20. Each time, the results that we achieved were
consistent, which suggests that our dataset does not have any bias in the ratios of the traffic
patterns. The accuracy scores of all the tests show that our dataset achieved less accuracy
for unsupervised ML algorithms than for the supervised ML algorithms. From Table 10
and Figure 11, we deduce that the dataset can be considered a standard for training IDS
models to identify DoS, DDoS, and Bluesmack attacks against Bluetooth IoMT devices.
Moreover, in comparison to other models, our proposed model attained the best accuracy,
as shown in Table 11.
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Figure 9. Training and testing accuracy. The proposed IDS DNN model for the BR/EDR and BLE
datasets for 1000 epochs attained an accuracy of 98%.

Figure 10. Training and testing loss–DNN. The recorded test was a loss of 0.01, which indicated that
DNN was reliable for the real-time application,

Table 10. Performance analysis of the binary and multi-class classification of the proposed IDS
(BR/EDR and BLE).

BR/EDR
Binary-Class BLE Binary-Class BLE-DoS

Multi-Class
BLE-MITM
Multi-Class

BLE-Normal
Multi-Class

Accuracy (%) 99.7 94.3 96.86 88.23 96.8
F1-score (%) 99.23 95 92 75 91.7
Recall (%) 98.65 84 98 65.78 88.32

Precision (%) 99.88 89 95 87.23 95.8
AUC (%) 99 93 96 79.43 94

Cohen’s Kappa (%) 99.08 91.43 94.55 78.21 89.7
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Figure 11. Performance analysis of the binary and multiclass of the proposed model for BR/EDR and
BLE, respectively.

Table 11. Comparison of our model with existing IDS models).

Model Precision (%) Recall (%) F1 (%) Accuracy (%)

[21]
(Bluetooth) 98 98 97 98.4

[21]
(Bluetooth) 96.7 88.23 91.8 97

[43]
(Bluetooth) 88.64 88.64 87.5 -

[44]
(NSL-KDD) 95.72 98.65 - 97.06

[45]
(NSL-KDD) 96 98.7 97.3 -

[46]
(NSL-KDD) - 98.6 - 99

Proposed IDS
(BR/EDR) 99.7 99.06 99.38 99.8

Proposed IDS
(BLE) 95 98 95 96.86

5. Conclusions and Future Work

Bluetooth communication is widely adopted in IoMT devices due to its various bene-
fits. Nevertheless, because of its simplicity as a personal wireless communication protocol,
Bluetooth lacks security mechanisms, which may result in devastating outcomes for pa-
tients treated using wireless medical devices. As discussed, continuous monitoring of
network activity is efficient in identifying cyber-attacks in most scenarios. We applied the
same concept to Bluetooth-based medical IoT devices in a smart healthcare system. In this
paper, we proposed a secure and scalable architecture and deployed the IDS on the edge
nodes of the smart healthcare system. we explored the issues and limitations of Bluetooth
communication technology in IoMT systems and current IDS for Bluetooth-enabled IoMT
devices. The second outcome of this research is a standard Bluetooth dataset and a DNN-
based classifier for Bluetooth traffic. To the best of our knowledge, this is the first intrusion
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detection dataset for the Bluetooth classic and BLE. From the results, we can see that the
created dataset can be used to train the IDS model for identifying DoS, DDoS, and Blues-
mack attacks on medical IoT devices operated using Bluetooth technology. We also deduce
that the proposed IDS classifier using DNN gives more than 99% accuracy, precision, and
recall, which outperforms the existing models for identifying Bluetooth-based attacks.

In the future, we plan to enhance the following critical areas of the proposed model.
(1) We look forward to enlarging our dataset with more attack types, other than DoS, DDoS,
and MITM. (2) We plan to include the attack data of other protocols, such as Wi-Fi. (3) We
will aim to improve the intrusion detection classifier to identify those attacks efficiently on
different datasets (by applying data fusion or feature fusion techniques). (4) Furthermore,
we plan to develop a mitigation technique for the identified attacks from our model and
to detect unknown attacks so that the architecture can be extended to include mitigation
mechanisms for the identified attacks.
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Appendix A

Table A1. Bluetooth vulnerabilities.

Version Vulnerabilities

Before Bluetooth Version 1.2
In every pairing, the static key, which is based on Link keys, is reused. A malicious activity

(eavesdrop and spoofing) can be performed on the legitimate device once the key is
revealed [18].

Before Bluetooth Version 2.1 +EDR
Short PIN, no pin management, repeating of keystreams for every 23.3 h so if a connection
lasts more than that, an identical keystream will be used, which can be useful for an attacker

to decrypt the messages [47].

Bluetooth Version 2.1 and 3.0
In the communication between the Bluetooth devices, if any of the Bluetooth devices fail to

support Security Mode 4, then the security mode will fall back to Mode 1, which has no
security. Using static in the SSP may lead to executing the MITM attack [47].

Before Bluetooth version 4.0 Authentication challenges request a response, which discloses the information about the
secret link key. Cipher Function E0 is considered as weak [47].

All Bluetooth versions Link key stored improperly, size of the encryption key as small as 1 byte, no user
authentication, device can remain in discoverable/connectable mode for indefinite time [47].

https://dx.doi.org/10.21227/skhs-0b39
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Table A2. Features candidates for the proposed model.

Extracted Feature Candidates Actual Feature Candidate Description

Frame_length _stored Frame.cap_len Frame Length of the captured file

Length btl2cap.length Length of the Bluetooth logical link control and
adaptation protocol (btl2cap).

L2CAP Protocol Logical link control adaption protocol
(L2CAP).

HCI_EVT Protocol
Host control interface (HCI) Event (EVT)

protocol. In HCI_EVT, various activities are
defined as page scans or inquiries.

HCI_ACL Protocol
HCI asynchronous connectionless link (ACL),

it is a transmission link for data
communication.

HCI_CMD Protocol

HCI command (CMD), it helps the host with
the controlling ability of the link layer

connection with other Bluetooth-enabled
devices.

Received frame.P2P_dir

Indicates the direction (dir) of the received
packets in the communication, from

point-to-point (P2P) (source to destination or
vice-versa).

Sent frame.P2P_dir

This feature indicates the direction of the sent
packets in the communication, from P2P

(source to destination or vice-versa).

ACL_Data #hci_h4.type HCI_Packet_Type ACL transmission link for the data
communication.

HCI_Evnt (hci_h4.type) HCI_Packet_Type
Host controller interface (HCI). Various HCI

events are defined on this layer, such as inquiry,
and complete the event to the page scan.

Master (bthci_acl_dst_role) Destination role This feature candidate describes the role of the
master devices.

Slave (bthci_acl_dst_role) Destination role This feature candidate describes the role of the
slave devices.

Unknown (bthci_acl_dst_role) Destination role It describes the role of the unknown devices.

PC (bthci_acl_dst_name) Destination device name Name of the destination device.

Destination _BDADDR (bthci_acl_dst_bd_addr)
Destination_BD_ADDR BD_ADDR of the destination devices.

Source _BDADDR (bthci_acl_dst_src_addr) source_BD_ADDR BD_ADDR of the source devices.
PC1 (bthci_acl_src_name) Source device name Name of the source device.

Read_RSSI (bthci_cmd_opcode) Command Opcode
The command opcode is used to define the
subcommand of the channels. Counted the

RSSI.
Read_Tx (bthci_cmd_opcode) Command opcode Power transmission level of the signal.

Read_Link _Quality (bthci_cmd_opcode) Command opcode Link quality of the transmission link.

Command _complete (bthci_evt_code) Event code Command complete while transmitting the
data.

Disconnect complete (bthci_evt_code) Event code Disconnect complete in the transmission
process.
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