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Abstract 
The immunotherapy, pembrolizumab, is not effective in the treatment of all lung 
cancer patients. Stratification of the use of this drug in non-small cell lung cancer 
(NSCLC) patient care is currently performed within the NHS using 
immunohistochemistry (IHC)-based PD-L1 expression analysis, but patient response 
rates following stratification remain low at 45%. A more accurate predictor of 
immunotherapy response is desirable to minimise the use of ineffective and costly 
therapy. Tumour Mutational Burden (TMB), defined as the number of somatic 
mutations1 found within a tumour, has been identified in numerous research studies 
as a potential new biomarker for immunotherapy stratification in lung cancer patients 
either alone or in combination with PD-L1 expression analysis. Publications show that 
high TMB, quantified using either Whole Exome Sequencing (WES), or targeted Next 
Generation Sequencing (NGS), is associated with immunotherapy response. Following 
the recent United States Food and Drug Administration (FDA) approval of the TMB-
stratified use of pembrolizumab for solid tumours including lung cancers, UK approval 
for TMB-based immunotherapy stratification via National Institute for Health and Care 
Excellence (NICE) may be granted in the coming years, replacing or supplementing the 
suboptimal PD-L1 expression analysis. With such approval would come the 
requirement for NHS Genomics laboratories to deliver TMB services.  

Despite the considerable international interest in TMB as a biomarker, there remains a 
lack of consensus in how TMB is calculated. TMB-focused studies to date show 
differences in the NGS panels used to determine variant number, the variants included 
within the TMB assessment, and the definition of ‘high TMB’ via the use of different 
TMB thresholds to separate likely responders from non-responders. The clinical impact 
of these variables has to be understood and controlled prior to service implementation 
within the NHS to ensure high quality services are provided to patients. This research 
study aimed to produce novel data regarding the impact of these variables on TMB 
score and TMB status. This study has provided increased understanding in this area by 
demonstrating the impact on TMB estimation and TMB high status when three NGS 
panels (Illumina TruSightTM Oncology 500 panel, Agilent SureSelect Community Design 
Glasgow Cancer Core panel, and Nonacus Cell3TM Target: Pan Cancer panel) targeting 
varying proportions (1.58-1.94Mb) of the genome, were used to determine TMB using 
different TMB quantification methods on the same cohort of Welsh NSCLC patients 
with high PD-L1 expression status and known pembrolizumab response status. TMB 
quantification for all three NGS panels was performed using the Institut Curie TMB 
tool. TMB values were generated following the application of different variant filtering 
parameters based on the inclusion/exclusion of sequencing artefacts, which is an area 
not well-researched currently in terms of impact on TMB, and the inclusion/exclusion 
of synonymous variants, which is an area of difference within TMB publications. The 
utility of ROC curve generated TMB high thresholds for immunotherapy response 
prediction were evaluated alongside a 10 variants/Mb threshold, which is a threshold 
used in a number of TMB publications. This evaluation enabled the primary research 
question to be answered by demonstrating the potential clinical utility of a combined 
TMB and PD-L1 biomarker for immunotherapy response. Sequencing data from the 
Illumina and Nonacus panels highlighted an increase in sensitivity for the separation of 

 
1 From this point on within this thesis, mutations in the tumour will be referred to as ‘variants’ 
in line with existing practices within the All Wales Medical Genomics Service (AWMGS). 
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responders and non-responders when a combined TMB and PD-L1 biomarker was used 
compared to the use of PD-L1 expression analysis alone. The Agilent NGS panel failed 
to produce any sequencing data above the minimum coverage level. The study 
identified elements of analysis providing optimal TMB quantification, and generated 
suggestions for minimising the clinical impact of panel- and analysis-dependent TMB 
variation to improve the clinical utility of TMB as a biomarker. 

Given the small size of the cohort (n=17), limited by the cost of NGS and the financial 
constraints of this research, this thesis represents a pilot study. The findings could be 
used to shape the design of future larger scale research studies evaluating the utility of 
different panel/analysis combinations, or to drive further research into the clinical 
utility of TMB in a larger Welsh cohort, which would be more representative of the 
Welsh population as a whole and would provide more weighting to the findings of this 
small pilot study. 

The study makes recommendations that could guide NHS Genomic laboratories in how 
to progress TMB service validations, and which could contribute to future best practice 
guidelines for TMB service delivery. These recommendations support the use of: NGS 
panels >1.6Mb in size, the Institut Curie TMB tool, and ROC curves in TMB evaluation, 
whilst the need for artefact removal prior to TMB calculation is not favoured. The 
feasibility of TMB service implementation within the NHS environment was highlighted 
by the potential cost neutral status of a TMB service and the recent launch of an 
External Quality Assurance (EQA) pilot scheme for TMB quantification (Abate 2020); 
recommendations for future EQA schemes are provided. 
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Chapter 1: Introduction 
Lung cancer is one of the most common cancers, with over 43,000 new lung cancers 
diagnosed each year in the UK (NICE, 2021). The most common form of lung cancer is 
non-small cell lung cancer (NSCLC), making up 87% of cases (NHS, 2022). As well as 
surgery, chemotherapy and radiotherapy, there are a number of targeted therapies 
available to specific lung cancer patient groups, the use of which is dependent on 
specific tumour attributes; this could be the presence of specific gene variants in the 
tumour (e.g. EGFR gene variants) or expression of a particular protein on the tumour 
cell surface (e.g. PD-L1 expression). These targeted approaches are beneficial over 
traditional chemotherapy or radiotherapy as they reduce the risk of adverse patient 
side effects by specifically targeting cancer cells. The All Wales Medical Genomics 
Service (AWMGS) has been providing targeted EGFR gene testing for NSCLC patients 
since 2010, whereby tumour samples are analysed to detect specific EGFR variants that 
dictate either a sensitivity or a resistance to EGFR-targeted therapy. Other genomic 
tests, aligned to the use of specific targeted treatments, are also now available to 
NSCLC patients for the interrogation of the KRAS, BRAF, ALK, ROS1, NTRK1/2/3, RET, 
and MET genes. The expansion of genomic testing in lung cancer is a result of the 
identification of novel biomarkers in clinical trials, and the ability of some NHS 
laboratories, including AWMGS, to use NGS technology to interrogate multiple gene 
targets was driven by the Cancer Research UK Stratified Medicine Programme. This 
programme pioneered the use of NGS for the evaluation of lung tumours within the 
NHS, with the NGS results from this study resulting in stratification of patients into 
relevant arms of the Lung Matrix trial. Despite the increasing number of targeted 
therapies available to lung cancer patients, the 5-year survival for lung cancer remains 
below 10% (NICE, 2021); therefore, there is a continued drive to improve lung cancer 
survival rates in the UK and, as such, lung cancer was selected as the focus of this 
thesis performed within the AWMGS. 

The use of anti-PD-1 monoclonal antibodies (mAbs) is a targeted immunotherapy 
approach used in the treatment of NSCLC patients (Topalian et al. 2012). The use of 
one such immunotherapy, pembrolizumab, is stratified so that only patients whose 
tumours are shown to express PD-L1 protein are offered this treatment in accordance 
with National institute for Health and Care Excellence (NICE) guidance (NICE, 2016a). 
Unfortunately, this method of stratification is imperfect, with a large proportion of 
patients not responding to treatment (Sul et al. 2016). An alternative or 
complimentary stratification approach is therefore being sought at an international 
level with the aim to better target the appropriate patient population, so improving 
patient outcome by avoiding unnecessary side effects in NSCLC patients who will not 
benefit from this anti-PD-1 mAb and allowing these patients faster access to other 
treatments that may be of more clinical benefit. 

Tumour Mutational Burden (TMB), defined as the number of somatic variants found 
within a tumour which can be estimated using Whole Genome Sequencing (WGS), 
Whole Exome Sequencing (WES) or targeted NGS panels (Campesato et al. 2015; 
Johnson et al. 2016; Kowanetz et al. 2017; Hellmann et al. 2018a, Pestinger et al. 
2020), has emerged as a potential new biomarker for prediction of immunotherapy 
response in cancer patients (Rizvi et al. 2015; Hugo et al. 2016; Carbone et al. 2017; 
Hellmann et al. 2018b). Despite a lack of definition of the targeted panels suitable for 
TMB assessment in terms of panel size and gene content, a lack of guidance regarding 
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how TMB should be calculated in relation to the different types of genetic variants 
counted within the TMB estimate, and a lack of consensus regarding how ‘TMB high’ 
should be defined, in June 2020, the United States Food and Drug Administration (FDA) 
approved pembrolizumab for the treatment of patients with unresectable or 
metastatic TMB-high solid tumours, including lung cancers (Marcus et al. 2021). This 
approval was based on the results of the KEYNOTE-158 trial showing improved survival 
of patients with high TMB tumours when this immunotherapy was used (Marabelle et 
al. 2020). The approval specified that TMB had to be calculated using an FDA-approved 
targeted NGS panel with a TMB-high value of >10variants/Mb (Marcus et al. 2021). 
Treatment stratification using TMB is yet to be NICE-approved and NHS Genomic 
services, including AWMGS, do not currently deliver TMB testing. There is therefore a 
need for TMB to be investigated within an NHS setting to ensure laboratories have the 
necessary expertise to deliver this testing in preparation for any NICE-approved TMB-
based services that may emerge. Prior to the delivery of TMB services within the NHS, 
the outstanding questions regarding how TMB should be calculated would have to be 
answered to ensure that appropriate panel and analysis choices were made within 
NHS Genomics laboratories, ensuring the same high-quality service, providing the 
same level of clinical utility, was being delivered to patients across the UK by different 
NHS laboratories. It may not be feasible to dictate to NHS Genomic laboratories a 
specific NGS panel by which TMB should be calculated owing to laboratories already 
having established NGS services for the delivery of existing solid tumour genetic testing 
and the prohibitive cost implications of implementation of another NGS pathway for 
TMB detection; therefore, assessment of the utility of different panels for TMB 
estimation is important within the NHS setting. 

This research will deliver new insights into the controversies surrounding TMB 
assessment by investigating the impact on TMB quantification of: targeted NGS panels 
of varying size (in Mb) and gene content; different TMB calculations based on the 
inclusion/exclusion of specific variant types; varying TMB high thresholds (including 
the 10 variants/Mb FDA-approved threshold). This project is novel as, at the time of 
the study proposal in 2020, there were no publications of such a comparative analysis 
of TMB assessment within the same patient cohort, and to date this is the first 
evaluation of TMB technology performed within a diagnostic environment utilising 
diagnostic-grade samples. There are no comparisons in the literature of the TMB 
detection capabilities of the targeted panels evaluated within this thesis. 

The evaluation of different methods of TMB estimation will identify an optimal set of 
conditions that provide the greatest utility of TMB as a biomarker within this small 
cohort. These conditions would require confirmation of utility in research studies 
involving larger cohorts, but could provide preliminary guidance regarding the 
panel/analysis choices for TMB service validations within NHS Genomics laboratories in 
preparation for future NICE-approval of TMB assessment. This information could be 
used to develop future Association for Clinical Genomic Science (ACGS) best practice 
guidelines for TMB stratification services within the NHS. 

This research will answer the primary research question, establishing whether a 
combined TMB and PD-L1 biomarker has clinical utility in a Welsh NSCLC patient 
cohort, encompassing if this combined biomarker predicts pembrolizumab response in 
a more effective way than PD-L1 expression status alone, in accordance with other 
published datasets for non-Welsh populations (Carbone et al. 2017; Peters et al. 2017; 
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Seiwert et al. 2018). Such population-specific utility would be important to 
demonstrate prior to establishing a TMB service within AWMGS. This study represents 
the first TMB evaluation of a Welsh cohort, therefore is producing novel data within 
the field, although, given the small cohort size, this work can be seen as a pilot study 
from which further research studies could emerge interrogating the utility of TMB 
assessment within a wider Welsh population. This study provides AWMGS with 
valuable experience in the evaluation of TMB; this will ensure that, in the event that 
TMB is NICE approved for use as an immunotherapy response prediction biomarker in 
the future, Welsh cancer patients will continue to receive the best possible care by 
AWMGS having the technical knowledge to deliver a TMB service.  

The literature review described at the start of this thesis discusses the existing 
published research regarding the utility of TMB as a biomarker to predict 
immunotherapy response in NSCLC patients and describes the elements of TMB 
assessment lacking standardisation, so provides the context to the focus of this thesis. 
The method chapter primarily focuses on describing the process employed to evaluate 
the clinical utility of TMB within this Welsh cohort in terms of its effectiveness as a 
biomarker of immunotherapy response prediction. The feasibility of the 
implementation of a TMB service within the NHS is also considered by assessing the 
cost effectiveness of a targeted NGS-based TMB service, and investigating the 
availability of External Quality Assurance (EQA) schemes for providing quality 
assurance in TMB assessment, which would be essential to the implementation of a 
TMB service in an NHS Genomics laboratory requiring ISO15189 accreditation.  

The method chapter describes the target enrichment performed using three capture-
based NGS gene panels from Illumina, Nonacus and Agilent, and details the 
bioinformatic data analysis methods used and the TMB calculations performed, 
including the process of generating optimal ROC curve TMB high thresholds. The 
statistical analysis performed is described in the methods chapter. The results of the 
statistical analysis of the data using the paired t-test, Spearman correlation coefficient, 
Kaplan Meier curves and log rank test, and Kruskal-Wallis test are documented to: 
compare TMB scores from different panel/analysis combinations; identify associations 
between immunotherapy response and TMB scores generated from different 
panel/analysis combinations; describe any statistical significant difference in survival 
between TMB high + PD-L1 high expressor and TMB low + PD-L1 high expressor patient 
groups, as well as between PD-L1 high expressor and TMB high + PD-L1 high expressor 
patient groups.  

The discussion chapter evaluates the data in relation to the aims of this study, 
discussing how the TMB panel, calculations, and thresholds impact on the TMB 
(high/low) status of samples within this Welsh cohort, and discussing the optimal 
panel/analysis combination within this thesis. The utility of a combined TMB + PD-L1 
biomarker for immunotherapy response prediction in this cohort is considered in 
relation to both the improved sensitivity of patient stratification using this combined 
biomarker, as well as the feasibility of a TMB service within the NHS. Conclusions 
surrounding the utility of a combined TMB + PD-L1 biomarker for immunotherapy 
response prediction in the clinical setting are made including highlighting elements of 
analysis that could improve the utility of TMB as a biomarker, and making 
recommendations for TMB quantification relevant to both future research studies and 
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clinical service validations. Suggestions of future work are highlighted, building on the 
findings of this pilot study. 

 

1.1 Literature review 
A systematic review of available literature was performed, which identified a wealth of 
both research publications and clinical trial data regarding the use of TMB as a 
potential immunotherapy treatment stratification biomarker (figure 1). This literature 
review was submitted in 2020 as part of section C1 of this Professional Doctorate 
(Roberts 2020) but has been updated to include relevant more recent publications 
where appropriate. The literature review that follows describes the utility of 
immunotherapy within cancer care pathways, the benefits of the stratified use of this 
therapy, the evolvement of TMB as an immunotherapy stratification biomarker in lung 
cancer, and the variation in TMB assessment methodologies currently in use.  

 

Figure 1: PRISMA diagram summarising the literature search. A search of PubMed 
(Ncbi.nlm.nih.gov, 2019) using the search term: “tumour mutational burden” identified 5006 
results. The first 20 pages of papers listed (10 per page) were assessed based on the title of 
the paper; this was determined by key words such as “immunotherapy” or “NGS” or “solid 
tumour” within the article title. A total of 50 articles met the inclusion criteria and the 
abstracts and/or full texts were reviewed. Review of these 50 articles led to the 
identification of around 20 further articles of interest. 
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1.2 Immunotherapy as a treatment option in cancer patient care 
Cancer immunotherapies represent a diverse range of treatments developed over the 
last decade that aim to restore the ability of the immune system to eliminate cancer 
cells. One such immunotherapy involves the use of anti-PD-1 mAbs for the treatment 
of melanoma, renal-cell cancer, and NSCLC (Topalian et al. 2012; figure 2). 

 

Figure 2: Mode of action of immune checkpoint inhibitors, such as anti-PD-1 mAbs. a) PD-L1 
expressing tumour cell binds to PD-1 receptor expressing T-cell and blocks the T-cell initiated 
immune response; b) Anti-PD-1 mAb binds to PD-1 receptor expressing T-cell, preventing the 
tumour cell from deactivating immune response. 

 

Immunotherapy can be beneficial over the conventional treatment options of surgery, 
chemotherapy and radiation by targeting only specific cancer cells, e.g. anti-PD-1 mAbs 
inhibit only PD-L1 expressing tumour cells, and so potentially causes less toxicity to 
healthy patient cells. However, immunotherapy has its limitations, as it is not effective 
for all cancer patients. In a study of 495 patients with advanced NSCLC, Garon et al. 
(2015) determined the objective response rate (ORR) to the PD-1 mAb pembrolizumab 
to be 19%, with a median duration of response of 12 months. The reason for this 
variation in cancer patient response to immunotherapies is due to the heterogeneity 
of the cancer, the variation in the prevalence of immune cells within the tumour 
microenvironment of different cancers, and the ability of the tumour to evade 
detection by the immune system (Chiriva-Internati and Bot 2015; Incorvaia et al. 
2019). The ability to predict who is most likely to respond to cancer immunotherapies 
has huge benefit to both patients and the NHS as a whole, as costly ineffective 
treatment and immune-related adverse effects can be avoided via a stratified 
approach.  

1.2.1 Immunotherapy treatment stratification in lung cancer patients 

Currently, the only NICE-approved immunotherapy treatment stratification is the 
determination of PD-L1 expression levels in tumours through the use of IHC to predict 
response to the anti-PD-1 mAb pembrolizumab in NSCLC patients (NICE, 2016a). The 
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premise is that, tumour cells expressing high levels of PD-L1 will have the best 
response to pembrolizumab (Topalian et al. 2012; Taube et al. 2014). PD-L1 IHC 
analysis is currently performed in the Cellular Pathology department of University 
Hospital of Wales, allowing Welsh NSCLC patients to benefit from anti-PD-1 
immunotherapy in a stratified manner.  

1.2.1.1 PD-L1 expression as a biomarker for immunotherapy treatment stratification 

Currently, there are two anti-PD-1 mAbs to treat human cancers that are both NICE- 
and FDA-approved: pembrolizumab used to treat NSCLCs and melanomas (as 
mentioned above in relation to treatment stratification in NSCLC), and nivolumab 
which is primarily used to treat melanomas (NICE, 2016a; NICE, 2016b; Pai-Scherf et al. 
2017; Fda.gov, 2020a). The mode of action of these anti PD-1 mAbs in improving a 
cancer patient’s ability to detect the tumour and initiate an immune response is shown 
in figure 2. In contrast to pembrolizumab, the effectiveness of nivolumab as an 
immunotherapy agent has been deemed to be independent of PD-L1 expression (NICE, 
2016b). There are a number of additional anti-PD-1 drugs that are FDA-approved for 
the treatment of a variety of cancer types, which are both PD-L1 expression dependent 
(e.g. atezolizumab in NSCLC) and independent (Fda.gov, 2020a). 

PD-L1 expression is considered to be sub-optimal as a biomarker for immunotherapy 
response, as some patients who test positive for PD-L1 expression may not respond to 
immunotherapy, and conversely, there are PD-L1 expression negative patients whom 
still respond (Robert et al. 2015; Ribas et al. 2016). Specifically, 2016 trial data for 
NSCLC patients treated with pembrolizumab, showed that patients with high PD-L1 
expression (>50%) still only had a 45% response rate to this immunotherapy (Sul et al. 
2016). There are two IHC technical factors that could be affecting this lack of 
consistency in PD-L1 as a biomarker; firstly, the multiple PD-L1 IHC assays available 
have different sensitivities for detecting PD-L1 expression (Rimm et al. 2017; Hirsch et 
al. 2017), and secondly, the scoring of PD-L1 expression across all assays is variable 
dependent on the pathologist performing the assessment (Rimm et al. 2017). Other 
factors that impact on the clinical utility of PD-L1 expression as a biomarker are 
biological factors rather than technical-related nuances as discussed above (table 1).  

Table 1: Biological factors contributing to PD-L1 expressing tumours showing a lack of 
response to anti-PD-1 immunotherapy (amended from Cottrell and Taube 2018). 

1  The sample analysed may not be representative of the whole tumour owing 
to heterogeneity within the tumour. 

2 PD-L1 expression can change over time, therefore the sample analysed may 
not be representative of the tumour at the time of immunotherapy 
treatment. 

3 Tumour could express other antigens, asides from PD-L1, which act as 
inhibitors of the cellular immune response. 

 

1.2.1.2 The emergence of TMB as a potential biomarker for immunotherapy treatment 
stratification in lung cancer patients 

Owing to the imperfect nature of PD-L1 expression as a biomarker, alternative 
biomarkers, such as TMB, are being investigated as alternatives for immunotherapy 
treatment stratification. Studies were published in 2015-16, focussing on the reasons 



20 
 

behind variable immunotherapy responses in melanoma and NSCLC patients treated 
with anti-PD-1 drugs (Rizvi et al. 2015; Hugo et al. 2016). Work by Lawrence et al. 
(2013) and Alexandrov et al. (2013) had already illustrated that the somatic variant 
frequency in lung cancers and melanomas was high, but was also highly variable 
between samples of the same cancer type (figure 3). Rizvi et al. (2015) hypothesised 
that the number of somatic variants within a NSCLC tumour may influence the 
patient’s response to immunotherapy. 

 

Figure 3: Variability in somatic variant frequencies across different tumour types. Data is 
provided for 3083 tumour-normal pairs from 27 different tumour types established using 
WES (Lawrence et al 2013). Vertical axis represents the total number of somatic variants in 
the exome; each dot represents a tumour-normal pair. Paediatric tumours, such as rhabdoid 
tumours and Ewing sarcomas, have low number of somatic mutations (furthest left on X 
axis); lung cancers and melanomas have a high somatic mutation frequency (furthest right 
on X axis). The degree of TMB variation within a tumour type is illustrated by the vertical 
range of each column of dots, with a high degree of TMB variation being reported in lung 
cancers (0.1-100 variants per Mb) and melanomas in particular. 

 

 

Rizvi et al. (2015) and Hugo et al. (2016) utilised WES of NSCLC and melanoma patient 
samples respectively in order to identify genomic variations within these tumour 
samples. These studies found that tumours with a higher non-synonymous variant 
burden were more likely to respond to anti-PD-1 immunotherapy (pembrolizumab or 
nivolumab) and were linked to improved patient survival in both the melanoma and 
lung cancer populations studied (Rizvi et al. 2015; Hugo et al. 2016; figure 4). The 
findings of Hugo et al. (2016) did not meet statistical significance, which may have 
been linked to the fact that the study did not focus on a single immunotherapy drug, 
but included patients receiving either pembrolizumab or nivolumab. Despite both 
drugs being anti-PD-1 mAbs, it is already known that the effectiveness of nivolumab is 
independent of PD-L1 expression (NICE, 2016b); therefore, perhaps the Hugo et al. 
(2016) data could be skewed by a similar independency between nivolumab 
effectiveness and TMB status.  
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Figure 4: Correlation between variant number and immunotherapy response in published 
datasets of NSCLC and melanoma patients.  

a) Correlation between non-synonymous variant rate and immunotherapy response 
(adapted from Rizvi et al. 2015). Plot showing the number of non-synonymous variants in 31 
NSCLC patients with either response (defined as partial or stable response lasting >6 months; 
14 patients) or lack of response (17 patients) to anti-PD-1 drug pembrolizumab. Median 299 
variants/tumour in the response group versus 127 variants/tumour in the non-response 
group (Mann-Whitney P = 0.0008).  

b) Correlation between non-synonymous variant rate and immunotherapy response, with 
data being divided into low and high variant load groups (determined as below/above the 
group median) (adapted from Hugo et al. 2016). Plot showing the number of non-
synonymous variants in 38 melanoma patients with either response (response patterns were 
based on irRECIST; 21 patients) or lack of response (17 patients) to anti-PD-1 drugs 
(pembrolizumab or nivolumab). Median 495 variants/tumour in the response group versus 
281 variants/tumour in the non-response group (Mann-Whitney P = 0.30).  

c) Correlation between non-synonymous variant rate and survival in 31 anti-PD-1 
(pembrolizumab) treated NSCLC patients (adapted from Rizvi et al. 2015). 

d) Correlation between non-synonymous variant rate and survival in 38 anti-PD-1 
(pembrolizumab or nivolumab) treated melanoma patients (adapted from Hugo et al. 2016).  
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Following the Rizvi et al. (2015) study highlighting TMB as a potential biomarker for 
immunotherapy response in NSCLC patients, WES to assess TMB status was 
retrospectively used within 2 lung-focused clinical trials, CheckMate-026 (Carbone et 
al. 2017), and CheckMate-032 (Hellmann et al. 2018b), involving the anti-PD-1 drug 
nivolumab. The correlation between immunotherapy response/improved lung cancer 
patient survival and high TMB as described by Rizvi et al. (2015) was replicated in these 
trials. This nivolumab-based trial data does not support the previous proposal that 
there is independency between nivolumab effectiveness and TMB status, suggesting 
that the relatively small dataset of Hugo et al. (2016) could have resulted in lack of 
statistical significance within this study. 

Importantly Checkmate-026 highlighted a combined benefit of using both PD-L1 status 
and TMB levels to predict patient response to immunotherapy, with high TMB + high 
PD-L1 expression patients having the best outcomes in this trial (Carbone et al. 2017).  
This combined predictive benefit of TMB and PD-L1 data has since been replicated in 
other studies, both for NSCLC (Castellanos et al. 2019), and head and neck cancer 
(Seiwert et al. 2018). This research thesis will identify whether the same combined 
benefit of PD-L1 expression status and TMB estimation is replicated within a small 
Welsh NSCLC patient cohort. 

Mounting evidence for the clinical utility of TMB as an immunotherapy response 
biomarker led the CheckMate-227 trial to be the first trial to prospectively evaluate 
progression free survival (PFS) in high TMB lung cancer patients (Hellmann et al. 
2018a). Based on preliminary data showing improved PFS in high TMB patients 
receiving combined immunotherapy (the PD-1 antibody nivolumab, plus the CTLA-4 
antibody ipilimunab), in June 2018 the FDA approved the application for the use of this 
drug combination for treatment of NSCLC patients with high TMB (Bristol-Myers 
Squibb, 2018). Unfortunately, the overall survival data based on TMB status that 
emerged later in 2018 was not statistically significant, which led Bristol Myers Squibb 
to withdraw the FDA licence application for combined immunotherapy usage in high 
TMB NSCLC patients in January 2019 (Targeted Oncology, 2019).  

Despite the lack of statistical significance of the CheckMate-227 overall survival data 
noted above, research into TMB as a biomarker continued. Most notably, the 
KEYNOTE-158 trial investigated the utility of TMB assessment for predicting 
pembrolizumab response in a range of solid tumours, including small cell lung cancer, 
and demonstrated objective response rates in 29% (30/102) of TMB high patients 
compared to only 6% (43/688) of TMB non-high patients (Marabelle et al. 2020). Based 
on this trial data, in June 2020, treatment stratification of pembrolizumab based on 
the use of TMB became the first example of an FDA-approved service using TMB as a 
biomarker; specifically, this approval was granted for the use of pembrolizumab in 
patients with unresectable or metastatic TMB-high solid tumours, with a requirement 
for TMB assessment to be performed using an FDA-approved NGS panel with a TMB 
high threshold of 10 variants/Mb (Marcus et al. 2021).  

Interest in TMB as a biomarker remains high in the research environment, as 
demonstrated by a ClinicalTrials.gov website search performed on 9th June 2022, which 
identified twenty-two currently active clinical trials evaluating the utility of using TMB 
status to refine immunotherapy use amongst NSCLC patients (ClinicalTrials.gov, 2022). 
Future NICE approval of drugs based on TMB level may be forthcoming if ongoing 
prospective trials yield positive associations between TMB and immunotherapy 
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response, particularly given the fact that the first FDA approval of TMB as a biomarker 
has already been granted (Marcus et al. 2021). Alongside the clinical trial research that 
is currently ongoing into the utility of TMB as a biomarker, a 2019 survey by the 
International Quality Network for Pathology (IQN Path) to assess the global state of 
TMB testing at this timepoint identified that, despite TMB not being FDA- or NICE-
approved as a biomarker at the time of the survey, TMB testing was already being 
offered by 69 labs worldwide (Fenizia et al. 2021). The testing was being performed in 
these labs for a combination of research purposes (56 labs) and for clinical applications 
(57 labs) (Fenizia et al. 2021). 

 

1.3 TMB as a biomarker in the clinical setting 
Many of the early research studies and trials noted so far in relation to the 
measurement of TMB (Ritzi et al. 2015, Carbone et al. 2017, Hellmann et al. 2018b) 
relied on the use of WES to interrogate tumour DNA and a matched normal DNA from 
a patient. Both the choice of technology and the dual sample testing have practical 
implications for genomic laboratories, should these labs be required to deliver TMB-
based services for improved NHS patient care; these issues are discussed below. 

1.3.1 TMB detection methods: WES vs targeted NGS panels 

The gold standard for measuring TMB could be considered to be WES as this technique 
identifies variants across the whole exome of the tumour sample (approximately 
22,000 coding genes over 30Mb) and uses this value to determine variant load. 
However, the high levels of both human resources and IT support needed to process 
samples by WES and interrogate and store WES data, serve as potential barriers to 
WES use within an NHS setting (Phgfoundation.org, 2011; Fancello et al. 2019). 

In terms of WES for solid tumour sample analysis, there is an additional practical issue 
pertaining to the limited amount of tumour material available, coupled with the DNA 
input requirements of WES. Hellmann et al. (2018b) noted that only 61% of lung 
patients in the CheckMate-032 trial had sufficient tumor biopsy material to generate 
the 150ng DNA required for WES. To be feasible within the clinical setting therefore, 
TMB quantification would ideally be performed using a targeted NGS panel where 
both DNA requirements and staffing and computational resource needs are reduced 
(figure 5). It is therefore perhaps unsurprising that the results of the IQN Path survey in 
2019 showed that 72% (50/69) of the labs already analysing TMB at a research or 
clinical level were using targeted sequencing approaches (Fenizia et al. 2021). 
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Figure 5: Illustration of target enrichment in WES and targeted NGS panels.  Target 
enrichment is the process by which a subset of genes or regions of the genome are isolated 
and sequenced. In WES, the target enrichment process selects for all coding genes of the 
exome, whilst in targeted NGS panels the enrichment focuses on a specific subset of genes 
according to the panel design. The DNA double helix is shown; the grey boxes represent 
genes that are targeted in WES; the orange regions represent genes or gene regions that are 
targeted for enrichment within an NGS panel. Red regions illustrate the multiple overlapping 
sequencing reads that would be generated from each of these sequencing approaches. 

 

The accuracy of TMB measurement using targeted NGS panels compared with WES has 
been investigated in a number of studies across a range of tumour types (including 
lung), with good correlation between TMB levels ascertained by the different 
methodologies (Rizvi et al. 2018; Chalmers et al. 2017; figure 6). Accuracy of panel-
derived TMB estimation in relation to WGS has also been demonstrated; Pestinger et 
al. (2020) found that the TMB data from the 1.94Mb Illumina TSO500 panel was 
comparable to data generated from WGS (R2 = 0.9). Importantly, many studies and 
clinical trials have also successfully used targeted NGS panels to demonstrate the 
potential clinical utility of TMB as a biomarker for immunotherapy response 
(Campesato et al. 2015; Johnson et al. 2016; Kowanetz et al. 2017; Hellmann et al. 
2018a). This evidence supporting the utility of targeted NGS panels in estimating TMB 
supports the use of such panels in this research thesis to evaluate utility in a Welsh 
patient cohort.  

Figure 6: Correlation between TMB levels in targeted NGS panels and WES. a) 29 cancer 
patients determined by WES (30Mb) and the FoundationOne targeted NGS panel (1.1Mb). 
Estimates of TMB correlated well with an R2 value of 0.74 (Chalmers et al. 2017); b) 49 anti-
PD-1-treated NSCLC patients determined by WES (30Mb) and 3 targeted NGS panels (ranging 
from 0.98-1.22Mb in size). Estimates of TMB by these approaches correlated well (Spearman 
p = 0.86; P < 0.001) (Rizvi et al. 2018). 
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1.3.1.1 Critical size of targeted NGS panels for TMB detection 

The sizes of the panels used in the targeted NGS-based TMB studies already 
mentioned (Rizvi et al. 2018, Chalmers et al. 2017, Pestinger et al. 2020, Campesato et 
al. 2015, Johnson et al. 2016, Kowanetz et al. 2017, and Hellmann et al. 2018a), are in 
the range 0.91-1.94Mb, representing the interrogation of 3-6% of the exome. Although 
a number of these panels have been deemed to be effective at TMB measurement by 
comparison to WES or WGS (Chalmers et al. 2017; Rizvi et al. 2018; Pestinger et al. 
2020), a series of published works show that the size of a targeted panel is critical to 
TMB estimation, and that not all panels are equally effective in their ability to quantify 
TMB (Chalmers et al. 2017; Buchhalter et al. 2019; Campesato et al. 2015).  

Chalmers et al. (2017) computationally interrogated the TMB data derived from WES 
of tumour samples in order to estimate the number of variants that would be 
identified using NGS panels of size 0.2Mb to 10Mb, at TMB levels of 100, 20, and 10 
variants per Mb. They found that the deviation in the number of variants identified by 
the ‘simulation’ panels versus WES was lower for high TMB samples than for low TMB 
samples (figure 7). Meaning that, perhaps unsurprisingly, smaller targeted panels could 
be expected to have utility in detection of high TMB samples but would be unsuitable 
for the detection of low level TMB as the panel would likely significantly over/under-
estimate TMB levels. This observation was supported in a study by Hatakeyama et al. 
(2018), where TMB values in 2000 cancer patients were shown to be over-estimated 
for samples with lower TMB levels when a targeted 1.6Mb panel (409 genes) was used 
compared to using WES. 

 

Figure 7: Estimation of TMB using targeted NGS panels. Results from three computer 
simulations predicting the performance of NGS panels of various sizes (x axis: 0.2Mb to 
10Mb) in the detection of TMB at three different levels (TMB = 100, 20, 10 variants per Mb). 
Median observed deviation is shown in black and 10% and 90% confidence intervals are 
shown in grey. These plots show that the standard deviation decreases, and thus accuracy of 
TMB calling increases, as the size of the NGS panel increases (Chalmers et al., 2017). 

 

 

From the simulation data, Chalmers et al. (2017) concluded that, based on the 
inaccuracy of TMB estimation compared to WES, panels of <0.5Mb would be 
unsuitable for TMB detection. Data from another NGS panel vs WES simulation study 
led Buchhalter et al. (2019https://onlinelibrary.wiley.com/doi/full/10.1002/ijc.31878) to 
conclude that panels had to be >1.5Mb in size to estimate TMB accurately. The work 
by Hatakeyama et al. (2018), however, suggests refinement of this panel lower size 
limit to >1.6Mb, given that the panel used in the Hatakeyama et al. (2018) study was 

https://onlinelibrary.wiley.com/doi/full/10.1002/ijc.31878


26 
 

1.6Mb in size and yet showed some inaccuracy in TMB measurement (compared to 
WES) for low TMB samples. Confusingly, concluding that a panel size of 1.6Mb is 
required for accurate TMB detection challenges the data from Chalmers et al. (2017) 
and Rizvi et al. (2018), which showed that panels of 0.98-1.22Mb in size produced TMB 
data that accurately correlated with WES data (figure 6).  

The variation in apparent critical NGS panel size in terms of accuracy of TMB 
estimation compared to WES, could be explained by the findings of Budczies et al. 
(2019) who noted that TMB measurement may depend on multiple factors including 
the size of the panel, and perhaps the gene content of the panel. Therefore, 
differences in panel size and panel content are predicted to influence the accuracy of 
TMB quantification in comparison to WES. The accuracy of an NGS panel for TMB 
assessment compared to WES would also be influenced by how the TMB calculations 
were performed which is discussed later in this literature review.  

The impact of different gene contents of panels in relation to TMB detection levels has 
not been specifically investigated in a practical setting, however, Budczies et al. (2019) 
simulated panels of differing gene constitutions to evaluate how effective these panels 
were at determining variant load. This simulation found that a panel composed of 
oncogenes and tumour suppressor genes, perhaps unsurprisingly given the causative 
nature of such genetic variants in cancer, detected far more variants than a panel 
made up of randomly selected genes (Budczies et al. 2019). As the commercially 
available NGS panels being used to estimate TMB have generally been designed for the 
identification of clinically relevant variants in tumour samples, their gene content is 
oncogene/tumour suppressor heavy, which could result in an over-estimation of TMB. 
Bearing this in mind, the correlation in TMB values generated from targeted panels 
and WES/WGS as noted previously (Rizvi et al. 2018; Chalmers et al. 2017; Pestinger et 
al. 2020) suggests that the impact of the gene composition of targeted panels, at least 
in these studies, is not significant enough to distort TMB estimations compared to the 
WES/WGS TMB values. Although, interestingly, Chalmers et al. (2017) excluded known 
somatic variants in COSMIC from the TMB calculation, and Pestinger et al. (2020) 
removed driver variants prior to TMB estimation; both of these NGS data filtering steps 
likely contributed to an improved correlation with the WES/WGS-generated TMB 
scores by compensating for the gene composition of these targeted panels. 

Given the variable permutations of oncogenes and tumour suppressor genes within a 
panel, it is unsurprising that commercially available NGS panels have highly variable 
gene contents as noted by Melendez et al. (2018), whom highlighted that the two FDA-
approved NGS panels, MSK-IMPACT and FoundationOne, only share approximately 
50% of genes. The panels investigated in this thesis target a different set of genes and 
interrogate a different proportion of the genome (table 5), which will allow the impact 
of panel size and panel gene content on TMB estimation and clinical utility to be 
evaluated within this research study.  

1.3.2 Sample requirements for TMB detection 

The early WES-based studies and trials investigating the use of TMB as a biomarker 
utilised two samples, tumour DNA (typically from an FFPE tissue sample) and a 
matched normal DNA (e.g. extracted DNA from a patient blood sample or from normal 
tissue), from each cancer patient to allow genomic data between the samples to be 
compared and germline (hereditary) genetic variations to be excluded (Rizvi et al. 
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2015; Hugo et al. 2016; Cristescu et al. 2017; Kowanetz et al. 2017). In this way, only 
somatic (tumour-specific) variations were evaluated within the remit of determining 
the TMB status of each tumour sample. 

A TMB-based immunotherapy stratification service within an NHS setting would 
preferably involve the analysis of a single tumour sample per patient to keep costs as 
low as possible, and to align with existing cancer care pathways in which matched 
normal specimens are not routinely obtained. Fortunately, matched normal DNA is not 
essential in order to eliminate germline variants from sequencing data. Data from the 
tumour can be interrogated bioinformatically to remove germline variants via 
comparison to reference databases available online, which have been generated via 
the genetic analysis of thousands of individuals in datasets such as the 1000 Genomes 
Project (Lek et al. 2016; Fu et al. 2012; The 1000 Genomes Project Consortium 2015); 
the use of such datasets is commonplace in Genomics laboratories, including AWMGS, 
in the evaluation of variants identified by sequencing of tumour specimens, so would 
be an obvious choice within a TMB clinical service. An alternative to germline datasets 
is the use of computational algorithms to predict and subsequently remove the 
germline variants within a tumour sample (Sun et al. 2018; Chalmers et al. 2017; Chan 
et al. 2019; table 2). For example, Sun et al. (2018) developed an algorithm based on 
evaluation of allele frequencies at >3500 single nucleotide polymorphism (SNP) sites; 
in this algorithm, the allele frequencies at these SNP sites within a tumour sample are 
compared to the allele frequencies expected if the variants were of germline origin, 
with similar allele frequencies signifying variants of likely germline origin. This 
algorithm was validated by Sun et al. (2018) as correctly predicting the 
germline/somatic origin of >95% of variants across 30 tumour samples.  
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Table 2: Comparison of a number of technical parameters of WES (Ritzi et al. 2015; Hellmann 
et al. 2018), and targeted NGS panels (Hellmann et al. 2018; Pestinger et al. 2019) for TMB 
estimation (table adapted from Chan et al. 2019). Of particular note is the varying methods 
of data manipulation used in order to remove germline variants from the dataset, and the 
varying definitions of TMB based on the technical capabilities of each panel. 

 WES –  
Rizvi et al. (2015) 

WES data from 
CheckMate 032 
trial (Hellmann et 
al. 2018b) 

FoundationOne 
CDx targeted 
panel data - 
CheckMate 227 
trial (Hellmann 
et al. 2018a) 

Illumina 
TSO500 
targeted panel 
(Pestinger et 
al. 2020) 

No of genes 
interrogated 

22,000 gene 
coding regions 

22,000 gene 
coding regions 

324 cancer-
related genes 

523 cancer-
related genes 

Types of variants 
captured 

Missense variants Missense variants 
and indels 

Missense 
variants and 
indels 

Missense 
variants and 
indels 

Method of 
removal of 
germline variants 

Tumour and blood 
samples 
sequenced 

Tumour and 
blood samples 
sequenced 

Bioinformatics 
algorithms 

Use of germline 
variant 
database 

Capture region 
(tumour DNA) 

30Mb 30Mb 1.8Mb 1.94Mb 

TMB definition Number of non-
synonymous 
somatic missense 
variants in the 
sequenced 
tumour genome 

Number of 
somatic missense 
variants in the 
sequenced 
tumour genome 

Number of 
somatic, coding 
variants 
(synonymous 
and non-
synonymous), 
short indels per 
Mb of tumour 
genome 

Number of 
somatic, coding 
variants 
(synonymous 
and non-
synonymous), 
short indels per 
Mb of tumour 
genome 

 

1.3.2.1 TMB detection using circulating tumour DNA (ctDNA) samples 

The use of cancer patient blood samples as an alternative to tissue samples for TMB 
evaluation has been explored in a number of studies, including studies focussed on 
lung cancer patients (Gandara et al. 2018). These blood-based studies rely on the 
analysis of ctDNA, which is cell-free DNA that is shed from the patient’s tumour cells as 
a result of apoptosis or necrosis and released into the circulation. 

Blood samples have the benefit of being relatively easy to obtain and eliminate the 
need for invasive biopsies. ctDNA analysis is already used in the NHS diagnostic 
environment, including within AWMGS, to aid the treatment stratification of NSCLC 
patients via detection of clinically relevant variants within the ctDNA sample for 
patients in whom there is insufficient biopsy material available to use in genomic 
analysis. The utility of ctDNA analysis in NSCLC patients in particular stems from the 
fact that lung biopsy material can be scarce owing to the limited volume of tumour 
tissue and the multitude of diagnostic tests required within the lung cancer pathway. 
Indeed, Lim et al. (2015) identified that up to 30% of NSCLC patients have insufficient 
tumour material to perform the range of tests required to aid diagnosis and treatment 
decisions. Another benefit of blood samples over tumour tissue is that the ctDNA is 
representative of the whole tumour, whilst tumour biopsies represent only a specific 
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area of the tumour, meaning that any potential heterogeneity within the sample could 
be missed by analysing the tumour biopsy.  

The benefits of blood analysis could make ctDNA an attractive option for use in TMB 
estimation, however, this area of research is still in its infancy and is outside the scope 
of this thesis. One area for consideration prior to establishment of a ctDNA-based TMB 
service relates to the selection of suitable methodologies for ctDNA analysis. 
Methodology selection would have to consider that the ctDNA yield from a blood 
sample of a lung cancer patient is typically low at 60ng (based on AWMGS experience 
using Promega Maxwell 16 extraction), and ctDNA fragment lengths are small at 
around 134bp (Underhill 2021). Therefore, an NGS panel with the ability to amplify 
small DNA fragments using limited DNA would have to be selected for a ctDNA-based 
service. The commercially available NGS panels used routinely in current NHS service 
delivery at AWMGS are designed to amplify larger DNA fragments and have higher 
DNA input requirements so would have limited utility in ctDNA analysis.  

Another important factor to consider prior to using blood samples to measure TMB 
relates to the observation made by Davis et al. (2017) who concluded that there was a 
low correlation between the TMB values generated from paired tissue and blood 
samples (mainly from lung and breast cancer patients). Correlation is dependent on 
when the tissue sample was taken compared to the blood sample, as any differences in 
timing of the sample collections could impact on the TMB scores obtained. ctDNA 
levels in cancer patients can vary based on the rate of tumour shedding of ctDNA into 
the bloodstream, which is affected by the size and location of the tumour. Quantity of 
ctDNA is also known to be related to more advanced disease (Bettegowda et al. 2014). 
Therefore, TMB estimates from blood analysis could be lower than tumour analysis-
based estimations owing to limited ctDNA shedding, whilst tumour-based TMB scores 
could be over- or under- estimations based on the tumour sample being a skewed 
representation of the whole tumour. Despite potential differences between ctDNA and 
tissue based TMB estimations as noted by Davis et al. (2017), the B-FIRST trial did show 
that TMB values derived from ctDNA samples from NSCLC patients could be used to 
accurately identify patients who benefitted from the anti-PD-L1 drug atexolizumab in 
terms of an improved overall response rate (Gandara et al. 2018); therefore, 
supporting a potential utility of the use of ctDNA for TMB-based immunotherapy 
stratification. It is worth noting that as well as the ctDNA-specific issue of appropriate 
technology selection highlighted above, the issues addressed in this literature review 
regarding how to calculate TMB are also relevant to a ctDNA-based TMB service and 
would need resolving prior to the delivery of any clinical TMB service. 

1.3.3 Calculating TMB levels 

TMB levels were initially reported in WES studies as the number of variants in the 
tumour genome (Rizvi et al., 2015) although this was more commonly referred to as 
‘variants per megabase (Mb)’ following the use of targeted panels (Hellmann et al. 
2018a) (table 2). For both WES and targeted panels, this ‘variants per Mb’ TMB value 
can be obtained by a simple calculation based on the number of somatic variants 
identified in X Mb of sequencing (X being the amount of the genome interrogated). 
Although this seems quite a straight-forward strategy, and implies that TMB levels 
could be easily compared across platforms, this is not the case in practice owing to 
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differences in the types of variants included in TMB estimations (table 2), which is 
discussed below.  

1.3.3.1 Variant types included in TMB estimates 

One of the earliest TMB-focused WES studies in NSCLC by Rizvi et al. (2015) defined 
TMB as the number of non-synonymous coding variants within the tumour; the study 
did not include indels in the TMB estimate, and also did not include variants that were 
intronic, non-coding, or synonymous in the TMB calculation. Zeng and Bromberg 
(2019) estimated that there are 10,000 synonymous variants in every human genome 
(3200Mb in size), which equates to 0.0003% of the genome harbouring a synonymous 
variant. The premise behind excluding synonymous variants from TMB estimates is 
that such variants are deemed unlikely to be directly involved in creating neoantigens 
on the tumour cell surface, which is of primary interest in the prediction of 
immunotherapy response (Melendez et al. 2018). Interestingly, the first prospective 
trial into the link between TMB and progression free survival, CheckMate-227, did not 
remove synonymous variations from its TMB calculations (Hellmann et al. 2018a; table 
2). The reasoning behind their inclusion was that the trial deemed the presence of 
synonymous variants to be an indicator of mutation rate in the tumour genome, 
therefore considered this to be a worthwhile addition (Hellmann et al. 2018a). This 
thesis has been designed to investigate the utility of including synonymous variants in 
TMB estimations as this is one variable that will be altered in the TMB calculations 
performed within the patient cohort investigated.  

Targeted NGS panels allow an increased depth of sequencing compared to WES owing 
to the vastly reduced genomic area interrogated (around 2Mb compared to 30Mb in 
WES), which allows improved detection of indels. As such, many studies utilising 
targeted panels include indels in their TMB estimations (table 2). Budczies et al. (2019) 
suggested that TMB estimates could actually be improved by the inclusion of indels in 
variant load estimates.  

There is no formal guidance relating to the variant types to include in a TMB estimate, 
which would complicate the use of TMB as a biomarker in the clinical setting, and is 
one of the drivers for this research study in terms of providing data that could 
generate such best practice guidance.  As well as the technical practicalities in 
determining TMB levels, there are a number of biological factors influencing TMB 
levels, which could potentially complicate the use of TMB as a biomarker (table 3); 
these elements are outside the scope of this thesis. 
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Table 3: Biological and social factors influencing TMB estimations in NSCLC patients. 

1 Sex of patient:  
TMB is higher in men (Alexandrov et al. 2016). 

2 Smoker status:  
TMB is higher in smokers (Alexandrov et al. 2016; Sha et al. 2020). 

3 Stage of cancer progression:  
TMB levels have been shown to be lower in early stage lung cancer patients 
compared to patients with late stage disease (Zhang et al. 2018). 

4 Presence of specific variants in the tumour can be associated with low TMB:  
The presence of EGFR, ALK, ROS1, or MET exon 14 variants in NSCLCs generally 
correlates with low TMB levels (Spigel et al. 2016). 

5 Presence of specific variants in the tumour are linked to immunotherapy 
response: 
Some gene variants are associated with a better immune response (Alexandrov 
et al. 2013); therefore, the presence of such a variant could mean that a patient 
could respond well to immunotherapy, irrespective of their TMB status (Chan et 
al. 2019). Conversely, variants in other genes have been linked to insensitivity to 
immunotherapies in some patient groups (Zaretsky et al. 2016). 

 

1.3.3.2 Defining high TMB 

TMB is a continuous variable. One of the major controversies within the area of TMB 
quantification is the lack of a defined threshold for ‘TMB high’ (table 4), which would 
be critical within a TMB clinical service as would separate the patients whom would 
receive immunotherapy treatment from those that would not. As previously illustrated 
(figure 3), somatic variant frequencies, and therefore by extrapolation TMB levels, vary 
enormously between tumour types, therefore there is likely a requirement for TMB 
thresholds to be different dependent on the sample type, as noted by Chan et al. 
(2019) and Strickler et al. (2021). Table 4 shows that for a selection of the lung-focused 
targeted NGS publications referenced within this literature review, the TMB high 
threshold was set at between 7 and 20 variants/Mb; this is in line with a similar 
critique of TMB threshold variation performed by Heeke and Hofman (2018).  
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Table 4: Comparison of the TMB high thresholds across a number of lung-based studies* 
using either WES or targeted NGS panels for TMB estimation.  TMB high thresholds for WES 
have been converted to variants/Mb using a WES panel size of 30Mb to aid comparison to 
the targeted panel thresholds. *Note: Chalmers et al. (2017) and Pestinger et al. (2020) were 
studies interrogating multiple tumour types including lung. 

Reference TMB quantification methodology TMB high threshold  
Ritzi et al. (2015) WES >209 variants 

(equivalent to 7 
variants/Mb) 

Carbone et al. (2017): phase 3 
trial - CheckMate-026 data 

WES >243 variants 
(equivalent to 8 
variants/Mb) 

Hellmann et al. (2018b): phase 
1/2 trial - CheckMate-032 data) 

WES >248 variants 
(equivalent to 8 
variants/Mb) 

TARGETED NGS PANELS 
Campesato et al. (2015) Foundation Medicine 

Comprehensive Genome Profiling 
(CGP) panel 

≥7 variants/Mb 

Campesato et al. (2015) HSL-CGP (bespoke designed 
panel) 

≥13 variants/Mb 

Chalmers et al. (2017) FoundationOne panel (1.1Mb) >20 variants/Mb 
Hellmann et al. (2018a) (phase 
3 trial: CheckMate-227 data) 

FoundationOne CDx (1.8Mb) ≥10 variants/Mb 

Pestinger et al. (2020) Illumina TSO500 panel (1.94Mb) >10 variants/Mb 
 

In the early WES study by Rizvi et al. (2015) and the targeted panel analysis by 
Campesato et al. (2015), the TMB high threshold was simply set as the median value 
within the patient cohort. For example, in the targeted panel analysis performed by 
Campesato et al. (2015) using the Foundation Medicine CGP panel, the median 
number of non-synonymous somatic variants/Mb was 9 and 5 for tumours from 
patients with immunotherapy response and no-response respectively, and the TMB 
high threshold was set mid-way between these values at ≥7 variants/Mb. In a similar 
manner, for the retrospective exploratory analyses performed on the CheckMate-026 
and -032 WES data, TMB high thresholds were defined as the upper tertile of the 
patient cohort data (Carbone et al. 2017; Hellmann et al. 2018b). Heeke and Hofman 
(2018) noted that there is no biological justification for such percentile-based 
threshold setting as used in these studies.  

The first prospective trial evaluating the use of TMB as a biomarker in lung cancer 
(CheckMate-227) used a TMB high threshold of ≥10 variants/Mb (Hellmann et al. 
2018a). This threshold was set based on the findings from the CheckMate-568 trial 
(Ramalingam et al. 2018), which utilised the same FoundationOne CDx targeted NGS 
panel and evaluated patients receiving the same combined immunotherapy as the 
CheckMate-227 study. In the CheckMate-568 trial, the TMB high threshold of ≥10 
variants/Mb was statistically derived using a ROC curve (Ramalingam et al. 2018). 
Using this threshold, Ramalingam et al. (2018) showed that ORR of NSCLC patients 
receiving nivolumab and ipiliumumab increased as TMB increased (TMB ≥10 
variants/Mb, n=48, 43.8% ORR; TMB <10 variants/Mb, n=50, 12.0% ORR), and 
plateaued after 10 variants/Mb. A threshold of 10 variants/Mb also defined high TMB 
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in the KEYNOTE-158 study (Marabelle et al. 2020), which also used the FoundationOne 
CDx targeted NGS panel, although importantly evaluated patient response to 
pembrolizumab rather than the combination of nivolumab and ipiliumumab assessed 
in the CheckMate-568 (Ramalingam et al. 2018) and CheckMate-227 (Hellmann et al. 
2018a) trials. This 10 variants/Mb threshold demonstrated utility in the KEYNOTE-158 
study for prediction of patient response (Marabelle et al. 2020), suggesting that a 
validated TMB threshold for a particular tumour type and NGS panel combination 
could have utility independent of the immunotherapy/immunotherapy combination 
used. 

Based on the results of the KEYNOTE-158 trial, FDA approval for the use of TMB 
assessment across a range of solid tumours to guide pembrolizumab stratification has 
been granted using a TMB high threshold of 10 variants/Mb (Marcus et al. 2021). 
Interestingly, the approval is based on the use of FDA-approved NGS panels, which 
include the FoundationOne CDx panel but also include the MSK-IMPACT panel, and yet 
the same TMB high threshold is recommended (Marcus et al. 2021). Importantly, 
based on the CheckMate-227 and -568 trial data, Pestinger et al. (2020) used a TMB 
high threshold of ≥10 variants/Mb when comparing the utility of the Illumina TSO500 
panel with WGS for TMB assessment (table 4). All colorectal patients assessed in the 
Pestinger et al. (2020) study were classified as high TMB in a concordant manner using 
both the targeted panel and WGS. This therefore suggests that the TMB threshold of 
≥10 variants/Mb does have utility in determining TMB levels using other NGS panels, 
asides from the FoundationOne CDx NGS assay (Pestinger et al. 2020), as well as 
having utility in both NSCLC (Ramalingam et al. 2018; Hellmann et al. 2018a) and 
colorectal (Pestinger et al. 2020) patient cohorts. This contradicts the suggestion of 
Chan et al. (2019) and Strickler et al. (2021) that different TMB thresholds would likely 
be required for different tumour types. The utility of the same TMB high threshold in 
both lung and colorectal tumour types aligns to the similarities in the somatic variant 
frequencies between these two cancer types (Lawrence et al. 2013; illustrated in figure 
3), and suggests that this threshold would also have utility in the evaluation of TMB in 
melanomas with a similar somatic variant frequency to lung and colorectal cancers. 
Within the KEYNOTE-158 study, the 10 variants/Mb threshold showed utility in 
immunotherapy response prediction across a range of tumour types including small 
cell lung cancer, cervical cancer and thyroid (Marabelle et al. 2020). However, based 
on the Lawrence et al. (2013) WES-generated data illustrated in figure 3, two of these 
tumour types alone have differing somatic variant frequencies, with cervical cancer 
having around 1-10 variants/Mb and thyroid cancers generally having 0.1-
1variants/Mb. It is therefore interesting that a single 10 variants/Mb threshold has 
shown utility across these two tumour types (cervical and thyroid), and indeed across 
the other seven tumour types evaluated by Marabelle et al. (2020). 
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1.4 Summary of literature review 
The literature review provides a summary of the issues surrounding the use of PD-L1 
expression status as an immunotherapy response prediction biomarker, and highlights 
published evidence that demonstrates the utility of TMB, both alone or in combination 
with PD-L1 high expression status, as a potential biomarker for immunotherapy 
treatment stratification in lung cancer patients. The literature review describes the 
areas of TMB estimation that lack consensus in the research environment, namely: the 
lack of consistency in the variants included within TMB calculations, the absence of a 
validated TMB high threshold, and the lack of clarity regarding which targeted NGS 
panels provide accurate TMB estimation (in terms of comparison to the gold standard 
WES/WGS approach), with the suggestion that panel utility is influenced by the 
amount of the genome interrogated as well as the gene content of the targeted 
genomic region.  

 

1.5 Research hypothesis 
1.5.1 Primary research question 

Does TMB in combination with PD-L1 expression analysis have clinical utility as a 
biomarker for anti-PD-L1 immunotherapy treatment response in a Welsh lung cancer 
patient cohort? 

1.5.2 Hypothesis 

Data from this study will emulate the findings of international research groups 
(Carbone et al. 2017; Peters et al. 2017; Seiwert et al. 2018) demonstrating that TMB 
status in combination with PD-L1 expression data can act as an anti-PD-L1 
immunotherapy treatment response biomarker, by accurately stratifying patients in 
this Welsh lung cancer patient cohort into responder and non-responder groups. 

 

1.6 Research thesis aims and objectives 

As the literature review reveals, the potential utility of TMB as a biomarker of 
immunotherapy response has been noted within at least six clinical trials (Kowantz et 
al. 2017; Carbone et al. 2017; Hellmann et al. 2018b; Hellmann et al. 2018a; Marabelle 
et al. 2020). The primary objective of this research project is to assess whether such 
TMB clinical utility extends across a small Welsh lung cancer patient cohort. The 
primary focus will be on demonstrating if TMB assessment in combination with PD-L1 
expression analysis can accurately stratify patients into immunotherapy responder and 
non-responder groups. However, other aspects of clinical utility will be considered 
within this thesis relating to the feasibility of TMB service implementation within the 
NHS environment. The assessment of feasibility, including cost of testing and 
availability of External Quality Assurance (EQA) schemes, is essential knowledge to 
understand the true potential of or barriers to the establishment of a TMB clinical 
service within the NHS. 
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The small cohort size (n=17) will limit the weighting of the findings in terms of there 
being limitations in the translation of any demonstrated clinical utility of TMB 
assessment within this cohort to the Welsh population as a whole. This thesis can 
therefore be viewed as a pilot study, the findings from which can be used as a platform 
to perform future larger-scale research regarding the utility of TMB as a biomarker 
within the Welsh population.  

As pembrolizumab is only used currently in a stratified manner (based on PD-L1 status) 
within the treatment of NSCLC patients within the NHS, all patients in this Welsh 
cohort will have been previously identified as having PD-L1 high expressing tumours. It 
is therefore the combined utility of both TMB status and PD-L1 expression levels that is 
being assessed within this thesis rather than the utility of TMB alone as a biomarker of 
immunotherapy response. The literature review highlighted that the combined benefit 
of TMB level and PD-L1 status in predicting immunotherapy response has been noted 
previously in three studies (Carbone et al. 2017; Peters et al. 2017; Seiwert et al. 2018). 
In assessing the utility of TMB as a biomarker, this thesis will use different targeted 
NGS panels, different TMB calculations, and different TMB thresholds to address some 
of the controversies within the area of TMB assessment, which adds to the secondary 
aims of this research thesis.  

1.6.1 Aims of this thesis 

1. Produce novel data regarding the impact of different targeted NGS panels of 
different size and gene content on TMB estimation. This will be done by directly 
comparing the TMB quantifications of lung tumour samples from the same 
cohort of patients using three different NGS panels.  

2. For each of the NGS panels, perform TMB quantifications of the tumour 
samples using a range of TMB calculations based on altering the variants 
counted within the estimations, including investigating the impact of the 
inclusion/exclusion of synonymous variants on TMB score. 

3. Evaluate the utility of TMB quantification, calculated from each permutation of 
NGS panel and TMB calculation method, for immunotherapy response 
prediction, using different TMB high thresholds to define the TMB high patient 
group, thus identifying an optimal set of panel/analysis/threshold parameters 
that maximises the utility of TMB assessment in this cohort.  

4. Evaluate the clinical utility of TMB assessment to guide immunotherapy 
stratification in terms of the feasibility of TMB service implementation within 
the NHS.  

 

1.7 Justification of the methodology 
1.7.1 Sample numbers 

The patient cohort size within this thesis is dictated by the cost of NGS and the funding 
available for this research; the project costings are noted in appendix 2. Ideally, all 
samples will be processed on each of the three NGS panels but, as well as costings, 
another factor that will impact on this is the volume of DNA obtained from each 
sample, which was noted as a project risk within the innovation proposal (appendix 2). 
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The NGS panels used require a minimum amount of DNA ranging from 25ng-100ng; 
limited DNA may mean that samples can only be analysed on one or two of the panels.  

The study design relies upon a minimum number of eight samples being analysed on 
each of the three NGS panels in order to allow meaningful statistical analysis. Eight 
represents the minimum number of observations required to perform the Spearman 
rank correlation test, which is the analysis that will be performed to describe the 
association between TMB value and immunotherapy response. The analysis of a 
minimum of 12 samples on more than one NGS panel is required to ensure the 
statistical significance of the paired t-test evaluation of any differences in TMB values 
obtained from the different panels. Importantly, the expected difference between 
TMB levels measured by different panels is unknown so power calculation is not 
possible within the scope of this project. 

1.7.2 Selection of targeted NGS panels 

This research will perform TMB quantification of FFPE samples from lung cancer 
patients using three commercially available targeted NGS panels, designed by Agilent, 
Illumina and Nonacus, which is a novel evaluation not identified in the literature 
review. The panels selected are all over the 1.5Mb size noted by Buchhalter et al. 
(2019https://onlinelibrary.wiley.com/doi/full/10.1002/ijc.31878) as being essential for 
accuracy of TMB measurement, but the Nonacus panel is below the 1.6Mb size 
accuracy threshold suggested by the findings of Hatakeyama et al. (2018) (table 5). The 
results of this research will therefore add to the debate regarding impact of panel size 
on the accuracy of TMB measurement (Bucchalter et al. 2018).  

Adding to the simulated work of Budczies et al. 2019, the use of three panels will allow 
the impact of gene panel content on TMB estimation to be evaluated. Although the 
panels selected have a large oncogene/tumour suppression gene content (table 6), the 
gene content differs (table 5; full gene list of each of the three panels can be found in 
appendix 5). The differing gene panel contents supports the point raised in the 
literature review where it was noted that panels used for TMB detection can have 
hugely variable gene contents (Melendez et al. 2018).  

Table 5: Comparison of size and gene content of the three NGS panels evaluated in this 
thesis. Panels are: Illumina TruSightTM Oncology 500 panel, Agilent SureSelect Community 
Design Glasgow Cancer Core panel, and Nonacus Cell3TM Target: Pan Cancer panel. 

 

 Agilent Illumina Nonacus 
Panel size  1.7 Mb 1.94 Mb 1.58 Mb 
Number of genes covered  174 523 524 
% of genes shared with Agilent panel na 32% 29% 
% of genes shared with Illumina panel 95% na 68% 
% of genes shared with Nonacus panel 87% 68% Na 

 

 

 

https://onlinelibrary.wiley.com/doi/full/10.1002/ijc.31878
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Table 6: Gene contents of the Illumina, Nonacus and Agilent panels in relation to the most 
commonly mutated genes in lung cancer (mycancergenome.org, 2022a). Green/red indicates 
that the gene is/is not targeted by the panel. Oncogenic driver mutations in lung cancer 
most commonly occur in the KRAS and EGFR genes (Chevallier et al. 2021); the variant 
hotspots (representing locations where variants are most likely to occur) of both genes 
(EGFR exons 18-21 and KRAS exons 2-4) are targeted by all three panels. 
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As the samples from the Welsh Cancer Bank (WCB) are of unknown TMB status, the 
accuracy of TMB assessment will be evaluated in this study by using the data 
generated from the Illumina panel as a benchmark with which to assess the accuracy 
of the other panels in TMB quantification. This bench-marking is possible as the 
Illumina TSO500 panel was shown by Pestinger et al. (2020) to provide TMB values 
comparable to WGS, which, like WES, could be considered as a ‘gold standard’ 
approach to TMB scoring given that the presence of variants across the whole genome 
is evaluated.  

As well as panel size, panel gene content, and demonstrated WGS correlation being 
factors in panel selection in this study, NGS panel choice was also influenced by the 
experience of AWMGS in working with these panels. Both Illumina and Agilent panels 
had been used in the laboratory before, albeit with some minor protocol differences, 
therefore staff were familiar with the methodologies and were already appropriately 
trained. This will therefore provide a level of quality assurance to the results obtained.  

All three NGS panels are hybridisation capture-based target enrichments. Hybridisation 
capture relies on the use of probes to capture target sequences in a DNA library, and 
uses low input amounts of DNA, which is often a limitation of working with FFPE 
material and is relevant in the context of this project in terms of attempting to 
maximise the number of samples that could be sequenced on all three NGS panels to 
maximise the data obtained and to ensure statistical analysis of the data is possible. 

Another consideration in panel selection was ensuring the panels selected had utility 
within the existing lung cancer care pathway, for which tests are already funded by the 
Welsh Health Specialised Services Committee (WHSCC) and by NHS England in English 
Genomics laboratories. A panel that contains all of the lung clinically relevant genes 
associated with NICE-approved NSCLC treatment stratification (NICE, 2022) as well as 
the genes on the Cancer Test Directory (england.nhs.uk, 2022), which describes the 
genomic tests commissioned by NHS England for cancer patients, would have greater 
utility in an NHS laboratory, beyond the scope of TMB detection (table 7).  
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Table 7: Comparison of Illumina, Nonacus and Agilent panel gene contents to existing NSCLC 
service requirements. The Cancer Test Directory (england.nhs.uk, 2022) gene list (as of 31 
October 2022) is the same as the NICE-approved treatment-related genes (NICE, 2022) with 
the addition of the MET gene. Green/red indicates that the gene is/is not targeted by the 
panel. 

 EGFR KRAS BRAF ALK ROS1 RET NTRK1 NTRK2 NTRK3 MET 
Illumina           
Nonacus           
Agilent           

 

1.7.3 Evaluation of immunotherapy response 

Immunotherapy responses for each of the patients in this Welsh cohort (n=17) will be 
obtained through medical record review, where response is recorded using common 
terminology defined by RECIST 1.1 guidance (Eisenhauer et al. 2009): complete 
response (CR), partial response (PR), progressive disease (PD), stable disease (SD), 
incomplete response (IR). To perform statistical analysis of the data, a quantifiable 
measurement of response will be required, for which number of days survival post-
PDL1 test date will be used. PD-L1 IHC analysis is performed at the time of lung cancer 
diagnosis therefore effectively represents the date of diagnosis within the patients in 
this study. Patients in the cohort will be selected to ensure that PD-L1 IHC assessment 
occurred in 2017. Therefore, in line with the <10% 5-year survival rate of lung cancer 
patients (NICE, 2021), by the completion of this thesis in 2022 there will be clear 
survival data for each patient as sadly the majority of the cohort will be deceased. 
Patient survival will therefore be calculated from PD-L1 test date to the date of death 
or, for the small number of expected surviving patients, the date of death will be 
replaced by the date of final medical record review in 2022. 

1.7.4 TMB measurement 

Some of the major controversies of TMB as a biomarker come from the fact that there 
is no standardised method for TMB measurement and there is no agreed threshold to 
identify immunotherapy responders (Fancello et al. 2019). Within this research thesis, 
dual analysis of the NGS data will be performed to include/exclude the presence of 
synonymous variants as this is a key area of difference within TMB-based publications 
(Rizvi et al. 2015; Hellmann et al. 2018a). The inclusion of synonymous variants within 
TMB estimations was a recommendation of Fancello et al. (2019) who proposed that 
this provided a better approximation of TMB when extrapolated across the whole 
genome. There is no published evidence against TMB estimations including indels, 
therefore these will be included in the TMB calculations within this thesis.  

As well as assessing the impact of synonymous variants on TMB quantification, 
investigation into the impact of sequencing artefacts on TMB estimations will be 
evaluated. Sequencing artefacts are sequence changes that although present in the 
sequencing data are not present in the original sample; the presence of artefacts in 
solid tumour sequencing data would result in an over-estimation of TMB. The 
exclusion of potential sequencing artefacts prior to TMB assessment is not addressed 
specifically within the publications identified in this literature review. This is likely 
owing to the fact that there are a number of strategies that can be employed to 
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minimise sequence artefacts (Do and Dobrovic 2015) and these are commonplace 
practices within AWMGS and generally across the diagnostic and research 
communities. Also, within AWMGS, one of the key steps within NGS data analysis of 
tumour samples is to evaluate the variants identified using a specific set of criteria to 
determine if they are genuine variants present in the tumour; the aim of this 
evaluation is to exclude any variants that are deemed to be likely sequencing artefacts. 
The importance of this artefact removal step in the diagnostic laboratory is to minimise 
so-called false positive variant calls to ensure that diagnostic, prognostic and 
therapeutic decisions are correctly made based on the genuine genetic variants within 
a sample.  

Artefacts can arise in a number of different areas within the sample workflow. Firstly, 
FFPE DNA samples are prone to deamination artefacts (C>T/G>A errors) owing to the 
tissue fixation process (Do and Dobrovic 
2015https://academic.oup.com/clinchem/article/61/1/64/5611545). Secondly, PCR steps 
exist within many NGS protocols, including the library preparation protocols of the 
Illumina, Nonacus, and Agilent NGS panels used in this thesis, and this can introduce 
DNA polymerase errors. Polymerase base substitution error rates differ based on 
specific assay conditions, but have been quoted by Potapov and Ong (2017) as being in 
the range of 1/3,200 to 1/300,000 errors/base. Based on this estimated error range, in 
the 1.94Mb Illumina panel used in this project, 6-593 of the variants identified in a 
sample could be polymerase error-derived artefacts; these false positive variant calls 
would inflate TMB estimations. Notably, PCR duplicates have been shown to be much 
less common in hybridisation capture approaches, such as the three NGS panels used 
in this thesis, compared to amplicon enrichment protocols (Samorodnitsky et al. 2015). 
Finally, errors in short-read alignment within the sequencing protocol can cause read-
end artefacts and strand bias artefacts (Koboldt 2020); the frequency of sequencing 
artefacts using NovaSeq technology (as used in this thesis) has been reported to be 
0.1% (Ma et al. 2019).  

Based on the difference between the AWMGS solid tumour analysis approach of 
excluding sequencing artefacts from NGS data, and published TMB assessment 
methods, which do not, as far as the literature review identified, perform additional 
artefact removal, this thesis will evaluate the impact of potential sequencing artefacts 
on TMB estimations. TMB quantifications of the patient cohort will be performed using 
calculations that either include or exclude sequencing artefacts. 

The Institut Curie TMB tool (Github, 2022ahttps://github.com/bioinfo-pf-curie/TMB) will 
be used for the calculation of TMB values. This decision was based on the fact that this 
tool is freely available and would therefore have utility in both NHS and research 
applications going forwards. The tool is also transparent and can be easily 
manipulated, which provides the user with complete knowledge and control over the 
variants included within the TMB assessment. Notably, it is important within this thesis 
that the metrics of the TMB calculations performed across the three panels are the 
same so that results can be compared. 

The TMB values of each patient sample assessed using each permutation of NGS panel 
and TMB calculation method will be translated into TMB high/low statuses based on 
the use of a TMB high threshold. As the use of a TMB high threshold of 10 variants/Mb 
has been validated in four independent studies (Ramalingam et al. 2018; Hellmann et 
al. 2018a; Pestinger et al. 2020; Marabelle et al. 2020), this threshold will be used in 

https://academic.oup.com/clinchem/article/61/1/64/5611545
https://github.com/bioinfo-pf-curie/TMB
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this study. Receiver Operating Characteristic (ROC) curve generated thresholds will 
also be evaluated, as this method has proven utility as was the method used by 
Ramalingam et al. (2018) to determine the 10 variants/Mb cut-off, and Fancello et al. 
(2019) also showed the utility of this method. The use of a TMB threshold is key to 
assessing the utility of TMB as a biomarker and answering the primary research 
question, as it allows the patient survival (post PD-L1 test) of the TMB high and TMB 
low groups to be compared and analysed using appropriate statistical methods. If the 
hypothesis is correct, namely that this study’s findings will emulate the findings of 
other publications (Carbone et al. 2017; Peters et al. 2017; Seiwert et al. 2018), then a 
positive correlation between increasing TMB score and longer survival would be 
expected. It also allows differences in survival (post PD-L1 test) between the PD-L1 
expressor cohort and the TMB-high/PD-L1 expressor cohort to be compared. 
Differences in survival between these paired comparisons would indicate potential 
utility of TMB as a predictor of immunotherapy response. The sensitivity of the 
immunotherapy response predictions using TMB assessment in the PD-L1 expressor 
cohort in this study will be evaluated based on comparing the predicted responder 
(TMB high) and predicted non-responder (TMB low) outcomes to the actual 
immunotherapy responses (based on RECIST 1.1 criteria) of these patients. 

Comparison and statistical evaluation of each permutation of NGS panel/TMB 
calculation/TMB threshold addresses one of the aims of the study by enabling the 
possible identification of a set of optimal criteria for TMB quantification that provides 
differentiation between immunotherapy responders and non-responders.  

1.7.5 Assessment of the feasibility of TMB service implementation within the 
NHS 

The evaluation of the feasibility of TMB assessment in the NHS is important as, if TMB 
is NICE-approved as an immunotherapy response predictor in the future, the 
practicalities of implementing a TMB service would have to be addressed within NHS 
Genomic laboratories, including AWMGS. The evaluation of the feasibility of a TMB 
service within the NHS will therefore encompass an assessment of the cost 
effectiveness of TMB analysis using targeted NGS, as well as an assessment of the 
availability of External Quality Assurance (EQA) schemes for TMB calculation. 
Investigation into these areas ensures that a broad understanding of the clinical utility 
of TMB quantification within the NHS is obtained. 

The assessment of cost effectiveness will be done by considering both the cost of 
performing NGS analysis, based on the panels used within this study, as well as the 
utility of these targeted panels within the existing lung cancer patient pathway. There 
are a number of NSCLC clinically actionable genes for which testing is already provided 
in AWMGS (and other UK Genomics laboratories) namely: EGFR, KRAS, BRAF, ALK, 
ROS1, RET, NTRK1, NTRK2, NTRK3, based on the NICE-approval of relevant lung-cancer 
targeted drugs (NICE, 2022). This genetic analysis is already funded in the UK, 
therefore, if the panels used in this study target these NSCLC clinically actionable genes 
this could effectively make the introduction of TMB assessment a cost neutral service 
in the NHS.  

The reason for investigating the availability of TMB-focussed EQA schemes is that EQA 
is an essential requirement of NHS Genomics laboratories in relation to maintaining 
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ISO151589 UKAS medical laboratory accreditation. EQA schemes distribute samples of 
known genotype/status to participating laboratories, measure the quality/accuracy of 
lab results, and allow labs to monitor performance against other labs. EQA schemes 
aim to ensure that patients receive results of good quality encompassing both the 
correct result and correct clinical interpretation of that result by providing quality 
assessment for participating laboratories. Any new service introduced into AWMGS 
requires a means of demonstrating external quality assurance, with an established 
EQA scheme being the most straight-forward means of providing this quality 
assurance. Given the variation in elements of TMB assessment, the approach to the 
establishment of an EQA scheme could be complex, so it will be interesting to see how 
such a scheme may have been developed.  

 

1.8 The value of further research into the utility of TMB and PD-L1 
assessment as a combined biomarker for immunotherapy 
stratification 
The existing PD-L1 expression biomarker used both in the NHS and internationally for 
pembrolizumab stratification lacks accuracy in the identification of patients most likely 
to respond to this immunotherapy (Sul et al. 2016). TMB is a promising combinatory 
biomarker which, based on existing literature (Carbone et al. 2017), could be used to 
improve treatment stratification in PD-L1 high expressing lung cancer patients ensuring 
that patients access the most appropriate treatments in a timely manner. TMB could 
therefore be an area of high interest within the NHS for its potential to improve 
patient outcome.  

There is currently no requirement for TMB assessment in NHS Genomic laboratories 
owing to there being no existing NICE-approved TMB-based stratifications of 
immunotherapy use; the AWMGS has no experience of TMB quantification. However, 
in June 2020, the first FDA-approval for the use of TMB as a biomarker for 
pembrolizumab stratification in solid tumours was granted (Marcus et al. 2021), 
increasing the likelihood that similar NICE-approval may be imminent. UK Genomic 
laboratories are required to deliver any genomic testing aligned to the use of NICE-
approved drugs within 60 days of the drug being approved. Therefore, any NICE-
approvals based on the use of TMB as a biomarker would require timely validation, 
implementation and delivery of an NHS service for TMB assessment. 

To ensure precious NHS resources are used appropriately, it would be preferable for 
NHS Genomic labs to have guidance regarding the most clinically appropriate methods 
for TMB assessment. Currently there is no such guidance and the choice of NGS panel, 
TMB calculations and TMB high thresholds used within TMB research publications is 
extremely varied. Each of these variables will be evaluated in this thesis with the aim 
of identifying if there is a set of parameters (panel, calculation, threshold) for TMB 
estimation that provide the most accurate differentiation between immunotherapy 
responders and non-responders, at least within this patient cohort. This could guide 
the TMB quantification methods used in future research studies and NHS service 
validation efforts, and could form the basis of future best practice guidance in TMB 
assessment to ensure delivery of genetic testing of the highest possible standards 
(acgs.uk.com, 2022). The availability of best practice guidelines would facilitate the 
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translation of TMB assessment into the NHS. At a local level, the expertise gained from 
this research ensures that the AWMGS is well positioned to deliver NGS-based TMB 
analysis should a service be required in the future.  

Direct comparison of TMB scores generated from different NGS panels using the same 
sample cohort was a novel area of TMB research at the time of thesis conception. The 
different NGS panels evaluated in this thesis will provide valuable additional insight 
into the impact of targeted panel size and gene content on TMB estimation. The 
evaluation of different methods of calculating TMB within the same patient cohort will 
provide novel data observing the impact on the TMB score of the inclusion/exclusion 
of synonymous variants, and inclusion/exclusion of sequencing artefacts.  

The utility of combined TMB and PD-L1 assessment for the stratification of 
immunotherapy use in a Welsh population has not been explored to date. This pilot 
study will provide novel data from a small Welsh patient cohort, which could highlight 
a need for further research studies evaluating more expansive cohorts of Welsh 
patients to strengthen any findings from the pilot. 
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Chapter 2: Methods 
Method sections 2.1 to 2.9 focus on the evaluation of clinical utility of TMB in terms of 
establishing the impact of TMB status on immunotherapy response within this Welsh 
patient cohort. Method section 2.10 describes the feasibility of the implementation of 
a TMB-based service in the NHS. 

 

2.1 Patient selection 
Patient samples were retrospectively identified and selected from the Welsh Cancer 
Bank. Patients had NSCLC and had all received anti-PD-1 pembrolizumab in the first 
line setting following PD-L1 positive IHC results. Treatment response and overall 
survival data were obtained through medical record review. The measurement of 
treatment response in this patient cohort broadly followed the categories defined in 
the RECIST 1.1 criteria (Eisenhauer et al. 2009; table 8), which evaluates response 
based on the size of the tumour as well as considering the tumour marker levels and 
size of non-target lesions. The RECIST 1.1 criteria are used for assessing cancer 
responses in trial settings. Whilst the treatment response terminology from RECIST 1.1 
is used in routine NHS practice, as indicated from this Welsh patient cohort, local 
clinical consultation revealed that the guidelines are not followed rigidly in terms of 
the detailed assessment of size changes of the tumour as this is very time consuming 
and not practical within the routine clinical care setting. 

FFPE tumour specimens were sourced from 17 of the selected patients from the WCB, 
which has ethics approval from Wales Research Ethics Committee to collect and issue 
biomaterials for projects using anonymised samples. 12 patients had stage 4 cancer, 
and 5 patients had stage 3 cancer. 5 x 10uM unstained tissue sections were received 
for each patient, along with 1 x 4uM H&E stained slide with the area of highest 
neoplastic cell content indicated by a trained Histopathologist. Number of days survival 
post-PDL1 test date was used as a quantifiable measure of immunotherapy response. 
Patient survival was calculated from the date of the PD-L1 IHC test, which for this 
cohort was over a 2-year time-frame of between August 2017 and May 2019, to the 
date of death or (where no date of death) until 11/04/2022, which is when the final 
data collection from WCB was performed and the patient was confirmed as alive. 
Patients were classified as responders if they experienced partial or complete 
responses or stable disease by RECIST 1.1 (Eisenhauer et al. 2009). 
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Table 8: RECIST 1.1 criteria for assessment of treatment response (Eisenhauer et al. 2009). CR 
= complete response; PR = partial response; PD = progressive disease; SD = stable disease; IR 
= incomplete response. 

 

 

 

2.2 DNA extraction 
Macrodissection was performed prior to DNA extraction of each sample. The area of 
highest neoplastic cell content was scraped off the unstained slides using a sterile 
scalpel blade; this process minimises the amount of normal cellular material within the 
DNA extraction and increases the sensitivity of the testing. 

DNA extraction was performed on the 17 patient samples using Promega Maxwell 16 
(Promega UK Ltd, Southampton UK), a benchtop nucleic acid extraction robot allowing 
the simultaneous automated extraction of up to 16 samples, with the Maxwell® RSC 
FFPE DNA Kit (Promega UK Ltd, Southampton UK) as per supplier protocol (appendix 
6). DNAs were eluted in 72ul of nuclease free water, and DNA was quantified according 
to the supplier protocol (appendix 7) using the Qubit fluorometer high sensitivity assay 
(ThermoFisher Scientific, Loughborough UK) on the QubitTM Flex fluorometer 
(ThermoFisher Scientific, Loughborough UK); the high sensitivity assay is able to 
quantify DNA between 0.2-100ng. 260:280nm absorbance data was generated using 
the NanodropTM 2000 Spectrophotometer (ThermoFisher Scientific, Loughborough UK) 
to highlight the presence of any protein or RNA contaminants in the DNA as required 
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for results interrogation. Some samples were used for other research projects so <72ul 
was available following DNA extraction. 
 

2.3 Next Generation Sequencing: Target enrichment 
Hybridisation capture-based target enrichment was performed using three NGS 
panels: Illumina TruSightTM Oncology 500 panel (Illumina, Cambridge UK), Agilent 
SureSelect Community Design Glasgow Cancer Core panel (Agilent Technologies LDA 
UK Limited, Stockport UK), and Nonacus Cell3TM Target: Pan Cancer panel (Nonacus 
Limited, Birmingham UK) (figure 8). These three panels have differences in gene 
content (tables 5 and 6 in introduction chapter).  

Where sufficient DNA (175ng) was available, target enrichment was performed on all 
three NGS panels (n=12); this sample number ensured the minimum requirements for 
paired t test statistical evaluation of data were met. Based on DNA availability, some 
DNA samples were processed on Nonacus alone (n=1), Illumina alone (n=1), or dual 
enrichment was performed: Agilent and Nonacus (n=1), Agilent and Illumina (n=1), 
Nonacus and Illumina (n=1). The minimum study requirements of analysing eight 
samples on each of the NGS panels was met enabling the Spearman correlation test to 
be used for statistical analysis of data.  
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2.3.1 Sequencing library preparation: Illumina 

Targeted enrichment of 15 samples (DNA input: 100ng) was performed using the 
Illumina TruSightTM Oncology 500 panel (Illumina, Cambridge UK) as per supplier 
protocol (appendix 8). This panel targets 523 genes implicated in the pathogenesis of 
solid tumours, representing 1.94Mb of the genome.  

2.3.2 Sequencing library preparation: Agilent 

Targeted enrichment of 14 samples (DNA input: 50ng) was performed using the Agilent 
SureSelect Community Design Glasgow Cancer Core panel (Agilent Technologies LDA 
UK Limited, Stockport UK) as per supplier protocol (appendix 9). This panel targets 174 
genes implicated in the pathogenesis of solid tumours, representing 1.7Mb of the 
genome.  
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2.3.2 Sequencing library preparation: Nonacus 

Targeted enrichment of 15 samples (DNA input: 25ng) was performed using the 
Nonacus Cell3TM Target: Pan Cancer panel (Nonacus Limited, Birmingham UK) as per 
supplier protocol (appendix 10). This panel targets 524 genes, including 116 cancer 
driver genes, and 345 genes in vital cancer signalling pathways, representing 1.58Mb 
of the genome. 

 

2.4 Next Generation Sequencing and bioinformatic data analysis 

All libraries were sequenced using paired end sequencing on the Illumina NovaSeqTM 

system as per supplier protocol. Illumina technology utilises reversible dye terminator 
SBS chemistry involving reiterative cycles of single base incorporation, imaging and 
cleavage of the terminator chemistry (Meldrum et al. 2011). The sequencing data from 
the three panels was run through the AWMGS SomaticEnrichment pipeline v2.0.0 
(Github, 2022bhttps://github.com/AWGL/SomaticEnrichment), which has been validated 
in-house for clinical diagnostic use in the analysis of data from hybridisation capture-
based panels for the detection of somatic variation including single nucleotide variants 
and indels (summarised in figure 9).  

Once the data had been run through the SomaticEnrichment pipeline v2.0.0 (Github, 
2022b), a manual Quality Control check was performed using the fastQC tool 
(bioinformatics.babraham.ac.uk, 2022) to check the quality of the sequencing in terms 
of the Q30 Phred score, and a depth of coverage tool to check that targeted regions 
contained coverage above a 250x threshold. According to evidence described by 
Petrackova et al. (2019), a coverage depth of 250x should be sufficient to detect alleles 
down to a 5% variant allele frequency with a threshold of variant supporting reads ≥5. 
The use of this 250x sequencing threshold minimises false negatives, and the use of a 
13-variant read threshold in order to deem a variant as genuine ensures that false 
positive rates are minimised.  

The Q30 Phred score relates to the quality scores that are assigned to each base during 
sequencing. A Q score of 30 is equivalent to the probability of an incorrect base call 1 
in 1000 times, which relates to a base call accuracy of 99.9%. Q30 is considered the 
benchmark for quality in NGS (illumina.com, 2011). Following this manual Quality 
Control check, additional annotation of the sequencing VCF files using the SnpEff tool 
(pcingola.github, 2021), which predicts the effects of genetic variants on genes and 
proteins, was performed as per the requirements of the Institut Curie TMB tool 
(Github, 2022a).  

Figure 9: Illustration of the AWMGS bioinformatics pipeline for solid tumour NGS analysis 
(figure adapted from Koboldt 2020). The SomaticEnrichment pipeline v2.0.0 (Github, 2022b) 
is used for NGS data analysis. Raw sequencing data is aligned to the GRCh37 version of the 
reference genome using BWA-mem (bio-bwa.sourceforge.net, 2022) for sequence mapping. 
Duplicate reads that have originated from the same DNA sequence molecule are identified 
using GATK (Picard) MarkDuplicates tool (gatk.broadinstitute.org, 2022a) and are removed 
from the BAM file. The Mutect2 (gatk.broadinstitute.org, 2022b) tool is used 
https://gatk.broadinstitute.org/hc/en-us/articles/4409917447707-Mutect2for variant filtering 
(e.g. filtering out unmapped reads) and variant calling (e.g. naming of single nucleotide 
variants and indels). Removal of germline variants within the SomaticEnrichment pipeline is 

https://github.com/AWGL/SomaticEnrichment
http://pcingola.github.io/SnpEff/
http://bio-bwa.sourceforge.net/
https://gatk.broadinstitute.org/hc/en-us/articles/4409917447707-Mutect2
https://gatk.broadinstitute.org/hc/en-us/articles/4409917447707-Mutect2
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achieved using the flag `--genotype-germline-sites false` with reference to the Genome 
Aggregation Database (gnomad.broadinstitute.org, 2022).  The data is now ready for quality 
checks, which are described in the main text. 

 

 
 

2.5 Tumour Mutational Burden estimation 
TMB (variants/Mb) was calculated for each sample on each of the successful NGS runs 
using the Institut Curie TMB tool (Github, 2022ahttps://github.com/bioinfo-pf-curie/TMB). 
The Institut Curie TMB tool is a versatile tool that filters variants from inputted vcf files 
according to criteria set by the user, before using the remaining post-filtering variants 
to calculate the TMB of each sample. This tool has several required inputs and several 
optional arguments, which were set to accommodate the needs of this project. The 
required inputs included: a vcf file annotated using both Mutect2 and SnpEff, sample 
ID, and a panel-specific bed file (hg19 reference genome; sourced from Illumina, 
Nonacus and Agilent technical support) in order to calculate the size of the genomic 
region interrogated. An additional parameter specifying ‘coding regions only’ was 
added to the calculation of the genomic region interrogated, in line with the fact that 
only coding regions were analysed for variant detection.  

The optional arguments used within the Institut Curie TMB tool (Github, 2022a) are 
noted in table 9. These were used to ensure the quality of the data produced, 
minimising false negatives and false positives. Following this data filtering step, data 

Raw sequence data 
(FASTQ files)

Align reads to reference 
sequence

Aligned BAM file

Removal of duplicate 
sequence reads

Variant filtering and 
variant calling

BAM file ready for quality 
check and analysis

https://github.com/bioinfo-pf-curie/TMB
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was exported to generate a spreadsheet per patient that included all of the remaining 
variants and the TMB score.  
 

Table 9: Parameters used to filter variants within the sequencing data for use of the Institut 
Curie TMB tool (Github, 2022a). Any parameters which align with the default settings of this 
tool have been noted.  

 
Parameter Setting Justification 
Variant allelic frequency 
(sensitivity of assay) 

0.05 
(default) 

A 5% variant is considered the threshold of clinical 
utility within existing AWMGS lung cancer NGS 
services. This threshold correlates with the expected 
level of sensitivity of the NGS assays when a 
minimum coverage of 250x is achieved (Petrackova et 
al. 2019). 

Minor allele frequency 
(the frequency of the 
second most frequent 
allele for a given SNP in 
a population) 

0.001 
(default) 

This low threshold gives confidence in the variant 
allele being somatic in origin (Koboldt 2020). 

Minimum depth 
(number of reads 
required to call variant 
genuine) 

13 Reflects a 5% variant being detected at minimum 
coverage of 250x (Petrackova et al. 2019); therefore, 
minimises false positives. 

Minimum alternative 
allele depth 

2 
(default) 

Minimises false positives. 

Filter low quality 
variants (i.e. not PASS)  

‘true’ Removes poor quality variants, minimising false 
positive variant calls. 

Filter non-coding 
variants 

‘true’ All coding alterations, including short variant 
alterations, base substitutions, indels, and silent 
alterations were all counted in the TMB estimation, 
whereas other non-coding alterations were excluded 
in line with this project design. 

 

Data was run through the TMB tool twice to provide two datasets per panel, once in 
which the optional argument of ‘filter synonymous variants’ was set to true and once 
where this criterion was set to false.  

The TMB value (variants/Mb) generated from the TMB tool is in essence the total 
number of variants counted (as per variant criteria noted in table 9 above) divided by 
the size of the coding region of the panel in Mb (802,968 bases for Illumina panel and 
835,198 bases for Nonacus panel). 

 

2.6 Evaluation of sequence artefacts  
Sequence artefacts are sequence changes identified in sequencing data that are not 
present in the original sample. These artefacts can arise in a number of different areas 
within the sample workflow as discussed in the introduction. Do and Dobrovic (2015) 
identified a number of strategies that could be used to limit the number of sequence 
artefacts from FFPE DNA. A number of these proposals have been incorporated into 
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this methodology with the aim of minimising the number of sequencing artefacts in 
the datasets and maximising the accuracy of the TMB estimations (table 10), as 
sequencing artefacts will artificially raise the TMB value.  

Table 10: Strategies employed to minimise sequence artefacts within the dataset (adapted 
from Do and Dobrovic 2015). In terms of the DNA extraction, a 2-minute 800C incubation is 
the first step of the Maxwell protocol (appendix 6), and this is followed by a 30-minute 
proteinase K incubation step, both of which serve to potentially reduce artefacts as 
highlighted in the table.  

Step Strategy 
DNA extraction Macrodissection of tumour-enriched areas as determined by 

pathologist. 
 Use of sufficient tissue, whenever possible, to maximise DNA 

yield. 
 Heat treatment to remove formaldehyde-induced crosslinks and 

to facilitate subsequent tissue digestion with proteinase. 
 Extended proteinase K treatment to digest tissue and to remove 

proteins cross-linked to DNA. 
DNA assessment Assessment of double stranded DNA quantity using Qubit 

fluorometer high sensitivity assay (ThermoFisher Scientific, 
Loughborough UK). 

Library preparation Minimise number of PCR cycles. 
 Adhere to supplier protocols and use recommended DNA inputs 

to maximise DNA templates in the sequencing reaction. 
 Hybridisation-capture based target enrichment allows the 

recognition of the initial templates in sequence reads using their 
unique start and end sites. 

Identification of 
genuine sequence 
variants 

Implement minimum variant allele frequency parameter in data 
analysis to minimise inclusion of low level (<5%) sequence 
variants (including artefacts) in TMB estimation. 

 

In addition to these measures for reducing artefacts, this thesis aims to investigate the 
utility of further interrogation of sequencing data to identify and remove likely 
sequencing artefacts from the datasets prior to TMB estimation in line with existing 
AWMGS NGS workflows for solid tumour sample analysis. To this end, the two 
datasets per NGS panel (one with synonymous variants removed, and one with 
synonymous variants included) were each interrogated using Excel functionality to 
identify the variants shared frequently by patients within a dataset. Variants common 
to many patients within each panel cohort are likely to represent SNPs, hotspot 
variants, or artefacts (Bewicke-Copley et al. 2019). To identify the most likely false-
positive variant calls within the datasets, the most commonly shared variants (n = 54) 
from each dataset were interrogated in dbSNP (Sherry et al. 1999) and visualised in 
IGV v2.10.3 (igv.org, 2022). This represented between 3% and 7% of all shared variants 
within each of the four datasets. Variants were classified as a polymorphism if the 
alternate allele frequency provided by the ALFA project European dataset (available via 
dbSNP; Sherry et al. 1999) was >0.1, representing an allele with estimated population 
frequency of 1% (Karki et al. 2015). The ALFA-generated allele frequencies are based 
on data from over two million subject entries within the NCBI database of Genotypes 
and Phenotypes (dbGAP) (Phan et al. 2020). Within IGV, a selection of criteria was used 
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to determine whether the variants, with alternate allele frequencies <0.1, were likely 
to be artefacts (table 11).  

Once the selection of shared variants from each of the two datasets per NGS panel 
(one with synonymous variants removed, and one with synonymous variants included) 
had been analysed using dbSNP and IGV, and likely artefacts had been identified, this 
data was used to estimate the number of artefacts within each of the four datasets. 
The TMB scores for each patient in each of the two datasets per NGS panel (with and 
without synonymous variants) were adjusted to account for the removal of predicted 
artefacts.  

 

Table 11: Features suggestive of an artefact rather than a genuine variant within the tumour 
sample (AWMGS unpublished data). The first criteria is described by Koboldt 2020. 

1 Variant may not be present in both forward and reverse strands  
2 Variant may not be present in overlapping reads 
3 The sequencing around the variant may be of poor quality 
4 Variant may be in a homopolymer repeat sequence or repetitive region. 
5 The location of the variant may have multiple low-level sequencing changes 

such as other nucleotides substitutions. 
6 Variant may be a deamination artefact (C>T or G>A) 

 

2.7 TMB high threshold setting 
The four Illumina and four Nonacus datasets (TMB estimation with/without the 
inclusion of synonymous variants, and with/without the removal of sequencing 
artefacts) were interrogated using a minimum of 11 different TMB high thresholds 
(table 12). The lowest TMB high threshold used across all panel/analysis datasets was 
10 variants/Mb, which is the threshold that has proven utility in stratifying 
immunotherapy responders and non-responders in TMB studies by Ramalingam et al. 
(2018), Hellmann et al. (2018a), Pestinger et al. (2020) and Marabelle et al. (2020). The 
other TMB high thresholds investigated were chosen based on the TMB scores of that 
particular NGS panel/analysis dataset (explained further below). The TMB high 
thresholds evaluated were a minimum of 10 variants/Mb from one another, e.g. 90 
variants/Mb and 100 variants/Mb thresholds were evaluated in all but one of the 8 
panel/analysis combinations.  

The sensitivity and specificity of each TMB high threshold in relation to the correct 
classification of patients into responder/non-responder groups was determined. The 
TMB high threshold most effective at determining immunotherapy response in the 
patient cohort, based on maximising true positive rate (to maximise sensitivity) and 
minimising false positive rate (to maximise specificity), was identified using ROC-curve 
analysis. Owing to the evaluation of sensitivity and specificity of each threshold, it was 
not necessary to evaluate the same thresholds for each panel/analysis combination as, 
sensitivity and/or specificity will only change if a TMB score of a patient within the 
cohort lies between the last thresholds investigated. For example, if 2 patients are in a 
cohort and one has a TMB score of 100 variants/Mb and the other has a TMB score of 
150 variants/Mb, a TMB threshold of between 110 and 140 variants/Mb will have the 
same sensitivity and specificity. Effectively, it could therefore be considered that TMB 
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high thresholds were evaluated within this project at 10 variants/Mb intervals 
between the lowest and highest TMB high thresholds (shown in table 12), although in 
practice this was not necessary as illustrated in the example above. 

 

Table 12: The range of TMB high thresholds investigated in each of the NGS panel/analysis 
combinations to determine sensitivity and specificity for prediction of immunotherapy 
response in each patient cohort. The highest threshold was between 140-440 variants/Mb, 
which varied dependent on the panel/analysis combination. 

TMB calculation parameters Range of TMB high thresholds investigated 
(variants/Mb) 
Illumina Nonacus 

TMB estimation including synonymous 
variants with removal of artefacts 

10 300 10 320 

TMB estimation including synonymous 
variants without removal of artefacts 

10 400 10 440 

TMB estimation excluding synonymous 
variants with removal of artefacts 

10 290 10 140 

TMB estimation excluding synonymous 
variants without removal of artefacts 

10 290 10 290 

 

2.8 Statistical analysis  
Mean TMB estimations from the cohort of patients (n=13) whose tumour samples 
were analysed on both the Illumina and Nonacus panels, were evaluated for any 
statistically significant differences using a paired t-test. A total of four paired t-tests 
were performed to account for the four different analysis strategies used, namely TMB 
estimation with/without the inclusion of synonymous variants, and with/without the 
removal of sequencing artefacts. This evaluation provides information regarding the 
importance of panel selection and variant selection on TMB estimations, which links to 
two of the key aims of this project. 

Scatter plots were used to visualise the relationship between immunotherapy 
response (response plotted as post-PD-L1 assessment survival in days) and TMB 
estimation (variants/Mb) from all Illumina (n=15) and Nonacus (n=15) NGS library 
preparations. A total of eight scatter plots were required to visualise both panel 
datasets across the four different analysis strategies (namely TMB estimation 
with/without the inclusion of synonymous variants, and with/without the removal of 
sequencing artefacts). Spearman rank correlation coefficient (rs) calculations were 
performed on each of the eight datasets to investigate any association between TMB 
score (variants/Mb) and immunotherapy response, with the strongest association 
being identified by the highest rs value.  

The panel/analysis package that gave the strongest association between TMB score 
and immunotherapy response using Spearman rank analysis was then further 
evaluated. Using a ROC-curve generated TMB high threshold, the patient cohort was 
divided into TMB high and TMB low groups and the median survival time of each group 
was calculated. A log rank test was used to identify any statistical significance between 
the Kaplan Meier survival curves of the TMB high and TMB low patient groups. This 
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evaluation provides the key piece of evidence to answer the primary research question 
of this thesis regarding whether there is clinical utility in the use of TMB status in 
combination with PD-L1 expression as a biomarker for immunotherapy response, as 
clinical utility would be suggested by a significant difference in survival times between 
the TMB high + PD-L1 expressor (>50%), and TMB low + PD-L1 expressor (>50%) 
patient groups. 

The potential benefit of using PD-L1 expression status in combination with TMB score 
for immunotherapy response prediction compared to the use of PD-L1 expression 
status alone, was investigated using the Kruskal-Wallis test. This was performed 
specifically for the cohort of patients evaluated using the panel/analysis package that 
gave the strongest association between TMB score and immunotherapy response 
using Spearman rank analysis. The median survival of the PD-L1 >50% group (n= 15), 
and the TMB high + PD-L1 >50% group (n=10) was compared and evaluated for 
statistical significance. The expectation was that, in accordance with published data in 
non-Welsh cohorts, the combined TMB and PD-L1 assessment would be an improved 
biomarker for immunotherapy response prediction demonstrated by a statistically 
significant increase in survival of the TMB high + PD-L1 >50% group compared to the 
PD-L1 >50% group. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.9 Summary of methods  
Figure 10: Flow chart summarising the methods within this thesis used to answer the 
primary research question. The three NGS panels utilised are the Illumina TruSightTM 

Oncology 500 panel, the Agilent SureSelect Community Design Glasgow Cancer Core panel, 
and the Nonacus Cell3TM Target: Pan Cancer panel.  
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2.10 Evaluating the feasibility of TMB assessment in a clinical 
setting 
2.10.1 Cost of a TMB service within AWMGS 

The cost of TMB assessment per patient was calculated for the panels in this study that 
successfully generated sequencing data. These calculations considered the cost of the 
targeted panel kit, the sequencing costs, and staff time associated with the testing 
process, based on costings generated at AWMGS.  

2.10.2 Investigation into the availability of EQA schemes focussed on TMB 
assessment 

The investigation into the availability of TMB-based EQA schemes was performed by a 
website search of the two key providers of EQA schemes used by UK Genomics 
laboratories (including AWMGS): UK NEQAS (National External Quality Assessment 
Service; ukneqas.org.uk, 2022) and EMQN (European Molecular Genetics Quality 
Network; emqn.org, 2022). EQA schemes provide quality assurance for laboratories by 
assessing the performance of laboratories in the analysis and interpretation of a set of 
pre-validated samples. Participation in such EQA schemes is a requirement of an 
ISO15189 accredited laboratory. 

Chapter 3: Results 
 

3.1 DNA extraction 

17 FFPE NSCLC samples 
from PD-L1 high 

expressor patients

DNA extraction

Library preparation:
12 FFPEs on all 3 panels
Remaining 5 FFPEs on 

either 1 or 2 panels 
including:

13 FFPEs on Nonacus and 
Illumina panels

Next Generation 
sequencing on Illumina 

NovaSeqTM 

Bioinformatics pipeline: 
Alignment to reference 
sequence, removal of 

duplicate reads, variant 
filtering

NGS data quality check: 
Q30 Phred score and 

depth of coverage

4 sets of TMB 
calculations per panel:

 +/-synonymous variants
 +/-sequencing artefacts

Statistical analysis of 
data including evaluation 

of ROC-curve analysis-
generated TMB high 

thresholds for each of 
the 4 sets of data per 

panel 
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DNA extraction was successful from all 17 of the WCB-sourced FFPE tumour specimens 
from PD-L1 high expressor (>50%) NSCLC patients. Qubit concentrations were in the 
range of 2.5ng/ul – 50.0ng/ul, with a median DNA concentration of 10.8ng/ul; 
Nanodrop evaluation of a selection of samples showed that the 260:280 absorbance 
ratios ranged from 1.87-1.92 (excluding a poor-quality outlier at 260:280 of 0.54). 
Although each Promega Maxwell extraction provided 72ul of DNA, many of the 17 DNA 
samples were used in other research projects; the total quantity of DNA remaining for 
each patient sample was between 25ng and 1900ng, with a median quantity of 515ng. 
For all 17 samples, sufficient DNA was obtained to perform NGS using at least one of 
the target enrichment panels. There was enough DNA in 12 of the samples to perform 
target enrichment and sequencing using all 3 NGS panels (175ng required). 

 

3.2 Sequencing library preparation  
Dependent on the volume of DNA obtained from the FFPE extractions, sequencing 
library preparation was performed for between one and three of the NGS panels under 
investigation within this thesis (table 13). 

 

Table 13: Patient cohort investigated in this thesis dependent on DNA availability. Sample 
IDs are noted across the top of the table. Green indicates that the sample was sequenced on 
the panel; red indicates that there was insufficient DNA to sequence the sample on the 
panel. DNA input requirements of each panel are: Illumina 100ng; Agilent 50ng; Nonacus 
25ng. 

 20
M

70
07

1 

20
M

70
07

2 

20
M

70
07

3 

20
M

70
07

5 

20
M

70
07

6 

20
M

70
07

8 

20
M

70
07

9 

20
M

70
08

1 

20
M

70
08

4 

20
M

70
08

8 

20
M

70
09

0 

20
M

70
09

1 

20
M

70
07

4 

20
M

70
08

6 

20
M

70
08

7 

20
M

70
07

7 

20
M

70
08

9 

Illumina                                    
Agilent                                   
Nonacus                                   

 

3.2.1 Agilent 

Sequencing failed on the Agilent panel for 14/14 patients, with all of the 1.7Mb panel 
achieving <250x coverage at each base position. This poor coverage across all regions 
of the panel was identified at the sequencing data Quality Control step, meaning no 
additional processing of the Agilent data using the Institut Curie TMB tool was 
performed. The root cause of this sequencing failure is not known. The quality control 
steps within the library preparation did not indicate any problems with the set-up. 
Importantly, the AWMGS laboratory has experienced previous issues with poor 
coverage of another Agilent NGS panel that were never resolved; the overlapping 
nature of the protocols for these 2 Agilent panels suggests that these panel failures 
could be linked, perhaps in terms of a common set-up error within the laboratory 
caused by lack of experience in this protocol.  
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3.2.2 Illumina  

Q30 Phred sequencing quality score was 91.2% for the Illumina panel sequencing run. 
This indicates that 91.2% of bases sequenced on this sequencing run had a predicted 
quality score of 30 or more, which translates to a 1 in 1000 (0.1%) chance of error at 
each base position. This QC score predicts a low level of sequencing errors across the 
15 samples that were processed on the Illumina panel, which gives confidence in the 
accuracy of the NGS data generated. 

The second element of the manual Quality Control check in which the panel coverage 
was evaluated to check that targeted regions contained coverage above the 250x 
showed that across the 15 patient cohort a minimum of 34% of the Illumina panel had 
achieved the 250x threshold (figure 11). Based on the Q30 score and the coverage 
data, all 15 samples passed the Quality Control step and could continue on to the next 
stage of analysis to calculate TMB estimation.  

3.2.3 Nonacus 

Q30 Phred sequencing quality score was 83.5% for the Nonacus panel sequencing run, 
indicating that 83.5% of bases had a 0.1% chance of error in the base call.  

Figure 11 shows the coverage achieved per sample. Despite only 27% (4/15) of the 
patients achieving 250x across >30% of the Nonacus panel, rising to 73% (11/15) of 
patients who achieved 250x coverage across 10% of this panel, all 15 samples 
continued on to the next stage of analysis to calculate TMB estimation and maximise 
data collection.  
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3.2.4 Comparison of panel coverage 

In general, sequencing coverage was more uniform between the samples sequenced 
using the Illumina panel with the percentage of bases being sequenced to 250x lying 
within a range of 34-51% across all 15 patients, with a mean coverage of 43% (figure 
11). There was generally poorer coverage of samples prepped using the Nonacus 
panel, where the percentage of bases being sequenced to 250x was 1-37% across the 
15 patient samples analysed, with a mean coverage of 23%.  

Closer interrogation of sequencing coverage at the gene level indicated that all 15 
samples sequenced on the Illumina panel covered 100% of the EGFR variant hotspot 
regions (exons 18-21) to a minimum of 250x, and an average of 97.8% of the KRAS 
variant hotspot regions (exons 2-4) were covered to 250x in the patient cohort. Using 
the Nonacus panel an average of 73.8% of the EGFR hotspots and 72.2% of the KRAS 
hotspots achieved 250x coverage in the 15-patient cohort. Review of sequencing 
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coverage data collated from a selection of lung cancer-related genes (CDKN2A, PTEN, 
NRAS, RET, KRAS, ERBB2, PIK3CA, EGFR, MET, BRAF) showed that the average coverage 
to 250x of this gene selection in the Illumina cohort was 55% compared to an average 
of 39% in the Nonacus panel cohort (data not shown).  

 

3.3 Tumour Mutational Burden estimation 
TMB estimation was performed for both the Illumina and Nonacus datasets using the 
Institut Curie TMB tool (Github, 2022a). Ultimately, four datasets were produced for 
each panel based on the inclusion/exclusion of synonymous variants (+synonymous/-
synonymous) and the inclusion/exclusion of sequencing artefacts (+artefacts/-
artefacts) within the TMB calculations.  

3.3.1 Impact of NGS panel on TMB score 

The same 13 tumour samples were sequenced on both the Illumina and Nonacus 
panels. The number of variants identified in each of these tumour samples varied 
dependent on the NGS panel used. When no additional artefact removal was 
performed (artefact removal is discussed later in results chapter), the Nonacus panel 
detected a higher number of variants per patient in 46% (6/13) of patients in the -
synonymous dataset and in 85% (11/13) of patients in the +synonymous dataset 
(appendix 11). The average number of variants detected per sample across the 13 
samples analysed on both NGS panels was greater when Nonacus targeting was used, 
although this difference between panels was relatively insignificant in the -
synonymous dataset (-synonymous: Nonacus mean 122 and Illumina mean 118; 
+synonymous: Nonacus mean 215 and Illumina mean 148). The larger discrepancy 
seen in the number of variants detected between the Illumina and Nonacus panels 
using +synonymous conditions, can be related to the higher number of synonymous 
variants detected in the Nonacus-targeted samples (table 14).   

The difference in the number of variants detected in the 13 samples sequenced on 
both the Illumina and Nonacus panels results in differing TMB scores (variants/Mb) for 
each patient dependent on the panel used (figure 12), as importantly the effective 
genome size interrogated within the targeted sequencing is similar for both panels 
(802,968 bases for Illumina and 835,198 bases for Nonacus). Focusing again on the 
+artefacts datasets, the Nonacus panel generated a higher TMB score per patient in 
46% (6/13) of patients in the -synonymous +artefacts dataset and in 85% (11/13) of 
patients in the +synonymous +artefacts dataset.  

In accordance with the general higher variant number in Nonacus-targeted samples 
when using +synonymous (+artefacts) conditions, the average TMB score across the 13 
samples analysed on both panels was higher across the Nonacus-targeted 
+synonymous samples (+artefacts: Nonacus mean 258 variants/Mb and Illumina mean 
184 variants/Mb). This increase was also seen under -artefacts conditions: Nonacus 
mean 193 variants/Mb and Illumina mean 178 variants/Mb. The impact of this 
variation in TMB scores on overall TMB status (high/low) and subsequent treatment 
stratification of patients is highlighted later in the results chapter.  
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3.3.2 Impact of synonymous variants on TMB score 

The number of identified variants increased in both the Illumina and Nonacus datasets 
(n=15 for both) as a whole with the inclusion of synonymous variants. The increases 
were remarkably different dependent on the panel used (table 14). Table 14 shows 
that the number of variants detected in the 13 patients sequenced across both panels 
followed the same trend as when analysing the 15 patient datasets, in terms of the 
differences between the number of variants detected per panel, and in terms of the 
impact of the inclusion or exclusion of synonymous variants on variants counted. 
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Table 14: Summary of the number of variants identified across the 15 patients sequenced on 
either the Illumina or Nonacus panels. This data shows the percentage increases in the 
number of variants detected between the -/+ synonymous datasets. It should be noted that 
13 of each panel-specific cohort of 15 patients were the same, i.e. were sequenced on both 
panels; the variant data for these 13 patients is shown. Note: Additional artefact removal 
has not been performed in this data. 

 
Illumina sequencing data Nonacus sequencing data  

- 
synonymous 

+ 
synonymous 

%
 in

cr
ea

se
 

- 
synonymous 

+  
synonymous 

%
 in

cr
ea

se
 

Number of 
variants 
identified 
across all 15 
patients 

1948 2482 27% 1866 3355 80% 

Number of 
variants 
identified 
across same 
set of 13 
patients 

1534 1920 25% 1584 2800 77% 

 

In the Illumina dataset there was a 27% increase in the number of variants called by 
the analysis pipeline when synonymous variants were counted, whilst the inclusion of 
synonymous variants in the Nonacus dataset resulted in an 80% increase in variant 
number (table 14). When visualising the variant data on a patient level rather than 
across the cohort as a whole, corroborative information is gathered in that the number 
of variants increased in all patients (n = 15) in both the Illumina dataset (35% average 
increase, correlating to 12-116 synonymous variants per patient) and Nonacus (77% 
average increase, correlating to 25-184 synonymous variants per patient) datasets 
with the inclusion of synonymous variants (appendix 11). The resulting TMB scores 
(variants/Mb) increased by 35% per patient on average in the Illumina dataset 
compared to 77% per patient on average in the Nonacus dataset as a result of the 
inclusion of synonymous variants within the calculations (figure 13).  
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3.3.3 Impact of artefacts on TMB score 

Evaluation of data from each of the four NGS panel datasets (Illumina and Nonacus +/- 
synonymous) using Excel functionality was performed to identify shared variants within the 
patient cohorts of each dataset. The most commonly shared variants (54 in total across the 4 
datasets) were interrogated in dbSNP and IGV to identify likely artefacts based on the criteria 
described in the methods chapter. See appendices 12 and 13 for full details of the variants 
interrogated and classified. 

In the Nonacus and Illumina datasets, a varying percentage of shared variants were identified 
as artefacts following dbSNP and IGV interrogation (table 15-a). The Nonacus datasets had a 
much higher proportion of artefacts compared to the Illumina datasets based on the limited 
analysis of shared variants performed, and artefact rate was shown to be higher in the -
synonymous datasets than in the +synonymous datasets. The artefact prevalence, based on 
the shared variants interrogated, was used to estimate the number of artefacts within each of 
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the four complete datasets (table 15-b). Artefact levels of 2-3% for the Illumina panel and 25-
42% for the Nonacus panel were predicted.  

Table 15: Interrogation of a proportion of shared variants within the two Illumina and two 
Nonacus datasets in dbSNP and IGV: a) to provide an estimation of artefact frequency across 
the shared variants of each dataset; b) to predict the % of artefacts within each 15-patient 
dataset using the %s determined in a). In a) the percentages represent the number of 
interrogated variants classified as artefact as a percentage of the total number of shared 
variants investigated in IGV. 

a) Illumina sequencing data Nonacus sequencing data 
 

- synonymous + synonymous - synonymous +  synonymous  

% of interrogated shared 
variants classified as 
artefact 17% (1/6) 15% (2/13) 62% (8/13) 36% (8/22) 

 

b) Illumina sequencing data Nonacus sequencing data  
- synonymous  + synonymous - synonymous  + synonymous 

I: Number of non-unique 
variants (i.e. each shared 
by >1 patient) across all 
15 patients sequenced  210 441 1253 2373 
II: Predicted number of 
non-unique variants 
within the 15 patient 
dataset representing 
artefacts (based on % in 
‘a’) [a*I] 36 66 777 854 
III: Total no of variants 
identified across all 15 
patients sequenced 1948 2482 1866 3355 
IV: Predicted % of 
variants within the 15-
patient dataset 
representing artefacts 
[(II/III)%] 2% 3% 42% 25% 

 

Re-calculation of TMB scores following removal of artefacts from the two Illumina and 
two Nonacus datasets (+/-synonymous) was performed using the predicted artefact 
levels in table 15-b (figure 14; appendix 11). The impact of differences in TMB scores 
on the TMB high/TMB low classification of patients will be described later in the results 
chapter. 
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3.4 Statistical analysis 
 

3.4.1 Comparison of TMB scores from Illumina and Nonacus NGS panels using 
paired t-tests 

Within the cohort of patients (n=13) analysed on both Illumina and Nonacus panels, 
there is variation in TMB estimations when either the Illumina or Nonacus panel is 
used for sample interrogation (figure 12). This is true when artefacts are included or 
removed (figure 14), and is also true when synonymous variants are included or 
excluded from the calculations (figure 13). These differences in TMB estimations are 
summarised in figure 15 below. The statistical significance of the differences in TMB 
scores within this 13-patient cohort when different panels and different variant 
calculations are used, was determined using a selection of paired t-tests.  

 

Figure 15: Variation in cohort mean TMB score using different panel/analysis conditions. The 
mean TMB scores are shown, calculated for the same patient cohort (n=13) analysed using 
different NGS panels and with different variant calculations applied. Note: The Illumina and 
Nonacus -synonymous datapoints are over-laid in the +artefacts dataset representing mean 
TMB scores of 147 and 146 respectively. 

 

The t-test compares the dataset mean TMB scores (as shown in figure 15) to the null 
hypothesis stating that the mean difference between the mean TMB scores from 
Illumina and Nonacus enrichment for the patient cohort will be zero. Two-tailed t-tests 
were used as the alternative hypothesis is that the Illumina and Nonacus mean TMB 
scores for the cohort are not equal (no emphasis on which panel may have a lower 
mean). The degrees of freedom is 12 (n-1) and the t critical value is 2.17881283 for all 
datasets (+/-synonymous variants, and +/-artefacts). A t-value of zero would equate to 
there being no difference between the mean TMB scores in each dataset. The p-value 
gives the probability that the t-value observed will be larger than the t critical value.  
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Table 16: Paired t-test evaluation of variation in TMB estimations under different 
panel/analysis conditions. Evaluation of the statistically significant difference (level of 
significance α = 0.05) between the mean TMB scores generated from the Illumina and 
Nonacus panel datasets (n=13) when different methods of variant counting were applied (+/- 
synonymous variants and +/- artefacts). 

 + artefacts - artefacts 
 - synonymous + synonymous - synonymous + synonymous 
t- value (2 s.f.) 0.038 -2.00 2.50 -0.49 
p-value (2 d.p.) 0.97 0.069 0.028 0.63 

 

The difference between the mean cohort (n=13) TMB scores generated from Illumina 
and Nonacus (values of 144 and 85 variants/Mb respectively) is statistically significant 
within the -synonymous -artefacts dataset (table 16). In this dataset, the two-tail p-
value is less than the 0.05 significance level, therefore the null hypothesis is rejected. 
Comparison of the t value in the -synonymous -artefacts dataset to the critical t value 
shows that the t value is greater than the critical t value.  

3.4.2 Association between TMB scores and immunotherapy response 

The association between TMB score and immunotherapy response is shown in the 
scatter graphs (figure 16) for the Ilumina and Nonacus +artefacts datasets. When 
artefacts were excluded, the datapoints in each of the four datasets shifted to the left 
to different degrees dependent on the number of artefacts within the panel/analysis 
dataset which reduced the TMB scores (plotted on the x axes) (data not shown).  

Figure 16 demonstrates scattering of datapoints. E.g. in the Illumina cohort (- 
synonymous variants + artefacts; figure 16-a) patient survival >800 days was 
associated with TMB scores of between 50 and 288 variants/Mb; patients in the same 
cohort with similar TMB scores had survival of <200 days. 
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To describe the association between TMB score and immunotherapy response, the 
Spearman rank correlation coefficient (rs) was calculated for each Nonacus and 
Illumina dataset, +/-synonymous and +/-artefacts. The rs for all of the Nonacus and 
Illumina datasets show a weak positive correlation between TMB score and 
immunotherapy response (table 17). There was a trend for a stronger positive 
correlation, demonstrated by higher rs values, between TMB score and 
immunotherapy response using the Nonacus panel compared to the Illumina panel. 
The strongest association between TMB score and patient survival (rs = 0.154) was 
demonstrated using the Nonacus panel -synonymous +artefacts conditions (figure 17).  

 

 

 

 

 



67 
 

Table 17:  Spearman correlation coefficient evaluation of the association between TMB score 
and immunotherapy response under different panel/analysis conditions. Rs values are noted 
in the table to describe the association between TMB score and immunotherapy response 
(measured in terms of survival time post PD-L1 test) within the patient cohort (n=15) using 
the Nonacus and Illumina NGS panels, +/-synonymous and +/-artefacts.  

   Spearman correlation 
coefficient (rs) to 3d.p. 

Illumina + artefacts - synonymous 0.007 
+ synonymous 0.011 

- artefacts - synonymous 0.007 
+ synonymous 0.011 

Nonacus + artefacts - synonymous 0.154 
+ synonymous 0.132 

- artefacts - synonymous 0.046 
+ synonymous 0.111 

 

Figure 17: Spearman rank correlation between TMB score and immunotherapy response 
using Nonacus -synonymous variants +artefacts. Immunotherapy response is measured in 
terms of survival in days, which is calculated as the number of days between PD-L1 test to 
date of death or 11/04/2022. TMB values were measured in variants/Mb across the patient 
cohort (n=15). 

 

3.4.3 Evaluation of TMB high thresholds for accurate immunotherapy response 
patient stratification 

3.4.3.1 10 variants/Mb TMB high threshold 

Using the 10 variants/Mb TMB high threshold suggested by Ramalingam et al. (2018), 
sensitivity, the number of patients who responded to immunotherapy (based on 
clinical record RECIST-1 data) who were correctly identified as TMB high (for both 

R² = 0.0236

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

Su
rv

iv
al

 in
 d

ay
s (

ra
nk

)

TMB estimation (rank)



68 
 

Illumina and Nonacus datasets under all analysis conditions) was 100%. However, 
specificity was 0%, with 9/9 (100%) non-responders (according to RECIST-1 
classification) being incorrectly classified as responders (i.e. TMB high) using the TMB 
estimations generated from both Illumina and Nonacus datasets under all analysis 
conditions. These sensitivity and specificity figures relate to the fact that all TMB 
scores of patients in this mixed cohort of responders and non-responders were greater 
than the 10 variants/Mb TMB high threshold (see figure 14). 

3.4.3.2 ROC-curve generated TMB high thresholds 

Maximising sensitivity and specificity: 

ROC curve analysis was used to determine the TMB high threshold most effective at 
determining immunotherapy response in this Welsh patient cohort, based on 
maximising true positive rate (to maximise sensitivity) and minimising false positive 
rate (to maximise specificity) (figure 18).  

The optimal ROC-curve generated TMB high thresholds, showed that the maximum 
sensitivity and specificity for accurate responder/non-responder classification 
(responders defined using RECIST 1.1 criteria encompassing CR, PR and SD; Eisenhauer 
et al. 2009) was achieved using Nonacus +synonymous variants +/-artefacts (figure 18; 
table 18).  
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Variability in ROC-curve generated thresholds in this study: 

Different optimal TMB thresholds were identified by ROC curve analysis depending on 
the panel/analysis parameters used (table 18). The optimal ROC-curve generated 
thresholds for Nonacus varied between 80 variants/Mb and 240 variants/Mb, whilst 
the Illumina thresholds varied in the range 100-130 variants/Mb. This threshold 
variation relates to the variation in TMB scores observed using each set of analysis 
parameters (+/-synonymous variants and +/-artefacts). The optimal TMB high 
thresholds fluctuate in line with the mean TMB score for the patient cohort; so, the 
lowest mean TMB score (across the four different analyses) for the Illumina cohort was 
144 variants/Mb using the -synonymous -artefact analysis, and these analysis settings 
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also had the lowest TMB threshold for Illumina. Equally, the highest mean TMB score 
for the Nonacus cohort was 244 variants/Mb when the +synonymous + artefact 
analysis was used, and this analysis package also had the highest Nonacus TMB 
threshold aligned to it.  

Table 18: Optimal ROC-curve generated TMB high thresholds for accurate prediction of 
immunotherapy response based on maximising sensitivity and specificity in this patient 
cohort (n = 15). Sensitivity and specificity have been determined in relation to the accuracy 
of responder/non-responder classification (responders defined using RECIST 1.1 criteria 
encompassing CR, PR and SD; Eisenhauer et al. 2009). 

   TMB threshold 
(variants/Mb) 

Sensitivity 
(TP) 

Specificity 
(1-FP) 

Illumina + artefacts - synonymous >100 83% 33% 

+ synonymous >130 83% 33% 

- artefacts - synonymous >100 83% 44% 
 

+ synonymous >120 83% 33% 

Nonacus + artefacts - synonymous >130 100% 67% 

+ synonymous >240 100% 78% 

- artefacts - synonymous >80 100% 56% 

+ synonymous >180 100% 78% 

 

Utility of TMB as a predictor of immunotherapy response:  

Using the optimal ROC-curve generated TMB high thresholds in table 18, the utility of 
TMB as a biomarker for immunotherapy response prediction can be observed by 
comparing the assigned TMB status of the patients with the immunotherapy responses 
(survival post PD-L1 test) (figure 19). In all of the eight panel/analysis combinations 
(Illumina +/- synonymous variants +/-artefacts; Nonacus +/- synonymous variants +/-
artefacts), patient survival in the high TMB group is longer than in the low TMB group. 
The statistical significance of this observed difference in survival between TMB high 
and TMB low groups is assessed in section 3.4.4. 
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Figure 19: Variation in survival between high TMB patients and low TMB patients in this 
Welsh patient cohort across each of the 8 panel/analysis combinations. Mean survival within 
each panel/analysis cohort (n=15) is plotted, with survival representing survival post PD-L1 
test to date of death or 11/04/2022. TMB high thresholds for each of the eight 
panel/analysis combinations were generated using ROC curve analysis (table 18). 

 

 

3.4.3.3 Impact of the use of different NGS panels and different TMB calculations on 
TMB status 

Data already presented in the results chapter shows that analysis of the same patient 
sample on different NGS panels generates different values for the number of variants 
within the tumour sample, and in some analysis settings (-synonymous variants -
artefacts) this difference in TMB score between the Nonacus and Illumina panels is 
statistically significant. Using the optimal ROC-curve generated thresholds described 
above, the impact on TMB high/low status of the NGS panel used for TMB calculation 
can be seen. The data shows that in 4/13 (31%) patients, there was total discrepancy 
between the TMB status assigned to these patients dependent on whether the 
Illumina or Nonacus panel was used for TMB assessment (table 19-a), but the TMB 
status in these cases did not change based on the TMB analysis performed. In one of 
these samples (20M70071), the Nonacus-generated TMB values (under all analysis 
conditions) were only just greater than the TMB high threshold (ROC-curve generated). 
In a similar way, the Illumina-generated TMB values of sample 20M70088 were close 
to (within 20 variants of) the TMB high threshold in all analysis settings (table 19-a).  

6/13 (46%) patients had the same TMB status regardless of the panel and analysis 
method used. In 3/13 (23%) patients, the TMB status differed dependent on both the 
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panel and analysis parameters used (table 19-b). Table 19-b shows that, in the three 
patient samples in which there were discrepancies in TMB status dependent on the 
panel and analysis parameters used, many of the TMB values generated for these 
samples were close to (within 20 variants of) the TMB high threshold for that specific 
panel/analysis combination.  
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Table 19: Variability in TMB status when different NGS panels and analysis parameters are 
used for TMB calculation. Green indicates TMB high, red indicates TMB low; a * indicates 
that the TMB value is close to (within 20 variants of) the TMB high threshold. The RECIST-1 
classification of each sample is shown in the table; a tick indicates that RECIST-1 
classification (CR = complete response; PR = partial response; NR = no response; Eisenhauer 
et al. 2009) correlates with the TMB status. a) Data from the four samples in the Welsh 
patient cohort that had different TMB status dependent on the NGS panel used. Note: The 
TMB status of these four samples did not change in either panel setting when different TMB 
analysis parameters (+/- synonymous variants and +/-artefacts) were used. b) Data from the 
three samples in this study that showed variability in TMB status dependent on both the 
panel and analysis parameters used for TMB quantification.  

a) 
 20M70071 

(CR) 
20M70074 
(NR) 

20M70084 
(NR) 

20M70088 
(PR) 

Illumina    √* 

Nonacus √* √ √  

b) 

 



74 
 

3.4.4 Association between TMB status and immunotherapy response 

The weak positive correlation (rs) between TMB score and immunotherapy response 
(survival post PD-L1 test) across all Nonacus and Illumina datasets has already been 
described earlier in the results chapter. The subsequent classification of patients into 
TMB high and TMB low groups based on the optimal ROC-curve generated TMB high 
threshold, allows the survival of patients within the TMB high and TMB low groups to 
be compared. 

Kaplan Meier curves were used to visualise the difference in survival (calculated as 
survival post PD-L1 test to date of death or 11/04/2022) between the TMB high and 
TMB low groups of the Nonacus -synonymous variants +artefacts dataset (figure 20). 
This patient/analysis cohort was interrogated as, out of the eight different 
panel/analysis cohorts, this gave the strongest association (rs) between TMB score and 
immunotherapy response. 

The median survival time (probability of survival of 0.5 in figure 20), is 1292 days for 
the TMB high group, whilst median survival in the TMB low group is 488 days. From 
the Kaplan Meier curves, a log rank test was used to assesses whether the Kaplan 
Meier curves from these TMB high and TMB low cohorts are significantly different.  
The log rank (ꭓ2 critical value of 3.841 at 5% level of significance) showed that there 
was no statistically significant difference between the TMB high and TMB low survival 
curves (ꭓ2 =0.258, p=0.05).  

Figure 20: Kaplan Meier curves illustrating the likelihood of survival within TMB high and 
TMB low cohorts. Survival represents survival post PD-L1 test to date of death or 
11/04/2022. TMB estimations in this patient cohort (n=15) were performed on Nonacus -
synonymous variants +artefacts. A TMB high threshold of 130 variants/Mb was used as 
generated from ROC curve analysis (table 18), with TMB high (n=9) and TMB low (n=6). 
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3.4.5 Evaluation of the utility of combining TMB status with PD-L1 status in 
prediction of immunotherapy response 

Using PD-L1 expression alone to predict immunotherapy response within the total 
patient cohort (n=17) resulted in only 7/17 (41%) responders (encompassing RECIST 
1.1 categories CR, PR and SD; Eisenhauer et al. 2009) within this PD-L1 high (>50%) 
expression group; this is a biomarker sensitivity of 41%. This percentage varies very 
little (range: 40-47%) when the cohort is restricted to the 13 samples analysed across 
both NGS panels, or reduced to either of the panel-specific 15-patient cohorts. This 
study data has already demonstrated that the sensitivity of TMB estimation for 
accurate responder/non-responder classification (responders defined using RECIST 1.1) 
within this PD-L1 expressor patient cohort ranges from 83% to 100%, dependent on 
the panel/analysis method used to determine the patient TMB scores (table 18).  

To quantify and statistically analyse the combined utility of TMB and PD-L1 expression 
status, the survival times of the PD-L1 expressor group (n=15) were compared to the 
survival times of the TMB high + PD-L1 expressor group (n=10). The TMB high group 
evaluated is from the Nonacus -synonymous variants +artefacts dataset, which is the 
dataset that gave the most positive correlation between TMB value and 
immunotherapy response in Spearman rank analysis. Notably, to enable comparison 
here, the PD-L1 expressor group represented the 15 patients analysed on the Nonacus 
panel rather than the total 17 patient cohort in this study. 

The box and whisker plots (figure 21) show that by assessing TMB value and PD-L1 
expression in combination, within the patient group analysed on the Nonacus panel -
synonymous variants +artefacts (n = 15), the median patient survival time is extended 
from 636 days (when only PD-L1 expression is evaluated) to 964 days. The mean 
survival time is also extended but by a smaller margin (787 days compared to 859 
days) when both TMB and PD-L1 expression are evaluated. Variation in survival time 
was similar in both the PD-L1 high group (n=15) and the combined TMB high + PD-L1 
high group (n=10). The Kruskal-Wallis test was used to determine if there was a 
statistically significant difference in patient survival between these two groups. The 
test revealed that the median patient survival did not show a statistically significant 
difference (H = 0.077, p = 0.782) between the PD-L1 >50% group and the TMB high + 
PD-L1 >50% group.  
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3.5 Evaluation of the feasibility of TMB within a clinical setting 
 

3.5.1 Cost of a TMB clinical service 

The calculated costings of a TMB service within AWMGS is shown in table 20, using the 
two NGS panels that provided successful sequencing data. These costings do not 
consider the additional costs that would be associated with validation of a TMB 
service, which would involve the determination of sensitivity, specificity, and 
reproducibility of the TMB assay using a range of clinical-grade samples over multiple 
NGS runs. Information provided from the Pathology laboratory at University Hospital 
of Wales (personal correspondence), where PD-L1 assessment by IHC is currently 
performed for NSCLC samples, noted that the cost of PD-L1 analysis is £100 per 
patient. 
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It is important to consider these costs alongside the panel’s gene contents, which 
extends the utility of these panels to encompass both TMB evaluation and the delivery 
of existing NSCLC WHSCC-funded services (section 1.7.2).  

Table 20: Estimated cost of a TMB service within the AWMGS laboratory. 

Item Additional information  Estimated 
cost/tumour 
sample 

DNA extraction  Maxwell extraction £12 
Library preparation: 
Illumina TruSightTM 

Oncology 500 panel 

Illumina TruSightTM Oncology 500 panel DNA kit for 48 
samples = £8758.20  

£182.46 
Library preparation: 
Nonacus Cell3TM 

Target: Pan Cancer 
panel 

Nonacus Cell3TM Target: Pan Cancer panel for 16 
samples = £1389 

£86.81 
Sequencing: NovaSeq  NovaSeq Xp 2-Lane Manifold Pack (£1071.60), 

NovaSeq Xp 2-Lane Kit (£461.70), NovaSeq 6000 SP 
Reagent Kit (300 cycle) (£5371.56) for a total of 48 
samples £143.85 

Other consumables Target Pure NGS clean-up beads, 10ml (£157.50), UK 
Delivery, Dry Ice (£38), Beckman - AMPure XP DNA 
cleanup kit (60ml) (£975), Oxford Gene Technology-
Dynabeads™ M270 Streptavidin, 2ml (£276) for a total 
of 48 samples £30.13 

Staffing  Based on an average cost dependent on staff grade of 
42p per minute 

£21.38 
TOTAL for Illumina targeting 
TOTAL for Nonacus targeting 

£389.82 
£294.17 

 

3.5.2 Availability of External Quality Assurance schemes for a TMB clinical service 

A search of the NEQAS and EMQN websites showed that no TMB-based EQA scheme 
run by either of these bodies exists (website search performed on 31st October 2022). 
However, in 2021, EMQN collaborated with the International Quality Network for 
Pathology (IQNPath) on a project to assess the standardisation of TMB testing, which 
included running a pilot EQA scheme for TMB analysis in 2020 (Abate 2020). The 
results from this pilot scheme, reporting data from 23 participating laboratories, have 
recently been published (Abate et al. 2022). 

The pilot results showed that there were seven labs using one specific NGS panel 
(Oncomine Tumour Mutation Load panel), but within this group different TMB 
calculation methods were used (+/- synonymous), which resulted in different TMB 
estimations between sites (Abate et al. 2022). The average TMB scores for each 
patient were 2-5 variants/Mb greater under +synonymous conditions than the average 
-synonymous values (Abate et al. 2022). The average increase in TMB score when 
synonymous variants were included varied between 15% and 47% across the five 
samples analysed (Abate et al. 2022). The maximum increase in TMB score of a single 
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sample between sites was 99% (relates to a sample with TMB -synonymous = 8.04 
variants/Mb in one lab, and TMB +synonymous = 15.99 variants/Mb in another lab). 
The calculations +/- synonymous were not performed in the same laboratory in this 
EQA scheme, therefore there could be additional variation in these TMB scores owing 
to additional differences in the calculations performed. 
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Chapter 4: Discussion 
The use of the immunotherapy, pembrolizumab, is stratified in current NHS practice in 
the UK using IHC-measured PD-L1 expression levels in NSCLC tumours (NICE, 2016a) to 
target the patients most likely to respond to this treatment. Tumour cells expressing 
high levels of PD-L1 (>50%) will generally have a better response to pembrolizumab 
(Topalian et al. 2012; Taube et al. 2014); however, technical complexities regarding 
PD-L1 expression analysis means that this biomarker is imperfect. TMB has been 
identified as both an alternative and complementary biomarker to PD-L1 expression 
analysis in NSCLC patients by better stratifying patients into responder and non-
responder groups (Kowantz et al. 2017; Carbone et al. 2017; Hellmann et al. 2018b; 
Hellmann et al. 2018a; Marabelle et al. 2020). However, there is no consensus or best 
practice guidance associated with TMB evaluation in terms of which method to use for 
quantification of TMB, which variants to include in the TMB estimations, and what 
TMB high threshold to use to accurately define immunotherapy responders and non-
responders. This means that there is a huge range of analyses used within TMB 
publications, which vary in these three elements (panel, analysis, and threshold). With 
the first FDA-approval of a TMB-stratified solid tumour service for pembrolizumab use 
having been issued in June 2020 (Marcus et al. 2021), the potential for NICE-approval 
of a TMB-based service is heightened. Such NICE approval would require TMB-based 
stratification to be delivered within NHS Genomics laboratories such as AWMGS in a 
timeframe of 60 days from approval. Prior to such service delivery being possible, 
guidance is required in terms of detailing recommendations for TMB analysis to enable 
clinically appropriate validations of TMB services to be performed within NHS 
Genomics laboratories. 

 

4.1 Answering the primary research question 
This study was performed at the AWMGS, which is the laboratory that would be 
responsible for implementing a clinical TMB service within NHS Wales. This study was 
initiated with the aim of answering the primary research question: Does TMB in 
combination with PD-L1 expression analysis have clinical utility as a biomarker for anti-
PD-L1 immunotherapy treatment response in a Welsh lung cancer patient cohort? This 
is the first question to address prior to establishing a TMB service in AWMGS. There 
are a number of key findings in this study, namely: improved survival in TMB high + PD-
L1 high patients, and improved accuracy of immunotherapy response prediction using 
TMB assessment alongside PD-L1 expression data, as well as the potential cost neutral 
status of a TMB service within the NHS, that potentially support the clinical utility of 
TMB and PD-L1 expression analysis as a combined biomarker within this setting. The 
limited cohort size, along with the absence of the control of variables (other than PD-
L1 status) that could impact on TMB values within this cohort, reduces the ability to 
generalise these findings across the Welsh lung cancer population as a whole. Having 
noted the potential clinical utility of a combined TMB and PD-L1 biomarker, this 
research reports variation in TMB quantification based on the choice of panel and 
analysis performed, and demonstrates the clinical significance of this variation using 
different TMB high thresholds; these findings diminish the clinical utility of TMB as a 
biomarker, but this study showed that utility could be improved by the use of an 
intermediate TMB category (see later). The development of best practice guidance 
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regarding TMB assessment and an effective EQA scheme for TMB quantification would 
also both improve the clinical utility of TMB as a biomarker, both of which are 
discussed herein. 

The key study findings that support the clinical utility of a combined TMB and PD-L1 
expression biomarker are: 

1. A weak positive correlation (rs) between TMB score and immunotherapy 
response (measured in terms of survival time post PD-L1 test) in the PD-L1 high 
expressor patient cohort evaluated in this study. This correlation was observed 
in all NGS panel/TMB analysis combinations investigated (rs range=0.007-0.154 
dependent on panel/analysis). 

2. In all NGS panel/TMB analysis combinations, mean patient survival (measured 
as survival post PD-L1 test) in the TMB high + PD-L1 high (>50%) group was 
extended compared to the mean survival of the TMB low + PD-L1 high (>50%) 
group when using ROC-curve generated TMB high thresholds; this difference in 
survival did not meet statistical significance within the single panel/analysis 
cohort evaluated (ꭓ2=0.258, p=0.05). 

3. The combined use of TMB status (using ROC-curve generated TMB high 
thresholds) and PD-L1 expression analysis improved the sensitivity of 
responder/non-responder classification (responders defined using RECIST 1.1 
criteria encompassing CR, PR and SD; Eisenhauer et al. 2009) from 41% when 
PD-L1 assessment alone was used, to 78-100% sensitivity in a combined 
biomarker approach; notably, sensitivity varied dependent on the 
panel/analysis combination. 

4. The combined use of TMB estimation and PD-L1 expression analysis (TMB high 
+ PD-L1 >50%) increased the median patient survival time of this predicted 
responder group compared to the use of PD-L1 high alone, although this 
survival difference lacked statistical significance (H=0.077, p=0.782) 

5. Based on the three targeted NGS panels evaluated, the implementation of a 
clinical TMB service for NSCLC patients would be cost neutral using the 
Nonacus and Ilumina panels. This cost neutral status was based on these NGS 
panels targeting all NSCLC clinical actionable genes (NICE, 2022), namely EGFR, 
KRAS, BRAF, ALK, ROS1, RET, NTRK1, NTRK2, NTRK3, for which testing is already 
funded across the NHS, as well as the inclusion of the MET gene within these 
panels, which is an additional NSCLC-relevant gene noted in the NHSE Cancer 
Test Directory (England.nhs.uk, 2022). 

Finding number 3 above relating to the improved sensitivity of responder/non-
responder classification seen in this study when a combination of TMB and PD-L1 
assessment is performed, confirms the thesis hypothesis by demonstrating that TMB 
status in combination with PD-L1 expression data can act as an anti-PD-L1 
immunotherapy treatment response biomarker, by accurately stratifying patients in 
this Welsh lung cancer patient cohort into responder and non-responder groups. This 
emulates the findings of other research publications (Carbone et al. 2017; Peters et al. 
2017; Seiwert et al. 2018), although the thesis findings and the published data 
regarding combined TMB and PD-L1 biomarker utility lack statistical significance, 
showing that further research studies and trials are required to demonstrate such 
utility prior to a clinical service based on a combined biomarker being considered. 

https://pubmed.ncbi.nlm.nih.gov/?term=Eisenhauer+EA&cauthor_id=19097774
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The findings in this thesis that suggest the requirement for guidance regarding TMB 
assessment prior to TMB realising its potential as a biomarker in combination with PD-
L1 expression analysis within a clinical environment are: 

1. The observed lack of consistency in TMB score and TMB status (using ROC-
curve generated TMB high thresholds) when the same set of 13 samples was 
analysed across two targeted NGS panels, Illumina and Nonacus, which would 
be of clinical significance if TMB was being used as a biomarker of 
immunotherapy response. This variation in TMB score dependent on panel 
used reflects the findings of the 2021 EMQN/IQNPath pilot EQA scheme for 
TMB assessment (Abate et al. 2022). 

2. The observed variation in TMB score and TMB status (using ROC-curve 
generated TMB high thresholds) when TMB scores were calculated for the 
same set of 13 samples using different variant inclusion criteria, i.e. +/-
synonymous variants and +/-artefacts, which (as for point number 1 above) 
would be of clinical significance in a clinical setting by altering the patients 
predicted to respond to immunotherapy. Again, such variation in TMB score 
dependent on the inclusion/exclusion of synonymous variants was also 
suggested from the 2021 EMQN/IQNPath TMB pilot EQA scheme findings 
(Abate et al. 2022). 

3. The observed variation in the TMB high threshold that generated the greatest 
sensitivity and specificity of responder/non-responder separation both when 
the same panel was used for TMB estimation using different analysis 
parameters, and when different panels were used for TMB quantification. 
Variation in TMB high thresholds dependent on the panel used has been noted 
in the literature (table 4). 
 

All of these key findings, in support of the clinical utility of TMB as a biomarker of 
immunotherapy response and those that represent potential barriers to its clinical 
utility, are discussed in more detail in section 4.2 below as the aims of this thesis are 
addressed. Each aim is addressed separately, with the final aim of the evaluation of 
feasibility of a TMB service in the NHS considering not just the cost of delivering TMB 
testing and the availability of EQA schemes, but also bringing together key findings of 
the other aims that impact on the feasibility of an NHS TMB clinical service. 

 

4.2 Fulfilling the aims of this thesis  
 

4.2.1 Study aim 1: Implications of targeted panel size and gene content on TMB 
scores 

The Illumina and Nonacus panels both target >1.5Mb of the genome, which is the size 
noted by Buchhalter et al. (2019) as being essential for accuracy of TMB measurement 
based on the similarity of TMB values generated by WES and simulated panels >1.5Mb 
in size. However, the Nonacus panel is below the 1.6Mb size threshold suggested by 
Hatakeyama et al. (2018) as being the minimum panel size for accurate TMB 
quantification, again in terms of accuracy to WES-generated data. As the samples in 
this patient cohort had not been analysed for TMB prior to this study, the TMB values 
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of these samples was unknown, and therefore accuracy of TMB assessment, in terms 
of accuracy of panel-based TMB scoring compared to WES, cannot be directly 
assessed. However, TMB estimations from the Illumina TruSightTM Oncology 500 panel 
evaluated in this thesis have been shown to be concordant with those generated from 
WGS data (Pestinger et al. 2020). As this thesis data shows that TMB estimations from 
the Illumina and Nonacus panels differ (which was a statistically significant difference 
in one panel/analysis setting), by extrapolation, so Nonacus and WGS TMB estimates 
would also be predicted to differ. Therefore, this study predicts that the Nonacus 
panel, targeting <1.6Mb of the genome, does not accurately measure TMB in terms of 
lack of consistent TMB values generated from Nonacus and the proven WGS-
concordant Illumina approach (Pestinger et al. 2020), of course this is assuming that 
the Illumina panel in this study is performing in a representative manner to WGS in this 
setting. This finding supports the suggestion made by Hatakeyama et al. (2018) of a 
1.6Mb minimum panel size for accuracy of TMB assessment compared to gold-
standard WES/WGS. However, based on the differences in the genes and gene regions 
(in terms of hotspots vs wider gene screening) targeted by different NGS panels (tables 
2 and 5), extrapolating the lack of predicted accuracy in TMB estimation from this 
single Nonacus panel to all panels <1.6Mb is not appropriate. The Hatakeyama et al. 
(2018) study was also based on a single panel <1.6Mb in size.  

Given that WGS/WES is considered to be the gold standard for TMB quantification, one 
could expect that there would be an improved clinical utility of TMB analysis using the 
Illumina panel compared to estimation using the Nonacus panel, based on the 
demonstrated concordance of Illumina-generated TMB scores with WGS-generated 
values (Pestinger et al. 2020). However, in this study it is the Nonacus panel that out-
performs the Illumina panel in many areas that demonstrate potential improved 
clinical utility of the Nonacus panel, in terms of the Nonacus panel showing: the 
strongest correlation between TMB score and patient survival (Illumina rs range: 0.007-
0.011; Nonacus rs range: 0.046-0.154); improved sensitivity and specificity for 
responder/non-responder classification (responders defined using RECIST 1.1 criteria; 
Eisenhauer et al. 2009); the greatest difference in survival between TMB high and TMB 
low groups (ROC-curve generated thresholds). These aspects of the Nonacus panel 
(1.58Mb) performance within this study support the clinical utility of this panel for 
TMB estimation, although with the caveat that these study findings are based on the 
evaluation of a small patient cohort. This conclusion does not mean that all panels 
>1.5Mb would necessarily demonstrate clinical utility for immunotherapy response 
prediction, as this utility will be impacted by factors other than panel size (including 
panel gene content and TMB threshold, as discussed later). No comment can be made 
regarding the utility of panels <1.5Mb for TMB estimation as no panels of this size 
were evaluated.  

This data has raised an interesting discussion point regarding whether it is appropriate 
to consider the utility of a targeted panel for TMB assessment in terms of the 
concordance of TMB values with WES/WGS. The data suggests that a panel (i.e. 
Nonacus) could generate inaccurate TMB estimations (in relation to lack of 
concordance with WES/WGS) and yet these values could still demonstrate clinical 
utility in predicting immunotherapy response. Based on the discrepancy between 
proposed lack of WGS-concordance and observed clinical utility having been identified 
within this small Welsh patient cohort, there is no recommendation to change the 
minimum panel size requirement for TMB estimation from 1.6Mb (ensuring 
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consistency with WES-generated TMB values). This finding of an apparent discrepancy 
between WES correlation and clinical utility could be a factor of the imperfect nature 
of the comparison of Nonacus TMB estimations to WGS (i.e. via the Illumina 
intermediator), small study size, or could be linked to the multi-factorial nature of 
immunotherapy response which could impact on the responses demonstrated by the 
patients in this thesis. Alternatively, WGS/WES concordance may not always align with 
clinical utility; this would have to be evaluated in a larger study. 

The conclusion regarding the proposed clinical utility of Nonacus is based on the 
analysis of only 15 patient samples, so the Illumina panel should not be excluded as a 
potential useful panel for TMB evaluation on the basis of these results, particularly as 
the utility of the Illumina panel in TMB assessment has been demonstrated in another 
study (Pestinger et al. 2020). One important aspect of panel utility to consider is the 
sequencing coverage achieved across the genes of the panel, and it was the Illumina 
panel that delivered better sequencing coverage in this Welsh study as discussed 
below. 

The differences in TMB estimations from the Nonacus and Illumina targeted NGS panel 
evaluation of the same Welsh patient cohort (n=13) when the same TMB calculation 
parameters and method are used, supports the suggestion made by Budczies et al. 
(2019), that variation in TMB estimation would be expected between different 
targeted panels of differing size and gene content. Given that the panels differ in both 
size (Illumina: 1.94Mb; Nonacus: 1.58Mb) and gene content (68% of the genes 
targeted are the same in both panels; table 6), it is not possible to determine the 
contribution of each of these elements to the differences in TMB scores observed. The 
difference in TMB scores between these two panels could be a function of one or both 
of these variables. In this context, the fact that the Agilent NGS panel (1.7Mb, 174 
genes) failed to generate any sequencing data over the minimum coverage threshold 
(250x) is disappointing, as this data could have provided more information regarding 
the impact of gene content on TMB quantification. The Agilent panel shares a large 
proportion of its gene content with the Illumina and Nonacus panels (95% and 87% 
respectively); however, the Illumina and Nonacus panels evaluate additional mutation 
hotspots of around 350 genes on top of this shared gene content (table 6). It would 
therefore have been interesting to observe the impact of the additional gene content 
of the Illumina and Nonacus panels on TMB quantification by comparing Illumina and 
Nonacus-generated TMB scores to those from Agilent. Although again, the differences 
in size of these three panels could also contribute to any variation in TMB score. 
However, ultimately, this study confirms that gene panel size and/or the gene panel 
content does impact on TMB quantification. The impact that this TMB score variation 
has clinically would be dependent on the impact on TMB status, which in turn is 
dependent on the use of appropriately validated TMB thresholds; these elements are 
discussed later. 

Although the gene content of the Illumina and Nonacus panels is different, the panels 
target the majority of the most highly mutated genes in lung cancer 
(Mycancergenome.org, 2022a); however notably, the Illumina panel targets the 
KMT2D gene whilst the Nonacus panel does not (table 6). Variants in the KMT2D gene 
occur in 10% of NSCLCs (Mycancergenome.org, 2022b); therefore, the absence of this 
gene alone from the Nonacus panel highlights how gene panel content could alter the 
numbers of variants identified in a sample. Both panels target the hotspot regions of 
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the KRAS and EGFR genes (table 6), which are where the majority of oncogenic lung 
cancer driver mutations occur (Chevallier et al. 2021). This maximises the likelihood of 
variant detection in these commonly mutated genes when either of the Illumina or 
Nonacus NGS panels is used. However, sequencing coverage across the panel as a 
whole, and specifically coverage of the KRAS and EGFR hotspot regions, within the 
Welsh patient cohort was worse when using the Nonacus panel compared to the 
Illumina panel. When a minimum coverage of 250x is achieved, variants at 5% 
frequency can be detected (Petrackova et al. 2019). The poorer sequencing coverage 
of the Nonacus targeted samples is likely to result in a reduced sensitivity for detection 
of variants, particularly low-level variants (e.g. 5%) that are common in heterogeneous 
FFPE samples. It is important to note that the calculation of TMB scores within this 
thesis requires the number of variants identified to be divided by the size of the 
genome (in Mb) interrogated. Notably, when gene regions have poor sequence 
coverage they will still be counted as interrogated regions in the context of the 
generation of a TMB score, but the sensitivity of variant detection within these regions 
is reduced; this could result in an under-estimation of TMB scores in poorly covered 
samples, such as those samples that have been Nonacus-targeted. This finding 
suggests the need for a minimum panel coverage requirement to ensure TMB would 
not be under-estimated in a sample; this quality threshold would have to be evaluated 
within a panel validation setting. No such quality threshold was used in this study 
based on the lack of understanding regarding what this threshold would be, along with 
the added requirement to maximise the dataset in this already small patient cohort. 
Despite the lower coverage of samples analysed using the Nonacus panel and the lack 
of KMT2D gene targeting in the Nonacus panel, the number of variants detected by 
this panel was higher in 46% (6/13) of patients in the -synonymous +artefacts dataset 
and in 85% (11/13) of patients in the +synonymous +artefacts (compared to the same 
patients targeted using the Illumina panel); the number of variants detected was also 
higher in around one third of the other Nonacus datasets (+synonymous -artefacts and 
-synonymous -artefacts). Other factors could be influencing the number of variants 
detected by Nonacus including: the increased presence of sequencing artefacts in the 
Nonacus samples compared to the Illumina samples, and the other differences in 
genes targeted by the Illumina and Nonacus panels beyond the lung cancer-relevant 
genes, which are both discussed in more detail in the next section. 

Importantly, since conceiving and initiating this thesis, a number of research papers 
have been published investigating the effect of NGS panel selection on TMB 
quantification, including two publications focusing on NSCLC (Heeke et al. 2020; 
Ramos-Paradas et al. 2021; Vega et al. 2021). These papers represent the first 
published datasets involving the analysis of the same samples on more than one NGS 
panel. The results from this thesis, in relation to there being variation in TMB score 
dependent on the panel used to analyse the sample, are concordant with these 
publications. Panel-dependent TMB variation was also noted in the TMB-focussed pilot 
EQA scheme in 2020 (Abate et al. 2022), which was the first EQA scheme to evaluate 
TMB estimation. Dependent on the TMB high threshold used, these differences in TMB 
quantification could have an impact on the treatment options available to the patient 
if TMB was used as a biomarker of immunotherapy response in a clinical service; this 
will be discussed in more detail later in relation to the findings of this thesis. Variation 
in TMB score as a consequence of the panel used for determination of this value 
means that TMB data is not directly comparable between labs using different NGS 
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panels; this factor will be discussed later in relation to the establishment of TMB-based 
EQA schemes. 

4.2.2 Study aim 2: Impact of variant number calculations on TMB scores 

In the context of a TMB-based clinical service, the variation in TMB score based on the 
TMB calculation performed (considering both +/-synonymous and +/-artefacts), as 
demonstrated in this thesis and by Abate et al. (2022), could impact on the clinical 
decisions made, as well as meaning that TMB estimations from different labs are not 
directly comparable if different TMB calculations have been used. The same issues 
have been highlighted already in relation to the use of different panels for TMB 
estimation. 

The variation in TMB scores generated from a single panel using +/-synonymous and 
+/-artefact calculations strongly suggests that a single TMB high threshold with utility 
independent of analysis parameters would be difficult to find. Indeed, this statement is 
corroborated by the ROC-curve generated TMB high thresholds within this study, 
which varied according to analysis method as well as panel used (discussed later). 

4.2.2.1 Impact of synonymous variants on TMB scores 

The number of variants detected per patient within each panel cohort increased by an 
average of 77% for Nonacus-targeted samples and 35% for Illumina-targeted samples 
when synonymous variants were counted (artefacts included), which resulted in the 
same percentage increases in TMB scores (variants/Mb). These differences are 
comparable to the findings of the 2021 EMQN/IQNPath pilot EQA scheme (Abate et al. 
2022) when the same five samples were analysed using the same targeted NGS panel 
(Oncomine Tumour Mutation Load) in seven different laboratories using +/-
synonymous calculations. The thesis and EQA results demonstrate that it would be 
critical for a laboratory providing a TMB clinical service to maintain consistency in the 
TMB calculation method used within a live service to ensure consistent results in each 
TMB assessment performed, as TMB quantification of a single patient sample could 
yield different results dependent on the variants included within the TMB estimation. 
Such consistency in methodology is standard practice in an NHS Genomics laboratory 
setting where all processes are heavily standardised to ensure consistent high-quality 
results are produced. The TMB calculation used within a clinical lab setting would have 
to be validated in accordance with validation guidelines, as is standard practice in UK 
Genomics labs (acgs.uk.com, 2022), and would have to have demonstrated clinical 
utility for TMB assessment for provision of a clinical service in terms of the values 
generated by the panel/analysis combination providing identification of 
immunotherapy responders.  

Perhaps the most obvious reason for the general increase in the number of 
synonymous variants within the Nonacus-targeted patient samples, and the inflated 
number of variants in general seen in the Nonacus-sequenced patients (inflated in 
terms of poor coverage observed), could be the difference in gene content of the 
panels as mentioned in the comparison of panel performance in section 4.2.1. As 
noted previously, the Nonacus panel does not target any key lung cancer-mutated 
genes in addition to those targeted by the Illumina panel, so this does not explain the 
increased variant prevalence of the Nonacus-targeted samples. However, additional 
genes within the panels have not been scrutinised for their potential mutable-potential 
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either in cancer cells or in ‘normal’ cells, and any differences here could account for 
the increase in variant prevalence observed in Nonacus-targeted samples. 

Of course, the sequencing coverage across the panel could be influencing the variants 
detected per patient, with good coverage of hotspot mutation regions resulting in a 
better variant pick-up rate. The lower sequencing coverage of a selection of lung 
cancer related genes (CDKN2A, PTEN, NRAS, RET, KRAS, ERBB2, PIK3CA, EGFR, MET, 
BRAF) on the Nonacus panel would suggest a decreased sensitivity for variant 
detection within these genes within the Nonacus dataset, and does not support the 
possibility that increased synonymous variant detection in the Nonacus panel is due to 
increased NSCLC-related variant pick-up rate.  

One explanation for the particularly high increase (77%) in variant calls per patient 
within the Nonacus +synonymous +artefacts dataset, could be that there is a larger 
number of synonymous artefacts within the Nonacus dataset which is inflating the 
synonymous variant counts in the Nonacus-targeted samples. The predicted 
percentage of artefacts in the Nonacus +synonymous dataset is 25% (data generated in 
this thesis; table 14), whilst within the lllumina +synonymous dataset the predicted 
artefact prevalence is 2-3% (table 14), therefore these artefact prevalence estimations 
support this explanation. The reduced Q30 Phred score of the Nonacus targeted 
dataset supports an increased presence of artefacts within the Nonacus data, which is 
discussed further in the next section. 

Based on the discussion above, the 42% increase (77% Nonacus compared to 35% 
Illumina) in synonymous variants detected in this Welsh patient cohort via Nonacus 
sequencing compared to Illumina sequencing can be attributed in part to the predicted 
increased artefact frequency (25-42%; table 14) when the Nonacus panel is used, 
which can be linked to the lower quality of the Nonacus sequencing (Q30 score). Other 
factors, other than artefact prevalence, are likely to be influencing synonymous variant 
frequency as the artefact estimations in this study are likely to be over-estimations 
(discussed in section 4.3.2), so the true artefact prevalence alone is unlikely to account 
for the 42% difference in synonymous variant frequency seen between the Nonacus 
and Illumina targeted samples. The gene content of the panel is also likely to be 
influencing variant prevalence as already noted. 

Based on the estimated prevalence of synonymous variants in the genome of 10,000 
variants per 3200Mb genome (0.0003%) (Zeng and Bromberg 2019), the number of 
synonymous variants in each of the patients analysed in this study would be expected 
to be extremely low (<1 variant per patient) based on the 1.5-1.9Mb panels used. In 
reality, 12-116 synonymous variants were detected per patient in the Illumina cohort 
(n=15) and 25-184 in the Nonacus-targeted patients (n=15). The key factor in the 
grossly different variant frequencies in this study and those predicted by Zeng and 
Bromberg (2019) is that the publication data is based on a ‘normal’ genome rather 
than a cancer genome. Cancer is a result of the accumulation of genetic variants within 
a cell and cancer genomes are highly mutable, which reflects the high number of 
synonymous variants identified in the samples of this study. Added to this, is the fact 
that the targeted sequencing performed in this study is skewed towards genes that are 
highly mutable in cancers with both the Illumina and Nonacus panels having been 
designed for use in the interrogation of tumour samples. It is reassuring to note that 
the synonymous variant prevalence within the EMQN/IQNPath 2021 pilot EQA scheme 
can be estimated to be around 2-5 variants/Mb (Abate et al. 2022), which would 
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equate to the detection of 4-10 variants in a 1.9Mb panel, which is at the lower end of 
the synonymous variant range in the 1.9Mb Illumina panel data of this study. The 
prevalence of synonymous variants in the Nonacus panel is greater than would be 
expected based on the pilot scheme data (3-8 variants expected in a 1.5Mb panel), and 
the reasons for this are likely to echo those described above in relation to the 
estimated high prevalence of artefacts in the Nonacus dataset. 

4.2.2.2 Impact of sequencing artefacts on TMB scores 

The number of predicted variants representing artefacts within the 15-patient dataset 
was calculated within this study to be much higher for the Nonacus dataset (25-42%) 
than the predicted number of artefacts within the Illumina panel sequencing dataset 
(2-3%); percentages vary based on +/- synonymous variants (table 14). There are no 
clear published estimations of artefact prevalence in FFPE samples. Notably, the 
artefact frequencies predicted in this study could be impacted by a potential bias in 
the prediction calculations caused by the IGV interrogation of a larger number of 
variants from the Nonacus panel dataset than from the Illumina dataset. This uneven 
interrogation of shared variants across the two panel cohorts is discussed in section 
4.3.2. 

The artefacts identified could be either sample-specific artefacts (e.g. C>T/G>A 
deamination artefacts) or panel-specific artefacts (e.g. PCR-induced artefacts or read-
end artefacts). Sample-specific artefacts would be expected to occur at similar 
frequencies regardless of the panel that was used for analysis. As 13/15 samples 
analysed on each panel were the same, the impact of sample-specific artefacts would 
be limited to the four samples analysed on only one of the panels. Evaluation of the 
ratio of absorbance at 260:280nm of the four samples run only on a single panel 
demonstrated that the samples were of similar quality using this metric, with the 
exception of one predicted poor-quality sample (20M70089) analysed only on the 
Illumina panel. Unfortunately, at the time of this study, AWMGS did not have access to 
a Bioanalyzer, which would have provided more information regarding the quality of 
the samples used in this study in terms of level of DNA fragmentation, as this method 
measures the size of DNA molecules. Fragmentation in FFPE samples is associated with 
a higher level of artefacts (Wong et al., 2014), so Bioanalyzer data could have been 
aligned to sample-specific artefact prevalence within the samples in this study, and 
specifically could have identified if any differences in artefact prevalence would have 
been expected between the four samples analysed on only a single panel. Based on 
the 260:280 metric alone, the likelihood of sample quality differences being a 
causative mechanism for the increased artefacts in the Nonacus datasets (+/- 
synonymous variants) is reduced. 

The use of the same Illumina NovaSeqTM sequencing protocol and sequencing analysis 
pipeline rules these out as potential sources of variation in the generation of artefacts. 
The question is therefore whether the Nonacus targeted approach could be more 
prone to introducing sequencing artefacts into the dataset than the Illumina TruSightTM 

Oncology 500 method. One piece of data that supports the answer to this question 
being yes (at least within the confines of this study) is the difference between the Q30 
Phred scores from each panel dataset. This quality score for the Nonacus dataset was 
lower than the Q30 value for the Illumina dataset, indicating that there is a greater 
likelihood of there being sequencing errors within the Nonacus-generated data. These 
sequencing errors would account for an increase in artefacts in the Nonacus dataset, 
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although it is not clear to what degree this would impact on artefact prevalence. It is 
also important to note here that the AWMGS staff who supported in the delivery of 
the NGS workflows in this thesis, are more familiar with the Illumina NGS panel and 
workflow than the Nonacus workflow, therefore this lack of experience in the use of 
the Nonacus panel could have influenced the poorer quality of results obtained from 
this panel. Also, owing to the COVID pandemic, training and support from the Nonacus 
technical support teams was limited to a virtual forum; this is also true for the Agilent 
panel which failed to generate any sequencing data. This could have impacted on the 
panel performance in terms of there being a potential increased risk of set-up errors in 
the unfamiliar library preparation processes. It is possible that improvement in 
coverage could be obtained through the optimisation of the targeting workflows 
within the AWMGS laboratory, or through additional training from specialist technical 
support. 

Another potential source of artefacts in the datasets comes from the PCR step that 
occurs within the library preparation protocols, which can introduce DNA polymerase 
errors into the sequencing. The number of PCR cycles is limited in both the Illumina 
and Nonacus NGS protocols to avoid excess PCR duplicates that can lead to false-
positive sequencing errors, but notably the Illumina protocol had a higher number of 
cycles than the Nonacus library preparation protocol. This fact effectively rules out this 
PCR step as a potential cause of the inflated artefact prevalence in the Nonacus 
dataset.  

Finally, the gene panel content could influence artefact prevalence as some genes can 
be more prone to artefacts owing to their sequence make-up; for example, an excess 
of repetitive sequences within a gene would make them prone to artefacts. Owing to 
limited AWMGS experience in sequencing the majority of genes within the Illumina 
and Nonacus panels, the laboratory has no prior knowledge of the artefact prevalence 
in the panel gene sets, therefore the degree to which artefact-prone genes may be 
influencing the results of this study is unknown. 

Artefact rate was shown to be higher in the datasets excluding synonymous variants 
than in the datasets including synonymous variants, however, there is no biological 
reason for such a difference as artefacts randomly occur across the genome regardless 
of their impact at the amino acid level (i.e. synonymous vs non-synonymous). For this 
reason, a potential improvement to the artefact algorithm used could have been to 
take an average of the predicted artefact frequencies across the two panel datasets 
(+/- synonymous variants). This would have had very little impact on the Illumina 
dataset as this would have been an average of 2% and 3%, but in the Nonacus dataset 
a predicted artefact level of 34% (average of 42% and 25%) could have had an impact 
on the TMB estimations and TMB scores generated. 

4.2.2.3 Statistical vs clinical significance of differences in TMB scores 

In three out of the four analysis conditions used (+/-synonymous +artefacts; 
+synonymous -artefacts), the Nonacus and Illumina patient cohorts gave TMB 
estimations that were different, but not significantly different according to the t-tests 
performed. In the other analysis group (-synonymous -artefacts) a t-test statistical 
difference (t = 2.50, p = 0.028) was observed between the TMB scores generated by 
the Nonacus and Illumina panels. Under these conditions (-synonymous -artefacts), the 
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large difference in mean TMB scores between the panel cohorts (Illumina mean TMB: 
144 variants/Mb; Nonacus mean: 85 variants/Mb) can be explained by the combined 
impact of the reduction of the Nonacus TMB scores by the removal of suspected 
artefacts (predicted artefact frequency of 25-42% determined within this study), as 
well as the exclusion of synonymous variants which were much more prevalent in 
Nonacus targeted sequencing compared to Illumina targeted sequencing. 

The implications for identifying a statistical significance in the difference between TMB 
estimations within even a single dataset, is that this work highlights the variation that 
is possible in TMB scores dependent on how the scores are generated, with both NGS 
panel choice and TMB analysis conditions (in terms of variants counted in the TMB 
estimation) impacting on the score. Having said this, although the differences in TMB 
estimations were deemed to only be statistically significant in one out of the four 
analyses performed, the fact that the scores generated were different dependent on 
the panel used could be clinically significant within a TMB clinical service setting. 
Indeed, within this study when ROC-curve generated TMB high thresholds were used 
(discussed in more detail later), four patients were determined to be TMB high by one 
panel and TMB low by another panel (across all four analysis parameter combinations; 
table 18). This total discrepancy in TMB status would have huge consequences if TMB 
was being used as a biomarker in the clinical setting, as would mean the difference 
between accessing immunotherapy or having other standard of care treatment. 
Variation in patient TMB status dependent on the NGS panel used is a result of the 
variation in TMB estimations between panels and the TMB high threshold used. As the 
true TMB status of the samples in this study is not known (no TMB testing previously 
performed), determining which the most accurate analysis parameters are, in terms of 
the accuracy of the TMB status assigned to each of these four discrepant samples, is 
not possible by such a comparison. However, accuracy of the TMB status can be 
determined by correlation of TMB status to drug response. The Nonacus panel-
generated immunotherapy response predictions correlated with the RECIST-1 
classification in 3/4 of these samples (table 14) indicating a potential improved utility 
of this panel over the Illumina panel within this cohort, although notably the sample 
numbers are extremely low. The sensitivity and specificity of the Nonacus and Illumina 
panels for response prediction across the whole cohort is discussed later (section 
4.2.3.2); this extended analysis also supports the improved utility of the Nonacus 
panel. 

The differences in all TMB values across the cohort of 15 patients when different NGS 
panels were used for genome interrogation, as well as the statistical significance of this 
difference in one analysis cohort, suggests that the panel selected to interrogate the 
genome is critical in the determination of TMB scores. This is a statement that echoes 
conclusions made in other TMB studies (Chalmers et al. 2017; Buchhalter et al. 2019; 
Campesato et al. 2015), and also reflects the findings of the 2021 EMQN/IQNPath pilot 
EQA scheme (Abate et al. 2022), which noted the variation in TMB scores when 
different NGS panels were used.  

The TMB calculations performed are also critical to TMB status, as shown by the fact 
that the TMB status assigned to 3/13 patients in this study differed dependent on both 
the panel and analysis parameters (table 18). The exclusion/inclusion of artefacts in 
the TMB calculation did not impact on TMB status as much as the exclusion/inclusion 
of synonymous variants, with only 1/13 patients in the study changing TMB status 
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dependent on the inclusion of artefacts (panel and synonymous variant analysis 
stable), whilst the TMB status of 3/13 patients altered dependent on synonymous 
variant investigation. This finding suggests that the additional artefact removal step 
investigated within this thesis may be an unnecessary step in terms of having limited 
impact on patient outcomes (only 1/13 patients impacted). This potential lack of 
utility, reflects the absence of such an artefact removal step being discussed widely in 
TMB-focussed literature.  

4.2.3 Study aim 3: Evaluation of the utility of TMB quantification in combination 
with PD-L1 expression analysis for immunotherapy response prediction 

4.2.3.1 Association between TMB score and immunotherapy response in the PD-L1 
expression high cohort 

Spearman correlation coefficient (rs) analysis showed that there was a weak positive 
correlation between TMB estimation and immunotherapy response (measured in 
terms of survival time post PD-L1 test) within this Welsh patient cohort of 17 patients 
of high PD-L1 expressor status. This positive correlation was present for both the 
Illumina and Nonacus NGS panels regardless of whether TMB estimates included or 
excluded synonymous variants and artefacts. This association supports the potential 
use of TMB in combination with PD-L1 expression status as an immunotherapy 
response predictor, showing that as TMB value increases, patient survival increases, 
endorsing similar conclusions made from internationally published data for non-Welsh 
patient cohorts (Rizvi et al. 2015; Carbone et al. 2017; Hellmann et al. 2018b).  

The association between TMB estimation and immunotherapy response was weak in 
this Welsh study, with the scatter plots of these two attributes showing a wide spread 
of datapoints with little obvious correlation to the naked eye (figure 16). The 
correlation of the data will have been impacted by the small study size (n=17), with 
any outliers impacting heavily on the overall association; some apparent outliers are 
noticeable in figure 16, whereby long patient survival is associated with a lower TMB 
score, and vice versa, with higher TMB scores being found in patients with a short 
survival time. In addition to the limited size of this pilot study, there are a number of 
variables that were not controlled for within this patient cohort but which could 
impact on the patient response to immunotherapy and therefore survival, potentially 
masking correlation between TMB score and survival; these variables are discussed in 
section 4.3 in relation to the limitations of this study. 

The highest rs values across the eight panel/analysis datasets (four datasets per panel 
representing +/- synonymous variants and +/-artefacts) and consequently the most 
positive correlations between TMB estimation and immunotherapy response, were 
seen when the Nonacus panel was used for determination of TMB rather than when 
the Illumina panel was used. Specifically, the maximum rs value of 0.154 was obtained 
when the Nonacus panel -synonymous +artefacts was used for TMB estimation. This rs 
statistic alone suggests that this Nonacus panel/analysis combination for TMB 
estimation represents the optimal framework for TMB measurement within this small 
patient cohort. However, other factors requiring consideration in the evaluation of 
clinical utility of a specific panel/analysis combination are yet to be discussed. 
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4.2.3.2 Evaluation of the use of TMB high thresholds to define a TMB high patient 
group for accurate immunotherapy response patient stratification 

Given the large variation in TMB estimations that have been reported both in this 
study and in some recent publications (Heeke et al. 2020; Ramos-Paradas et al. 2021; 
Vega et al. 2021; Abate et al. 2022) when different NGS panels and TMB calculations 
have been used within the same cohort, to have utility as a biomarker in a clinical 
environment a threshold of high TMB would be required to identify the cohort of 
patients who are likely to benefit from immunotherapy therefore guiding the use of 
this cancer treatment. Simply reporting a TMB value with no context regarding what 
the value means in clinical terms would not be clinically appropriate, and would not 
allow results between laboratories using different panel/analysis combinations to be 
compared; a TMB high/low status would have to be reported within a clinical setting, 
which is also a conclusion made within the TMB-focussed review by Sha et al. (2020). 
Interestingly, the majority of the laboratories participating in the EMQN/IQNPath 2021 
pilot EQA scheme (Abate et al. 2022) disclosed that they were reporting only TMB 
estimation without the use of a TMB cut-off, which echoes the findings from the IQN 
Path 2019 survey showing that 61% of labs did not use a TMB threshold (Fenizia et al. 
2021). Fenizia et al. (2021) noted that in line with the absence of a threshold in most 
labs, the majority of labs were not providing TMB-led patient stratification as were 
performing TMB assessment in only a research context. 

10 variants/Mb TMB high threshold: 

The 10 variants/Mb TMB high threshold determined by Ramalingam et al. (2018) and 
validated in three other research publications (Hellmann et al. 2018a; Pestinger et al. 
2020; Marabelle et al. 2020) was not appropriate for use in this small Welsh patient 
cohort (total patient number = 17) where TMB estimations were >47 variants/Mb for 
all patients using all panel/analysis combinations. 

The lack of utility of the 10 variants/Mb TMB high threshold within this thesis can be 
related to the fact that the four NSCLC-based publications (Ramalingam et al. 2018; 
Hellmann et al. 2018a; Pestinger et al. 2020; Marabelle et al. 2020) in which this 
threshold did show utility in accurately separating immunotherapy responders and 
non-responders, were based on NSCLC patient cohorts that were not pre-selected for 
PD-L1 high expression (figure 22). The Welsh cohort in this thesis, is composed of 17 
patients who all had PD-L1 positive IHC results. In spite of the known inaccuracies of 
the PD-L1 biomarker in identifying immunotherapy responders, the patients in this 
pre-selected Welsh cohort are predicted to show a better response to immunotherapy 
than an unselected group of patients (Garon et al. 2015; Sul et al. 2016). Following on 
from this therefore, this PD-L1 positive cohort would be more likely to be TMB high, as 
high TMB correlates with improved immunotherapy response (Campesato et al. 2015; 
Johnson et al. 2016; Kowanetz et al. 2017; Hellmann et al. 2018a; Marabelle et al. 
2020). This would skew the dataset within this thesis towards higher TMB values than 
in the unselected patient cohorts of Ramalingam et al. (2018), Hellmann et al. (2018a), 
Pestinger et al. (2020) and Marabelle et al. 2020. Based on data from Garon et al. 
(2015) and Sul et al. (2016), unselected patient cohorts would be predicted to contain 
a larger number of non-responders than the pre-selected PD-L1 high cohort of the 
thesis, so effectively reducing the TMB scores of an unselected patient cohort. This 
evaluation aligns with the fact that, in the Pestinger et al. (2020) study, which used the 
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same Illumina panel as utilised in this thesis and included both synonymous and non-
synonymous variants in the TMB scores, the range of TMB values generated in the 
cohort of 22 lung patients was 1-30 variants/Mb. This is a much lower range than the 
TMB range in this Welsh study; when considering all analysis combinations (+/-
synonymous variants and +/-artefacts) as a whole, the TMB estimations for the 
Illumina patient cohort (n=15) and for the Nonacus cohort (n=15) varied within a very 
similar range: 49-479 variants/Mb for Illumina, and 47-478 variants/Mb respectively. 
Importantly, no comparable dataset to this Welsh study (i.e. pre-selected PD-L1 high 
patients) has been identified in the literature, as the studies that demonstrated 
combined utility of TMB and PD-L1 assessment performed these evaluations 
independently of one another (Carbone et al. 2017; Castellanos et al. 2019); 
importantly, this was a fact that had been overlooked when this study was designed, 
so the implications of analysing a pre-selected PD-L1 patient cohort had not been pre-
empted in terms of impact on TMB value. There is therefore no data to investigate 
whether the higher TMB values seen in the patients in the PD-L1 high cohort of this 
thesis are comparable to other reports. 

The increase in TMB estimations in the PD-L1 selected NSCLC patient cohort in this 
thesis compared to ‘unselected’ NSCLC patients, shows the importance of specifying 
the remit of a TMB clinical service in terms of the patient group that will be evaluated. 
This decision regarding target patient group would have to be made prior to validation 
of a panel/analysis method to ensure that appropriate patient samples were used 
within the validation, ensuring the appropriate TMB threshold was selected within the 
validation and taken forward into live clinical service. 
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Figure 22: Impact of NSCLC patient cohort evaluated on TMB estimation. The lung cancer 
population as a whole can be considered to be split into four categories based on PD-L1 
expression status and TMB status. The pre-selected PD-L1 high (>50%) cohort evaluated in 
this thesis is indicated. Sul et al. (2016) found that 45% of PD-L1 high (>50%) expressors 
responded to pembrolizumab; therefore, this is the estimated responder level within the 
thesis cohort. Also highlighted is the unselected patient cohorts evaluated by Ramalingam et 
al. (2018), Hellmann et al. (2018a), Pestinger et al. (2020), and Marabelle et al. (2020). Garon 
et al. (2015) determined the response to pembrolizumab within an unselected NSCLC cohort 
to be 19%.  

 

 

 

ROC-curve generated TMB high thresholds: 

Optimal TMB thresholds for maximising sensitivity (maximising true positive rate) and 
maximising specificity (minimising false positive rate) of the immunotherapy response 
predictor functionality of the TMB biomarker were determined by ROC curve analysis. 
Maximising true positives is important as, in a clinical TMB service, patients with false 
negative TMB results (i.e. TMB low reported instead of TMB high) would not receive 
immunotherapy which they could respond to. Equally, minimising false positives is 
important in a clinical TMB service as patients with false positive TMB calls would 
receive expensive immunotherapy that is unlikely to benefit them and from which they 
could experience side-effects, rather than a more appropriate treatment regime from 
which they could benefit and which could impact on their long-term survival.  

Within this study, the process involved in generating a ROC curve and identifying the 
appropriate TMB high threshold was deemed to be straight forward, and could 
certainly be performed as part of a UK Genomics laboratory validation of a TMB 
service. In a review of the challenges of TMB quantification, Fancello et al. (2019) 
advocated the use of a statistical approach to TMB threshold setting to ensure the 
robustness of thresholds. The determination of these ROC curve thresholds relies upon 
the accuracy of both the RECIST-1 classification of patients (Eisenhauer et al. 2009), 
and the accuracy of TMB estimations, both of which are highlighted as limitations of 
this study (section 4.3). The presence of any outliers within the small cohort evaluated 
will also impact on the ROC-curve generated thresholds by impacting on the false 

https://pubmed.ncbi.nlm.nih.gov/?term=Eisenhauer+EA&cauthor_id=19097774
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positive/false negative rate which is critical in the ROC curve threshold setting process. 
A larger cohort size would improve the accuracy of threshold setting. 

A single TMB high threshold, providing optimal sensitivity and specificity for separation 
of patient responders and non-responders across the Illumina and Nonacus panels, 
was not identified in this study. This is perhaps not surprising given that the use of 
different TMB high thresholds in different targeted panel settings is well published 
(Campesato et al. 2015; Chalmers et al. 2017; Hellmann et al. 2018a; Heeke et al. 
2018; Fenizia et al. 2021; table 4). Such variation amongst TMB high thresholds was 
also recently noted in the results from an IQN Path survey (Fenizia et al. 2021), which 
found that a variety of TMB thresholds were used in the 69 international labs 
performing TMB analysis, and that these were based on either literature, internal 
validation or validation against the FoundationOne CDx test. However, the fact that 
the TMB high threshold of 10 variants/Mb has shown utility across multiple panels 
(Ramalingam et al. 2018; Hellmann et al. 2018a; Pestinger et al. 2020; Marabelle et al. 
2020) demonstrates that a single TMB threshold can show utility in different settings. 

Although the variation in TMB threshold between the Nonacus and Illumina-targeted 
cohorts could have been predicted based on the existence of publications highlighting 
threshold variation between panels (Campesato et al. 2015; Chalmers et al. 2017; 
Hellmann et al. 2018a; Fenizia et al. 2021), variation in optimal TMB thresholds within 
the same panel as a result of variations in TMB analysis is unpublished. Collectively, 
these pieces of evidence lead to the conclusion that as a result of panel- and analysis-
dependent TMB variation, TMB thresholds require validation on an appropriate scale 
to ensure utility in the panel/analysis combination being employed, which can result in 
panel/analysis-specific thresholds being identified.  

The ROC-curve generated thresholds determined in this study show that the Nonacus 
panel provides a sensitivity and specificity for separation of immunotherapy 
responders/non-responders more reflective of the requirements of a clinical service 
compared to the Illumina-generated results. The highest sensitivity (100%) and 
specificity (78%) was achieved using the Nonacus panel +synonymous +/-artefacts (i.e. 
artefact inclusion/exclusion had no impact on these measurables). Focussing on the +/- 
artefact element of this panel/analysis combination, this information taken together 
with the (already discussed) observations that: the Nonacus panel -synonymous 
+artefacts generated the strongest correlation (rs) between TMB score and survival, 
and that the removal of artefacts had limited utility in terms of the fact that TMB 
status was generally unaltered in this study by artefact inclusion/removal), does not 
support an additional artefact removal step prior to TMB estimation. There is no 
observed clinical benefit in this study in removing artefacts from TMB calculations. The 
utility of synonymous variants within TMB estimations is discussed in the next section. 

4.2.3.3 Association between TMB high status and immunotherapy response in the PD-
L1 expression high cohort 

Across the four different TMB analysis methods (+/- synonymous variants +/- artefacts) 
in both the Nonacus and Illumina datasets (n = 15 for both the Illumina and Nonacus 
NGS panel cohorts), all eight panel/analysis datasets showed an increase in average 
patient survival in the high TMB group compared to the low TMB group (using ROC-
curve generated TMB high thresholds; figure 19). This increased survival of the TMB 
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high group reflects the correlation (rs) between increasing TMB score and longer 
patient survival observed in this study cohort (section 4.2.3.1). 

The difference in survival noted in this thesis between high and low TMB groups did 
not meet statistical significance (ꭓ2=0.258, p=0.05) within the single panel/analysis 
cohort evaluated (Nonacus -synonymous +artefacts), but the outliers (TMB high 
patient with short survival time and TMB low patient with long survival time) noted 
within this small dataset (figure 16) will have a large impact and will have contributed 
to this lack of statistical significance, as well as other study limitations impacting on 
these statistics (section 4.3). 

The improved survival of TMB high patients in this study mirrors the findings of other 
research studies, including the Checkmate-026 trial (Carbone et al. 2017; Peters et al. 
2017; Seiwert et al. 2018). As with the observed correlation between TMB estimation 
and patient survival, this correlation supports the potential utility of a combined TMB 
and PD-L1 expression status biomarker for anti-PD-L1 immunotherapy treatment 
response in this Welsh lung cancer patient cohort. The magnitude of this potential 
benefit in comparison to the use of PD-L1 expression analysis alone in predicting 
immunotherapy response is discussed in the next section. 

There was generally a greater difference in survival between the high and low TMB 
groups when TMB was calculated using the Nonacus panel rather than the Illumina 
panel, irrespective of the analysis parameters used. This finding is reflective of the 
observation that TMB estimations generated from the Nonacus panel more strongly 
correlated with immunotherapy response than those from the Illumina panel, and 
again suggests a potential role for the Nonacus panel within a clinical TMB service. 

The panel/analysis combination with the largest difference in mean survival between 
the TMB high and low groups was Nonacus +synonymous +/- artefacts. The fact that 
the largest difference in survival observed occurs independently of artefact removal 
further supports a lack of utility of artefact removal in TMB estimation as previously 
noted (section 4.2.3.2). In terms of this panel/analysis combination including 
synonymous variants in the TMB calculations, this echoes the data from Rizvi et al. 
(2015) whom investigated the impact of synonymous variants on TMB values and 
noted that the inclusion of synonymous variants in TMB calculations strengthened the 
association between TMB and immunotherapy response. However, in this Welsh 
study, the cohort with the smallest difference between survival in the high and low 
TMB groups also included synonymous variants in the calculations (Illumina 
+synonymous +/- artefacts); therefore, this dataset contradicts the Rizvi et al. (2015) 
findings. The Rizvi et al. (2015) study involved a small cohort of 18 NSCLC patients, 
which is a similar study size as this Welsh study, therefore both are subject to the 
constraints of small datasets and no firm conclusions can be drawn from this 
information alone.  

The exclusion of synonymous variants was required to produce the most positive 
correlation (rs) between TMB and immunotherapy response (Nonacus -synonymous 
+/- artefacts). However, the greatest difference in mean survival between the high 
TMB and low TMB groups, and the greatest sensitivity and specificity for 
responder/non-responder classification was identified when synonymous variants 
were included in the TMB estimations (Nonacus +synonymous +/-artefacts). It is not 
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clear from this conflicting data whether there is utility in removing synonymous 
variants from TMB calculations. This lack of clarity could be related to the large 
number of synonymous variants detected in the Nonacus dataset which could be 
skewing correlations. 

In the recent evaluation of 11 commercially available panels performed by Sha et al. 
(2020), it was noted that the panel-specific bioinformatics pipelines designed 
specifically for each panel by the relevant commercial company, all measured non-
synonymous variants only. This dataset included the two FDA-approved TMB panels, 
MSK-IMPACT and FoundationOne CDx®, which have proven utility in analysing TMB for 
accurate prediction of immunotherapy response (Fda.gov, 2017; Fda.gov, 2020b). 
Therefore, there appears to be a new trend towards calculating TMB without the 
addition of synonymous variants, which could be a strategy followed in future 
research. 

4.2.3.4 Combined benefit of TMB and PD-L1 expression status over PD-L1 expression 
status alone in the prediction of immunotherapy response  

Within the total patient cohort (n=17), RECIST-1 classification of the PD-L1 high (>50%) 
patient tumours showed that only 41% of these patients responded to immunotherapy 
(RECIST 1.1 categories CR, PR and SD; Eisenhauer et al. 2009). This figure nearly 
perfectly matches that demonstrated by Sul et al. (2016) in a NSCLC trial in which only 
45% of patients responded to pembrolizumab despite the tumours being PD-L1 high 
(>50%) expressors. The low sensitivity for accurate responder identification using PD-
L1 expression status alone demonstrated in this thesis cohort (and by Sul et al. 2016) 
supports the need for an alternative immunotherapy response biomarker, which is a 
concept that drove this research study. Thesis data demonstrates that the sensitivity of 
TMB estimation for accurate responder/non-responder RECIST 1.1 classification within 
this PD-L1 expressor patient cohort ranges from 78% to 100%, dependent on the 
panel/analysis method used to determine the patient TMB scores (discussed in 
previous section). This suggests that performing TMB analysis alongside PD-L1 
assessment within this patient cohort, using any of the panel/analysis combinations 
investigated within this thesis, would have greatly improved the sensitivity of 
immunotherapy responder detection compared to using the PD-L1 biomarker alone to 
predict response. This improved sensitivity is important clinically as ensures the correct 
patients receive immunotherapy, so maximising the benefit of this treatment in the 
patient population. This finding supports the thesis hypothesis by demonstrating 
combined utility of TMB and PD-L1 expression analysis and echoing published findings 
(Carbone et al. 2017; Peters et al. 2017; Seiwert et al. 2018). 

No statistically significant difference in patient survival was identified between the PD-
L1 high group (n=15) and the combined TMB high + PD-L1 high group (n=10) (H = 
0.077, p = 0.782) in the Nonacus -synonymous variants +artefacts dataset statistically 
analysed. Despite this lack of statistical significance, which will be influenced by some 
of the limitations of this study (section 4.3), the median survival times of these groups 
was 636 days and 964 days respectively, equating to a 52% increase in survival in the 
TMB high + PD-L1 high group, which reflects the improved responses demonstrated in 
the Checkmate-026 trial when this combined biomarker is used (Carbone et al. 2017). 
This is suggestive of a combined benefit of PD-L1 and TMB assessment for 
immunotherapy response prediction using the Nonacus -synonymous variants 
+artefacts parameters.  
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4.2.4 Study aim 4: Evaluation of the feasibility of a TMB service within the NHS 

4.2.4.1 Cost 

If NGS-based TMB evaluation was performed alongside PD-L1 assessment for NSCLC 
sample analysis in a clinical setting, then this NGS cost (table 20) would be in addition 
to the existing £100 cost of PD-L1 IHC analysis (costings obtained via personal 
communication with University Hospital of Wales Cellular Pathology department). The 
need for TMB assessment prior to immunotherapy stratification would also likely delay 
the initiation of treatment whilst NGS testing took place; NSCLC samples analysed by 
NGS at AWMGS are currently reported within 14 calendar days of sample receipt 
which extends beyond the PD-L1 turnaround time. Whether such an additional testing 
cost and time delay could be tolerated within the NHS would be dependent on the 
added clinical benefit that TMB analysis provides in this clinical scenario. The potential 
benefit of TMB assessment in combination with PD-L1 assessment has been 
demonstrated in this thesis and in other studies (Carbone et al. 2017; Castellanos et al. 
2019), although no statistically significant trial-based data regarding improved survival 
using TMB + PD-L1 status currently exists. Future NSCLC-focussed clinical trials proving 
the utility of a combined biomarker approach for prediction of immunotherapy 
response, could justify the use of TMB assessment for NSCLC patients in a clinical 
setting in terms of added patient benefit; specifically, avoiding unnecessary side-
effects from inappropriate targeting, and ensuring patients receive the most 
appropriate treatment in a timely manner. As well as having patient benefit, the 
introduction of NGS-based TMB testing in the NHS could also be economically 
beneficial owing to the improved targeting of this expensive therapy (NICE 2016a) to 
the most appropriate patient group. The cost to the NHS of TMB analysis could be off-
set to some degree by savings in inappropriately administered immunotherapy; 
importantly, AWMGS would still have to apply to Welsh Government commissioners 
for funding of the genomic test. 

Having stated a case for the NHS absorbing the additional testing costs associated with 
an NGS-based TMB service, this thesis has shown that TMB testing has the potential to 
be delivered at no additional cost to the Genomics lab or to the NHS. Both the Illumina 
and Nonacus panels have utility in the delivery of genetic testing for the existing UK-
funded NSCLC service in terms of the genes targeted by the panels overlapping with 
the genes relevant to NICE-approved stratified treatments in NSCLC (NICE, 2022). 
Therefore, TMB analysis could be provided by one of these panels at no additional 
cost, provided that the panel was used for existing standard of care testing too.  

With the realisation that a TMB service could be cost neutral to the Genomics 
laboratory, and cost saving to the NHS in terms of the improved targeting of costly 
immunotherapy, a further cost saving approach to TMB service delivery could be 
considered within the NHS by using TMB alone as a biomarker of immunotherapy 
response. Such a TMB-only NSCLC clinical service would remove the requirement for 
the £100/patient assessment of PD-L1 status for immunotherapy stratification, as well 
as reducing the sample requirements by removing the need for FFPE material for PD-
L1 assessment. Owing to the fact that the patient cohort in this study was pre-selected 
for PD-L1 high status, it is not possible to evaluate the utility of TMB alone in predicting 
immunotherapy response, although the recent KEYNOTE-158 trial has demonstrated 
this utility (Marabelle et al. 2020). 
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Co-analysis of TMB and NSCLC clinically relevant genes: 

The use of an NGS panel for TMB assessment within NSCLC patients and for the 
detection of specific clinically relevant genetic variants would require both of these 
elements to be evaluated within a validation setting in a clinical laboratory. In the 
context of this study, the results indicate that the Nonacus panel may not be suitable 
for the detection of clinically relevant genetic variants in NSCLC patients owing to the 
low sequencing coverage achieved for the samples analysed, as well as the apparent 
large number of artefacts in the Nonacus dataset. Both of these factors could limit the 
utility of the Nonacus panel for specific NSCLC-relevant gene analysis by decreasing the 
likelihood of identifying low level (5%) variants and increasing the complexity of variant 
analysis via the interrogation of potential non-genuine variants (i.e. artefacts). 
Conversely, sequencing coverage was better, and estimated artefact prevalence was 
lower on the Illumina panel. However, there are limitations of this study that could be 
impacting on the Nonacus data (section 4.3), and this study certainly does not 
represent the scale of analysis that would be performed within a clinical service 
validation. This study therefore does not rule out either panel as having utility in TMB 
analysis across the NSCLC population as a whole, and no conclusion regarding the 
panel utility for NSCLC-relevant gene analysis can be made. If either panel was going to 
be considered for TMB service delivery within AWMGS, an appropriate validation 
including optimisation of the target enrichment pipeline would have to be performed 
alongside any additional validation work to evaluate detection of clinically relevant 
NSCLC gene variants.  

Since this thesis was conceived, the Illumina panel investigated in this study has been 
validated and successfully implemented within the AWMGS for the delivery of NGS of 
all solid tumours including lung cancer samples for NICE-approved treatment 
stratification-based testing. Based on this new service development in AWMGS, the 
Illumina panel would be an ideal choice for the assessment of TMB in AWMGS. 

 

Validation strategies for an NHS-based TMB service: 

If the clinical utility of TMB as a biomarker was linked to a NICE-approved drug, then 
UK Genomics laboratories, including AWMGS, would be required to implement a TMB 
service within 60 days of this approval to facilitate patient access to this drug. Genomic 
laboratories in the UK utilise a number of different targeted panels for the analysis of 
solid tumour samples. Potentially, the most practical and cost-effective solution to 
delivery of a TMB service within an NHS Genomic laboratory would be for each lab to 
validate their existing solid tumour panel for its ability to evaluate TMB.  

An alternative to a lab-by-lab approach to TMB service validation and implementation, 
standardisation of TMB assessment could dictate that all labs have to use a specific 
panel for TMB assessment. The benefit of this approach within the NHS would be that 
a central validation could be initiated, reducing validation resources required across all 
sites. However, given the existing variation in panels used for solid tumour analysis 
across the UK Genomic labs, a dictated panel would be unlikely to be a feasible option 
as would require: 
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- Either: the simultaneous use of an existing standard of care NGS panel and a 
TMB-focussed panel, which would have cost and resource implications. This 
strategy would also increase sample requirements for this service, which is an 
issue for lung cancer patients where tumour samples are often small. 

- Or: complete re-validation of existing solid tumour NGS services at each UK 
laboratory onto the new TMB dictated panel to ensure an ongoing cost neutral 
position for TMB testing (obviously the validation would have costs associated 
with it so not initially cost neutral). This would again be cost prohibitive. 

One other option for TMB service delivery would be the centralisation of TMB testing 
in the UK; however, this would have complexities in terms of: 

- the movement of FFPE samples or DNA between labs and the associated time 
for this sample transfer which would delay the patient care pathway. 

- the transfer of data and results between labs to ensure that analysis and 
reporting could be distributed across all UK laboratories, which would need to 
be carefully controlled and managed. 

- the large sample numbers involved and the associated capacity requirements 
of the delivering laboratory. 

Based on the above limitations, centralised TMB testing in the UK is unlikely to be 
feasible, and the most likely UK delivery model is the use of existing NGS panels within 
each UK laboratory for TMB assessment following appropriate validations. 

4.2.4.2 Availability of EQA schemes for TMB assessment 

The variation in TMB value dependent on the panel and analysis methods used as 
noted in this and other studies (Heeke et al. 2020; Ramos-Paradas et al. 2021; Vega et 
al. 2021; Abate et al. 2022) shows that TMB estimations generated from different 
panels cannot be compared directly. This presents an interesting conundrum for the 
establishment of a TMB-focussed EQA scheme, designed to evaluate the consistency 
and accuracy of TMB quantification across scheme participants who will undoubtedly 
use a range of different NGS methods to assess TMB. Considering the lack of utility of 
cross-panel comparison, it is interesting that the 2021 EMQN/IQNPath pilot EQA 
scheme (Abate et al. 2022) chose to compare all TMB values generated from the 24 
participating laboratories to the FoundationOne CDx TMB estimations, which is one of 
the FDA-approved panels (Fda.gov, 2020b) that had been used to validate the samples 
within the EQA scheme. This EQA process is flawed as does not have utility owing to 
the proven differences in TMB estimation when different panels and analysis are used 
(Heeke et al. 2020; Ramos-Paradas et al. 2021; Vega et al. 2021). The EQA scheme was 
however able to perform more appropriate comparisons for two targeted NGS panels 
which were used by multiple participating labs, and so comparison of data from these 
labs was more informative in terms of evaluating lab performance in TMB assessment 
as these were like-for-like comparisons. Although, having said this, the bioinformatics 
pipelines used for evaluation of TMB in each participating lab were not scrutinised in 
this EQA pilot, therefore it is unknown if there are any perfect like-for-like comparisons 
in terms of the same panel and analysis being performed. The existence of a TMB pilot 
EQA scheme is an enabler of future TMB clinical services. 
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4.2.4.3 Variation in TMB status dependent on panel/analysis/threshold used 

Within this study, only 6/13 (46%) samples were assigned the same TMB status (TMB 
high or TMB low) independent of the NGS panel and analysis parameters used. 
Stenzinger et al. (2020) similarly found that TMB statuses (TMB high/low) of 20 
samples analysed in 15 laboratories using six different targeted NGS panels were 
inconsistent with the WES-determined TMB statuses of these samples in 25% of cases. 
This lack of consistency between the TMB status aligned to a patient dependent on the 
methodology used is a concern within a clinical setting including within the NHS where, 
unless UK guidance stipulated a specific panel had to be used for TMB estimation, 
there would be variability in the NGS panels and bioinformatic pipelines used in 
different laboratories (based on resources, local preferences etc.), which would 
ultimately mean that the treatment received would be determined by where a 
patient’s sample was analysed. A factor to bear in mind here is that the panels used in 
this thesis have only been evaluated using 17 patients, therefore this pilot study is far 
from a true validation of these technologies, where many more samples would be 
evaluated, which would potentially reduce the discrepancies in TMB statuses assigned 
by each panel. This likely reduction in TMB status variation using appropriately 
validated panels is supported by the lower level of variation in TMB status assignment 
seen in the Stenzinger et al. (2020) publication that compared data from labs already 
delivering TMB services. 

The Stenzinger et al. (2020) cross-laboratory evaluation, suggested the use of a three-
tier TMB classification system, assigning samples a TMB high, TMB low, or a TMB 
intermediate status. When this system was used by Stenzinger et al. (2020) there was 
a reduction in the percentage of samples that were completely mis-classified (i.e. 
reported as TMB high rather than TMB low, or vice versa) from 25% using the two-tier 
high/low system to 1.5% using the three-tier system. This thesis data also supports the 
utility of an intermediate TMB status, as the results showed (table 18) that, of the 
seven patients in the study with variable TMB status dependent on panel and/or 
analysis used, five of these had TMB estimations that were within 20 variants of the 
TMB high threshold. If an intermediate status had been assigned to all patients whose 
TMB scores were within 20 variants of the high threshold, then the percentage of 
totally mis-classified samples (high instead of low/low instead of high) in this study 
would have decreased from 54% (7/13) to 23% (3/13). Notably, this intermediate 
threshold assessment has been performed looking at all of the analysis parameters in 
combination using only the seven discordant samples. The utility of an intermediate 
zone within TMB evaluation does warrant more investigation in future studies with a 
larger cohort size. The use of an intermediate zone is not novel in the genomics field as 
these are already used in other services where defined cut-offs are not appropriate. 

The utility of an intermediate zone in minimising false positive and false negative rates 
is described well by Mattocks et al. (2010), where its utility is noted in relation in 
particular to situations in which both sensitivity and specificity are of critical 
importance. In a TMB clinical service, maximising sensitivity and specificity would both 
be important, as the results of the TMB analysis would dictate the patient’s cancer 
treatment. How an intermediate TMB would be acted on by a clinician would be an 
important consideration to discuss with Oncologists as part of a TMB service 
validation, prior to service launch. Mattocks et al. (2010) suggest that samples in the 
intermediate zone could be reported as test failures; if this approach was taken within 
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a clinical TMB service then the test failure rate would have to be considered within the 
validation and this would want to be minimised to ensure the clinical utility of the 
service was maximised. 

Validation of a TMB clinical service would involve determination of the appropriate 
TMB high threshold based on the panel and bioinformatics pipeline used for TMB 
assessment. The potential utility of ROC-curve generated thresholds has been 
demonstrated in this study in terms of ease of use within a clinical setting, although 
the analysis of a greater number of samples than used within this study, which would 
be performed within a clinical service validation, would be expected to result in a more 
clinically useful threshold based on the reduced impact of any false positive or false 
negatives on the ROC curve assessment. If a three-tier TMB classification system was 
to be used in a clinical TMB service, appropriate validation of the size of the 
intermediate zone would also have to be performed. Within this study, the 
intermediate zone was arbitrarily set as within 20 variants of the TMB high threshold, 
but within a clinical service this intermediate threshold would have to be appropriately 
considered and validated using an appropriate number of samples. 

An area that is outside the scope of this thesis but which is important to mention in 
relation to the feasibility of a TMB service within the NHS, is the fact that published 
studies have shown that TMB threshold is likely to vary based on the tumour type 
being analysed (Sha et al. 2020). This would mean that individual threshold validations 
would have to be performed within laboratories delivering clinical TMB services for 
each tumour type analysed, which would have resource and cost implications. 

 

4.3 Limitations: Elements influencing determination of TMB clinical 
utility within this study 
 

4.3.1 Patient cohort 

A key limitation of this pilot study is the cohort size, which was limited owing to the 
funding available for this thesis and the cost of NGS analysis. The small cohort (n=17) 
will have impacted on the correlations observed, with any outliers impacting heavily 
on the overall associations, and will have contributed to the lack of statistical 
significance in the findings. An increase in size of patient cohort could improve 
statistical significance of a future TMB evaluation study. 

As the true TMB status of each sample is not known in this study, the accuracy of TMB 
scoring by each panel/analysis combination could not be determined directly. The 
utility of TMB estimation was instead assessed by comparing the predicted 
immunotherapy response (based on high/low TMB) against the RECIST-1 criteria 
(Eisenhauer et al. 2009) and/or the patient survival time. The use of samples of known 
TMB status would have been useful to assess in this study, and would certainly be 
required within a clinical validation of a TMB service; unfortunately, such samples were 
not available from the WCB. Cell lines, EQA samples, and/or cancer samples from the 
100,000 Genomes Project of known TMB status could be used within any TMB 
research or TMB service validations of the future to provide a benchmark with which 
to assess panel/analysis utility. Another potential source of samples, for which TMB 

https://pubmed.ncbi.nlm.nih.gov/?term=Eisenhauer+EA&cauthor_id=19097774
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status could be determined, are lung cancer samples already analysed within standard 
of care genomic testing at AWMGS using the 523-gene Illumina TruSightTM Oncology 
500 panel, for which NGS data would be available for re-analysis in a research setting if 
research approval was sought. Importantly, WES-derived TMB status would be the 
preferred method used for sample benchmarking as this is still considered the ‘gold 
standard’ of TMB quantification. It is important to consider that certain biological and 
social factors, e.g. smoker status (Alexandrov et al. 2016; Sha et al. 2020) and stage of 
disease (Zhang et al. 2018), have been associated with higher TMB scores within 
published NSCLC datasets (table 3). In order to be as representative of the total NSCLC 
population as possible, the patient cohort was not controlled for any of these variables 
that could impact on TMB score. Patients were only selected from the WCB on the 
basis of having PD-L1 high expressing NSCLC tumours and having received 
pembrolizumab treatment in the first line setting. Variation in these other elements 
within the patient cohort could influence the results observed, potentially masking 
correlations between TMB score and patient survival. Perhaps if some elements of the 
patient cohort had been controlled, for example selection of patients at the same 
stage of disease, then an improved correlation between TMB score and survival would 
have been seen. However, as already noted, such variation is expected to be 
representative of the lung cancer population and would generally not be controlled 
within a clinical TMB service. The only element that could be controlled within a 
clinical setting would be the stage of disease as the TMB analysis would be aligned to a 
particular point in the patient care pathway. 

4.3.2 Artefact removal algorithm 

Reducing false positive variant calls, via the removal of sequencing artefacts, would 
obviously be ideal in terms of improving accuracy of the TMB score but the issue is, if 
the method of identification of these false positive variant calls is flawed, the TMB 
score generated could be an under- or over-representation of the genuine TMB of the 
sample. Importantly the number of artefacts removed from each dataset in this study 
was based on the predicted percentage of artefacts within each panel/analysis 
combination. Owing to resource limitations, this prediction was based on IGV 
interrogation of a small selection of shared variants (section 2.6), with the premise 
being that shared variants are likely to represent SNPs, hotspot variants or artefacts. 
The uneven interrogation of shared variants across the two panel cohorts (less 
Illumina-generated variants interrogated) could introduce bias into the predicted 
artefact frequencies.  

The number of variants removed from the datasets based on the predicted artefact 
prevalence in each panel/analysis dataset is likely to be too high, as the predicted 
artefact number is likely to be an over-estimation. The reason behind this over-
estimation is that the variants interrogated in IGV were the most frequently occurring 
variants within the datasets (having been identified in >4 patients) therefore have the 
highest likelihood of being an artefact. However, this predicted artefact prevalence 
was then used to remove potential artefacts across all shared variants, which included 
variants shared by just 2 patients. 

Based on the idea that the method of artefact removal employed in this study will 
potentially result in an excess of variants being removed from the datasets, the TMB 
estimations generated when artefacts are removed would be expected to be a lower 
representation of the true values. A more accurate algorithm for prediction of 



103 
 

artefacts within each panel dataset could have been obtained by analysing a 
proportion of variants for likely artefact status from variants shared at both a high and 
low frequency across each dataset. Such improvements to this algorithm would have 
been beneficial in future studies if artefact removal had been identified as a critical 
component of accurate TMB estimation. 

4.3.3 Responder classification 

The classification of patients into responder and non-responder cohorts is critical in 
evaluating the clinical utility of TMB, as any mis-classification could skew the data in 
favour of/against the utility of TMB as a biomarker. In this study, patients who were 
CR, PR, or who showed SD according to RECIST 1.1 criteria (Eisenhauer et al. 2009) 
were classified as responders as these categories encompass patients in which no 
tumour-progression has occurred. Arguably, patients with SD could be omitted from 
the responder cohort as the tumours in these patients have not decreased in size 
according to RECIST 1.1 criteria (Eisenhauer et al. 2009) therefore perhaps ‘response’ 
has not been demonstrated in this cohort. 

The response categorisation (CR, PR, SD, PD, IR) of this Welsh cohort is an action driven 
by the clinical team. Personal correspondence with local Welsh oncologists identified 
that the RECIST 1.1 criteria are not routinely used in cancer patient NHS care 
pathways, therefore perhaps suggesting that there is scope to mis-classify patients 
across the categories. The mis-classification risks noted can be deemed to be 
consistent across the cohort in terms of impacting on all patients to the same degree. 

4.3.4 Survival data 

Owing to the availability of samples within the WCB, patients in the cohort had a PD-L1 
IHC test date of between August 2017 and May 2019, rather than all having analysis 
within 2017 which was the original plan. In line with the <10% 5-year survival rate 
(NICE 2021) and the 59% 3-year survival rate of lung cancer patients (Albano, Bilfinger, 
and Nemesure 2018), 71% (12/17) of the patients had sadly died at the time of medical 
record review in April 2022. For these patients, survival could be calculated from the 
date of the PD-L1 test to the date of death. For the five patients that were alive in April 
2022, the survival time was calculated from the PD-L1 test date to 11/04/2022 (the 
date of the final medical record review). This resulted in these 5 patients having an 
artificially shortened survival time. The survival data for this Welsh cohort will 
therefore be an under-representation of true survival.  

Owing to the fact that in this study, the PD-L1 tests were all performed some years 
ago, over an approximate 2-year time-frame, even though the survival times of 5 
patients were under-estimated, these surviving patients still had the longest survival 
times in the study (1112-1699 days) by some margin, with the exception of a single 
patient (20M70076) who died with a survival time post-PD-L1 test of 1292 days. 
Unsurprisingly, given the survival time of patient 20M70076, this patient had stable 
response according to RECIST 1.1 criteria. The long survival times of the patients still 
alive at the end of this study means that there is minimal data skewing caused by a 
short survival time of one of these surviving patients. 

Patient selection could have been improved by ensuring that all patients within the 
cohort were already deceased, thus ensuring accurate survival times for the cohort. 
The potential issue with this strategy, however, is that this could mean that the PD-L1 
analysis was performed >5 years ago (pre-2017), which could impact on the quality of 



104 
 

the DNA obtained from these older FFPE samples. Alternatively, an ‘overall survival 
rate’ metric could have been used to assess the percentage of patients alive at a 
certain time point e.g. 18 months after diagnosis; this mirrors the approach used in 
other TMB studies, such as the Hellmann et al (2018a) publication in which 
progression-free survival at one-year was the metric used for evaluation of therapy 
response. This approach would have meant that all patients had complete and 
accurate data for this ‘overall survival’ metric. An alternative measure of response such 
as ‘time to response’ could have been used as a metric in this study if further 
interrogation of the medical records had been performed. This metric represents a 
different way of measuring response and would only have a value for those patients 
that respond to therapy, but is a metric typically used as a secondary endpoint in 
clinical trials. 
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Chapter 5: Conclusions 
This study demonstrates the improved sensitivity of anti-PD-L1 immunotherapy 
stratification in a Welsh NSCLC patient cohort using a combined TMB and PD-L1 
biomarker, compared to PD-L1-based stratification. This supports the study hypothesis 
and supports the potential clinical utility of this combined biomarker in this patient 
group; although, the small study size contributes to the lack of statistical significance in 
the survival difference between patients of high PD-L1 expression status versus 
patients with combined TMB high and PD-L1 high expression status, and limits the 
ability to generalise these findings across the Welsh lung cancer population as a whole. 
The potential cost neutral status of delivery of a TMB service within the NHS, as 
determined in this study, and the existence of a pilot EQA scheme for TMB 
quantification (Abate et al. 2022), extends the proposed clinical utility of a combined 
TMB and PD-L1 biomarker to encompass a demonstrated feasibility of TMB service 
provision in the NHS. 

Analysis of the same patient cohort on different NGS panels highlights the key 
complexity of TMB assessment, namely that TMB estimation is dependent on both the 
targeted NGS panel used to assess variant number, whereby size and/or gene content 
of panel may impact on the TMB score, and the analysis performed in respect of the 
variants included within the TMB calculation. TMB estimation can also vary based on 
attributes of the tumour sample, e.g. pre-selection of samples in this study for PD-L1 
high samples raised the TMB scores in comparison to other unselected study cohorts. 
The demonstration of variability in TMB estimation based on panel and analysis 
methodology highlights the essential requirement for panel/analysis-specific TMB 
thresholds determined through validation, as well as reporting of TMB status rather 
than TMB estimation, to deliver clinical utility and enable cross-comparison of TMB 
data between laboratories. This may result in the same threshold having utility across 
different panels, e.g. the 10 variants/Mb threshold determined by Ramalingam et al. 
(2018). The differences in TMB estimation as a result of the use of different panel and 
analysis combinations, can be clinically significant by altering the TMB (high/low) 
status of a patient dependent on the TMB threshold used, which would result in 
patients aligning to different treatment options within a TMB biomarker-based service. 
This represents a barrier to the clinical utility of TMB as a biomarker, although the 
clinical impact of this variation in TMB status can be reduced by the use of a three-tier 
threshold system, specifying TMB high, TMB low, and TMB intermediate categories.  

There are many elements within this study that have identified a preference for the 
Nonacus panel over the Illumina panel in terms of added benefits that the Nonacus 
panel was observed to bring in relation to: an improved correlation between TMB 
estimation and immunotherapy response, and greater difference in survival between 
the Nonacus TMB high and low groups. However, some areas of the Nonacus panel 
performance are concerning in terms of the poor sequencing coverage achieved and 
the poorer quality of the sequencing compared to Illumina, although these could have 
been affected by lack of experience in the methodology. This is a pilot study evaluating 
a total cohort of only 17 patients, so in the context of this, neither the Illumina nor 
Nonacus panel can be ruled out as a potential targeted panel for use within a TMB 
clinical service. In general terms, in relation to optimal panel selection, study findings 
support a minimum panel size of 1.6Mb to provide a level of assurance of the accuracy 
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of the TMB estimations in relation to the gold-standard WGS/WES approaches. In 
terms of optimal analysis, an additional artefact removal step based on evaluation of 
potential artefacts in IGV was demonstrated to have minimal impact on TMB status, 
and including this step within future TMB studies/validations is not recommended. No 
clear conclusion regarding the utility of synonymous variants in TMB calculations could 
be made, as the optimal analysis parameters in relation to the exclusion/inclusion of 
synonymous variants varied within this study dependent on the area of utility being 
considered, e.g. correlation between TMB and immunotherapy response, or the 
sensitivity and specificity of responder/non-responder classification. 

Based on the findings of this study there are a number of recommendations for NHS 
Genomics laboratories when embarking on a TMB service validation, many of which 
can be applied to the design of future research studies (table 21). 
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Table 21: Recommendations for TMB quantification within the NHS. The validation steps 
(recommendations 4 and 5) can be performed across laboratories if the panel/analysis 
combination is consistent. Importantly, if a validation of the same panel/analysis on the 
same patient population is already published then only an internal verification of the 
procedure (including evaluation of the TMB threshold within the publication) would be 
required. 

Recommendations  
1 Service Based on proven utility of TMB assessment for patient 

stratification (Marabelle et al. 2020) and associated cost benefits 
of a stratification service based only on TMB quantification, an 
independent biomarker model is recommended within the NHS. 

2 Panel The use of targeted NGS panels (>1.6Mb) already established 
within NHS Genomics labs are recommended for TMB estimation. 
Capability of the panel for TMB evaluation could be confirmed by 
reviewing the relevant commercial website; such confirmation 
would not be possible for custom-design panels or panels 
developed in-house. 

3 Analysis - An additional artefact removal step is not required within 
the TMB calculation.  

- Refer to commercial website regarding recommendations 
for inclusion/exclusion of synonymous variants for 
selected panel. If no guidance exists, exclusion of 
synonymous variants could be performed based on a 
growing preference towards these conditions (Sha et al. 
2020). 

- Use of the Institut Curie TMB tool (Github, 
2022ahttps://github.com/bioinfo-pf-curie/TMB) for TMB 
calculation. 

4 Validation - Validate panel/analysis combination using an appropriate 
number of TMB known status samples (ideally TMB 
determined by WES, or an FDA-approved panel). 

- The validation of the panel for TMB quantification should 
establish the minimum coverage of the panel required to 
ensure the accuracy of TMB scoring, ensuring that TMB is 
not under-estimated owing to poor coverage. 

5 Threshold - Determine the appropriate TMB thresholds using ROC 
curve analysis; the specification of an intermediate zone is 
also recommended. 

- Note: Different threshold validations may be required for 
different tumour types where TMB estimations can vary. 

6 Report - Clinical reports should record the TMB status as well as 
the TMB score. 

- Consideration into how to report intermediate TMB 
scores via consultation with referring Oncologists. 

https://github.com/bioinfo-pf-curie/TMB
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Chapter 6: Future work 
The thesis findings and the published data regarding combined TMB and PD-L1 
biomarker utility lack statistical significance; further research studies and trials would 
be required to demonstrate such utility prior to a clinical service based on a combined 
biomarker being considered. Given the demonstrated clinical utility of TMB 
assessment alone as a biomarker (Marabelle et al. 2020), and the benefits of this single 
biomarker strategy within the NHS (and potentially within other international clinical 
services) research into a combined biomarker may be less urgent. 

A larger study to demonstrate utility of a TMB biomarker within a Welsh cohort could 
be initiated to observe if a stronger correlation between TMB score and 
immunotherapy response could be determined. This could be driven by AWMGS who, 
as the Illumina TruSightTM Oncology 500 panel was launched in July 2021 for the 
delivery of the routine NSCLC genomic service, have access to Illumina-panel 
generated sequencing data from hundreds of NSCLC patients. A research application 
for retrospective TMB evaluation of these samples could be submitted, but the issue 
with such a study design is that the study, as for this thesis, would be focussed on the 
utility of a combined TMB + PD-L1 biomarker, as immunotherapy response data would 
only be available on PD-L1 high samples, and, as concluded, this may not be the 
desired strategy for an NHS service. 

Further research could be performed to answer the question posed in this study 
regarding whether concordance between targeted panel-generated and WGS/WES-
determined TMB quantifications aligns with clinical utility of the targeted panel for 
TMB evaluation. A comparison of the recommended analysis parameters outlined in 
this study against the gold-standard WES would be an informative future study to 
demonstrate utility of these recommendations. Other areas highlighted within this 
study worthy of further evaluation include the use of a three-tier threshold system for 
improved clinical utility of TMB as a biomarker, and the inclusion of synonymous 
variants within TMB estimations, which remains an unresolved question in terms of a 
lack of consensus in this area.  

The utility of the Agilent panel could be investigated further as the reason for failure of 
this panel was not identified. Technical support could be sought prior to use of this 
panel in the AWMGS laboratory, or a collaborative study with Agilent could enable the 
NGS set-up to be performed at a site external to AWMGS, with only data interrogation 
occurring at AWMGS; this would  eliminate potential technical errors owing to lack of 
familiarity of AWMGS staff with the Agilent protocol, which is a possible explanation 
for this panel failure.   

The ongoing provision of EQA schemes is important for quality assurance within NHS 
TMB services. The preferred format for EQAs would be the comparison of sample TMB 
status rather than TMB estimations, as these can be compared directly across labs 
using different TMB panel/analysis combinations. Differences in TMB status between 
participating labs and the validation labs could indicate a poor performing laboratory 
where perhaps the panel/analysis/threshold combination has not been appropriately 
validated. The issue with an EQA scheme based on comparison of TMB status is that 
within the IQNPath scheme (Abate et al. 2022) many participating labs did not assess 
TMB status, choosing instead to report TMB estimation only; therefore, TMB status 
results from all participating labs would not be available at the present time. However, 
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the number of labs assigning TMB status is likely to increase in the future if service 
delivery is moved from a research to a clinical setting based on further approvals being 
granted (e.g. NICE-approval) of drugs whose use is stratified based on TMB 
quantification. If TMB estimations were submitted by EQA participants then data on 
the TMB assessment parameters used would be required so that any caveats to the 
utility of comparing lab results from participants using the same panel were 
understood. 

There is already an international TMB harmonisation project led by the Friends of 
Cancer Research, established to improve the utility of TMB by standardising TMB 
measurement and reporting across different NGS panels. The first phase of this 
collaborative project produced preliminary recommendations for the standardisation 
of TMB assessment, which included the use of a calibration curve generated using 
universal reference standards of varying TMB score (assessed by WES) (Merino et al. 
2020). TMB scores for these reference standards generated at different laboratories 
using different panels could then be aligned to the calibration curve to produce 
conversion factors that could be applied to all TMB analysis at a given site, to aid 
comparison of values between laboratories. This is an interesting suggestion, and it will 
be fascinating to see if this idea is developed further in the next phase of this 
collaborative project to drive the utility of TMB assessment in clinical practice. 
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Appendices 
 

Appendix 1:  

A Units and C1 Credits for Appendix to DClinSci Thesis 

 

Alliance Manchester Business School (AMBS) 

A Units 

Unit Title Credits Assignment Word Count 

A1: Professionalism and Professional 
Development in the Healthcare 
Environment 

30 Practice Paper – 2000 
words 

A1 – Assignment 1 – 1500 
words 

A1 – Assignment 2 – 4000 
words 

A2: Theoretical Foundations of Leadership 20 A2 – Assignment 1 – 3000 
words 

A2 – Assignment 2 – 3000 
words 

A3: Personal and Professional 
Development to Enhance Performance 

30 A3 – Assignment 1 – 1500 
words 

A3 – Assignment 2 – 4000 
words 

A4: Leadership and Quality Improvement 
in the Clinical and Scientific Environment 

20 A4 – Assignment 1 – 3000 
words 

A4 – Assignment 2 – 3000 
words 

A5: Research and Innovation in Health 
and Social care 

20 A5 – Assignment 1 – 3000 
words 

A5 – Assignment 2 – 3000 
words 

 

Life Sciences – Section C 

C1: Innovation Project – Credits = 70  

Assignment: Literature Review & Lay Presentation 

 



111 
 

Appendix 2:  

DClinSci section C1 submission: Innovation proposal and business 
case 

 

Utility of Tumour Mutational Burden as a biomarker for immunotherapy 
stratification in Welsh lung cancer patients 
 
1 Executive summary 

Revenue requirement for this proposal: £21,436.56 (appendix 11.2); Capital 
requirement: £0 

The existing PD-L1 expression biomarker used for prediction of immunotherapy 
response in lung cancer patients is imperfect, with only 45% of patients showing 
response to the anti-PD-L1 immunotherapy pembrolizumab after stratification of 
treatment has occurred (Garon et al. 2015). There is, therefore, a clinical and financial 
need for a more accurate predictor of immunotherapy response to minimise the use of 
unnecessary and ineffective therapy.  

Tumour Mutational Burden (TMB) can be simply defined as the number of mutations 
found within a tumour (Alexandrov et al. 2013). Recent clinical trials have highlighted 
the potential clinical utility of TMB quantification using Next Generation Sequencing 
(NGS) as a predictor of immunotherapy response in lung cancer patients (Carbone et 
al. 2017; Hellmann et al. 2018). Despite the large interest in this field, a number of 
questions regarding the technical utility of TMB remain unanswered, and the clinical 
utility of TMB –based immunotherapy stratification to prolong overall survival is 
unproven; these factors hinder the use of TMB in the clinical setting. 

Aims: 

This proposal aims to drive forward TMB research using diagnostic-grade samples by 
targeting some of these unanswered questions, whilst at the same time ensuring the 
All Wales Medical Genomics Service (AWMGS) gains expertise in this novel area. The 
primary aim and objective of this research is to assess the clinical utility of TMB as a 
biomarker for anti-PD-L1 immunotherapy treatment response in a Welsh lung cancer 
patient cohort, either alone or in combination with PD-L1 expression analysis. This 
proposal aims to assess the utility of TMB by performing TMB measurements on a 
cohort of 24 patients using 3 targeted NGS panels and, in doing so, compare the 
accuracy of TMB estimation across these methodologies. TMB will be estimated using 
different analysis criteria and will be performed with a range of TMB high thresholds. 
The secondary objective will be achieved by the identification of a set of optimal 
conditions for TMB evaluation that effectively differentiate between immunotherapy 
responders and non-responders. 

2 Background 

Immunotherapy is of increasing importance in cancer patient care pathways. Owing to 
biological and genetic differences in tumours, cancer patients do not all respond to 
immunotherapy (Garon et al. 2015). One such difference between tumours is the 
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expression level of the PD-L1 protein. Research into differences in PD-L1 expression 
levels across lung tumours, resulted in high PD-L1 expression being linked to good 
immunotherapy response in this patient group (Taube et al. 2014). These findings led 
PD-L1 expression to be the first biomarker used for the stratification of 
immunotherapy use in lung cancer patients (NICE 2016a). However, even with the use 
of this biomarker, around half of the patients still do not respond to the 
immunotherapy (Garon et al. 2015).  

Another difference between tumours is the number of genetic mutations within the 
tumour, described as TMB. The identification of tumours with high TMB by NGS, either 
by analysis of the whole exome (Whole Exome Sequencing, WES) or a proportion of 
the exome (targeted NGS), has been shown to be predictive of immunotherapy 
response in lung cancer patients (Rizvi et al. 2015; Hellmann et al. 2018). Importantly, 
the combined use of TMB level and PD-L1 status has been shown to have benefits in 
the prediction of immunotherapy response (Carbone et al. 2017). TMB therefore has 
the potential to be an alternative biomarker for immunotherapy response. 

3 The current state of TMB research 

Within a clinical trial setting, high TMB has been shown to be associated with 
improved progression-free survival in lung cancer patients (Hellmann et al. 2018). This 
trial data unfortunately did not achieve statistical significance in terms of overall 
survival of these patients (Hellmann et al. 2018), and until such clinical utility has been 
demonstrated, TMB will not be a viable biomarker in this patient group. Other barriers 
to the use of TMB as a biomarker in immunotherapy stratification are the lack of 
consensus within the literature regarding the mutations to count within a TMB 
estimate, and the TMB threshold to use to accurately differentiate between 
immunotherapy responders and non-responders (Rizvi et al. 2015; Pestinger et al. 
2020). Importantly a high TMB threshold of 10 mutations/Mb has been used within 3 
separate research studies using different targeted NGS panels and has been shown to 
be an effective threshold for predicting immunotherapy response (Pestinger et al. 
2020; Hellmann et al. 2018; Ramalingam et al. 2018). Ramalingam et al. 2018 originally 
defined this 10 mutations/Mb threshold using a ROC (Receiver Operating 
Characteristic) curve, the use of which has been supported in other publications 
(Fancello et al. 2019). Within the literature, the key differences in the TMB calculations 
performed surround the inclusion/exclusion of synonymous mutations and insertion-
deletions in the estimation (Fancello et al. 2019; Budczies et al. 2019). 

The method required for accurate TMB quantification is highly debated within the 
literature. WES has traditionally been seen as the gold-standard for TMB 
measurement, but its use is often prohibited by the staffing and IT resources required 
to handle, interpret and store the large amounts of sequencing data generated. As 
such, targeted NGS panels have been increasingly used in TMB research, and have 
shown consistency in TMB estimations when compared to WES-generated levels (Rizvi 
et al. 2018; Chalmers et al. 2017). There is, however, debate regarding the ideal size 
and gene content of a targeted NGS panel to enable accurate TMB estimation 
(Bucchalter et al. 2018; Budczies et al. 2019). A minimum panel size of 1.5Mb has been 
quoted by Buchhalter et al. (2019) to be necessary for TMB quantification, but panels 
smaller than this have been proven to provide TMB estimates that are concordant to 
WES-determined values (Chalmers et al. 2017; Rizvi et al. 2018).   
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4 The value of further research into TMB utility as a biomarker for immunotherapy 
stratification 

Addressing the TMB research gaps to identify a set of optimal analysis criteria for TMB 
quantification using targeted NGS panels will enhance the potential for TMB to be 
used as a biomarker within cancer care pathways. Focusing on a Welsh lung patient 
cohort will provide novel research into the clinical utility of TMB as an immunotherapy 
response biomarker in this population. 

This proposal ensures that the AWMGS is well positioned to deliver a NGS-based TMB 
analysis should a service be required in the future. It could also drive further research 
studies within the AWMGS of TMB assessment in other tumour types or in circulating 
tumour DNA samples. 

In terms of cost/benefit analysis, the current immunohistochemical (IHC) test 
performed to determine PD-L1 expression levels in lung cancer patients prior to 
immunotherapy stratification is cheaper than a targeted NGS test (£50 vs £350). 
However, if NGS has improved utility over expression analysis as a predictor of 
immunotherapy response, then it would be economically beneficial to introduce such 
NGS testing within a clinical setting owing to the high cost of immunotherapy 
treatment (NICE 2016a). As well as having monetary benefits, use of a more accurate 
predictor of response would be beneficial to cancer patients whom could avoid 
unnecessary treatments. Importantly, targeted NGS panels that can be used for TMB 
quantification are used currently within Genomics laboratories as part of cancer care 
pathways to identify specific genetic mutations associated with response to certain 
NICE-approved drugs. Therefore, the cost of the NGS panel test is already factored into 
a lung patient’s pathway so effectively making TMB quantification cost neutral.   

5 Option appraisal 

Option 1: Do nothing 

Not taking forward this proposal would mean that the research questions posed 
regarding the utility of TMB as an immunotherapy response biomarker within the 
Welsh population, and the optimal method of TMB quantification would remain 
unanswered. This puts the onus on other researchers to take forward these questions 
surrounding the clinical and technical utility of TMB, which are currently acting as 
barriers to the use of TMB as a biomarker. Should these questions be answered in 
other research studies and NICE approval for TMB-based immunotherapy stratification 
be granted, the response rate of AWMGS to deliver a clinical service for TMB 
quantification would be hindered, having not gained experience in this area through 
this proposal.  

Option 2: Evaluate the clinical and technical utility of TMB within the AWMGS 

This proposal has been designed to target unanswered questions that are hindering 
the use of TMB as a biomarker within the healthcare setting. It also provides the 
opportunity to generate TMB data specifically from Welsh lung cancer patients (a need 
which has not been met to date), and to develop TMB quantification experience within 
the AWMGS laboratory. Such expertise would be of great utility to the AWMGS and to 
the cancer patients of Wales should there be a need in the future for a TMB service to 
guide cancer care. This proposal will use diagnostic-grade samples therefore has real 
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utility in assessing TMB quantification capabilities of the NGS panels chosen within a 
diagnostic setting. 

Alternative approaches within option 2 would be to either use WES or targeted NGS 
panels. 

a) Use of WES: The AWMGS has no experience of WES of tumour samples and does 
not have the IT support to make this a feasible option. Using WES would mean that the 
scope of this proposal would be reduced to exclude the evaluation of the ideal size and 
gene content of targeted sequencing panels for TMB detection.  

b) Use of a targeted sequencing panel: This approach fits best with the aims of this 
proposal and with the skill mix within the AWMGS laboratory, where targeted NGS 
panels have been used for genetic analysis of tumour samples since 2015.  

6 Preliminary data in support of proposal 

In support of this proposal and specifically the use of targeted NGS panels to define 
the technical requirements of TMB quantification (option 2b), a small TMB pilot study 
was performed at AWMGS, in collaboration with Qiagen, to assess whether TMB 
measurements could be successfully obtained by targeted NGS analysis of diagnostic-
grade samples. NGS of 12 formalin-fixed paraffin-embedded (FFPE)-derived DNAs from 
a range of tumour types was performed at AWMGS using the Qiagen Life Sciences TMB 
panel (1.3Mb in size), with TMB quantification then being performed by analysts at 
Qiagen. Of these 12 samples, 11 gave TMB measurements (included lung, bladder and 
melanoma samples), whilst one melanoma sample did not successfully produce 
sequencing data (appendix 11.1).  

This preliminary work included 6 lung samples with starting DNA concentrations of 
between 8 and 11ng/ul, which is highly reflective of the samples received within 
diagnostic service. The ability to successful sequence and estimate TMB levels within 
all 6 of these lung samples provides support for the use of targeted NGS panels within 
this proposal. 

6 Costs 

The cost of the chosen option 2b, covering sample sourcing (£2438), NGS consumables 
(£18,498.56), staffing (£0), and publication costs (£500) is £21,436.56 (appendix 11.2). 

7 Stakeholder engagement 

The proposal is fully supported by the Head of the AWMGS laboratory. The benefits 
that this research would bring have also been recognised by the Wales Cancer 
Research Centre, whom awarded a Translational Research Award (ASTRA) to this 
proposal following a successful application process. This ASTRA application was a joint 
collaboration with two local Lung Oncologists whom were fully engaged and enthused 
by this area of TMB research. The use of ASTRA funding can be supported by the 
following lay summary. 

Lay summary: 

Cancers arise from uncontrolled cell growth caused by the accumulation of genetic 
mutations in a single cell from which the tumour develops. The number of mutations 
in a tumour can be quantified, and this number, for some types of cancer including 
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lung, has been shown to be associated with how well a patient responds to a particular 
cancer treatment called immunotherapy. This proposal aims to investigate how best to 
measure the number of mutations within a lung tumour, and will evaluate what the 
critical number of mutations is that determines therapy response. These are both 
areas lacking consensus and, once defined, could allow this mutation counting 
technique to be used within cancer care pathways to identify patients most likely to 
respond to immunotherapy. Such tailored cancer care ensures that patients receive 
the most effective therapies, inappropriate drug usage is reduced, and cancer patient 
survival is improved. 

8 Risks and challenges (appendix 11.3) 

Description of Risk  
Risk 
Impact 
Score 

Risk 
Likeli-
hood 
Score 

Risk 
Rating 
Score  

Response / Mitigation 
Action 

Risk 1: Insufficient DNA 
extracted from FFPE 
samples meaning that there 
are limited numbers of 
samples that can be 
analysed on all 3 panels, so 
limiting the ability to 
compare panels for TMB 
utility.  4 3 

12 Panels with variable DNA 
input amounts selected to 
try to ensure that there will 
be enough DNA for at least 
2 panels. 

Risk 2: FFPEs are challenging 
to work with in terms of 
potentially providing poor 
quality DNA, which could 
influence the quality of the 
NGS data obtained.  3 3 

9 Preliminary work 
performed to give an 
indication of the expected 
failure rate. 

Risk 3: NGS costs are high 
and DNA samples are 
precious therefore cannot 
afford any errors in NGS set-
up. 4 2 

8 

2/3 NGS panels have 
already been used in the 
lab, therefore familiarity 
with the technical process. 
Training provided to lab for 
remaining panel. 

Risk 4: Establishing a 
bioinformatic analysis 
pipeline for TMB calculation.  

4 1 

4 

Experienced bioinformatics 
team on hand in AWMGS; 
literature review identified 
approaches to performing 
TMB calculations.  

Risk 5: Insufficient samples 
available within the Welsh 
Cancer Bank to make 
valuable conclusions.  4 3 

12 

The proposal was designed 
based on minimal samples 
required to produce 
statistically significant data. 
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9 Proposal timeline 

Gannt chart detailing estimated timings of this proposal. This timeline may be subject 
to change owing to conflicting NHS service pressures within the laboratory or other 
unforeseen circumstances. 
 

 
 
 
10 Method 
A panel of 24 lung cancer patients already stratified for immunotherapy treatment 
based on PDL-1 IHC results will be sought from the Welsh Cancer Bank (WCB). The 
WCB has ethical approval from Wales Research Ethics Committee for cancer related 
research meaning that individual studies do not need separate ethical approval. DNA 
will be extracted from the identified patient tumour samples, which will be in the form 
of formalin-fixed paraffin-embedded (FFPE) tissue samples. 3 NGS panels, from 
Illumina, Agilent and Nonacus, will be used to generate NGS data.  

NGS data will be analysed using an in-house bioinformatics solution. Multiple TMB 
calculations will be performed on the data, centring on the inclusion/exclusion of 
insertion-deletions and synonymous mutations. Scatter plots will be used to visualise 
the relationship between TMB and immunotherapy response (response plotted as 
post-PD-L1 assessment survival in months). Spearman rank correlation coefficient 
calculation and linear regression analysis will be used to investigate any association 
between TMB level and response, using 2 different TMB high thresholds (10 
mutations/Mb and a Receiver Operating Characteristic curve generated threshold). A 
paired t-test will be used to compare the TMB values obtained from samples run on >1 
panel. The potential benefit of using PD-L1 expression in combination with TMB for 
immunotherapy response prediction will be investigated using ANOVA to compare the 
mean response of the TMB high group, the PDL-1 >50% group and the TMD high + PDL-
1 >50% group. 
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Sample numbers: The number of samples being processed on each of the 3 NGS 
panels will be dependent on the volume of DNA obtained from each sample (see risks 
section 8). 

• A minimum number of 8 samples will be analysed on each of the 3 NGS panels; 
8 represents the minimum number of observations required to perform the 
Spearman rank correlation test.  

• A minimum of 12 samples will be analysed on >1 NGS panel to provide a 
statistically significant dataset. The expected difference between TMB levels 
measured by different panels is unknown so power calculation is not possible. 

 

Selection of targeted NGS panels: The 3 NGS panels selected for use in this proposal 
was based on a number of factors: 

a) Experience of AWMGS in using the NGS panel: 2/3 of the panels had been used 
in the laboratory before therefore staff were appropriately trained. 

b) Gene content of the panels: All 3 panels target oncogenes and tumour 
suppressor genes but differ in their shared gene content, allowing evaluation of 
optimal gene content for TMB estimation. 

c) Utility for other tumour analysis: All panels had potential utility to be used for 
current standard of care genetic analysis of lung tumours, therefore ensuring a 
cost neutral position for TMB should a service for required in the future. 

d) Size of the panels: All panels are over the critical 1.5Mb size predicted by 
Bucchalter et al. (2019) to be essential for TMB estimation. One panel is 
<1.6Mb which represents the panel size limit suggested by the work of 
Hatakeyama et al. (2018). 

e) The Illumina panel has proven utility in TMB measurement by comparison to 
whole genome sequencing (Pestinger et al. 2020); therefore, Illumina TMB 
measurements will be used as a guide by which the TMB levels from the other 
panels can be compared. 
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11 Appendix 

11.1 TMB data from 12 samples: preliminary Qiagen study 

 

11.2 Estimated costings of the proposal 

* Note: The number of samples that can be sequenced is restricted by the NovaSeq 
costs combined with the budget for this research work.  

Item Additional information  Estimated 
cost 

WCB sample 
sourcing  

24 samples from Welsh Cancer Bank (£50/sample 
+ £450 admin fee + £500 patient data); Maxwell 
extraction costs for 24 samples (£12/sample) £2,438 

Library preparation: 
Illumina - TSO500 

TSO500 DNA kit for 48* samples 
£8758.20 

Library preparation: 
Agilent Custom 
SureSelect 
CancerCore v1  

Free kit provided as Agilent panel to be trialled for 
its variant detection capabilities in a parallel 
project  

free 

Library preparation: 
Nonacus Cell3 Target 
pan cancer panel 

Nonacus Pan-Cancer (524) for 16* samples 

£1389 

Sequencing: 
NovaSeq  

NovaSeq Xp 2-Lane Manifold Pack (£1071.60), 
NovaSeq Xp 2-Lane Kit (£461.70), NovaSeq 6000 
SP Reagent Kit (300 cycle) (£5371.56) £6904.86 
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Other consumables Target Pure NGS clean-up beads, 10ml (£157.50), 
UK Delivery, Dry Ice (£38), Beckman - AMPure XP 
DNA cleanup kit (60ml) (£975), Oxford Gene 
Technology-Dynabeads™ M270 Streptavidin, 2ml 
(£276) £1446.50 

Staffing  1x Band 6: member of staff already funded by 
Welsh government for development work. 1x 
Band 8a: HSST funded post with dedicated 
development time free 

Publication MAP (Molecular Analysis for Personalised 
Therapy) conference poster presentation 2021: 
cost of poster, meeting fee and transport to 
meeting venue £500 

TOTAL £21,436.56 

 

11.3 Risk calculations 
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Appendix 3:  

DClinSci section C1: Oral presentation report 

 
Guidelines on the Assessment of the Oral Presentation 

The assessment panel will assess the presentation based on the following criteria: 

• Quality and clarity of explanation of the project and proposal for a lay audience 
(awareness of the use of jargon, scientific language and acronyms) 

• Synthesis of relevant scientific evidence for a lay audience 
• Ability to persuade a lay audience of the merits (or otherwise) of the project 

and its potential role in healthcare science services 
• Style of presentation (slides, delivery; body language, eye contact, voice, 

confidence) and appropriateness for a lay audience 
• Demonstration of values, attitudes and behaviours expected of a leader in 

clinical science 
 

The assessment panel should also consider the presentation against the following 
criteria, in line with expectations for doctoral degrees: 

 

• The creation and interpretation of new knowledge, through original research or 
other advanced scholarship. This new knowledge must be of a quality to satisfy 
peer review, extend the forefront of the discipline and merit publication. 

• Significant contribution towards the development of novel and innovative 
research. 

• A systematic acquisition and understanding of a substantial body of knowledge 
that is at the forefront of an academic discipline or area of professional 
practice. 

• The general ability to conceptualise, design and implement a project for the 
generation of new knowledge, applications or understanding at the forefront of 
the discipline, and to adjust the project design in the light of unforeseen 
problems. 

• A detailed understanding of applicable techniques for research and advanced 
academic enquiry 

  

Following deliberation, the assessment will be given a pass/fail outcome and written 
feedback will be available afterwards from the panel. 

Should the student fail the presentation one further opportunity to undertake the oral 
presentation will be offered.  

Section 1: Student 
Name of Student: Helen Roberts 
Title of Project: Evaluation of a new method of predicting treatment 

response in lung cancer patients 
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Section 2: Report and Recommendation 
Please provide a report on the explanation of the work and response to questions. 
 
Good background, interesting news focussed and highlighted on immunotherapy. 
Good lay conversion. Predicting response-stratifying, precision medicine. Surface 
protein what is it? 
 
Number of genetic mutations= better way to predict is high TMB also= more 
aggressive or worse prognosis for the cancer? 
 
Very nice description, novel and interesting research/clinical question. 
Can you get DNA from the blood? -secretions linked to genetic mutations  
 
Can you combine with other therapies? 
 
Very good response to all questions. 
 
 
Overall Recommendation 
Please tick 
 Pass 
 Fail 
Feedback 
In the event of a fail being awarded, please provide detailed feedback to the student 
on what is required in order to attain a pass mark.  
 
 

Section 5: Signatures 
Name of 
Panel Chair 

Mark Slevin 
 
 

Signature of 
Panel Chair 

 
Date: 
 

25/3/21 

 

Please provide a list of panel attendees 

Fiona Wilkinson 

Jane Lynch 

John McCormack 
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Appendix 4:  

Royal College of Pathologists (FRCPath) part 1 examination 
certificate 
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Appendix 5:  

Gene lists of evaluated targeted NGS panels 
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Appendix 6:  

Maxwell® DNA extraction supplier protocol 
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Appendix 7: 

QubitTM Flex fluorometer DNA quantification supplier protocol 
Extract below is taken from the QubitTM Flex fluorometer supplier protocol (pages 36-
37, 42) available at: https://assets.thermofisher.com/TFS-
Assets/LSG/manuals/MAN0018186_Qubit_Flex_Fluorometer_UG.pdf 

 

 

 

https://assets.thermofisher.com/TFS-Assets/LSG/manuals/MAN0018186_Qubit_Flex_Fluorometer_UG.pdf
https://assets.thermofisher.com/TFS-Assets/LSG/manuals/MAN0018186_Qubit_Flex_Fluorometer_UG.pdf
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Appendix 8: 

Illumina TruSightTM Oncology 500 panel library preparation supplier 
protocol 
Overview of Illumina TruSightTM Oncology 500 panel library preparation protocol is 
shown below (pages 7 and 8); full protocol available online: 
https://support.illumina.com/downloads/trusight-oncology-500-reference-guide-
1000000067621.html 

 

 

 

https://support.illumina.com/downloads/trusight-oncology-500-reference-guide-1000000067621.html
https://support.illumina.com/downloads/trusight-oncology-500-reference-guide-1000000067621.html


137 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



138 
 

Appendix 9: 

Agilent SureSelect Community Design Glasgow Cancer Core panel 
library preparation supplier protocol 

 

DAY 1 Stage 1: Enzymatic Fragmentation Est time ~ 40 mins  

1) Thaw 5x SureSelect Fragmentation Buffer from the Low Input enzymatic fragmentation kit 
box and the first 16 samples to be processed at room temperature. Gently and briefly vortex 
samples and spin down before placing on ice. Gently and briefly vortex 5x SureSelect 
Fragmentation Buffer and spin down before placing on ice.  

2) Thaw the End Repair A-Tailing Buffer from the SSEL XT HS Reagent Kit. Visually inspect the 
solution for any precipitate and if necessary vortex until it dissolves. Vortex and spin down 
before placing on ice.  

3) Thaw the Ligation Buffer from the SSEL XT HS Reagent Kit. Note the ligation buffer may need 
to be briefly warmed in your hand to ensure all the white precipitate is re-dissolved. Vortex for 
20 seconds at high speed to mix and then spin down.  

4) Prepare the fragmentation master mix as follows:  

 

5) Mix by pipetting up and down, then briefly spin down.  

6) Add 3µl of the fragmentation master mix to each well containing 7µl of input gDNA. Mix 
well by pipetting up and down. Seal the wells and briefly spin down the samples. Keep the 
plate chilled as far as possible while you are doing this.  

7) Place the sample plate in the thermocycler and run the Enz fragment program as below: 

 

8) Take a ≥2.2ml aliquot of AMPureXP beads out of the fridge to come to room temperature 
for later in the workflow.  

9) When the Enz fragment program reaches the 4°C hold step, remove the sample plate from 
the thermocycler. Add 40µl of nuclease-free water to each sample well, seal, spin down and 
place the sample plate on ice. If short-term storage is required store the samples at 4°C.  
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Note: This is not a stopping point, proceed to end repair and A-tailing as soon as possible.  

Stage 2: Prepare Ligation Master Mix Est time ~ 5 mins  

10) Remove the T4 DNA Ligase (Blue Cap) from the SSEL XT HS Reagent Kit from storage at - 
20°C, flick to mix and spin down.  

11) Prepare the ligation master mix in a 1.5 ml Eppendorf as follows:  

 

12) Mix well by pipetting up and down 15-20 times, pipette slowly as the buffer is very viscous. 
Spin down briefly. The ligation master mix needs to equilibrate at room temperature for at 
least 30 mins. While this is happening, carry out the end repair and A-tailing.  

Stage 3: End Repair and A-tailing Est time ~ 45 mins  

13) Remove the End Repair A-Tailing Enzyme Mix (Orange Cap) from the SSEL XT HS Reagent 
Kit from storage at -20°C, flick to mix and spin down.  

14) Prepare the end repair A-tailing master mix in a 1.5 ml Eppendorf as follows:  

 

15) Mix well by pipetting up and down 15-20 times, pipette slowly as the buffer is very viscous. 
Spin down briefly.  

16) Add 20µl of end repair-A tailing master mix to each sample well containing 50µl of 
fragmented gDNA. Mix by pipetting up and down 15-20 times using a pipette set to 60µl.  

17) Seal the wells, briefly spin down the samples, then transfer the plate to the thermocycler 
and run the ER-ATail program as below: 

 

While the program is running, remove the Adaptor Oligo Mix (white cap) from the SSEL XT HS 
Reagent Kit from storage at -20°C and allow to thaw. Gently and briefly vortex and spin down. 
Reagent Volume for 16 reactions Ligation Buffer 405 µl T4 DNA Ligase (Blue Cap) 35.2 µl Total 
440.2 µl Reagent Volume for 16 reactions End Repair A-Tailing Buffer 281.5 µl End Repair A-
Tailing Enzyme Mix (Orange Cap) 70.5 µl Total 352 µl  
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Stage 4: Ligate Adaptors Est time ~ 50 mins (incl. 25 mins hands-off time)  

18) Once the ER-ATail program has finished, allow the plate to come to room temperature, 
then add 25µl of ligation master mix to each sample well. Pipette up and down 15 times to mix 
the sample with a pipette set to 85µl. Once all samples are mixed seal the plate and briefly 
spin down.  

19) Add 5μl of the Adaptor Oligo Mix (white cap) to each sample. Pipette up and down 15 
times to mix the sample with a pipette set to 85µl. Once all samples are mixed seal the plate 
and briefly spin down.  

20) Transfer the plate to the thermocycler and run the Ligation program as below: 

 

While the program is running, prepare a fresh dilution of 70% Ethanol in a 50ml Falcon tube by 
combining 7ml 100% ethanol with 3ml Nuclease free water.  

Stage 5: Post-Ligation Clean Up Est time ~ 75 mins  

21) Once the ligation program is complete, move the sample plate to the bench at room 
temperature and remove the strip caps.  

22) Vortex the aliquot of AMPureXP beads (see stage 1: 8) above) for 30 secs, until the mixture 
is homogeneous.  

23) Add 80µl of homogeneous AMPure beads to each sample well, pipetting up and down 15 
times to mix. (Keep the remaining beads at room temperature for later.) 

24) Incubate the sample and bead mixture for 5 mins at room temperature.  

25) Place the sample plate on the magnetic separation device and wait for the solution to 
clear, this can take 5 – 10 mins.  

26) Keep the plate on the magnetic separator; with a pipette set for 200µl carefully remove 
and discard the cleared liquid from the wells. Do not touch the beads while removing the 
solution.  

27) Carry out the following steps twice:  

• Keep the plate on the magnetic separator; Add 200µl of freshly prepared 70% ethanol to 
each sample well.  

• Keep the plate on the magnetic separator; Wait 1 min to allow any disturbed beads to settle, 
then remove and discard the ethanol.  

28) Seal the wells of the sample plate and briefly centrifuge the sample plate to collect any 
residual liquid.  

29) Return the plate to the magnetic separator and wait for 1 min. Remove any residual 
ethanol using a P10 pipette.  
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30) Run the 37C program on the thermocycler (37C for 3 minutes) and place the sample plate 
on it for no more than 60 secs, to completely dry the beads.  

Note: over-drying will lead to loss of yield.  

31) Add 35µl of nuclease-free water to each sample well. Seal the sample plate then mix well 
on the vortex.  

32) Briefly spin the plate to collect the liquid and leave the plate to incubate at room 
temperature for 2 mins.  

33) Return the plate to the magnetic separator and leave the solution to clear for 5 mins.  

34) Keep the plate on the magnetic separator; Remove the cleared supernatant (approx. 
34.5µl) to a fresh PCR plate and keep on ice. Discard the beads.  

Stage 6: Amplify the Adaptor-Ligated Library Est time ~ 60 mins (incl. 35 mins hands-off time)  

35) Thaw the Index Primers (black-capped tubes) from the SSEL XT HS Reagent Kit. For the first 
set of 16 samples this will be index primers 1-16 (A01–H02), for the second set of samples this 
will be index primers 17-32 (A03-A04). Record which primer you are assigning to which sample.  

36) Thaw the Forward Primer (brown cap), 5x Herculase II Reaction Buffer (clear cap) and 
100mM dNTP Mix (green cap) from the SSEL XT HS Reagent Kit.  

37) Once all reagents have thawed, gently and briefly vortex and spin down. Keep on ice until 
needed.  

38) Remove the Herculase II Fusion DNA Polymerase enzyme (red cap) from the SSEL XT HS 
Reagent Kit from storage at -20°C, flick to mix and spin down. Keep on ice.  

39) Prepare the pre-capture PCR master mix in a 1.5 ml Eppendorf as follows:  

 

40) Mix well by pipetting up and down and spin down briefly. Keep on ice.  

41) Add 13.5µl of PCR reaction mixture to each sample well containing adaptor ligated library. 

42) Add 2μl of the appropriate SureSelect XT HS Index Primer to each reaction. Cap the wells 
and vortex at high speed for 5 seconds. Spin the reaction plate briefly to collect the liquid. 

 43) Start the thermocycler PreCap-PCR program as below: 
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Once the lid has heated and the wells have just reached 98°C, immediately add the plate and 
close the lid.  

Stage 7: Pre-Capture PCR Clean Up and Normalisation Est time ~ 60 mins  

44) Once the PreCap-PCR program is complete, move the sample plate to the bench at room 
temperature and remove the strip caps.  

45) Vortex the aliquot of AMPureXP beads (see stage 1: 8) ) for 30 secs, until the mixture is 
homogeneous.  

46) Add 50µl of homogeneous AMPure beads to each sample well, pipetting up and down 15 
times to mix.  

47) Incubate the sample and bead mixture for 5 mins at room temperature.  

48) Place the sample plate on the magnetic separation device and wait for the solution to 
clear, this can take 5 – 10 mins.  

49) Keep the plate on the magnetic separator; with a pipette set for 200µl carefully remove 
and discard the cleared liquid from the wells. Do not touch the beads while removing the 
solution.  

50) Carry out the following steps twice: • Keep the plate on the magnetic separator; Add 200µl 
of freshly-prepared 70% ethanol to each sample well. • Keep the plate on the magnetic 
separator; Wait 1 min to allow any disturbed beads to settle, then remove and discard the 
ethanol.  

51) Seal the wells of the sample plate and briefly centrifuge the sample plate to collect any 
residual liquid.  

52) Return the plate to the magnetic separator and wait for 1 min. Remove any residual 
ethanol using a P10 pipette.  

53) Run the 37C program on the thermocycler (37C for 3 minutes) and place the sample plate 
on it for no more than 60 secs, to completely dry the beads.  

Note: over-drying will lead to loss of yield  

54) Add 15µl of nuclease-free water to each sample well. Seal the sample plate then mix well 
on the vortex.  
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55) Briefly spin the plate to collect the liquid and leave the plate to incubate at room 
temperature for 2 mins.   

56) Return the plate to the magnetic separator and leave the solution to clear for 3 mins.  

57) Keep the plate on the magnetic separator; Remove the cleared supernatant (approx. 15µl) 
to a fresh PCR plate and keep on ice. The remaining beads can be discarded.  

58) Use 1µl of the library and 9µl nuclease-free water to make a 1:10 dilution aliquot for QC. 
Determine the concentration of each library using this dilution and your preferred quantitation 
method (e.g. Bioanalyzer, TapeStation, Picogreen etc). Note that methods that visualise the 
library (e.g. Tapestation) allow additional QC of features such as insert size distribution and 
adapter contamination.  

59) Dilute each library (or an aliquot of each library) to 125ng/µl using nuclease-free water, 
store in the fridge overnight.  

DAY 2 Stage 8: Preparing pre-capture pools Est time ~ 10 mins  

60) Pre-capture libraries must be pooled before Hybridisation with XT2 baits. Each 
hybridisation requires a pool containing 1500ng of library DNA in 12µl. To prepare one pool of 
16 samples, twice the required volume is made up, in order to avoid micropipetting. Pool 16 
samples into a 0.5ml Eppendorf as follows: 

 

61) Close the tubes, briefly vortex, spin down and leave on ice.  

Stage 9: Hybridisation Est time ~ 80 mins  

62) Thaw the SureSelect XT HS and XT Low Input Blocker Mix (blue cap) and SureSelect RNase 
Block (purple cap) from the SSEL XT HS Reagent Kit. Gently and briefly vortex and spin down 
and keep on ice.  

63) Thaw the Fast Hybridization Buffer from the SSEL XT HS Reagent Kit at room temperature.  

64) Thaw the SureSelect XT2 Custom 0.5-2.9Mb baits (Baitset ID: 3184181) from -80°C storage, 
keeping it on ice the whole time. Note: the capture library is very sensitive to temperature. 
Once it is thawed, briefly spin down.  

65) Transfer 12µl of the DNA pool to a 0.2ml Eppendorf and add 5µl of SureSelect XT HS and XT 
Low Input Blocker Mix (blue cap). Vortex at high speed for 5 seconds. Spin down to collect the 
liquid.  

66) Start the fast hyb program (as below) and transfer the tube to the thermocycler.  
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Start a timer for 15 mins. Note the thermocycler must be paused during segment 3 of the fast 
hyb program (see section 3.3), to allow additional reagents to be added.  

67) While the first 15 mins of the fast hyb program are running, prepare a 0.5ml Eppendorf of 
hybridisation mix at room temperature. Add the reagents in the order shown:  

 

68) Briefly vortex the hybridisation mix and spin down.  

69) When the fast hyb program reaches step 3, pause it but do not remove the tube. Complete 
the next few steps as quickly as possible to minimise evaporation. Note do not remove the 
tube from the thermocycler throughout this process, take care as the base and thermocycler 
lid will be hot.  

70) Open the thermocycler and open the library pool tube. Add the full 13µl of hybridisation 
mix to the library tube and mix by pipetting up and down 10 times but taking care to not 
introduce bubbles.  

71) Ensure the tube is properly re-sealed (Note failure to do this will result in excessive 
evaporation and hybridisation failure). Close the thermocycler and resume the fast hyb 
program.  

72) While the fast hyb program is running, prepare the magnetic beads as follows.  

73) Take the Dynabeads MyOne Streptavidin T1 magnetic beads from 4°C storage and vortex 
for 60 secs to homogenise.  

74) Put 50µl beads into a 0.2ml Eppendorf.  

75) Carry out the following steps three times:  

• Add 200µl of SureSelect Binding Buffer to the bead-containing tube.  

• Mix by pipetting up and down 20 times.  
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• Place the plate onto the magnetic separator  

• Wait for 5 mins to allow the beads to settle, then remove and discard the supernatant.  

• Remove the plate from the magnetic separator.  

76) Resuspend the beads in 200µl of binding buffer and leave on the bench at room 
temperature until the fast hyb program is complete.  

Stage 10: Capture Washes Est time ~ 90 mins  

77) When the fast hyb program reaches the 65°C hold, remove the tube and immediately 
transfer the hybridisation reaction (~30µl) to a tube containing washed streptavidin beads, 
pipette up and down to mix.  

Note a 0.2ml Eppendorf should comfortably fit 230µl and still allow the lid to close cleanly.  

Take care if using other consumables.  

78) Incubate the tube on a mixer, mixing vigorously at 1400-1800 rpm at room temperature 
for 30 mins. While this is incubating prepare wash buffer 2 as follows.  

79) Make 6 aliquots of 200µl each of wash buffer 2 in 0.2ml Eppendorfs. Close the tubes and 
place them in the thermocycler and run the Wash program (70C hold with heated lid at 105C).  

80) When the sample/bead mixture has finished its 30-min incubation, take it off the shaker 
and briefly spin down.  

81) Place the tubes on the magnetic separator and leave for 5-10mins until the solution has 
cleared. Remove and discard the supernatant.  

82) Resuspend the beads in 200µl of SureSelect Wash buffer 1. Mix by pipetting up and down 
20 times until the beads are fully resuspended.  

83) Place the tube on the magnetic separator and wait 1 minute for the solution to clear, then 
remove and discard the supernatant.  

84) The bead captured pooled library must now be washed with prewarmed wash buffer 2. 
Start the wash program (70C hold with heated lid at 105C) on the second thermocycler block 
(if available) and carry out the following steps 6 times:  

• Resuspend the beads in 200µl of 70°C pre-warmed wash buffer 2, pipetting up and down 15 
times until the beads are resuspended.  

• Close the tube then vortex at high speed for 8 seconds. Very briefly spin the tubes to collect 
the liquid without pelleting the beads. The beads must remain in suspension.  

• Incubate for 5 mins at 70°C on the second thermocycler block. • After 5 mins move the tube 
to the magnetic separator at room temperature.  

• Wait 1 minute for the solution to clear, then remove and discard the supernatant.  

85) During the wash incubations complete the following tasks:  

• Chill a 1.5mL Eppendorf tube of nuclease-free water on ice.  

• Take the ≥55µl aliquot of AMPureXP beads out of the fridge to come to room temperature 
for later in the workflow.  
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• Thaw the 5x Herculase II Reaction Buffer (clear cap), 100mM dNTP Mix (green cap) and 
SureSelect Post-Capture Primer Mix (clear cap) from the SSEL XT HS Reagent Kit. Gently and 
briefly vortex each tube, spin down and keep on ice.  

• Remove the Herculase II Fusion DNA Polymerase enzyme (red cap) from the SSEL XT HS 
Reagent Kit from storage at -20°C, flick to mix and spin down. Keep on ice.  

86) Once the washing procedure has been completed, verify that all residual wash buffer has 
been removed. Add 25µl of nuclease free water to the captured sample and pipette up and 
down 10 times to resuspend the beads.  

Stage 11: Post-Capture Amplification Est time ~ 45 mins (incl. 20 mins hands-off time)  

87) Prepare the post-capture PCR master mix in a 0.2 ml Eppendorf as follows:  

 

88) Mix well by pipetting up and down and spin down briefly. Keep on ice.  

89) Add the full 25µl of the master mix to the tube containing the bead-bound target-enriched 
DNA. Mix well by pipetting up and down 20 times, until the bead suspension is homogeneous. 

 90) Put the tube in the thermocycler and run the PostCapAmp program as below: 

 

Note when this step is complete samples should be moved to your post-PCR room.  

91) While the thermocycler is running, prepare a fresh dilution of 70% Ethanol in a 1.5ml 
Eppendorf tube by combining 700µl 100% ethanol with 300µl Nuclease free water  

92) When the thermocycler run is complete, remove and spin the tube briefly to collect the 
liquid. 93) Put the tube on the magnetic separator at room temperature and wait for 2 mins, 
for the sample to become clear. Transfer the supernatant to a fresh 0.2ml Eppendorf tube and 
discard the beads. Stage 12: Post-Capture PCR clean up Est time ~ 30 mins 
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94) Vortex the aliquot of AMPureXP beads (see stage 10: 85) for 30 secs, until the mixture is 
homogeneous.  

95) Add 50µl of homogeneous AMPure beads to the sample tube, pipetting up and down 15 
times to mix.  

96) Incubate the sample and bead mixture for 5 mins at room temperature.  

97) Place the tube on the magnetic separation device and wait for the solution to clear, this 
can take 5 – 10 mins.  

98) Keep the tube on the magnetic separator; with a pipette set for 200µl carefully remove 
and discard the cleared liquid from the tubes. Do not touch the beads while removing the 
solution.  

99) Carry out the following steps twice:  

• Keep the tube on the magnetic separator; Add 200µl of freshly-prepared 70% ethanol.  

• Keep the tubes on the magnetic separator; Wait 1 min to allow any disturbed beads to settle, 
then remove and discard the ethanol.  

100) Briefly spin down the tube to collect any residual liquid.  

101) Return the tube to the magnetic separator and wait for 1 min. Remove any residual 
ethanol using a P10 pipette.  

102) Run the 37C program on the thermocycler (37C for 3 minutes) and place the sample tube 
on it for no more than 60 secs, to completely dry the beads. Note: over-drying will lead to loss 
of yield  

103) Add 25µl of nuclease-free water to the tube, close and vortex to mix well.  

104) Briefly spin down to collect the liquid and leave the tube to incubate at room 
temperature for 2 mins.  

105) Return the tube to the magnetic separator and leave the solution to clear for 3 mins. 106) 
Keep the tube on the magnetic separator; Remove the cleared supernatant (approx. 25µl) to a 
fresh 0.5ml Eppendorf tube and keep on ice. Stage 13: Amplified library normalisation Est time 
~ 20 mins  

107) Use 1µl library and 9µl nuclease-free water to make a dilution for QC. Determine the 
concentration of your libraries in nM and check the size distribution of each pool using your 
preferred method (e.g. High Sensitivity assay on Tapestation or Bioanalyzer).  

108) Normalise each library pool to 5nM in 10µl in a fresh tube using the following calculations 
for the volumes of library and water needed:  

 

Where Cs is the library concentration in nM, Vs is the volume of amplified library needed and 
Vb is the volume of nuclease-free water needed. Dispense the nuclease-free water first, 
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pipetting directly into the bottom of a clean 0.5ml Eppendorf. Dispense the amplified library 
into the Nuclease-free water, pipetting up and down 5 times to flush the pipette tip and mix 
the dilution.  

109) Vortex the normalised libraries briefly and spin down. Store at -20°C until ready for 
sequencing.  

DAYS 3 & 4  

110) Repeat days 1 and 2 for the second set of 16 samples. Do not store the pooled normalised 
libraries at -20°C at the end of the process, instead retrieve the pool of the first 16 libraries 
from the freezer.  

Stage 14: Pooling and sequencing Est time ~ 20 mins  

111) Prepare a final pool for sequencing containing all 32 samples and PhiX control according 
to the following table:  

 

112) Proceed to sequencing on a single high-output NextSeq flow cell following the 
appropriate Illumina protocol. The 8bp sample indexes must be sequenced but reading the 
unique molecular indexes is optional. 

 

 

 

 

 

 

 

 

 

 

 

 

 



149 
 

Appendix 10: 

Nonacus Cell3TM Target: Pan Cancer panel library preparation 
supplier protocol 

Overview of Nonacus Cell3TM Target: Pan Cancer panel library preparation protocol 
overview is shown below, with the full protocol available online: 
https://nonacus.com/wp-content/uploads/2020/05/Nonacus-Cell3-Target-protocol-
v1-2-2-interactive.pdf  

 

 

 

 

 

 

 

 

https://nonacus.com/wp-content/uploads/2020/05/Nonacus-Cell3-Target-protocol-v1-2-2-interactive.pdf
https://nonacus.com/wp-content/uploads/2020/05/Nonacus-Cell3-Target-protocol-v1-2-2-interactive.pdf
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Appendix 11: 

Tabulated variant numbers and TMB scores per patient dependent 
on panel and TMB calculations performed 

Table below highlighting the number of variants per patient. Two datasets provided 
per panel based on +/-synonymous. ‘Na’ in table indicates where insufficient DNA 
meant that samples were not sequenced on a particular panel. The average variant 
number is calculated from the same 13 patients sequenced on these two NGS panels. 
Artefacts have not been excluded in this data. Red text indicates higher value in 
Nonacus panel compared to Illumina panel. 

Patient ID 
Illumina (- 
synonymous) 

Illumina (+ 
synonymous) 

Patient ID 
Nonacus (-
synonymous) 

Nonacus (+ 
synonymous) 

21M70071 40 79 21M70071 122 205 
21M70072 134 158 21M70072 119 195 
21M70073 176 196 21M70073 128 228 
21M70074 148 164 21M70074 86 129 
21M70075 173 213 21M70075 137 244 
21M70076 192 245 21M70076 143 259 
21M70077 na na 21M70077 131 250 
21M70078 82 144 21M70078 215 399 
21M70079 64 116 21M70079 189 364 
21M70081 49 72 21M70081 70 133 
21M70084 231 243 21M70084 73 98 
21M70086 269 385 21M70086 na na 
21M70087 na na 21M70087 151 305 
21M70088 93 105 21M70088 67 110 
21M70089 145 177 21M70089 na na 
21M70090 72 87 21M70090 107 187 
21M70091 80 98 21M70091 128 249 
Average  118 148 Average 122 215 

 

The following two tables show the TMB score (variants/Mb) per patient. Four datasets 
provided per panel based on +/-synonymous and +/-artefacts. ‘Na’ in table indicates 
where insufficient DNA meant that samples were not sequenced on a particular panel. 
The average TMB score is calculated from the same 13 patients sequenced on these 
two NGS panels. Red text indicates higher value in Nonacus panel compared to 
Illumina panel. 
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 Illumina (-synonymous)  Illumina (+synonymous) 

Patient ID +artefacts -artefacts Patient ID +artefacts -artefacts 
21M70071 50 49 21M70071 98 95 
21M70072 167 163 21M70072 197 191 
21M70073 219 214 21M70073 244 237 
21M70074 184 181 21M70074 204 198 
21M70075 215 211 21M70075 265 257 
21M70076 239 234 21M70076 305 296 
21M70077 na na 21M70077 na na 
21M70078 102 100 21M70078 179 174 
21M70079 80 78 21M70079 144 140 
21M70081 61 60 21M70081 90 87 
21M70084 288 282 21M70084 303 294 
21M70086 335 328 21M70086 479 465 
21M70087 na na 21M70087 na na 
21M70088 116 114 21M70088 131 127 
21M70089 181 177 21M70089 220 214 
21M70090 90 88 21M70090 108 105 
21M70091 100 98 21M70091 122 118 
Average  147 144 Average 184 178 

 

 Nonacus (-synonymous)  Nonacus (+synonymous) 

Patient ID +artefacts -artefacts Patient ID +artefacts -artefacts 
21M70071 146 85 21M70071 245 184 
21M70072 142 83 21M70072 233 175 
21M70073 153 89 21M70073 273 205 
21M70074 103 60 21M70074 154 116 
21M70075 164 95 21M70075 292 219 
21M70076 171 99 21M70076 310 233 
21M70077 157 91 21M70077 299 224 
21M70078 257 149 21M70078 478 358 
21M70079 226 131 21M70079 436 327 
21M70081 84 49 21M70081 159 119 
21M70084 87 51 21M70084 117 88 
21M70086 na na 21M70086 Na Na 
21M70087 181 105 21M70087 365 274 
21M70088 80 47 21M70088 132 99 
21M70089 na na 21M70089 Na Na 
21M70090 128 74 21M70090 224 168 
21M70091 153 89 21M70091 298 224 
Average 146 85 Average 258 193 
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Appendix 12: 

Process of selection of variants to interrogate in dbSNP and IGV 

Table below describes the data interrogation identifying the number of unique and 
shared variants across the Illumina and Nonacus sequencing runs for both datasets (+/-
synonymous). In each dataset, the variants most commonly shared between patients 
were interrogated in dbSNP and IGV (shaded cells in table). 

 
 

Illumina sequencing data Nonacus sequencing data  
Excluding 
synonymous 
variants 

Including 
synonymous 
variants 

Excluding 
synonymous 
variants 

Including 
synonymous 
variants 

Number of 
variants 
identified 
across all 15 
patients 

1948 2482 1866 3355 

Number of 
unique 
variants 
identified 
across all 15 
patients (as % 
of total 
variants) 

1738 (89%) 2041 (82%) 613 (33%) 982 (29%) 

Number of 
non-unique 
variants ie 
each shared 
by >1 patient 
(as % of total 
variants) 

210 (11%) 441 (18%) 1253 (67%) 2373 (71%) 

Number of 
variants 
shared by 2 
patients 

62 141 168 304 

Number of 
variants 
shared by 3 
patients 

19 34 87 177 

Number of 
variants 
shared by 4 
patients 

3 9 61 120 

Number of 
variants 
shared by 5 
patients 

2 3 37 70 

Number of 
variants 

0 1 21 40 
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shared by 6 
patients 
Number of 
variants 
shared by 7 
patients 

1 0 5 14 

Number of 
variants 
shared by 8 
patients 

0 0 6 6 

Number of 
variants 
shared by 9 
patients 

0 0 2 2 

Number of 
variants 
shared by 10 
patients 

0 0 0 0 
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Appendix 13: 

IGV and dbSNP evaluation of variants for identification of artefacts 

 

IGV – Illumina -synonymous 
 
Reference 
sequence and 
variant (HGVS) 

No. of 
patients 
variant 
identified 
in 

dbSNP 
reference 
SNP (rs) ID  

Hg19 
position 

Reference/ 
alternate 
alleles and 
ALFA-
generated 
frequencies 
in European 
population  

Conclusion  

NM_170606.3: 
c.2512G>A 

7 rs2479172 chr7: 
151945007 

C/T 
0.73450/0.26
550 

SNP 

NM_004327.4: 
c.3183-4G>A 

5 rs180801 chr22: 
23653880 

G/A  
0.61469/0.38
531 

SNP 

NM_001321809
.1: 
c.1036+9389_1
036+9390del 

5  rs528099287 chr14: 
68944343 

TTTTTTTTTTT
T/TTTTTTTTT
T 
0.89415/0.00
974 

ARTEFACT 

NM_001139.3: 
c.650+7C>G 

4 rs2304908 chr17: 
7983969 

G/C 
0.67102/0.32
898 

SNP 

NM_001220777
.1: c.-
6+1395A>G 

4 rs2395655 chr6: 
36645696 

A/G 
0.584186/0.4
15814 

SNP 

NM_001305544
.2: c.139A>G 

4 rs3744093 chr17: 
56492800 

T/C 
0.617880/0.3
82120 

SNP 

 

IGV – Illumina +synonymous 
 
Reference 
sequence and 
variant (HGVS) 

No. of 
patients 
variant 
identified 
in 

dbSNP 
reference 
SNP (rs) ID 

Hg19 
position  

Reference/ 
alternate 
alleles and 
ALFA-
generated 
frequencies 
in European 
population 
 

Conclusion  

NM_004327.4: 
c.3183-4G>A 

6 rs180801 chr22: 
23653880 

G/A 
0.62353/0.37
647 

SNP 
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NM_001362843
.2: c.2164-15del 

5 rs747710183 chr22: 
41545024 

TTTTTTTTTTT
TTTT/TTTTTT
TTTTTTT 
0.84194/0.04
254 

ARTEFACT 

NM_001321809
.1: 
c.1036+9389_1
036+9390del 

5 rs528099287 chr14: 
68944343 

TTTTTTTTTTT
TTT/TTTTTTT
TTTTT 
0.89415/0.00
974 

ARTEFACT 

NM_001163034
.2: c.2643C>T 

5 rs1567962 chr17: 
78919558 
 

C/T 
0.640046/0.3
59954 

SNP 

NM_001139.3: 
c.650+7C>G 

4 rs2304908 chr17: 
7983969 

G/C 
0.67102/0.32
898 

SNP 

NM_001130823
.3: c.1389A>G 

4 rs2228611 chr19: 
10267077 

T/C 
0.504528/0.4
95469 

SNP 

NM_001238.4: 
c.1215C>T 

4 rs7257694 chr19: 
30314666 

C/T 
0.60409/0.39
508 

SNP 

NM_001304815
.1: c.7260C>T 

4 rs1052023 chr19: 
42799049 

C/T 
0.623433/0.3
76567 

SNP 

NM_004958.4: 
c.5553C>T 

4 rs2275527 chr1: 
11190646 

G/A 
0.751726/0.2
4188 

SNP 

NM_001220777
.1: c.-
6+1395A>G 

4 rs2395655 chr6: 
36645696 

A/G 
0.584186/0.4
15814 

SNP 

NM_001305544
.2:c.139A>G 

4 rs3744093 chr17: 
56492800 

T/C 
0.616860/0.3
83140 

SNP 

NM_001128226
.3:c.887C>G 

4 rs7332388 chr13: 
73349359 

G/C 
0.58391/0.41
609 

SNP 

NM_001305544
.2:c.1252C>A 

4 rs2526374 chr17: 
56435885 

G/T 
0.638847/0.3
61153 

SNP 

 

IGV – Nonacus -synonymous 
 
Reference 
sequence and 
variant (HGVS) 

No. of 
patients 
variant 
identifie
d in 

dbSNP 
reference 
SNP (rs) ID 

Hg
19

 
po

si
tio

n 
 Reference/alternate 

alleles and ALFA-
generated frequencies in 
European population Co

nc
lu

si
o

n 

NM_001159995
.3: c.338-4dup 

9 rs7506403
01 

chr8: 
3247201
9 

TTTTTTTTT/ TTTTTTTTTT 
0.99295/0.00705 

ARTEFA
CT 
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NM_001286559
.2: c.724C>T 

9 rs1052809 chr2: 
9554247
6 

C/T 
0.99971/0.00029 

VUS 

NM_001303103
.1: c.1419del 

8 n/a chr9: 
8420813
1 

n/a ARTEFA
CT 

NM_006267.5: 
c.1064-4dup 

8 rs7708282
18 

chr2: 
1093653
63 

TTTTTTTTT/TTTTTTTTTT 
1.0000/0.0000 

ARTEFA
CT 

NM_001114121
.2: c.676dup 

8 rs7577166
80 

chr11: 
1255053
77 

AAAAAAAAA/AAAAAAAAA
A 
0.99399/0.00601 

ARTEFA
CT 

NM_001243835
.2: c.274-4dup 

8 rs7602209
32 

chr2: 
1919410
54 

AAAAAAAAAA/AAAAAAAA
AAA 
0.95286/0.04465 

ARTEFA
CT 

NM_001349370
.2: c.5753C>T 

8 rs4082155 chr3: 
4712538
5 

G/A 
0.437944/0.562056 

SNP 

NM_004260.3: 
c.2296+1delC 

8 rs1134207
7 

chr8: 
1457387
67 

G/GG 
0.99997/0.00003 

VUS 

NM_000965.4: 
c.787-9dup 

7 rs7504833
30 

chr3: 
2563497
6 

TTTTTTTTT/TTTTTTTTTT 
0.99848/0.00114 

ARTEFA
CT 

NM_000553.6: 
c.3222G>T 

7 rs1801195 chr8: 
3099928
0 

G/A 
0.563891/0.436109 

SNP 

NM_001159995
.3: c.1170-
537dup 

7 rs2011988
81 

chr8: 
3262072
0 

TTTTTTTTT/TTTTTTTTTT 
0.99383/0.00317 

ARTEFA
CT 

NM_199242.2: 
c.1992+5G>A 

7 rs1758172
8 

chr17: 
7383099
6 

C/T 
0.763238/0.236762 

SNP 

NM_000057.4: 
c.1544dup 

7 rs3675430
43 

chr15: 
9130413
8 

AAAAAAAAA/AAAAAAAAA
A 
1.0000/0.0000 

ARTEFA
CT 

 

IGV – Nonacus +synonymous 
 
Reference 
sequence and 
variant (HGVS) 

No. of 
patients 
variant 
identifie
d in 

dbSNP 
reference 
SNP (rs) ID 

Hg
19

 
po

si
tio

n 
 

Reference/alternate 
alleles and ALFA-
generated frequencies in 
European population 

Co
nc

lu
si

on
 

NM_001286559
.2: c.724C>T 

9 rs1052809 chr2: 
9554247
6 

C/T 
0.99971/0.00029 

VUS 

NM_001159995
.3: c.338-4dup 

9 rs7506403
01 

chr8: 
3247201
9 

TTTTTTTTT/TTTTTTTTTT 
0.99295/0.00705 

ARTEFA
CT 
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NM_006267.5: 
c.1064-4dup 

8 rs7708282
18 

chr2: 
1093653
63 

TTTTTTTTT/TTTTTTTTTT 
1.0000/0.0000 

ARTEFA
CT 

NM_001114121
.2: c.676dup 

8 rs7577166
80 

chr11: 
1255053
77 

AAAAAAAAA/AAAAAAAAA
A 
0.99399/0.00601 

ARTEFA
CT 

NM_001243835
.2: c.274-4dup 

8 rs7602209
32 

chr2: 
1919410
54 

AAAAAAAAAA/AAAAAAAA
AAA 
0.95286/0.04465 

ARTEFA
CT 

NM_004260.3: 
c.2296+1del 

8 rs1134207
7 

chr8: 
1457387
67 

G/GG 
0.99997/0.00003 

VUS 

NM_001303103
.1: c.1419del 

8 n/a chr9: 
8420813
1 

GGGGGG/GGGGG ARTEFA
CT 

NM_001349370
.2: c.5753C>T 

8 rs4082155 chr3: 
4712538
5 

G/A 
0.437944/0.562056 

SNP 

NM_001202521
.1: c.*25T>C 

7 rs1049623 chr6: 
3086482
9 

T/C 
0.614612/0.385388 

SNP 

NM_001159995
.3: c.1170-
537dup 

7 rs2011988
81 

chr8: 
3262072
0 

TTTTTTTTT/TTTTTTTTTT 
0.99383/0.00317 

ARTEFA
CT 

NM_000965.4: 
c.787-9dup 

7 rs7504833
30 

chr3: 
2563497
6 

TTTTTTTTT/TTTTTTTTTT 
0.99848/0.00114 

ARTEFA
CT 

NM_000553.6: 
c.3222G>T 

7 rs1801195 chr8: 
3099928
0 

G/T 
0.563891/0.436109 

SNP 

NM_199242.2: 
c.1992+5G>A 

7 rs1758172
8 

chr17: 
7383099
6 

C/T 
0.763238/0.236762 

SNP 

NM_000057.4: 
c.1544dup 

7 rs3675430
43 

chr15: 
9130413
8 

AAAAAAAAA/AAAAAAAAA
A 1.0000/0.0000 

ARTEFA
CT 

NM_001005360
.2: c.2139T>C 

7 rs2229920 chr19: 
1093979
2 

T/C 
0.712232/0.287768 

SNP 

NM_001128844
.2: c.1524T>C 

7 rs7935 chr19: 
1110560
8 

T/C 
0.648046/0.351954 

SNP 

NM_001349370
.2: c.3333T>C 

7 rs6767907 chr3: 
4716266
1 

A/G 
0.408488/0.591512 

SNP 

NM_001318040
.1: c.897T>C 

7 rs7030167 chr9: 
1167911
61 

T/C 
0.332259/0.667741 

SNP 

NM_017617.5: 
c.5094C>T 

7 rs10521 chr9: 
1393977
07 

G/A 
0.63613/0.36387 

SNP 
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NM_000553.6: 
c.513C>T 

7 rs1800389 chr8: 
3092455
7 

C/T 
0.28882/0.71118 

SNP 

NM_005245.4: 
c.8904C>T 

7 rs1280099 chr4: 
1875383
30 

G/A 
0.545402/0.454598 

SNP 

NM_005245.4: 
c.9351T>C 

7 rs2249917 chr4: 
1875343
75 

A/G 
0.543105/0.456895 

SNP 
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Appendix 14:  

Determination of TMB high thresholds  

 
The tables below show the range of TMB high thresholds evaluated in each 
panel/analysis dataset, and the associated true positive and true negative rates, and 
false positive and false negative rates across the patient cohort.  
 
Illumina: +synonymous +artefacts 

Illumina: high 
TMB score 
(variants/Mb) 

True +ve 
(=responder) False -ve False +ve 

True -ve 
(non-
responder) 

False +ve 
rate 
(spec) 

True +ve 
rate 
(sens) 

>10 6 0 9 0 1.00 1.00 
>90 6 0 9 0 1.00 1.00 
>100 5 1 8 1 0.89 0.83 
>120 5 1 7 2 0.78 0.83 
>130 5 1 6 3 0.67 0.83 
>140 4 2 6 3 0.67 0.67 
>170 4 2 5 4 0.56 0.67 
>190 3 3 5 4 0.56 0.50 
>200 3 3 4 5 0.44 0.50 
>220 3 3 3 6 0.33 0.50 
>240 3 3 2 7 0.22 0.50 
>260 2 4 2 7 0.22 0.33 
>300 1 5 2 7 0.22 0.17 
>400 0 6 1 8 0.11 0.00 

 

Nonacus: +synonymous +artefacts 

Nonacus: high 
TMB score 
(variants/Mb) 

True +ve 
(=responder) False -ve False +ve 

True -ve 
(non-
responder) 

False +ve 
rate 
(spec) 

True +ve 
rate 
(sens) 

>10 6 0 9 0 1.00 1.00 
>90 6 0 9 0 1.00 1.00 
>100 6 0 9 0 1.00 1.00 
>120 6 0 8 1 0.89 1.00 
>130 6 0 7 2 0.78 1.00 
>140 6 0 6 3 0.67 1.00 
>170 6 0 4 5 0.44 1.00 
>190 6 0 4 5 0.44 1.00 
>200 6 0 4 5 0.44 1.00 
>220 6 0 4 5 0.44 1.00 
>240 6 0 2 7 0.22 1.00 
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>260 5 1 2 7 0.22 0.83 
>290 4 2 2 7 0.22 0.67 
>300 2 4 2 7 0.22 0.33 
>400 0 6 2 7 0.22 0.00 
>440 0 6 1 8 0.11 0.00 

 

Illumina: -synonymous +artefacts 

Illumina: high 
TMB score 
(variants/Mb) 

True +ve 
(=responder) 

False -
ve 

False 
+ve 

True -ve 
(non-
responder) 

False +ve 
rate 
(spec) 

True +ve 
rate 
(sens) 

>10 6 0 9 0 1.00 1.00 
>40 6 0 9 0 1.00 1.00 
>70 5 1 8 1 0.89 0.83 
>90 5 1 7 2 0.78 0.83 
>100 5 1 6 3 0.67 0.83 
>110 4 2 5 4 0.56 0.67 
>130 3 3 5 4 0.56 0.50 
>150 3 3 5 4 0.56 0.50 
>160 3 3 5 4 0.56 0.50 
>180 3 3 3 6 0.33 0.50 
>190 3 3 2 7 0.22 0.50 
>210 3 3 2 7 0.22 0.50 
>220 1 5 2 7 0.22 0.17 
>240 0 6 2 7 0.22 0.00 
>290 0 6 1 8 0.11 0.00 

 

Nonacus: -synonymous +artefacts 

Nonacus: high 
TMB score 
(mutations/Mb) 

True +ve 
(=responder) False -ve False +ve 

True -ve 
(non-
responder) 

False +ve 
rate 
(spec) 

True +ve 
rate 
(sens) 

>10 6 0 9 0 1.00 1.00 
>40 6 0 9 0 1.00 1.00 
>70 6 0 9 0 1.00 1.00 
>90 6 0 9 0 1.00 1.00 
>100 6 0 6 3 0.67 1.00 
>110 6 0 6 3 0.67 1.00 
>130 6 0 3 6 0.33 1.00 
>150 5 1 2 7 0.22 0.83 
>160 3 3 2 7 0.22 0.50 
>180 3 3 2 7 0.22 0.50 
>190 0 6 2 7 0.22 0.00 
>210 0 6 2 7 0.22 0.00 
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>220 0 6 2 7 0.22 0.00 
>240 0 6 1 8 0.11 0.00 
>290 0 6 0 9 0.00 0.00 

 

Illumina: +synonymous -artefacts 

Illumina: high 
TMB score 
(mutations/Mb) 

True +ve 
(=responder) False -ve False +ve 

True -ve 
(non-
responder) 

False +ve 
rate 
(spec) 

True +ve 
rate 
(sens) 

>10 6 0 9 0 1.00 1.00 
>70 6 0 9 0 1.00 1.00 
>90 6 0 8 1 0.89 1.00 
>100 5 1 8 1 0.89 0.83 
>110 5 1 7 2 0.78 0.83 
>120 5 1 6 3 0.67 0.83 
>140 4 2 6 3 0.67 0.67 
>170 4 2 5 4 0.56 0.67 
>190 3 3 5 4 0.56 0.50 
>210 3 3 3 6 0.33 0.50 
>230 3 3 2 7 0.22 0.50 
>250 2 4 2 7 0.22 0.33 
>290 1 5 1 8 0.11 0.17 
>300 0 6 1 8 0.11 0.00 

 
 
Nonacus: +synonymous -artefacts 

Nonacus: high 
TMB score 
(mutations/Mb) 

True +ve 
(=responder) False -ve 

False 
+ve 

True -ve 
(non-
responder) 

False 
+ve 
rate 
(spec) 

True 
+ve 
rate 
(sens) 

>10 6 0 9 0 1.00 1.00 
>70 6 0 9 0 1.00 1.00 
>90 6 0 8 1 0.89 1.00 
>110 6 0 7 2 0.78 1.00 
>120 6 0 4 5 0.44 1.00 
>140 6 0 4 5 0.44 1.00 
>170 6 0 3 6 0.33 1.00 
>180 6 0 2 7 0.22 1.00 
>200 5 1 2 7 0.22 0.83 
>210 4 2 2 7 0.22 0.67 
>220 3 3 2 7 0.22 0.50 
>230 2 4 2 7 0.22 0.33 
>270 1 5 2 7 0.22 0.17 
>300 0 6 2 7 0.22 0.00 
>320 0 6 1 8 0.11 0.00 
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Illumina: -synonymous -artefacts 

Illumina: high 
TMB score 
(mutations/Mb) 

True +ve 
(=responder) 

False -
ve 

False 
+ve 

True -ve 
(non-
responder) 

False +ve 
rate (spec) 

True +ve 
rate (sens) 

>10 6 0 9 0 1.00 1.00 
>40 6 0 9 0 1.00 1.00 
>60 5 1 9 0 1.00 0.83 
>70 5 1 8 1 0.89 0.83 
>80 5 1 7 2 0.78 0.83 
>90 5 1 6 3 0.67 0.83 
>100 5 1 5 4 0.56 0.83 
>110 4 2 5 4 0.56 0.67 
>130 4 2 5 4 0.56 0.67 
>160 3 3 5 4 0.56 0.50 
>180 3 3 3 6 0.33 0.50 
>190 3 3 3 6 0.33 0.50 
>210 3 3 3 6 0.33 0.50 
>220 1 5 2 7 0.22 0.17 
>240 0 6 2 7 0.22 0.00 
>290 0 6 1 8 0.11 0.00 

 
 
Nonacus: -synonymous -artefacts 

Nonacus: high 
TMB score 
(mutations/Mb) 

True +ve 
(=responder) False -ve 

False 
+ve 

True -ve 
(non-
responder) 

False 
+ve rate 
(spec) 

True +ve 
rate 
(sens) 

>10 6 0 9 0 1.00 1.00 
>40 6 0 9 0 1.00 1.00 
>50 6 0 7 2 0.78 1.00 
>60 6 0 6 3 0.67 1.00 
>70 6 0 5 4 0.56 1.00 
>80 6 0 4 5 0.44 1.00 
>90 4 2 3 6 0.33 0.71 
>100 1 5 2 7 0.22 0.17 
>110 0 6 2 7 0.22 0.00 
>130 0 6 2 7 0.22 0.00 
>140 0 6 1 8 0.11 0.00 
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