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Abstract

Transient epileptic amnesia (TEA) is an underdiagnosed sub-type of temporal lobe epilepsy,
associated with recurrent amnestic episodes. There is also more persisting memory
dysfunction in the form of accelerated long-term forgetting and autobiographical amnesia.
EEG investigations form part of the diagnostic work-up but can often be inconclusive. The
current research investigated whether resting-state EEG analysis using quantitative EEG and
connectivity analysis could provide new insight into the underlying causes of memory
dysfunction in TEA. To date, no research literature has utilised connectivity in resting-state

EEG to investigate functional and effective connectivity within TEA.

Resting-state EEG recordings were acquired from the medical records of 28 patients
diagnosed with TEA and compared to age and sex-matched healthy controls. Pre-processing
and initial analysis were undertaken using MATLAB, and EEGLAB. Connectivity analysis used
three connectivity measures: imaginary coherence, weighted phase lag index and phase

transfer entropy. All connectivity analysis was performed using Brainstorm.

The results showed functional connectivity alterations across frontal-temporal, frontal-
parietal, and temporal- parietal networks within beta, alpha and theta bands. Dysfunction of
effective connectivity affecting theta frequencies was seen across all inter-regional
networks. Finally, we confirmed that inter-ictal abnormalities were seen more frequently in

an independent bi-temporal distribution and were more prevalent during non-REM sleep.

Our research has provided new evidence regarding functional and effective connectivity
disturbances in people with TEA. We have demonstrated clear and consistent connectivity
dysfunction within memory areas of the temporal lobes and memory networks extending
within the cortex. The evidence supports the hypothesis that memory consolidation and

recall networks are affected in TEA.
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Introduction

Electroencephalography (EEG) is often used to assist in the diagnosis and classification of
epilepsies. However, unless a seizure is captured, visual inspection of a routine EEG may
only yield non-specific or even normal findings in those with the condition. This is often the
case in diseases such as transient epileptic amnesia (TEA), where ictal events are infrequent.
The growing field of network analysis offers an opportunity to explore the functional
connections in conditions such as TEA, to identify less visible changes which could assist an
earlier diagnosis, and to improve management of the condition. As TEA is a rare condition,
connectivity analysis may help us to further understand the mechanisms underlying the
disease. This study aims to assess the usefulness of resting-state EEG (rsEEG) network

analysis in this respect.

What is Electroencephalography (EEG)?

EEG: A Brief History

The study of electrophysiology can be traced back to the 1700s and 1800s, to great names
such as Galvani, Volta, Ohm, and Faraday. The study of electrophysiology of the brain
became possible following the development of the astatic galvanometer by Leopoldo Nobili
in 1825. Carlo Matteucci and Emil Du Bois-Raymond began to build on Galvani’s initial
exploration of bioelectricity in the late 1800s, while Richard Caton started his investigations
into the electrophysiology of the brain by recording electrical activity from exposed brains

(Collura, 1993; Sutter et al., 2018a).

A major breakthrough on the path to EEG was achieved in 1903 when Willem Einthoven
introduced the string galvanometer. By utilising the string galvanometer with moving paper,
Vladimir Vladimirovich Parvdich-Neminski published the first photographic EEG recording
obtained from a dog in 1912. This was rapidly followed in 1914 by the independent
publication of photographic recordings of a canine seizure. It was in 1924 however, that
Hans Berger made his landmark recording of the first human EEG, and the first description

of alpha rhythm (Sutter et al., 2018a; Collura, 1993; La Vaque, 1999).

The potential of EEG as a diagnostic tool in epilepsy became apparent in 1934, and since the

mid-1940s it has remained a central investigation in the assessment and diagnosis of a
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variety of neurological disorders, but primarily epilepsy (Schomer and Da Silva, 2018; Adrian

and Matthews, 1934; ILAE, Accessed 2019b; Stone and Hughes, 2013).

Overview of Neuronal Mechanisms underlying the EEG

EEG waveforms are a recording predominantly consisting of neuronal and glial cell electrical
activity. Routine EEGs in the clinical setting are commonly recorded at the scalp, although
recordings can be made from the surface of the brain, or from within the brain itself. Scalp
EEG recording is possible due to volume conduction of the collective post-synaptic
potentials (PSPs) generated within the brain; these are known as local field potentials (LFPs).
The graphical display of EEG waveforms represents the potential difference between two
recording electrodes on the scalp, or between a scalp electrode and a given reference (e.g.,
an averaged reference). Visually, EEG waveforms are displayed as channels of complex

variable oscillatory patterns and displayed over time.

There are two types of PSP, excitatory postsynaptic potentials (EPSPs) which produce a
negative electrical charge or sink (predominantly generated by a flow of extracellular Na*
ions into the cellular compartment), and inhibitory postsynaptic potentials (IPSPs) which
produce a positive charge or source (these are largely elicited by an intracellular flow of CI-
ions, or the ejection of K* ions from the intracellular compartment). It is not possible to tell
from the scalp EEG which type of PSP generated the activity, however. This is because either
an IPSP received close to the pyramidal cell soma, or an EPSP received at the pyramidal
apical dendrites, will produce a negative (downward) deflection on the scalp EEG; vice versa
produces a positive (upward) deflection (Figure 1) (Buzsaki et al., 2003; Creutzfeldt et al.,
1966; Schomer and Da Silva, 2018; Jackson and Bolger, 2014). Activities with a radial current
with respect to the electrode (from gyri) tend to be more readily, and more prominently
recorded at the scalp. However, due to the folding of the brain surface, a large number of
activities are picked up from the cortical convexity from gyrus to sulcus producing tangential
or more commonly oblique currents at the scalp (Figure 2). These tangential and oblique
electrical currents are less easily detected at the scalp. As there are billions of neurons in the
human brain producing these bipolar electrical signals, the activities generated become
widespread and overlapping by the time they reach the scalp (Buzsaki et al., 2003;
Creutzfeldt et al., 1966; Schomer and Da Silva, 2018; Scherg et al., 2019).
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Figure 1: Effect of pyramidal cell PSPS on EEG signal (Jackson and Bolger, 2014)
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Figure 2: The effect of activity location on dipoles Three cases of IED current inflow into a focal cortical patch are
illustrated: (A) radial (dark blue), (B) oblique (pink), (C) tangential (red). Dipoles are depicted by arrows in light red to
illustrate where they create positive and light blue where they create negative voltages (Scherg et al., 2019).

Recording an EEG

The positions on the scalp used to record the EEG are standardised. The most frequently
used electrode placement system is the international 10-20 system, which was first
proposed in 1958 by the International Federation of Societies for Electroencephalography
and Clinical Neurophysiology (IFCN). This consists of 21 EEG recording electrodes positioned
at 10% and 20% distances on the scalp (Acharya et al., 2016) (Figure 3). This system has
recently been expanded to 25 electrodes to cover the inferior temporal areas of the brain

more effectively (Seeck et al., 2017) (Figure 4).

Figure 3: Placement of electrodes in 1958 IFCN 10-20 system A: Lateral, B: frontal, C: from the top (Seeck et al., 2017)
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The EEG is recorded using specialised neurodiagnostic equipment. The first EEG machine
built by Albert Grass in 1935 was able to record 3 analogue channels. Since this time the
technology of EEG equipment has developed, with many more channels, and analogue
signals are now digitised. This move from analogue to digital has expanded methods of

interpretation, which were previously limited to visual inspection and pattern recognition.
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Figure 4: 2017 update to the IFCN 10-20 system. Additional electrode sites: F9, T9, P9 on the left and F10, T10, P10 on the
right (Seeck et al., 2017)

Digitised EEG data is accessible for more complex data manipulation and analysis (ILAE,
Accessed 2019a; Stone and Hughes, 2013). One of these uses has been within the rapidly
expanding field of network analysis where EEG provides a reliable, accessible, and non-
invasive source of data. Network analysis can be undertaken on EEG activities acquired as a
resting state EEG (rsEEG) i.e., spontaneous ongoing neural activity, or recorded in response
to a stimuli or task i.e., evoked and event-related potentials (EPs and ERPs). rsEEG is
commonly analysed by dividing the oscillatory waveforms into clinically relevant frequency

bands i.e. delta, theta, alpha, beta and gamma, which are described in the next section.

1.1. EEG: The Positives
The scalp EEG has the advantage of being quick and cheap to perform, providing a non-
invasive, real-time graphic representation of the electrical activity of the brain. The EEG is
capable of covering a wide range of frequencies and provides high temporal resolution in
relation to other neuroimaging techniques such as magnetic resonance imaging (MRI),

positron emission tomography (PET) and even functional MRI (fMRI). The EEG provides a
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dynamic signal, changing over time and with different levels of alertness. The temporal
resolution of EEG is excellent, being sensitive to millisecond changes in neural activity.
(Amzica and Lopes da Silva, 2017a; Bassett and Bullmore, 2009; Cabral et al., 2014; Jia,
2019; Mahjoory et al., 2017).

1.2. EEG: The Negatives
However, EEG recorded at the scalp has poor spatial resolution i.e., it is poor at
differentiating the underlying origins of the neural processes unless they are close to the
electrode sites (usually between 1 and 10cm). EEG can also be limited in terms of the
number of recording sites, as EEG in clinical practice typically utilises recordings from less
than 25 electrode positions. This may be regarded as too low for accurate source
localisation in research. However, higher resolution EEG is available and can minimise this
problem by incorporating arrays with up to 256 electrodes, although it should be noted that
beyond a 64-electrode array, the overall gains with an increase in electrodes become less
incremental. Currently, high-density EEG remains used mainly for research. (Sakkalis, 2011;
Mahjoory et al., 2017; Crouch et al., 2018; Lai et al., 2018; O'Neill et al., 2018; Sohrabpour et
al., 2015; Stoyell et al., 2021; Chu, 2015).

Whilst recording EEG at the scalp is possible due to the volume conduction of electrical
activities, this creates difficulties when undertaking in-depth computerised analysis. In
network analysis, volume conduction forms part of the common sources problem which will

be discussed later (Common Sources Problem) (Jia, 2019).

Rhythms of the EEG

As a graphical representation of ongoing brain activities, the EEG contains a mixture of
different frequencies. EEG activities are typically described within bands, determined by
their oscillatory frequency. There are classically five main frequency bands: delta (<3.9Hz),
theta (4-7.9Hz), alpha (8-12.9Hz), beta (13-30Hz), and gamma (over 30Hz) (Figure 5).

Rhythms within these frequency bands can be seen within resting-state EEG recordings.

1.3. Delta Rhythms
Delta activities are commonly associated with sleep and anaesthesia, with strong sources

within thalamocortical connections and the cingulate cortex (which lies just above the
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corpus callosum and forms part of the limbic system). Delta sources can also be identified
during wakefulness and have been associated with long-range co-ordination cross neural
networks, and modulation of memory formation and cognitive performance (Amzica and

Lopes da Silva, 2018; Abubaker et al., 2021; Lopes da Silva and Halgren, 2018).
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Figure 5: An example of an average reference EEG montage in an anterior-posterior format, displaying typical negative and
positive deflections relating to EEG at the scalp. EEG frequency bands are highlighted — Beta in an anterior distribution,
alpha in a posterior distribution, underlying theta post-centrally, and underlying delta posteriorly in this example.

1.4. Theta Rhythms
Theta activities are largely associated with memory and cognitive performance and are also
the dominant activity seen during rapid eye movement sleep (REM). A high proportion of
theta activities are generated in the limbic areas of the brain, in particular the hippocampus.
Theta oscillations show alterations in rhythmicity, amplitude and/or frequency associated
with activities such as during silent thought before responding to verbal cues, recall of
information, co-ordinated movement, during learning and encoding of new information,
and in association with multimodal learning tasks such as spatial navigation (Arnolds et al.,
1980; Ekstrom et al., 2005; Watrous et al., 2013; Kahana et al., 1999). The hippocampus
generates two types of theta rhythms. One type arises from cholinergic inputs which
innervate the interneurons and principal cells within the hippocampus (possibly from

hippocampal inhibitory interneurons). A non-cholinergic source of hippocampal theta is
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generated via glutamatergic inputs from the entorhinal cortex, supplying the n-
nitrosodimethylamine (NDMA) synapses of pyramidal cells in CA1 (these are thought to play
a mediating role in synaptic plasticity). The CA3 area of the hippocampus and hilar mossy
cells are also thought to contribute to theta rhythm generation, via the formation of an
intrahippocampal oscillator (Kahana, 1996; Kahana et al., 1999; Raghavachari et al., 2001;
Kahana, 2006; Raghavachari et al., 2006; Somogyi and Klausberger, 2005; Buzsaki, 2002;
Amzica and Lopes da Silva, 2017b). It has been postulated that there are also local cortical
sources of theta activity active during working memory tasks, at a sub-regional level within
the neocortex. These have been found primarily in parietal, occipital and temporal regions

but not within the frontal lobes (Herweg et al., 2020; Raghavachari et al., 2006).

A strong phase relationship between theta rhythms and gamma oscillations has frequently
been reported in the literature concerning memory. Theta/gamma cross-phase coupling has
been demonstrated to be modulated by multi-item working memory tasks, with synchrony
enhanced with increasing difficulty. Coupling between theta and gamma frequencies has
been reported in frontal, parietal, and occipital regions, in addition to the medial temporal
lobe structures. The faster gamma frequencies are modulated by the phase of the slower
theta rhythms. In effect, the gamma oscillations are nested within the theta waves (Figure
6). This theta-gamma neural code has been demonstrated most clearly within the
hippocampus. Current thought posits that this phenomenon optimises the transfer of
information throughout the hippocampus, entorhinal cortex and out to the neocortex, thus
facilitating encoding, consolidation and retrieval during working and episodic memory
functions (Lisman and Jensen, 2013; Raghavachari et al., 2006; Abubaker et al., 2021;
Colgin, 2015; Park et al., 2013).
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Figure 6: Neural Code Organized by Theta and Gamma Oscillations. (A) Simultaneous extracellular (top) and intracellular
(bottom) recordings from the hippocampus. Intracellular gamma is due to IPSPs, the amplitude of which is modulated by
the phase of theta. (B) Schematic of the theta-gamma code. The ovals at top represent states of the same network during
two gamma cycles (active cells are black and constitute the ensemble that codes for a particular item). Different ensembles
are active in different gamma cycles. (Lisman and Jensen, 2013).

1.5. Alpha Rhythms
Alpha frequencies are generated within the cortex, primarily within layers IV and V and,
whilst there is some partial influence from thalamic sources, it is the horizontal cortical links
which facilitate its spread. The “alpha rhythm” is probably the best-known EEG pattern,
occurring over occipital regions during eye closure and with reduced visual attention. Alpha
oscillations also occur in the somatosensory cortex (the mu rhythm) and within the
temporal lobe (the tau rhythm - this is more readily seen in magnetoencephalography
(MEG) rather than scalp EEG). Alpha activities over sensory regions show attenuation when
a task related to the region is performed. This is known as “event-related alpha
desynchronisation”. Event-related desynchronisation of alpha activity has also been
reported to be elicited when consciously controlling or withholding the implementation of a
task/response (Karakas, 2020; Amzica and Lopes da Silva, 2018; Klimesch et al., 2007; Lopes
da Silva and Halgren, 2018).

Alpha frequency rhythms also include sleep spindles (sigma spindles) as they typically occur
at frequencies between 7Hz and 14Hz. Whilst spindles are similar in frequency to the alpha
rhythm, their generation and function are different. Sleep spindles are generated by the
thalamus and transmitted via thalamocortical networks. These spindles are seen within the
EEG over frontal-central areas soon after the onset of non-REM sleep (N2) and have been

linked to the blocking of incoming sensory stimuli. Other than this their function is still
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debated. A possible inverse reciprocal link with delta activities has been postulated because
spindles wane in deep sleep (N3) when delta waves dominate. Sleep spindle occurrence has
also been reported to decrease with increasing age (De Gennaro and Ferrara, 2003; Amzica

and Lopes da Silva, 2017a; Fernandez and Lithi, 2020).

Similar to theta frequencies, there is evidence that alpha oscillations also demonstrate
synchronisation with gamma rhythms, this may be related to top-down processing of
semantic memory. In the past, alpha has been perceived as an “idling rhythm” during
relaxed wakefulness, but the more recent research evidence described above recognises
alpha activities as representing a “modulating gate” for the flow of information (Karakas,
2020; Amzica and Lopes da Silva, 2018; Klimesch et al., 2007; Lopes da Silva and Halgren,
2018).

1.6. Beta/Gamma Rhythms
Beta frequencies are fast rhythms within the EEG and are sometimes split into betal (13-
20Hz) and beta2 (20-30Hz). Whilst slower EEG activities are suppressed during waking, fast
rhythms such as beta activate. Beta rhythms have generally been observed associated with
motor tasks, but more recently it has been postulated that beta coherence may also be
altered during cognitive tasks linked to sensorimotor input. Beta rhythms are more diverse
in function than first thought and have been recorded within most brain regions. Some beta
activities show evidence of a harmonic coupling with alpha rhythms e.g., the classically
“notched” appearance of the mu rhythm seen over the sensorimotor cortex at rest
(Abubaker et al., 2021; Herrmann et al., 2016; Amzica and Lopes da Silva, 2017a; Lopes da
Silva and Halgren, 2018).

Gamma frequencies apply to those above 30Hz and are generated from negative feedback
between interneurons and pyramidal neurons. Gamma tends to be more prominent during
increased levels of vigilance, and is seen following cholinergic activation, but have also been
linked to perception, memory and the consolidation and maintenance of memories (i.e.,
within the theta-gamma code) (Abubaker et al., 2021; Herrmann et al., 2016; Amzica and
Lopes da Silva, 2017a; Lopes da Silva and Halgren, 2018).
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For classification purposes we identify EEG activities by their band, however, there is
increasing evidence that whilst specific functional roles occur within-band, EEG activities are
frequently seen to functionally synchronise and undergo cross-frequency coupling. These

findings support the concept that brain networks are not siloed, but function in cooperation.

Identifying Abnormal Activities in EEG

The rhythms previously described provide the basis for EEG interpretation and whilst they
represent normal patterns, these activities can also occur as abnormalities if in the wrong
place at the wrong time. Good examples of this are the abnormal slowing of background
EEG activities associated with neurodegenerative disease, or inter-ictal temporal slow waves
associated with temporal lobe epilepsy (Koutroumanidis 1998). The abnormalities discussed
in this section refer to those which visually demonstrate a prominent deviation from the
underlying background rhythms i.e., they stand out from the background recording.
Abnormal activities within EEG can be broadly split into two main groups concerning their
morphology — epileptiform and non-epileptiform. Whilst their nomenclature is defined in
terms of epilepsy, both can be seen in a variety of other medical conditions. NEA in
particular, as their name suggests, do not always provide diagnostic evidence for epilepsy

even if the condition is suspected.

1.7. Defining Non-Epileptiform Abnormalities (NEA)
NEA commonly occur in the form of slower waveforms i.e., theta and delta frequencies,
however, this is not exclusively the case. Whilst NEA stand out from the background EEG
recording their morphology meets the criteria for resting state rhythms. The scope of non-
epileptiform abnormalities is broad, therefore the discussion below is limited to the

conditions most relevant to the research being undertaken:

e Physiological ageing is generally accompanied by a slight slowing of the background
to around 7-8Hz, reduced EEG reactivity associated with opening and closing of the
eyes and the appearance of subharmonic theta and delta frequencies more

commonly over temporal areas (Krishnan et al., 2018a).
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e As described previously, pathological ageing, related to cognitive decline shows the
progression of normal ageing patterns. Slowing of the alpha rhythm tends to drop to
around 7Hz or below, and increased and abnormal focal theta and delta activities
can be seen over the anterior-temporal areas, more so over the left (Babiloni et al.,
2018).

e Mild cerebrovascular disease and atrophy are more common with ageing due to a
decline in circulation, causing irregular theta/delta frequency abnormalities
particularly localising over the vascular water-shed areas (central-temporal and
parietal/ post-temporal)(Galovic et al., 2018).

e Metabolic disorders also increase in prevalence with ageing. If sub-therapeutic or
untreated at the time of the EEG these can give a generalised slowing of EEG
activities, which increases in severity with increasing metabolic dysfunction. (Sutter
etal., 2018b).

e Localised NEA can be seen associated with underlying structural pathology. The
location of the abnormalities will depend on the location of the pathology. For
example in the case of hippocampal sclerosis, which is often an epilepsy-related
pathology, focal slow waves can be evident over anterior-mid temporal regions
(Hartman and Lesser, 2018). Such focal changes can also be seen in focal epilepsy
without any visible structural pathology.

e Although not strictly “abnormalities” per se, there may also be medication-related
alterations in the EEG. These are variable, dependent on the drug, and cover a range
from increased slower activities to excess beta rhythms and even epileptiform
abnormalities. It is therefore helpful to be aware of the clinical history and current

medications at the time of the EEG recording (Holler et al., 2018).

In summary, NEA can represent a generalised alteration in background frequencies e.g.,
those seen in neurodegenerative or metabolic conditions, or more localised changes which
stand out from the background waveforms e.g., in vascular, and structural pathologies, and

focal epilepsy.
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1.8. Defining Interictal Epileptiform Discharges (IED)
In addition to NEA which stand out from background rhythms, IEDs are recognisable in the
same way. It is often the case that NEAs and IEDs can be seen in association within the same
recording. Whilst the nomenclature implies IEDs are confined to epilepsy, it is not that clear
cut. IEDs can occur in the EEGs of people without epilepsy, particularly in those with
learning and developmental delay, but also in conjunction with some medications. IEDs are
also associated with acute infective conditions and neurodegenerative disease, amongst
others. For the purposes of the study, the focus of this section is on inter-ictal epileptiform

discharges i.e., those seen between seizures in individuals with a diagnosis of epilepsy.

Whilst IEDs may be seen within a resting EEG recording, their morphology falls beyond the
EEG frequency band activities described previously. IEDs are typically described as spikes or
sharp waves, having a pointed peak, and are clearly distinguishable from the background
EEG. IEDs are differentiated from each other by their duration (spikes have a duration of 20-
70ms, while sharp waves are 70-200ms in duration). A definition of IED morphology has
been internationally agreed and published by the International Federation of Clinical

Neurophysiology (IFCN) (Kural et al., 2020; Krishnan et al., 2018b) (Figure 7):

1. “IEDs have two, or three phases with a pointed peak

2. |EDs have a different wave duration than the ongoing background EEG

3. Morphology of the waveform is asymmetric

4. |EDs are followed by a slow wave

5. Background activities are disrupted briefly following the presence of an IED

6. Distribution of the negative and positive potentials on the scalp suggests a
source of the signal in the brain (corresponding to a radial, oblique, or tangential

orientation of the source)” (Kural et al., 2020).

In summary, IEDs are defined in terms of spikes and sharp waves which are most frequently,
but not exclusively, associated with a diagnosis of epilepsy, Clear criteria have been set out

to aid the identification of IEDs.
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Figure 7: Infographic showing the 6 criteria for identifying IEDs by morphology. The upper representation shows 5 of the
IFCN criteria in graphic form. “The voltage maps in window (6) show a tangential orientation (source in the left middle
frontal gyrus) and a radial orientation (source in the left superior frontal gyrus); the irregular distribution of the potentials in
the last voltage map does not imply a source in the brain (it was an artifact with sharp morphology) and does not fulfil this
criterion; negative potentials are in blue, and positive potentials are in red”. (Kural et al., 2020)

Recognising Artifacts in EEG

The EEG rhythms and abnormal waveforms described above provide the electrical
information required for the interpretation of brain functionality. However, the activities
captured within an EEG also contain signals from sources other than brain generated brain
activity. These “unwanted” activities are called artefacts or EEG noise, and they effectively
contaminate the recording. For ease of discussion, we will group the concept of artefacts

and noise under the common term of EEG noise.

Noise within scalp-EEG recordings is common and can arise from several sources including
physiological, electrode and environmental noise (Figure 8). EEG noise can cause problems
with interpretation if the reader is inexperienced and is a potential source of contamination
and bias within EEG analysis. If not carefully managed by the recordist, noise can obscure
the EEG rhythms. Whilst noise can be minimised during acquisition, it cannot be totally
eliminated, partly because some EEG noise is produced by other electrophysiological
sources e.g. the heart. Also, noise sources can be closer to the recording sites, meaning the

signals are of a larger voltage on the recording e.g., muscle activity.

Physiological noise has variable frequency dynamics dependent on the source. For instance,
sweat, respiration, tremor, or eye-rolling produce slow-frequency waveforms. On the other
hand, muscle activities can produce a variable pattern of fast activities. Eye movements are

a common source of physiological noise, producing a complex mix of frequencies which are
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distinctive to the experienced EEG interpreter. Both pulse and ECG can be recorded on the
EEG as physiological noise, showing a distinctive regularity. Concerning environmental noise,
the most common is that of mains interference, which in the UK is seen as a sinusoidal 50Hz
signal (Selim R, 2007; Fritz and Benbadis, 2009; Tatum, 2013a; Tatum et al., 2011; Tatum et
al., 2018).

In conclusion, EEG noise occurs from a variety of physiological and non-physiological sources

which if not accurately identified can lead to misinterpretation of the EEG (Figure 8).

Concerning EEG analysis, pre-processing of the EEG is undertaken partly to minimise the

effect of EEG noise, as it can lead to bias and misinterpretation of results.

[ Table 1 Common sources of EEG artifact ]
Nonphysiologic sources Physiologic sources
Electrodes Normal
Pop Eye movements
Impedance mismatch Cardiac
Lead wires Myogenic

Machine and connections Baone defects
Aliasing Mastication and deglutition
Jackbox Abnormal

60 Hz Tremor

Static electricity Myoclonus

Implanted electrical devices Movements

Figure 8: A concise list of common sources of EEG noise (Tatum, 2013b)

EEG Rhythms and Quantitative EEG Analysis

The EEG, comprising a mix of the waveforms described above, is clinically interpreted by
visual analysis, which remains the gold standard (Kural et al., 2020). However, this can be

complemented by the use of quantitative EEG analysis (QEEG).

The use of QEEG is increasing in clinical use. This has been aided by software such as
Persyst, which includes features such as EEG trending, artefact reduction, EEG monitoring,

and seizure detection (https://www.persyst.com/ ). QEEG is now readily accessible for
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assistive analysis of long-term EEG monitoring for epilepsy and in the intensive care
environment. QEEG is clinically useful in assisting with the fast detection of trends within
EEG, especially when recordings are undertaken over several days, as it gives a compressed
overview of the recording (say with respect to amplitude). QEEG is also used within
research, to describe and compare EEG findings. This is commonly described in terms of

mean amplitude or mean frequency (Osman et al., 2018).

The qEEG tools break down the EEG into key component parts which can be computed in
the time domain, the frequency domain, or as a time-frequency analysis. Time domain
analysis is based on the amplitude of a signal across a given frequency spectrum. This can
then be computed across the EEG frequency bands. Frequency-domain analysis more
commonly known as power spectral analysis, is based on frequency and is usually a
calculation of frequency and amplitude. Power spectral analysis defines a time-series signal
as the summation of a series of sines and cosines (Fourier transform). Power spectral
density (PSD) is the total, or mean power, calculated across a given frequency spectrum
within the EEG frequency bands, (or for individual frequencies), and is usually described in

terms of the mean (Osman et al., 2018; Zhang, 2019).

Spectral and time-frequency analysis can give a useful overview of the frequencies and
amplitudes contained within an EEG signal and concerning their power (or dominance)

within the total frequency content.
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Understanding Functional and Effective Network Analysis

While QEEG can give a macro-level insight regarding EEG changes between conditions,

network analysis allows us a more detailed view of brain function.

Network neuroscience is a recent and rapidly growing field of research which is providing
novel insights into the structural and functional connectivity of the human brain. It offers
new ways of mapping the connections between brain regions. Due to its excellent temporal
resolution, EEG provides an ideal dataset with which to analyse the functional dynamics of
the brain. Computational methods to map anatomical connections make it possible to
examine functional connectivity at rest, during tasks, and functional changes over time
within different clinical populations (Medaglia et al., 2015; Fornito et al., 2016; Sakkalis,
2011; McLoughlin et al., 2014; Bullmore and Sporns, 2009; Medaglia and Bassett, 2017).

By comparing network data from a healthy population with that of discrete populations
such as those with memory impairment, understanding can be gained regarding the
function and dysfunction of the neural networks. In this way, modern network techniques
explore both the neural elements (the neuronal activity within brain regions) and the
functional interactions between those elements (via circuits, systems and synapses). Whilst
the raw surface EEG data from brain regions may be normal or non-specific in TEA, the
functional networking behind the neural activity may not (Medaglia et al., 2015; Bassett and

Sporns, 2017; Sporns, 2017).
The Different Types of Connectivity and their Uses

Researchers using connectivity analysis now have access to a wide range of connectivity
measures with which to work. However, this can appear quite daunting, particularly to a
novice. The discussion below is not designed to cover all methods but to focus on those

chosen for this research project.

For the context of this research, the term “network” refers to a functionally specific
collection of structural brain regions, interconnected by a neuronal framework, which
enables the directed flow of information in the form of neural activity. Connectivity analysis
describes and quantifies these directed communications, making them measurable.

Connectivity within the brain is described in terms of structural, functional, or effective
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connectivity. Connectivity analysis can be used in conjunction with a variety of
neuroimaging techniques, allowing the study of activations and interactions within and
between brain regions, and comparison between healthy and pathological states (Sakkalis,

2011; Brookes et al., 2014; Cohen, 2014; Betzel and Bassett, 2017).

1.1. Structural connectivity
Structural connectivity describes the anatomical organisation of the neuronal framework
i.e., the synapses and nerve fibre pathways making up the network. Structural connectivity
is best measured by neuroimaging such as magnetic resonance imaging (MRI), diffusion
tensor imaging (DTI), diffusion MRI (dMRI) and functional MRI (fMRI). Structural connectivity
shapes functional connectivity within the network, therefore the two are interrelated. The
latter MRI types i.e., dMRI/fMRI permit co-registration of structural and functional measures
and can be utilised alongside EEG for this purpose, providing a more holistic model of brain
function (Sakkalis, 2011; Betzel and Bassett, 2017; Cao et al., 2022; Babaeeghazvini et al.,
2021).

1.2. Functional connectivity
While fMRI, by using blood oxygenation level-dependent (BOLD) signals, can give an indirect
measure of functional connectivity, EEG can provide a direct estimate of functional
connectivity (Babaeeghazvini et al., 2021). Magnetoencephalography (MEG) is also a useful
functional neuroimaging research tool which is less widely accessible than EEG; whilst

mentioned here for completeness, MEG will not be discussed in detail within this study.

Functional connectivity measures the undirected information flow between two brain areas
by assessing the correlation, or coherence between them. EEG-based functional
connectivity is assessed between time series and can be calculated for specific frequency
bands. However, whilst functional connectivity can assess either linear or non-linear
dependence between signals (depending on the metric used), it is unable to give any
information regarding causality (Crouch et al., 2018; Mahjoory et al., 2017; He et al., 2019;
Jia, 2019). To understand causality dynamics between signals, effective connectivity analysis

is required.
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1.3. Effective connectivity
Effective connectivity enables the researcher to gain an understanding of the directionality
of information flow, or the causality, between brain sites. Networked regions have a causal
influence on each other via their neural interactions, with the directionality of information
transfer dynamically changing over time (Cao et al., 2022; Cabral et al., 2014; He et al.,
2019; Rubinov and Sporns, 2010). Causal dynamics provide a further understanding of

healthy vs. pathological network communication.

Choice of Connectivity Measure for EEG Analysis

There are numerous connectivity measures which can be used to analyse connectivity data.
When using EEG for functional and effective connectivity analysis, care needs to be taken

when selecting measures.

1.1. Common Sources Problem
Recording EEG signals at the scalp is possible due to the conductivity of the tissues of the
brain, skull, and scalp. However, this poses some problems in analysing connectivity
accurately as it makes it difficult to separate true sources from volume-conducted ones. The
task of source recognition is also confounded by the choice of reference for the electrode

sites.

Volume conduction

Scalp EEG, by nature, depends on volume conduction (the propagation of electromagnetic
fields through the brain, skull and then skin) to enable recording. However, volume
conduction is a potential cause for error within EEG connectivity analysis as electrical fields
spread laterally, affecting the signal at neighbouring electrode sites, creating inaccurate
connectivity results and confounding source reconstruction. This is known as the inverse
problem (Cohen, 2014; Jia, 2019; O'Neill et al., 2018; Lopez Rincon and Shimoda, 2016).
Connectivity measures based on phase are particularly prone to the effects of volume
conduction as the variable dipole orientations of an electrical source depend on the
electrode position in relation to it. This may influence the magnitude of the phase difference
(phase lag) of the signals recorded at the scalp even though they are strongly synchronised

at source. The effects of volume conduction can therefore appear to turn phase lags into
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phase leads, causing an underestimate in the strength of true connectivity between two

signals (Cohen, 2015)(Figure 9).

A) The common input problem B) The “who's first” problem
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Figure 9: Infographic depicting the common input problem and the "who's first" problem when using phase-based
connectivity measures (Cohen, 2014)

Choice of Reference

The choice of a reference standardised across all study EEG data is taken at the pre-
processing stage. The selection of an appropriate reference is important as the choice can

affect the calculations within PSD and connectivity measures (Figure 10).

Within EEG practice, there is a range of active reference choices. Common reference choices
can be split into generalised references e.g., the common average reference, a single active
electrode which may be sited on the nose, the vertex or the mastoid, or a linked reference
which is usually sited at the mastoids. Each generalised reference has benefits and
drawbacks, and different references are used for different neurophysiological techniques.
(Jia, 2019; Yao et al., 2019). Average reference has previously been recommended as the
reference of choice, however, more recently the use of REST (reference electrode
standardization technique) has been proposed as a standard for EEG analysis. REST is
described as an infinity reference, and utilises neural current sources from the EEG
recording, as these are reference-independent. REST has been compared to other reference
choices, including average reference, and has proved superior for connectivity analysis (Yao

etal., 2019).
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Theta

Figure 10: The effect of electrode choice on a power spectral map of theta frequencies. From left to right, the references are
left ear (LE), LM, AR and REST (Yao et al., 2019)

1.2. Connectivity Measures in the Study
In addition to measuring functional or effective connectivity, measures can additionally be
described in terms of their signal processing method (parametric and non-parametric),
whether they measure linear or non-linear interactions, and which domain the connectivity
measure uses for its calculations (time domain, frequency domain or, less commonly time-
frequency domain). No model is perfect, and each connectivity measure comes with its
advantages and disadvantages. For this reason, some research advises the use of more than

one measure to validate key results via consistency (Mahjoory et al., 2017; Cohen, 2014).

Cao et al. have drawn up a useful comparison of methods suitable for EEG which has been
included below (Table 1) (Cao et al., 2022). The functional and effective connectivity

measures relevant to this study are discussed in more detail below.

Imaginary Coherence (iCoh)

Coherence measures linear functional connectivity in the frequency domain. It is a bivariate
measure, i.e. it assesses the relationship between two signals (or electrode sites). Signals
can be analysed within the EEG frequency bands using this method. To do this, fast Fourier
Transform (FFT) is used to convert the time-based EEG activities into the frequency domain,
i.e., conversion into power spectral densities (PSD). A coherence function (cf) is then
calculated; this is the ratio between the cross-PSD (of all frequencies) and the individual PSD
of the two signals analysed. The coherence of each frequency band is calculated as (cf)2.

Coherence is measured on a scale from 0 to 1. If coherence is 0, there is no linear
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dependence between the two signals. Therefore, the larger the relationship between the

two signals, the higher the coherence value.

Table 1: Comparison of methods for quantifying brain connectivity using EEG (Cao et al., 2022)

Linearity Signal processing Brain connectivity Domain
Linear Nonlinear Parametric Nonparametric FC EC Time Frequency Time-frequency

DCM v v v v

MSC v v v v

STFC v v V

wc v v v v

PLV v Vv v V

GS v v v v

GC v v v v

PDC v v \ \}

Corr v v v v

SL v v v v

TE v v v vV v

Mi v v v v

DTF v v V V

PS v v v v

SEM v v v

IPC v v v v

PLI v v v v

ERR v v V v
Abbreviations: Corr, correlation; DCM, dynamic causal modeling; DTF, directed transfer function; EC, effective connectivity; ERR, error reduction ratio; FC,
functional connectivity; GC, granger causality; GS, generalized synchronization; IPC, imaginary part of coherency; MI, mutual information; MSC, magnitude
squared coherence; PDC, partial directed coherence; PLI, phase lag index; PLV, phase locking value; PS, phase synchronization; SEM, structural equation
modeling; SL, synchronization likelihood; STFC, short-time Fourier coherence; TE, transfer entropy; WC, wavelet coherence.

Coherence is a commonly used measure in EEG connectivity analysis but, as stated
previously it only detects linear dependence. As the coherence calculation is PSD-based, it is
likely to include a representation of the neural mass within the network population
alongside the phase relationship. However, coherence is prone to distortion by amplitude
variation within the signal. Additionally, coherence does not effectively address the issue of
volume conduction. There are several upgrades to the original coherence measure which

include imaginary coherence (iCoh) which was proposed by Nolte et al. in 2004.

ICoh minimises the effect of volume conduction by removing correlations which showed
zero lag based on the idea that true correlations could not create a zero lag. A remaining
drawback of iCoh is its bias for phase-lags of /4 ( a quarter cycle), as this limits it in
detecting coherence in phase with each other, or phase opposition (Cohen, 2014; He et al.,
2019; Jia, 2019; Sakkalis, 2011). Therefore, iCoh can over, or under-estimate connectivity,

dependent on the signal content.
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Weighted phase-lag index (wPLI)

Phase-based connectivity measures are also commonly used in EEG connectivity studies.
The focus of phase-based measures is the timing of the oscillations within the network. The
prediction is, that if two oscillating signals demonstrate a constant phase shift with respect
to each other over time, they have phase synchronisation, and therefore have a connective
relationship. There are several different phase-based metrics with variable sensitivity to
time lag i.e., how much the magnitude of the lag affects the strength of the connectivity
measured. Phase lag index (PLI) was proposed by Stam et al. in 2007 and uses an algorithm
which detects asymmetry in phase difference between two signals, with larger asymmetries
denoting stronger connectivity. PLI is a robust measure concerning the common sources
problem, but its weakness lies in a discontinuity in determining true connectivity when the

phase asymmetry is small which leads to a misinterpretation of phase lags and leads.

Weighted phase-lag index (wPLlI) is a functional connectivity in the frequency domain which
is capable of detecting linear and non-linear connectivity. In comparison to its predecessor,
the phase-lag index, wPLI weights phase leads and lags related to the magnitude of the non-
zero lag (imaginary component), giving increased statistical power to the metric. WPLI is
robust against volume conduction and successfully identifies connectivity. However, with
genuine, but small, time lags it can underestimate the connectivity by up to 40%. The output
of wPLI can also be affected by non-stationary signals i.e., those that show frequency
variation over time. EEG signals are, by nature, dynamically variable over time, and whilst
some non-stationary signals within a time series may genuinely represent noise, others can
possess a true connective relationship. Again, this can generate an underestimation of true

connectivity (Cohen, 2015; Jia, 2019; Cohen, 2014).
Phase Transfer Entropy (PTE)

Transfer entropy (TE) has developed from the mutual information (MI) method, which is
used widely in science and engineering. Ml originates from Shannon entropy which
measures the amount of information a variable holds and the information it provides is
based on probabilities and distributions. Unlike the Fourier transform, entropy functions
outside of the time domain of the data i.e., the time order of the data does not influence

the results. TE however extends the entropy measure, by taking temporally recent signals
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into account within its probability calculations (Cohen, 2014; Vicente et al., 2011; Lobier et

al., 2014).

Although less popular in neuroscience, both Ml and TE provide some real advantages
concerning connectivity analysis. Both Ml and TE provide a measure of the information
shared between two signals and therefore represent bivariate measures. The two signals
can arise from two electrode sites, or from the same electrode site, which enables a flexible
custom-tailored approach in detecting connectivity for any data distribution type (e.g.,
linear, non-linear, exponential, circular). Therefore, Ml and TE are model-free which gives
flexibility but means that if the relationship between signals is purely linear, a linear-based
model outperforms both Ml and TE. However, the flexibility of Ml and TE can create
problems with the positivity or negativity of the signal, as Ml and TE are blind to these

relationships (Vicente et al., 2011; Cohen, 2014).

Another drawback of Ml and TE is that it can inflate estimates of connectivity if too little
data, or too few sample points are provided. Therefore, a high sampling rate and longer
epoch are required to improve the accuracy of the results. It should be noted that increasing
the sampling rate also increases the amount of noise within a signal, so it is wise to employ
robust pre-processing to remove excess noise from the raw data. The reliability of TE
calculations can also be influenced by the presence of strong non-stationaries within the

signal (Cohen, 2014; Vicente et al., 2011).

Phase Transfer Entropy (PTE) was introduced to overcome some of the limitations above,
particularly concerning oscillatory networks. PTE provides a measure of directed
connectivity within neuronal networks and integrates the concept of phase-based
information flow into the TE metric. This means that PTE can detect directed phase coupling
between signals, and the time-efficiency of this is optimised by the use of a binning method
which allows PTE calculation from both trial data (EP/ERP) and continuous EEG data. The
PTE metric is robust at detecting directed connectivity in the presence of “realistic” noise
and source mixing down to “moderate” coupling strengths, is reliable across a wide range of
time lags, and requires less data than the original TE measure. PTE is also shown to be more

effective than TE at detecting incidences of cross-band coupling (Lobier et al., 2014).
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Due to the constraints of this thesis concerning word count, a full review of connectivity
measures was not possible. Therefore, the focus has been on the measures implemented in
the research. ICoh, wPLI and PTE are all robust concerning volume conduction and between
them cover aspects of connectivity related to power, frequency, phase, and directionality.
The measures chosen also provide information regarding both linear and non-linear

interactions.

1.3. Beyond Connectivity — Machine Learning
Whilst machine learning algorithms have not been used within this research, | am touching
on it here because they provide a natural progression for connectivity data, permitting
further pattern analysis, generating insight, and improving predictions drawn from the data.
There are wide-ranging, real-world examples of the uses for machine learning, with the
most relevant of these being assisting in the diagnosis of medical conditions. An example of
the potential use of machine learning in EEG analysis was published by Gemein et al., who
applied a feature-based decoding network, to the classification of pathological vs. non-
pathological EEG and obtained a high degree of accuracy (Gemein et al., 2020). Machine
learning can extract features such as disease biomarkers which have proved useful in the
classification and earlier diagnosis of several pathologies such as seizure types, sleep
disorders, Alzheimer’s disease (AD) and schizophrenia (Cao et al., 2022; Saeidi et al., 2021,
Hosseini et al., 2021).

Machine learning can be separated into two types: unsupervised learning where the
algorithm builds up a recognition of patterns based on input data only, and unsupervised
learning where the algorithm develops a predictive model based not only on the input data
but also from known outputs. There are several common algorithms within each type of
machine learning, dependent on the type of data, the data size, and the results required
(Figure 11). Common algorithms used in published EEG research are Decision Tree/ Random
Forest, Support Vector Machine and K-Nearest Neighbour (Cao et al., 2022; Saeidi et al.,
2021; Hosseini et al., 2021; Matlab, 2022).

Machine learning is increasingly offering a meaningful gateway from research findings into
clinical practice and provides a viable progression of data analysis for the study results from

this thesis.
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Figure 11: An overview of machine learning techniques and their related algorithms (Matlab, 2022)
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Memory, Amnesia and Epilepsy
Memory dysfunction is a key symptom in seve