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Abstract 

This paper explores how deep learning enhances Internet of Things (IoT) cybersecurity, examining advanced 
methods like convolutional and recurrent neural networks for detailed IoT data analysis. It highlights the 
importance of real-time threat detection and classification, focusing on innovative Graph Neural Networks and 
Transformer Models for better network security. The study also considers Federated Learning and Edge 
Computing for decentralized, privacy-friendly data handling, and Explainable AI for clarity in decision-
making. It addresses the growing challenges of creating scalable, adaptable deep learning models for ever-changing 
IoT environments and cyber threats, emphasizing the need for ongoing research in developing resilient IoT 
cybersecurity solutions. The analysis further reveals that deep learning techniques are increasingly effective in 
anomaly detection and predictive maintenance, reducing false positives, and adapting to new types of cyber threats 
dynamically. Specifically, it emphasizes how Transformer Models and Graph Neural Networks offer promising 
results in contextualizing and mitigating complex multi-stage cyber-attacks, enhancing the robustness of IoT 
systems against evolving threats. 

Keywords: Pervasive IoT systems; Intelligent anomaly detection cybersecurity challenges; Anomaly diagnosis; 
Deep Learning algorithms; Estimation correlation. 

Introduction 

The IoT represents a transformative shift in the digital landscape, marking the evolution of the 
internet from a network of computers to a network of connected nodes. These devices, ranging 
from everyday house-hold items to sophisticated industrial tools, are embedded with sensors, 
software, and other technologies, enabling them to accumulate and exchange data. This 
interconnectedness allows for a level of digital intelligence in objects that were previously inert, 
enabling them to communicate re-al-time data without requiring human intervention. The 
concept of IoT, which emerged in the late 1990s, has evolved dramatically over the years. The 
early stages of IoT were marked by introducing RFID tags and the proliferation of wireless 
technologies. Over time, advancements in sensor technology, cloud computing, and machine 
learning have propelled IoT from a nascent idea to a central component of the modern digital 
ecosystem (Tang, 2023). 
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IoT's influence extends across various sectors, revolutionizing traditional practices and 
introducing un-precedented efficiency and innovation (Hassebo & Tealab, 2023). In healthcare, 
for in-stance, IoT-enabled devices like wearable fitness trackers and remote patient monitoring 
systems offer insights into patient health outside of traditional clinical settings. Agriculture has 
seen a surge in precision farming techniques, where IoT de-vices pro-vide real-time 
information on soil conditions, crop health, and livestock, leading to in-formed decisions and 
increased productivity. Smart cities leverage IoT for optimized traffic management, enhanced 
public safety, and sustainable energy usage. Manufacturing benefits from IoT through 
predictive maintenance and streamlined supply chains, while home automation systems afford 
convenience and energy efficiency. Each of these sectors demonstrates the versatility of IoT 
applications, highlighting its capacity to transform everyday operations into da-ta-driven, 
intelligent processes. 

Despite its numerous benefits, IoT is not without its challenges (H.J. & S., 2022). Security and 
privacy concerns are at the forefront, with the increase in connected devices creating more entry 
points for cyberattacks and data breaches. The complexity and scale of  IoT networks also pose 
challenges in ensuring data privacy and protection. Moreover, the integration of  IoT systems 
requires significant investment in infrastructure and skills development. Looking ahead, the 
future of  IoT is intertwined with advancements in technologies like 5G, edge computing, and 
artificial intelligence. These technologies are expected to further enhance the capabilities of  IoT 
systems, making them more efficient, secure, and intelligent. As IoT continues to evolve, it stands 
as a testament to human ingenuity, with the potential to further revolutionize industries, catalyze 
in-novation, and reshape how we interact with the world around us. 

Table 1 Breakdown of Publication Years in Analyzed Research Papers (Derived from Google 
Scholar Search Data) 

Year Published (# of research papers) 
Our Investigation (# of research 

papers) 

2023 38,800 1552 

2022 40,600 1624 

2021 35,300 1412 

2020 20,800 624 

2019 12,100 242 

Table 2 Evaluation of Key Terms in Principal Research Studies. 
Keywords Count Keywords Count 

Deep Learning 

Neural Networks 953 Convolutional Neural Networks (CNN) 897 

Recurrent Neural Networks (RNN) 600 Deep Reinforcement Learning 465 

Backpropagation 693 Long Short-Term Memory (LSTM) 667 

Generative Adversarial Networks (GAN) 650 Autoencoders 397 

Transfer Learning 500 Feature Extraction 714 

Activation Functions 261 Dropout Regularization 192 

Gradient Descent 800 Supervised Learning 750 

Unsupervised Learning 549 Deep Belief Network 194 

Overfitting 355 Data Augmentation 291 

Loss Functions 385 Tensor Processing Units (TPU) 148 

Adam Optimizer 221 Hyperparameter Tuning 396 

Batch Normalization 445 Attention Mechanisms 497 

Feedforward Neural Networks 499 Boltzmann Machines 197 

Dropout Techniques 284 Gradient Descent Algorithms 551 

Sequence Modeling 314 Graph Neural Networks (GNNs)                499 
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Keywords Count Keywords Count 

Internet of Things (IoT) 

Edge Computing 674 Internet of Things (IoT) 1001 

IoT Security 947 IoT Protocols 367 

IoT Devices 781 Blockchain in IoT 381 

Smart Grids 498 Smart Cities 652 

Smart Healthcare 552 Predictive Maintenance 475 

Machine-to-Machine Communication 556 Cloud Computing 821 

Sensor Networks 577 Energy Harvesting for IoT 250 

IoT Standards 582 IoT and Artificial Intelligence 743 

Fog Computing 442 IoT Privacy Issues 574 

Cybersecurity 

Network Security 889 Cyber Threats 958 

Data Breaches 791 Encryption 738 

Authentication 697 Authorization 371 

Anomaly Detection 598 Intrusion Detection Systems (IDS) 700 

Botnet Attacks 554 DDoS Attacks 581 

Malware 847 Vulnerability Assessment 541 

Cybersecurity Frameworks 519 Ethical Hacking 388 

Machine Learning (as it relates to 
cybersecurity applications) 

753 IoT Ransomware 257 

IoT Spoofing Attacks 287 IoT Cybersecurity Frameworks 350 

Penetration Testing 659 GDPR Compliance 447 

 
Figure1: Research Dispersal and Distribution Statistics. 

Considering the data presented in Table 1, Table 2, and Figure 1, it's evident that choosing an 
appropriate journal and keywords is vital for research in 'Deep Learning based IoT 
Cybersecurity'. Selecting the right journal aligns the research with a suitable audience and 
enhances its impact, which is particularly essential in a dynamic and multidisciplinary domain 
like this. Meanwhile, careful keyword selection boosts the research's visibility in academic 
databases, encouraging engagement from peers and experts in the field. This methodical 
approach not only broadens the re-search's reach but also encourages collaborative progress in 
the innovative intersection of deep learning and IoT cybersecurity. 

The main contributions of the projected review paper are as follows 

a) The paper offers an in-depth examination of various deep learning techniques and their 
application in enhancing IoT cybersecurity. It delves into the effectiveness of different DL 
models, including CNNs, RNNs, GNNs, and Transformer Models, in identifying and 
mitigating cyber hazards in IoT environments. 
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b) It evaluates advanced deep learning architectures and their appropriate-ness for complex 
IoT security challenges, providing insights into how these models can be optimized for 
better performance in IoT contexts. 

c) The paper discusses the integration of Federated Learning and Edge Computing in IoT 
cybersecurity. This includes leveraging these technologies for decentralized, efficient, and 
privacy-preserving data processing in IoT networks. 

d) There is a focus on the importance and application of Explainable AI (XAI) in the context 
of IoT cybersecurity, emphasizing the need for transparency and understandability in DL-
driven security solutions. 

e) The paper identifies and discusses future research directions, including the development 
of lightweight DL models for resource-constrained IoT devices, and the need for DL 
models to adapt to dynamic IoT environments and emerging cyber threats. 

f) It highlights ongoing challenges and open questions in applying DL to IoT cybersecurity, 
such as issues related to data privacy, model explainability, and computational efficiency. 

Following the Introduction section, the research paper's narrative unfolds in a structured 
manner. Initially, it probes into the complexities of DL within IoT cybersecurity, covering a 
range of DL models such as CNNs, RNNs, and their sophisticated variations. The focus is on 
adapting these models to the specific needs of IoT settings, with special attention to malware 
detection and processing sequential data. Subsequently, the pa-per ventures into the realm of 
GNNs and Transformer Models, shedding light on their vital role in the intricate network 
analyses essential for securing IoT systems. An in-depth analysis of Federated Learning and 
Edge Computing follows, highlighting their significance in facilitating decentralized and 
privacy-focused data processing. Moreover, the paper touches upon the role of Explainable AI 
in the domain of IoT cybersecurity, stressing the need for DL solutions that are both 
transparent and comprehensible. The paper wraps up with a forward-looking discussion on 
potential avenues for future research, pinpointing essential areas like developing resource-
efficient DL models suitable for IoT devices, and the need for DL approaches to evolve in 
response to the changing dynamics of IoT environments and new cybersecurity threats. 
Throughout, the paper keeps its lens trained on the advanced deployment of DL to bolster 
IoT cybersecurity, aiming to offer an exhaustive and perceptive overview of this rapidly 
progressing field. 

Deep Learning in Iot 

Deep learning, a subset of machine learning, stands at the forefront of the techno-logical 
revolution, particularly in its synergy with the Internet of Things. At its core, deep learning 
relies on neural networks, which are encouraged by the human brain's configuration and 
function. These systems are comprised of layers of interrelated nodes or 'neurons' that process 
data hierarchically. Among the various architectures, Convolutional Neural Networks 
(Ghorsad & Zade, 2023) are renowned for their proficiency in handling visual data, making 
them ideal for image and video analysis. Recurrent Neural Networks (Ahn & Park, 2021), on 
the other hand, excel in processing sequential data, which is crucial for time-series analysis or 
natural language processing. These architectures enable machines to extract pat-terns and learn 
from vast amounts of data, a capability especially pertinent in the IoT domain, where devices 
generate and communicate a continuous stream of information. 

The convergence of deep learning and IoT is reshaping how we interact with technology, 
making IoT de-vices not just data collectors but intelligent analysts and decision-makers (Yan 
et al., 2022). For instance, deep learning algorithms in healthcare process data from IoT devices 
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like wearable health monitors, enabling real-time health status assessments and early disease 
detection. In industrial automation, DL-driven IoT systems predict equipment failures, 
optimizing maintenance schedules and reducing down-time. Smart cities bene-fit too, with 
deep learning enhancing IoT applications in traffic management, environmental monitoring, 
and public safety, leading to smarter, more efficient urban living. These applications underscore 
how deep learning augments IoT's capability, transforming raw data into actionable insights, 
thereby enhancing efficiency, predictive accuracy, and user experience. 

Investigating specific case studies illustrates this transformative impact. In one instance, a 
manufacturing plant integrated deep learning algorithms with its IoT net-work to predict 
machine failures, significantly reducing unplanned downtime and maintenance costs (Murugiah 
et al., 2023). Another case saw a smart city initiative leverage deep learning powered IoT devices 
to analyze traffic patterns, improving congestion management and reducing pollution 
(Damadam et al., 2022). These examples highlight the challenges - like managing complex 
datasets and ensuring real-time processing - and the innovative solutions deep learning 
provides, leading to substantial improvements in operations and service delivery. Thereby, deep 
learning's role in advancing IoT is un-deniable, offering smart-er, more efficient, and 
responsive solutions. As technology progresses, the future will likely see even deeper 
integration of these fields, with emerging trends like edge computing and federated learning 
opening new possibilities for IoT applications enhanced by deep learning. 

Table 3 Comparative Overview of Deep Learning Models for IoT Cybersecurity: Applications, 
Relevant Datasets, and Key Evaluation Metrics. 

Ref. Methodology Deep Learning Model Dataset Name 
Evaluation 

Metrics 

(Audibert, 
Michiardi, et 

al., 2022) 

Anomaly Detection in 
IoT Devices 

CNNs 
IoT-23 (Sudhakar & 
Senthilkumar, 2023) 

Accuracy, F1 
Score 

(Michiardi, 
et al.,  2020) 

Intrusion Detection 
System (IDS) 

RNNs 
KDD Cup 99 
Choudhary & 

Kesswani, 2020) 
Precision, Recall 

(Han, et al., 
2022) 

Network Traffic 
Analysis 

LSTMs 
UNSW-NB15 (Yoon 

& Hwang, 2021) 
Area Under Curve 

(AUC) 

(Catillo, et 
al.,   2023) 

User Behavior 
Analytics 

Autoencoders 
N-BaIoT (Meidan et 

al., 2018) 
Mean Squared 
Error (MSE) 

(Gordon, 
2023) 

Malware Detection GANs Malware IoT Dataset Detection Rate 

(Wang et al., 
2022) 

IoT Device 
Classification 

DBNs 
IoT Device 

Fingerprinting 
Accuracy, 
Precision 

(Moro, et al., 
2023) 

Energy Consumption 
Modeling 

RBMs Smart Home Dataset 
Root Mean Square 

Error (RMSE) 

(Kholidy, 
2020) 

Time Series 
Prediction in IoT 

Sequence-to-Sequence 
Models 

IoT Time Series 
Dataset 

Mean Absolute 
Error (MAE) 

(Ali, et al., 
2021) 

Privacy-Preserving 
Data Analysis 

VAEs Private IoT Dataset KL Divergence 

(Demirkıran, 
et al., 2022) 

Traffic Flow 
Prediction 

Transformer Models Urban IoT Dataset 
Mean Squared 

Logarithmic Error 
(MSLE) 

(Ilango, Ma, 
& Su, 2022) 

Sensor Data Fusion 
Feedforward Neural 

Networks 
Multi-Sensor IoT 

Dataset 
Correlation 
Coefficient 
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Ref. Methodology Deep Learning Model Dataset Name 
Evaluation 

Metrics 

(Kamala & 
Nawaz, 
2023) 

Smart Grid Anomaly 
Detection 

Multi-Layer Perceptrons 
(MLPs) 

Electricity IoT 
Dataset 

Precision, Recall 

(Wang et al., 
2023) 

Biometric 
Authentication 

Bidirectional Long Short-
Term Memory Networks 

(BiLSTMs) 

Biometric IoT 
Dataset 

Equal Error Rate 
(EER) 

(Iliyasu & 
Deng, 2020) 

Fake IoT Device 
Detection 

Deep Convolutional 
Generative Adversarial 
Networks (DCGANs) 

IoT GAN Dataset 
F1 Score, 
Accuracy 

(Cheng, Xu, 
Li, & Han, 

2022) 

Smart City 
Surveillance 

Attention Mechanism 
Models 

City Surveillance 
Dataset 

Recall, Precision 

(Wu, Dai, & 
Tang, 2022) 

Structural Health 
Monitoring 

GNNs 
Infrastructure IoT 

Dataset 
RMSE, MAE 

(Sellami, 
Hakiri, & 

Ben Yahia, 
2022) 

Autonomous IoT 
Systems 

Deep Reinforcement 
Learning Models 

Autonomous IoT 
Dataset 

Reward Efficiency 

(Yao et al., 
2019) 

3D Object 
Recognition in IoT 

Capsule Networks 
3D IoT Object 

Dataset 
Accuracy, 
Precision 

(Khan & 
Mailewa, 

2023) 

Network Topology 
Analysis 

Self-Organizing Maps 
(SOMs) 

IoT Topology 
Dataset 

Topological Error 

(Zhu, Jang-
Jaccard, & 
Watters, 

2020) 

IoT Device 
Authentication 

Siamese Neural Networks 
IoT Authentication 

Dataset 
Accuracy, EER 

In Table 3, the 'Methodology' column specifies the particular cybersecurity task or challenge 
being tackled, focusing on issues pertinent to the IoT environments. The 'Dataset Name' refers 
to carefully curated datasets that are optimally suited for both training and evaluating deep 
learning models within the sphere of IoT cybersecurity. These datasets were designed to 
encapsulate characteristics and threats unique to IoT systems. The 'Evaluation Metrics' section 
details the criteria used for measuring the efficacy of the deep learning models. Depending on 
the nature of the task - whether it's classification or regression - different metrics were 
employed, such as accuracy, precision, recall, and F1 score for classification, or mean squared 
error for regression-based tasks. This structured approach ensures a focused and relevant 
assessment of deep learning models in addressing cybersecurity challenges in IoT contexts. 

Cybersecurity Challenges in Iot 

In the trajectory of IoT cybersecurity, the landscape is constantly evolving, with a variety of 
threats and vulnerabilities posing significant challenges. Common threats include Distributed 
Denial of Service (DDoS) attacks (Almaraz-Rivera et al., 2023), which devastate IoT net-works, 
rendering them inoperable; malware (Wu, et al., 2023), which can covertly infiltrate and com-
promise devices; and data breaches, where sensitive information is illicitly accessed or stolen. 
Each attack exploits specific weaknesses in IoT systems, such as inadequate authentication, 
unencrypted data transmission, and lack of regular software updates. The examination of 
notable case studies, like the Mirai botnet attack (Yusuf et al., 2023) which harnessed thousands 
of compromised IoT devices, reveals the multifaceted nature of these threats. Such analyses 
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not only shed light on the methods employed by attackers but also on the profound impact on 
affected systems, thereby underscoring the vital lessons for enhancing IoT security. 

Addressing these concerns requires a robust approach to risk mitigation, encompassing a spectrum 
of  strategies and security frameworks. Effective risk management in IoT involves implementing 
layered security measures, including advanced encryption methods for data-in-transit and at-rest, 
rigorous device authentication protocols, and continuous network monitoring for anomaly 
detection. Security frameworks like the National Institute of  Standards and Technology (NIST) 
Cybersecurity Framework (Puteho et al., 2023, 2023) provide structured guidance for managing and 
reducing cybersecurity risk in IoT contexts. Moreover, it is essential to follow established IoT 
security protocols and standards. These include the Transport Layer Security (TLS) for safe data 
transmission and the Open Web Application Security Project (OWASP) IoT Top Ten (Riandhanu, 
2022), which helps in spotting and thwarting prevalent IoT vulnerabilities. Nonetheless, the swift 
advancement of  IoT technology and the ever-changing setting of  cyber threats call for continuous 
review and modification of  these standards. This indicates a fluid and evolving future for IoT 
security protocols and frameworks. 

Table 4 A comparative analysis of IoT Protocols and their Security Services (Tariq, et al., 

2023), (Naeem et al., 2023), (Tariq, et al., 2023).Available (✔) , Not Available (X). 

Protocol/Service 
Privacy Service 

(Confidentiality) 
Access Control Service 

(Authorization) 
Identity Verification 

Service (Authentication) 
Ciphering Service 

(Encryption) 

Simple Service Discovery 
Protocol (SSDP) 

X X X X 

Multicast Domain Name 
System  (mDNS) 

X X X X 

Extensible Messaging and 
Presence Protocol (XMPP) ✔ ✔ ✔ ✔ 

Data Distribution Service 
(DDS) ✔ ✔ ✔ ✔ 

Advanced Message 
Queuing Protocol 

(AMQP) 
✔ ✔ ✔ ✔ 

Constrained Application 
Protocol (CoAP) ✔ ✔ ✔ ✔ 

Message Queuing 
Telemetry Transport 

(MQTT) 
✔ ✔ ✔ ✔ 

HTTP/HTTPS ✔ (HTTPS) ✔ ✔ ✔ (HTTPS) 

WebSocket ✔ ✔ ✔ ✔ 

Lightweight M2M ✔ ✔ ✔ ✔ 

Zigbee ✔ ✔ ✔ ✔ 

Z-Wave ✔ ✔ ✔ ✔ 

Long Range Wide Area 
Network (LoRaWAN) ✔ ✔ ✔ ✔ 

IPv6 over Low-Power 
Wireless Personal Area 
Networks (6LoWPAN) 

✔ ✔ ✔ ✔ 

BLE (Bluetooth Low 
Energy) ✔ ✔ ✔ ✔ 

Near Field 
Communication (NFC) ✔ ✔ ✔ ✔ 

Radio Frequency 
Identification (RFID) ✔ ✔ ✔ ✔ 

Modbus X X X X 

Building Automation 
Control Network 

(BACne)t 
✔ ✔ ✔ ✔ 

Konnex (KNX) ✔ ✔ ✔ ✔ 



Tariq, Ahmed, Bashir, Khan 3433 

Kurdish Studies 
 

Table 4 highlights the varying degrees of cybersecurity services offered by different IoT 
protocols. Protocols like XMPP, DDS, AMQP, CoAP, MQTT, and others such as 
HTTP/HTTPS, WebSocket, and LwM2M provide comprehensive security services covering 
confidentiality, authorization, authentication, and encryption. In contrast, protocols like SSDP 
and mDNS do not inherently offer these security services. It's essential to note that the 
availability of these services can be dependent on the implementation and configuration of the 
protocol within the IoT ecosystem. 

Deep Learning for Iot Security 

Deep learning models have significantly enhanced the capabilities of Intrusion Detection 
Systems (IDS) (Ahanger et al., 2020)] in the realm of IoT security. For instance, CNNs excel 
in feature extraction from high-dimensional data, making them suitable for analyzing network 
traffic patterns and identifying malicious activities (Aversano et al., 2021). RNNs, particularly 
effective in sequential data analysis, are used to monitor time-series data from IoT de-vices, 
thus detecting anomalies over time. GNNs are adept at modeling network traffic as graphs, 
providing a holistic view of interconnect-ed IoT devices and identifying potential threats based 
on network topology (Yumlembam et al., 2023). 

Deep Belief  Networks (DBNs) and Restricted Boltzmann Machines (RBMs) are instrumental in 
unsupervised learning scenarios, uncovering hidden patterns in IoT data without labeled examples. 
This feature is especially valuable in detecting zero-day at-tacks. Sequence-to-Sequence Models find 
application in predicting and identifying at-tack sequences, which is crucial in understanding multi-
stage attack strategies. Variational Autoencoders (VAEs), known for their generative capabilities, are 
used in IDS to generate synthetic attack data for training purposes, enhancing the model's ability to 
recognize novel attack patterns (He et al., 2021) 

Transformer Models, with their attention mechanisms, are proficient in handling large-scale IoT data, 
offering enhanced capability in identifying complex attack pat-terns that span across different devices 
and time frames. Feedforward Neural Net-works and Multi-Layer Perceptrons (MLPs) provide 
foundational deep learning structures for IDS, often serving as baseline models for performance 
comparison and feature learning in IoT security datasets (Qiao at al., 2021). 

Table 5 Deep Learning Models in IoT Intrusion Detection Systems (Amanullah et al., 2020), 
(Chen et al., 2021), (Chaabouni et al., 2019), (Jahwar & Zeebaree, 2021), (Ahmad et al., 2023). 

Deep Learning Model Functions in IoT IDS Merits Demerits 
Characteristics Helpful in 

IoT IDS 

CNN 
Traffic pattern analysis, 

feature extraction 
High accuracy in pattern 

recognition 
Computationally intensive 

Effective in spatial data 
interpretation 

RNN 
Time-series data monitoring, 
sequential anomaly detection 

Good at handling 
sequential data 

Prone to vanishing gradient 
problem 

Suitable for temporal data 
analysis 

GNN Network topology analysis 
Effective in relational data 

analysis 
Complex model architecture 

Ideal for interconnected device 
data 

DBN 
Unsupervised anomaly 

detection 
Efficient in uncovering 

hidden patterns 
Training can be time-

consuming 
Useful in zero-day attack 

detection 

RBM 
Feature learning, pattern 

recognition 
Good at dimensionality 

reduction 
Sensitive to hyperparameter 

settings 
Efficient in unsupervised 

learning 

Sequence-to-Sequence 
Models 

Attack sequence prediction 
Good at modeling long 

sequences 
Requires large amount of data 

Useful in multi-stage attack 
detection 

VAE 
Synthetic attack data 

generation 
Effective in generative 

tasks 
Complexity in training and 

tuning 
Helps in expanding training 

dataset 

Transformer Model 
Large-scale data analysis, 

complex pattern 
identification 

Excellent in handling large 
datasets 

Resource-heavy 
Effective in multi-device 

environment 

Feedforward Neural 
Network 

Baseline model for IDS Simplicity and ease of use 
Limited in handling complex 

patterns 
Good for initial feature 

learning 

MLP 
Feature learning, baseline 
performance comparison 

Versatile in different data 
types 

Prone to overfitting 
Effective in foundational 

model building 
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Table 5 succinctly summarizes how each deep learning model contributes to IoT IDS. Models 
like CNNs and RNNs are pivotal for their respective spatial and temporal data analysis 
capabilities. GNNs offer a unique ad-vantage in understanding the intricate network of IoT 
devices. On the other hand, DBNs and RBMs excel in scenarios where labeled data is scarce. 
Sequence-to-Sequence models and VAEs are innovative in understanding and preparing for 
complex attack patterns. Transformer Models, while resource-intensive, provide unparalleled 
proficiency in handling extensive datasets. Traditional models like Feedforward Neural 
Networks and MLPs, though less complex, are crucial for foundational analyses and serve as 
benchmarks in the development of IDS. 

Deep Learning Model’s Iot Security Focused Taxonomy 

Supervised Learning Models 

Multilayer Perceptron’s (Mlp) 

In the context of IoT cybersecurity, MLPs require a well-labeled dataset with features 
representing network traffic characteristics. Preprocessing involves normalization and outlier 
removal (Firat et al., 2023). Feature engineering is crucial, often involving statistical measures 
of packet data. MLPs, with their deep, fully connected layers, are effective for pattern 
recognition in network traffic. Training involves backpropagation with hyperparameters like 
learning rate and epoch number tuned for optimal performance. 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑓(∑(𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ⋅ 𝑖𝑛𝑝𝑢𝑡𝑠) + 𝑏𝑖𝑎𝑠) [eq. 1] 

Here, 

`Output`: The final output of the MLP, typically a class label or a continuous value. 

`𝑓`: Activation function, such as sigmoid, ReLU, or tanh. 

`weights`: Parameters of the model learned during training. 

`inputs`: The features of the input data. 

`bias`: An additional parameter in the model to adjust the output. 

Convolutional Neural Networks (Cnn) 

In the domain of IoT malware detection, CNN requires that the dataset be transformed into a 
form akin to an image or time-series data to facilitate convolution operations (Ghorsad & Zade, 
2023). This necessitates preprocessing steps, such as scaling the data and organizing it into a 
grid-like structure, suitable for CNNs. These networks excel in extracting both spatial and 
temporal features, which are essential for identifying distinct malware patterns. The design of 
the CNN architecture includes setting up convolutional layers, each defined by specific 
hyperparameters such as the size of the filters and the stride length. The training phase of the 
CNN involves careful adjustment of various parameters, including the learning rate and the 
size of the data batches processed at a time. 

The effectiveness of CNNs in IoT malware detection lies in their ability to process large 
volumes of data efficiently. This is particularly important in the IoT context, where devices 
generate vast amounts of data continuously. Likewise, the deployment of these models in real-
world scenarios requires careful consideration of computational constraints, especially in 
resource-limited IoT devices. Thus, optimizing the CNN models for faster processing without 
compromising accuracy becomes a key aspect of IoT malware detection. Moreover, ongoing 
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research and advancements in CNN techniques are further enhancing their capability to detect 
even the most sophisticated malware in IoT environments. 

𝐶𝑜𝑛𝑣𝐿𝑎𝑦𝑒𝑟𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓(𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ∗ 𝑖𝑛𝑝𝑢𝑡 + 𝑏𝑖𝑎𝑠) [eq. 2] 

In a CNN, the output of a convolutional layer, denoted as `𝐶𝑜𝑛𝑣𝐿𝑎𝑦𝑒𝑟𝑜𝑢𝑡𝑝𝑢𝑡`, emerges from 

processing the input, which could be an input image or a feature map. This processing involves 

the application of filters or kernels, referred to as `𝑤𝑒𝑖𝑔ℎ𝑡𝑠`, to the input. Following this 

convolution, an activation function, symbolized by `𝑓`, is applied to introduce non-linearity to 
the system. Also, a bias term, simply termed as ̀ bias`, is added to the output of the convolution 
to adjust the output signal. 

Recurrent Neural Networks (Rnn) and Variants (Lstm, Bi-Lstm, Gru) 

RNNs and their derivatives are highly effective for handling sequential data in IoT networks, 
necessitating the preprocessing of time-series data (Ghorsad & Zade, 2023), Ahn & Park, 
2021). The feature engineering process in this context emphasizes capturing temporal 
dependencies within the data. Long Short-Term Memory networks (LSTMs) address the 
vanishing gradient challenge found in traditional RNNs, making them particularly suitable for 
processing extended sequences. Bidirectional LSTMs (Bi-LSTMs) take this further by analyzing 
data in both forward and reverse directions, offering a more comprehensive under-standing of 
the sequence. Gated Recurrent Units (GRUs) present a more streamlined option compared to 
LSTMs, with a reduced number of parameters yet maintaining efficiency. Training these 
networks involves careful selection of various parameters, including the number of hidden 
units and the learning rate. 

The adaptability of RNNs and their variants to IoT applications is crucial due to the dynamic 
and continuous nature of data generated in IoT environments. Their ability to remember and 
utilize historical information makes them ideal for predicting future events or detecting 
anomalies in IoT networks. Besides, as IoT devices and net-works grow in complexity, these 
neural networks must be optimized to balance computational efficiency with predictive 
accuracy. This involves not only fine-tuning model parameters but also innovating model 
architecture to handle the increasing scale and complexity of IoT data. 

𝐿𝑆𝑇𝑀𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓(𝑖𝑛𝑝𝑢𝑡, 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑜𝑢𝑡𝑝𝑢𝑡, 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑠𝑡𝑎𝑡𝑒) [eq. 3] 

The term `𝐿𝑆𝑇𝑀𝑜𝑢𝑡𝑝𝑢𝑡` refers to the output generated by the unit. The LSTM processes data 

using an internal function, represented as `𝑓`, which incorporates various gates for managing 
the flow of information. The `input` in this scenario is the current data being fed into the unit. 

Also, the LSTM unit considers `𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑜𝑢𝑡𝑝𝑢𝑡`, which is the output from the immediately 

preceding time step, as well as the `𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑠𝑡𝑎𝑡𝑒`, denoting the hidden state carried over 
from the previous time step. This combination of inputs and states allows the LSTM to 
effectively remember and integrate past information with current data. 

Attention Mechanisms and Transformer Networks 

Transformers, known for their attention-based mechanisms, excel in managing extensive IoT 
cybersecurity datasets, thanks to their ability to process data in parallel (Wang et al., 2022). The 
initial steps in data handling involve tokenizing the input and applying positional encodings. In 
feature engineering, the self-attention mechanism of Transformers is key, effectively addressing 
long-distance dependencies in the data. These models are structured with various attention 
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heads and multiple layers. The training phase concentrates on fine-tuning aspects such as the 
count of attention heads and the depth of the layers. The scalability of Transformers makes 
them particularly suitable for the ever-growing volumes of data in IoT networks. Their 
architecture allows for the efficient handling of both real-time and historical data, which is 
crucial for diverse IoT applications. Further, advancements in Transformer models pave the 
way for more sophisticated analyses in IoT systems. This includes enhanced real-time decision-
making capabilities and improved predictive analytics. In optimizing these models, a balance 
must be struck between computational demands and the precision of insights derived, 
especially considering the resource constraints often present in IoT environments. This 
encompasses not only adjusting model parameters but also innovating in terms of reducing 
computational overhead while maintaining or enhancing model performance. 

Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉 [eq. 4] 

Here, 
Attention`: The attention mechanism output. 
Q`: Query matrix. 
K`: Key matrix. 
V`: Value matrix. 
d_k`: Dimension of the key vectors, used for scaling. 
softmax`: Normalization function. 

Siamese Networks 

In IoT anomaly detection, Siamese networks function (Kotiyal et al., 2023) by processing pairs 
of input data, designed to underscore similarities or disparities. Feature engineering in this 
context is directed at extracting distinctive features from these paired inputs. The architecture 
comprises two mirror subnetworks that share weights. The training phase is centered around 
contrastive loss, fine-tuning the network to effectively distinguish between pairs that are alike 
or different. 

Siamese networks' ability to compare and contrast input pairs makes them particularly effective 
in identifying anomalies in IoT environments, where data consistency is key. Their shared-
weight architecture not only aids in recognizing deviations from normal patterns but also 
ensures computational efficiency. This efficiency is vital in IoT settings, where resources might 
be limited. Besides, advancements in this field are continually refining these networks, 
enhancing their precision in detecting subtle anomalies. Optimizing these networks involves 
not just tweaking the contrastive loss function but also experimenting with different 
architectures and training methodologies to adapt to the diverse and progressing nature of IoT 
data. This ongoing evolution in Siamese network capabilities is crucial in maintaining robust 
security and operational integrity in IoT systems. 

𝐿(𝑌, 𝑌′, 𝐺) = 𝑌 ⋅ distance(𝐺) + (1 − 𝑌) ⋅ max(0, 𝑚 − distance(𝐺))                 [eq. 5] 

In the described context, the term `𝐿` represents the contrastive loss function, which is a key 

component in determining the similarity between pairs in the model. The binary label `𝑌` 

indicates whether a pair is similar `1` or dissimilar `0`. In conjunction with this, `𝑌'` stands for 
the predicted similarity score, which is the model's estimation of how similar the pair is. The 

feature representation of the input pair is denoted as `𝐺`, which is critical in understanding the 
characteristics of each pair. The function labeled as `distance` is used to measure the disparity 

between pairs within the embedding space. Finally, `𝑚` refers to the margin parameter in the 
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contrastive loss function, which helps in defining the threshold for distinguishing between 
similar and dissimilar pairs. 

Unsupervised Learning Models 

Generative Adversarial Networks (Gan) 

GNNs are primarily employed for generating synthetic network data in IoT set-tings. The initial 
stage includes normalizing real network data (Balaji & Narayanan, 2022). Since GNNs are 
inherently skilled at data generation, the requirement for extensive feature engineering is 
minimal. The principal architecture of GNNs is divided into two components: a generator and 
a discriminator. Their training follows a min-max approach, setting up a competitive scenario 
between these components, with crucial hyperparameters like the learning rate and the number 
of training epochs finely calibrated. 

GNNs play a pivotal role in IoT cybersecurity, aiding in the development of solid security 
frameworks. By crafting realistic network traffic simulations, these networks contribute to 
generating more effective datasets for training, which consequently im-proves anomaly 
detection models. This capability is especially relevant in IoT contexts where data 
characteristics and volumes can significantly vary. Ongoing advancements in GNN technology, 
through refined training methods and architectural developments, are boosting their potential 
to accurately replicate complex and diverse net-work behaviors. This progress is essential in 
keeping pace with the ever-evolving cybersecurity challenges in the IoT sphere. Also, 
optimizing these models for IoT use not only involves enhancing their data generation 
proficiency but also ensuring computational efficiency, a critical factor given the resource 
constraints often present in IoT devices. 

min
𝐺

max
𝐷

𝑉 (𝐷, 𝐺) = 𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥)[log 𝐷 (𝑥)] + 𝐸𝑧∼𝑝𝑧(𝑧) [log (1 − 𝐷(𝐺(𝑧)))]              [eq. 

6] 

Equation 6 represents that there are two primary components: ̀ G`, the generator network, and 
`D`, the discriminator network. These two networks engage in a sort of game, quantified by 
the value function `V`, which represents the interaction between the generator and the 
discriminator. In this setup, `x` refers to real data samples that the discriminator evaluates. The 
generator, on the other hand, takes in a latent space vector `z` as input. This process involves 

two probability distributions: `𝑝𝑑𝑎𝑡𝑎`, which is the probability distribution of the real data, and 

`𝑝𝑧`, the probability distribution of the generator's input. These elements work together, with 
the generator trying to produce data similar to the real samples, and the discriminator 
attempting to distinguish between real and generated data. 

Autoencoders and Variants (Sae, Dae, Cae, Vae) 

Autoencoders (AEs) play a critical role in feature extraction and reducing data dimensions. The 
process begins with normalizing data, with Denoising Autoencoders (DAEs) additionally 
incorporating noise. Various AE types are tailored for specific ap-plications: Stacked Autoencoders 
(SAEs) feature multiple encoding layers, Convolutional Autoencoders (CAEs) are designed for 
processing convolutional data, and Variational Autoencoders (VAEs) implement a probabilistic 
dimension. Their architecture generally consists of  an encoder and a decoder, and training is aimed 
at reducing re-construction loss while optimizing parameters such as learning rate and layer sizes 
(Haseeb et al., 2022). The ability of  AEs to efficiently extract essential features and compress data 
is vital in handling the extensive and intricate datasets typical in IoT settings. Different AE models 
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tackle unique data processing issues, like DAEs improving resistance to noise, a common challenge 
in IoT. Ongoing enhancements in AE techniques, including architectural upgrades and training 
process improvements, are essential. These developments bolster the proficiency of  AEs in 
managing a range of  complex IoT applications, ensuring that these systems stay effective and 
efficient in the fast-evolving landscape of  IoT data. 

Reconstruction Loss = ||𝑥 − 𝑥||
2
                                                 [eq.7] 

Here, 
`Reconstruction Loss`: Measure of how well the AE reconstructs the input. 
`x`: Original input data. 

`𝑥`: Reconstructed data from the AE. 

Self-Organizing Maps (Som) 

SOMs are essential for grouping and depicting complex, high-dimensional data. The initial 
stages of handling this data often involve normalization and sometimes the selection of 
particular features. Through unsupervised learning, SOMs self-organize, shedding light on the 
data's intrinsic structure. Adjusting the network's scale and the learning rate is a key focus 
during their training. SOMs excel at uncovering patterns and correlations in intricate IoT 
cybersecurity datasets, which can be difficult to detect (X. Qu et al. 2019). They efficiently 
transform high-dimensional data into a more manageable, low-er-dimensional format, aiding 
in the simplification and interpretation of large data volumes. The continual evolution of SOM 
techniques is enhancing their use in IoT contexts, particularly as they are combined with other 
machine learning methods for deeper data analysis. The ongoing refinement of their training 
processes and structural parameters is critical, ensuring that SOMs stay effective and relevant 
in the dynamic field of IoT. This evolution includes optimizing them for prompt data 
processing and adapting them to various kinds of IoT data sources. 

SOM𝑢 = ∑(𝑥𝑖 − 𝑤𝑢,𝑖)
2
                                                            [eq. 8] 

Here, 

`𝑆𝑂𝑀𝑢`: Mapping function of SOM for neuron `u`. 

`𝑥𝑖`: Input vector. 

`𝑤𝑢,𝑖`: Weight vector of neuron `u`. 

Restricted Boltzmann Machine (Rbm) and Deep Belief Networks (Dbn) 

RBMs and DBNs, which include variants like AE-DBN and RBM-DBM, excel in feature 
extraction and representation learning from unstructured data (Balakrishnan et al., 2021). The 
preprocessing for these models usually involves data normalization and binarization. RBMs 
utilize a hidden layer to understand the probability distribution of input data. In contrast, DBNs 
are formed by layering multiple RBMs or autoencoders. RBMs are trained using contrastive 
divergence, whereas DBNs benefit from a layer-by-layer training approach. Expanding on their 
utility, RBMs and DBNs are exceptionally adept at unraveling the intricate and often nonlinear 
patterns found in unstructured IoT data. Their capacity to restructure this data into a more 
coherent and analyzable form is key for further analysis and decision-making in IoT 
frameworks. 

𝑝(ℎ|𝑣) = sigmoid(weights ⋅ 𝑣 + bias)                                        [eq. 9] 

The term 𝑝(ℎ|𝑣) represents the probability of the hidden layer's state given the state of the 
visible layer in a neural network model. The activation function used here is the sigmoid 
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function, which helps in transforming the input signals into a format that is more manageable 
for the network. The weights are the model parameters that play a critical role in determining 
the strength and direction of the signal between neurons. The visible layer neurons, denoted as 

𝑣, are the initial point of data entry into the model. Later, a bias term is included, which serves 
to adjust the output of the neuron, adding an additional degree of freedom to the model's 
fitting process. 

Cluster-Based Networks 

In the framework of IoT, networks tailored for unsupervised classification demand extensively 
preprocessed data, typically normalized. These networks employ clustering algorithms as part 
of their structure to aid in feature learning. The training phase encompasses a dual approach, 
focusing on optimizing both the network’s weights and the assignments of clusters Castiglione, 
& Palmieri, 2021). 

Delving deeper, such networks excel in detecting natural groupings and patterns within IoT 
data, bypassing the need for pre-assigned labels. They utilize advanced algorithms adept at 
pinpointing subtle nuances in the data, grouping them into relevant clusters. Normalizing the 
data is essential for these networks to uniformly handle data of varying scales. Training involves 
a careful calibration of both honing the cluster configurations and tweaking the network’s 
internal parameters to ensure precise and effective categorization. This method is particularly 
pertinent in IoT settings, characterized by large, diverse datasets often devoid of clear labels. 

Cluster Loss = ∑(𝑥𝑖 − 𝑐𝑘𝑖
)

2
                                                [eq. 10] 

At this point, 

(𝑥𝑖): Represents an individual data point in the dataset. In the context of IoT cybersecurity, 
this is a feature vector extracted from network data. 

(𝑐𝑘𝑖
): Denotes the center of the cluster to which the data point (𝑥𝑖) is assigned. This is the 

'representative' of the cluster, typically computed as the mean of all points assigned to that 
cluster. 

(∑): Indicates a summation over all data points in the dataset. This ensures that the loss 
accounts for the distances of all points from their respective cluster centers. 

(𝑥𝑖 − 𝑐𝑘𝑖
)

2
: This term computes the squared Euclidean distance between a data point and its 

cluster center. Squaring the distance emphasizes larger discrepancies, making the algorithm 
sensitive to outliers and ensuring tighter clusters. 

Hybrid Learning Models 

Model-A (Cnn + Lstm) 

This hybrid model combines the spatial feature extraction capabilities of CNNs with the 
temporal learning of LSTMs, ideal for IoT data with both spatial and temporal dimensions. 
Preprocessing includes segmenting data into suitable formats for both CNN and LSTM layers. 
Feature engineering leverages CNN for initial extraction, followed by LSTM for sequential 
learning. Training involves optimizing both CNN and LSTM parameters, focusing on loss 
functions that cater to both spatial and temporal accuracies. 

Hybrid Output = LSTM(CNN(𝑖𝑛𝑝𝑢𝑡))                                   [eq. 11] 
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In this scenario, the term `Hybrid Output` refers to the final result produced by a model that 
integrates a CNN and a LSTM network. Initially, the `input` data, which is appropriate for 
CNN processing, is handled by the CNN. This Convolutional Neural Network is responsible 
for processing the initial input through its layers. Following this, the output from the CNN is 
then fed into the LSTM network. The LSTM, known for its ability to handle sequential data 
and remember long-term dependencies, processes the information received from the CNN. 
The culmination of this process is the `Hybrid Output`, which combines the strengths of both 
the CNN and LSTM networks to provide a comprehensive analysis of the input data. 

Model-B (GAN + CNN) 

Combining GANs with CNNs, this model is used for generating and classifying IoT data. 
GANs generate synthetic samples for training, while CNNs classify. Preprocessing involves 
training GANs on real data to produce realistic synthetic samples. CNNs are then trained on 
both real and synthetic data, with feature extraction focused on the convolutional layers. 
Training involves first optimizing GANs for realistic data generation, followed by CNN 
training for accurate classification. 

Classification Output = CNN(GAN(𝑖𝑛𝑝𝑢𝑡))                                              [eq. 12] 

`𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑂𝑢𝑡𝑝𝑢𝑡` is the final output, typically a class label, from the CNN, that is 
used for classification. Whereas the GNN is used to generate synthetic data. In such scenarios, 

the 𝐼𝑛𝑝𝑢𝑡 to the GAN, usually is a noise vector or latent representation. 

Model-C (AE + SVM) 

This model combines autoencoders for feature reduction and SVMs for classification. 
Preprocessing involves normalizing IoT data, with autoencoders trained to reduce 
dimensionality. SVMs then classify data in this reduced space. Feature engineering is focused 
on the latent space of the autoencoder. Training involves two stages: optimizing the 
autoencoder for accurate feature representation and then training the SVM on this reduced 
feature set. 

SVM Classification = SVM(AE(𝑖𝑛𝑝𝑢𝑡))                                             [eq. 13] 

`𝑆𝑉𝑀 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛` is the classification result from the Support Vector Machine that is 
used for classification. Whereas autoencoder is employed for dimensionality reduction 

Deep Transfer Learning (Dtl) 

DTL involves applying knowledge gained from one area to a different but related problem, 
especially useful in IoT where labeled data can be scarce. Preprocessing involves adapting data 
from the source and target domains. Feature engineering focuses on extracting features that are 
relevant to both domains. Training involves fine-tuning pre-trained models on the target IoT 
dataset, optimizing for generalization between source and target domains (Yang at al., 2022). 

Target Output = DTL Model(𝑖𝑛𝑝𝑢𝑡)                                          [eq. 14] 

Here, 

Target Output`: The output for the target task in transfer learning. 

DTL Model`: The deep learning model adapted from a source task to a target task. 

input`: Input data for the target task. 
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Deep Reinforcement Learning (Drl) (Model-Based And Model-Free) 

DRL is utilized for making decisions in IoT settings. In model-based DRL, there is a focus on 
acquiring knowledge about the environment's model, whereas model-free DRL concentrates 
on directly mastering the optimal policy. The preprocessing step encompasses the encoding 
state and action spaces. The training process is centered around refining a policy function in 
relation to a logic function, typically involving a process of trial and error, where the policy is 
modified according to the rewards received. 

𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + α [𝑟 + γ max
𝑎′

𝑄 (𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)]                           [eq. 15] 

In this framework, `𝑄(𝑠, 𝑎)` represents the Q-value, which is a measure of the expected utility 

of acting `𝑎` in state `s` within a reinforcement learning basis. The learning rate, denoted by 

`𝛼`, determines the extent to which new information overrides old information. After taking 

action `𝑎` in state `𝑠`, the agent receives a logic, symbolized by `𝑟`. The discount factor, `𝛾`, 
is used to diminish the value of future rewards, reflecting the preference for immediate logic 
over distant ones. Following the action `a`, the agent transitions to a new state, referred to as 

`𝑠'`. In this new state, `𝑎'` represents the set of possible actions that the agent can take. This 
framework helps in evaluating and updating the policy the agent follows to maximize logic over 
time. 

Federated Learning Models 

In distributed IoT settings where data privacy is paramount, these models excel. Here, data 
stays on the individual devices, and only updates to the model are exchanged. The 
preprocessing step involves normalizing data locally. Both feature engineering and training 
occur on each device independently. The global model is refined by combining these local 
updates, aiming for a model that effectively works with the varied data from all involved devices 
(Wei, Xie, & Diao, 2023). 

Global Model = Aggregate(Local Models)                                      [eq. 16] 

Here, 

`Global Model`: The aggregated model after federated learning. 

`Aggregate`: Function to combine local model updates. 

`Local Models`: Models trained on local devices with local data. 

Each of these models presents unique attributes and challenges, necessitating specific 
considerations in data handling, feature engineering, and training, making them suitable for 
different aspects of IoT cybersecurity. 

Data Collection and Preprocessing 

Data Collection 

For a deep learning-based cybersecurity system in IoT, selecting the right data collection 
methods is crucial. Data is primarily sourced from network traffic, the behavior of IoT devices, 
and interactions of users within the IoT network. Key activities include monitoring data 
packets, system logs, and sensor data in real time. The focus in data collection is on ensuring 
diversity, high volume, and rapid acquisition of data to enable thorough anomaly detection. 
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Identifying irregularities, like atypical network traffic or abnormal device operations, is essential 
for training deep learning algorithms to spot potential security risks. The goal of data collection 
is to encompass a broad spectrum of both standard and malicious actions, thereby providing a 
rich dataset for the deep learning system to effectively identify and adapt to new cybersecurity 
challenges. This method establishes a strong, forward-looking defense against complex cyber 
threats in IoT settings. 

𝐷𝑎𝑡𝑎𝐼𝑜𝑇 = (𝑥𝑖, 𝑦𝑖)|𝑥𝑖 ∈ 𝐼𝑜𝑇𝑡𝑟𝑎𝑓𝑓𝑖𝑐𝑜𝑟𝑚𝑎𝑙𝑤𝑎𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 𝑦𝑖 ∈ 𝑏𝑒𝑛𝑖𝑔𝑛, 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠      [eq. 
17] 

Equation 17 represents the creation of a dataset, where each element is a pair (xi, yi). Here, xi 

stands for individual samples of IoT network traffic or malware, and yi is the label indicating 
whether each sample is benign or malicious. 

Data Processing 

Data processing involves several key steps. Initially, data normalization standardizes diverse 
datasets, ensuring uniformity for analysis. Feature extraction then isolates relevant attributes 
from this data, crucial for effective learning. Anomaly detection algorithms are applied to 
identify deviations from normal behavior, flagging potential security threats. This process often 
utilizes techniques like clustering, classification, or neural networks. The processed data then 
feeds into deep learning models for training, enhancing their ability to detect and predict 
complex cyber threats. Post-processing includes aggregation and interpretation of model 
outputs to refine threat identification. Throughout this pipeline, scalability, real-time processing 
capabilities, and handling high-dimensional data are vital considerations to maintain system 
efficacy and adaptability in dynamic IoT environments. 

𝐷𝑎𝑡𝑎𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 = 𝑓𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝐷𝑎𝑡𝑎𝐼𝑜𝑇)                                       [eq. 18[ 

This shows the transformation of the collected data into a set-up appropriate for the deep 

learning model. The function fp𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠 includes operations like cleaning, normalization, and 

other transformations. 

Deep Learning Model Progression for Iot Security 

To formalize the progression of a deep learning model for IoT network security, we have 
devised mathematical representations for each of the steps involved. These simplified 
equations provide a concise and rigorous framework for understanding and implementing the 
model development process: 

Feature Engineering 

Feature Extraction 

A range of anomalous features can be extracted to feed into DL systems for an effective IDS. 
These features include unusual data packet sizes, irregular transmission frequencies, deviations 
in power consumption patterns, unexpected device reboots or shutdowns, anomalies in sensor 
readings that deviate from established patterns, irregularities in API call sequences, unexpected 
changes in network topology, unusual pat-terns in user access and authentication activities, 
spikes or drops in data flow rates, and inconsistencies in firmware update patterns. Likewise, 
unusual behavior in inter-device communication, discrepancies in geographical location data, 
and atypical usage of system resources can also serve as indicators of potential security breaches 
or malicious activities in the IoT network. 
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𝐹 = 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝐷𝑎𝑡𝑎𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑)                                         [eq. 19] 

Eq. 19 represents the abstraction of applicable features from the processed data. These features 
are critical for distinguishing between benign and malicious samples. 

Dimensionality Reduction (E.G., Pca) 

Principal Component Analysis (PCA) is applicable to identify key features in a dataset, 
known as principal components. These components are new, uncorrelated variables 
created as linear combinations of  the original features, and they're arranged in a way 
that the initial few account for most of  the variation found in the entire set of  original 
variables. PCA's approach of  selecting only the primary components significantly 
reduces the complexity of  the feature space while retaining crucial data attributes. This 
streamlined data is easier to analyze and use for model training, addressing challenges 
like overfitting and high computational needs. PCA excels in distilling essential 
elements from intricate datasets, enhancing deep learning models' efficiency in 
cybersecurity scenarios, as shown in eq. 20. 

𝐹𝑟𝑒𝑑𝑢𝑐𝑒𝑑 = 𝑃𝐶𝐴(𝐹)                                                        [eq. 20] 

In IoT systems employing deep learning for IDS, the feature set's dimensionality can 
be extensive due to a variety of  features, like abnormal packet sizes or sensor reading 
anomalies. This high dimensionality complicates model training, increases 
computational load, and heightens the risk of  overfitting. Dimensionality r eduction is 
thus crucial, using methods like PCA, wrapper, filter, and embedded techniques for 
feature selection. By decreasing dimensionality, these methods streamline the learning 
process, improve the model's generalization capabilities from training data, and 
expedite processing. This makes the IDS more effective for real -time threat detection 
in IoT contexts. 

Model Selection and Architecture Design 

Model Selection 

Model = choosemodel(CNN, RNN, LSTM, … )                              [eq. 21] 

Equation 21 represents the selection process for an appropriate deep learning model 
architecture, such as CNN, RNN, LSTM, etc., based on the nature of the data and the precise 
requirements of the task. 

Architecture Design For A Cnn Example 

CNN = Sequential([ConvLayer, Activation, … , DenseLayer])                      [eq. 22] 

For a CNN model , this outlines the sequential arrangement of various layers, including 
convolutional layers, activation functions, and fully connected (dense) layers. 

Model Training and Hyperparameter Optimization 

Data Splitting 

Datatrain, Dataval, Datatest = split(Dataprocessed)                                [eq. 23] 

Equation 23 illustrates the division of the processed data into training, validation, and testing 
sets, a critical step in training and evaluating the model. 
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Model Training 

𝑀𝑜𝑑𝑒𝑙𝑡𝑟𝑎𝑖𝑛𝑒𝑑 = 𝑡𝑟𝑎𝑖𝑛(𝑀𝑜𝑑𝑒𝑙, 𝐷𝑎𝑡𝑎𝑡𝑟𝑎𝑖𝑛 , 𝐻𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)                   [eq. 24] 

This represents the training of the model using the training dataset and a set of 
hyperparameters. 

Performance Evaluation 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑀𝑜𝑑𝑒𝑙𝑡𝑟𝑎𝑖𝑛𝑒𝑑 , 𝐷𝑎𝑡𝑎𝑣𝑎𝑙)                                [eq. 25] 

This equation illustrates the evaluation of the trained model's performance using the validation 
dataset, which is crucial for preventing overfitting and tuning the model's hyperparameters. 

Hyperparameter Optimization 

Hyperparameter Optimization (E.G., Grid Search) 

𝐇𝐲𝐩𝐞𝐫𝐩𝐚𝐫𝐚𝐦𝐞𝐭𝐞𝐫𝐬𝐨𝐩𝐭𝐢𝐦𝐚𝐥 = 

argmaxHyperparametersevaluate(Model, Dataval, Hyperparameters)             [eq. 26] 

The equations [1-26] reflect a high-level abstraction of the deep learning model development 
process, focusing on the essential components of data processing, feature engineering, model 
design, and optimization in the context of IoT security. The progression of a deep learning 
model for IoT network security involves several crucial steps. It begins with data collection 
and preprocessing, where a dataset comprising both benign and malicious IoT network traffic 
or malware samples is gathered. This dataset is then cleaned, normalized, and transformed to 
be suitable for deep learning analysis. Next is feature engineering, where key features that can 
distinguish between benign and malicious entities are extracted, and techniques like 
dimensionality diminution are applied to manage the intricacy of the data. The third step 
involves selecting an appropriate deep learning model, such as CNNs or RNNs, and designing 
its architecture, including layer types and activation functions. Ultimately, the model is trained 
using the processed data, with a focus on optimizing hyperparameters to enhance its 
performance. This training involves splitting the data into subsets for training, validation, and 
testing, ensuring the model is robust and accurate in identifying security threats in IoT 
networks. 

Machine Learning Vs. Deep Learning In Iot Security 

In comparing machine learning (ML) and deep learning (DL) in the context of IoT security, 
it's crucial to recognize their distinct roles and capabilities (Thakkar & Lohiya, 2020), (Sharmaet 
al., 2021), (Sarker et al., 2022),  (Alex et al., 2023). ML, encompassing both supervised and 
unsupervised approaches, has been instrumental in addressing various security challenges in 
IoT. Supervised methods like Decision Trees (DTs), Support Vector Machines (SVMs), Naive 
Bayes (NB), K-Nearest Neighbors (KNN), Random Forests (RF), and Ensemble Learning 
(EL) are adept at classifying and predicting based on labeled data. Unsupervised techniques, 
such as k-means clustering and Principal Component Analysis (PCA), excel in anomaly 
detection and pattern discovery without prior labeling. 

Deep learning, an advanced subset of ML, extends these capabilities through its hierarchical 
learning approach. In supervised contexts, deep learning employs ANNs, CNNs, and RNNs 
to analyze complex and high-dimensional data. Unsupervised deep learning methods like AEs, 
RBMs, and DNMs are highly effective in feature extraction and data representation. Hybrid 
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approaches, including GANs and Ensemble Deep Learning Networks (EDLNs), leverage the 
strengths of both supervised and unsupervised learning for enhanced performance. 

Table 6 offers a comprehensive comparison of ML and DL models within the scope of IoT 
security, addressing various attack surfaces: the Perception, Network, and Application Layers. 
The Perception Layer, also known as the physical layer, involves data collection via sensors and 
actuaries. It faces threats like false data injection and device identity spoofing. To combat these, 
strategies like data validation, robust authentication protocols such as IEEE 802.15.4, and 
cryptographic algorithms are utilized to ensure data integrity and mitigate tampering risks. 

At the Network Layer, which facilitates data transmission between devices and the cloud, 
vulnerabilities include routing, jamming, and DDoS attacks. Enhancing security here involves 
fortifying IoT communication protocols like MQTT and CoAP with TLS/SSL encryption and 
secure routing protocols. Machine learning models play a pivotal role in detecting anomalies in 
network traffic, indicative of potential cyberattacks. 

The Application Layer, the interface for data processing and user interaction, is susceptible to 
malware and intrusion attempts. Protocols like OAuth and HTTPS are crucial for maintaining 
secure communication and authorization. In this context, DL models like CNNs and RNNs 
are increasingly employed for their advanced intrusion detection capabilities and for analyzing 
anomalous behaviors, adapting to new threats. 

Table 6Comparative Analysis of Machine and Deep Learning Models for IoT Security Across 
Various Attack Surfaces. 

Threats/Security 
Application 

ML: Supervised 
Approaches 

ML: 
Unsupervised 
Approaches 

DL: Supervised 
Approaches 

DL: 
Unsupervised 
Approaches 

DL: Hybrid 
Approaches 

Routing Attack 
Detection ✔ ✔ ✔ ✔ ✔ 

Signal Disruption 
Attacks ✔ X ✔ ✔ ✔ 

Incorrect Information 
Insertion ✔ X ✔ ✔ ✔ 

Penetration Discovery ✔ ✔ ✔ ✔ ✔ 

Malicious Conduct 
Identification ✔ ✔ ✔ ✔ ✔ 

Information 
Manipulation ✔ ✔ ✔ ✔ ✔ 

Deception Attack 
Identification ✔ X ✔ ✔ ✔ 

Malicious Software 
Discovery ✔ X ✔ ✔ ✔ 

Impersonation Attacks ✔ X ✔ ✔ ✔ 

Cyberattacks ✔ ✔ ✔ ✔ ✔ 

Network Irregularity 
Identification ✔ ✔ ✔ ✔ ✔ 

DDoS Attack 
Identification ✔ ✔ ✔ ✔ ✔ 

Verification ✔ X ✔ ✔ ✔ 

IoT Device 
Recognition ✔ X ✔ ✔ ✔ 

The Table 6 underscores the efficacy of both ML and DL models in addressing IoT security 
challenges. Super-vised ML methods are versatile but often rely on extensive labeled data. 



3446 Securing the Evolving Iot with Deep Learning: A Comprehensive Review 

www.KurdishStudies.net 
 

Unsupervised ML is adept at uncovering hidden patterns, though its effectiveness may vary 
with specific threat types. DL models, in both supervised and unsupervised forms, excel in 
processing complex, large-scale data. Hybrid DL methods offer a synergistic approach, 
blending the strengths of both supervised and unsupervised learning for robust security 
solutions in even the most challenging scenarios. This detailed analysis serves as a vital resource 
for computer science researchers in picking the seemliest models for specific security 
challenges in the IoT landscape. 

Datasets and Tools for Iot Security 

Selecting the right datasets is a critical factor in the efficacy of  deep learning models in IoT security. 
A variety of  datasets, including NSL-KDD, UNSW-NB15, BotnetIoT-01, BotIoT, TON-IoT, 
Edge-IIoT, UNSW2015, IoT-23, MQTTSet, MQTT-IoT-IDS2020, Large-scale Urban IoT Activity 
Data, and IoT Traffic Dataset for Zigbee Protocol, provide a range of  features and challenges for 
these models (Wang et al., 2022),  (De Keersmaeker et al., 2023),  (Bellman & van Oorschot, 2023). 
These datasets vary in their feature selection techniques; while NSL-KDD and UNSW-NB15 offer 
extensive features necessitating complex selection methods, IoT-23 and MQTTSet focus on IoT-
specific features, offering simplicity but less diversity. 

Datasets such as TON-IoT and Edge-IIoT, which include Netflow features, are invaluable for 
anomaly detection in IoT networks, but processing these features can be resource-intensive. 
Addressing class imbalances in datasets like BotnetIoT-01 and BotIoT is crucial, often requiring 
techniques like oversampling or synthetic data generation, which, while effective, can introduce bias. 
The size and diversity of  a dataset, such as UNSW2015 and Large-scale Urban IoT Activity Data, are 
fundamental for model generalization, though they come with higher computational demands. 

The computational load is a concern, especially with large and complex datasets like the IoT 
Traffic Dataset for Zigbee Protocol. Detection rates and accuracy also differ among datasets; 
for instance, MQTT-IoT-IDS2020 is known for high accuracy but might not fully capture the 
complexity of real-world scenarios. Certain datasets are designed for specific IoT scenarios, 
like Edge-IIoTSet for edge computing, limiting their broader applicability. 

A key limitation in current datasets is their inability to fully represent the dynamic nature of  real-
world IoT environments and the evolving spectrum of  cyber threats. Therefore, the ideal dataset 
to combat IoT cybersecurity threats should blend a variety of  real-world data, IoT-specific features, 
and diverse attack scenarios. It should comprehensively cover different IoT devices and protocols 
and include both time-series and network flow data for a complete analysis. 

Looking forward, the development of IoT cybersecurity datasets should lean towards 
integrating real-time data, encompassing a wider array of IoT protocols and devices, and 
keeping pace with changing threat landscapes. Emphasizing datasets that replicate the 
dynamics of actual IoT networks, including edge computing scenarios, will be vital. 
Encouraging the formation and growth of open-source communities for sharing and 
collaboratively enhancing datasets will be instrumental in advancing the development and 
validation of deep learning models in IoT security. 

Future of Iot Security with Deep Learning 

Based on earlier discussions, we foresee following DL enabled IoT cybersecurity paradigm: 

a) DL models can be trained on diverse data types, including text, images, and sensor 
readings, to provide a more comprehensive view of IoT network activity. 
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b) Active learning techniques are/can be employed to optimize the data collection process 
for DL models, minimizing the amount of data required for training while maintaining 
model performance. This approach reduces storage and computational overhead, 
particularly in resource-constrained IoT environments. 

c) Emerging trends and advanced technologies are set to significantly enhance the landscape 
of IoT security, particularly through the integration of deep learning. Federated Learning 
(FL) emerges as a key innovation, facilitating a decentralized approach to training deep 
learning models across multiple IoT devices. This method maintains data privacy by 
keeping the training data localized, thus improving the security architecture without 
compromising data privacy. In FL framework, Differential Privacy plays a vital role by 
mathematically ensuring the protection of individual data points during analysis, adding a 
layer of security by preventing sensitive information disclosure in deep learning outputs. 

d) Explainable AI (XAI) is revolutionizing deep learning in IoT security by ad-dressing the 
challenge of model transparency. With XAI, the decision-making processes of AI models 
become interpretable and accountable, crucial for gaining trust and adhering to regulatory 
standards. This transparency is especially important for IoT security, as it allows for the 
identification of biases and ensures fairness in automated decisions. 

e) Blockchain technology contributes significantly to this security paradigm by providing a secure, 
transparent, and tamper-proof  system for recording transactions and managing IoT device 
identities. Its integration with IoT and deep learning creates a robust framework for verifying and 
tracing data ex-changes, greatly reducing unauthorized access and tampering risks. 

f) Complementing these is Edge Computing, which optimizes data processing by performing it 
closer to the data source. This reduces latency and limits data exposure, enhancing the efficiency 
of  real-time security analyses and decision-making in deep learning models. Edge computing, 
therefore, plays a critical role in enabling swift responses to security threats in IoT environments. 

g) Privacy-preserving techniques can/will be integrated into DL algorithms to ensure the 
protection of sensitive data in IoT environments. These techniques enable secure 
processing and analysis of data without compromising privacy, addressing concerns about 
data breaches and unauthorized access. 

h) GNNs are gaining attention in IoT cybersecurity due to their ability to effectively model 
and analyze the complex relationships and interactions between IoT devices in a network. 
GNNs can identify patterns and anomalies in net-work traffic and device interactions, 
enabling early detection of cyberattacks and potential security vulnerabilities. 

i) DL-powered self-healing capabilities (i.e., autonomic behavior) can be incorporated into 
IoT networks to enable automated recovery from cyberattacks. These self-healing 
mechanisms can detect and isolate compromised devices, remediate vulnerabilities, and 
restore normal network functionality without requiring manual intervention. 

j) DL can be applied to address security challenges in Cyber-Physical Systems (CPS), which 
integrate physical infrastructure with computational elements. DL-based anomaly 
detection and threat identification can protect critical infrastructure from cyberattacks that 
could disrupt essential services and cause significant damage. 

k) Lightweight DL models can be developed specifically for resource-constrained IoT 
devices, enabling real-time threat detection and anomaly analysis without compromising 
device performance or energy consumption. These models are tailored to the limited 
processing power and memory constraints of IoT devices. 

l) Hardware accelerators, such as Field Programmable Gate Arrays (FPGAs) and 
Application-Specific Integrated Circuits (ASICs), can be employed to accelerate DL 
computations in IoT devices, enabling real-time security processing and reducing latency. 
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m) Adversarial Machine Learning (AML) techniques can be used to enhance the robustness 
of DL-powered IoT security systems against evasive attacks. These techniques enable 
models to detect and defend against attacks that attempt to manipulate or obfuscate data 
to evade detection. 

Consequently, the convergence of these advanced technologies with deep learning promises a 
transformative impact on IoT security. Federated Learning and Differential Privacy will 
strengthen data privacy, XAI will provide much-needed transparency, Blockchain will 
secure data transactions, and Edge Computing will enable faster, more efficient threat 
responses. Collectively, these technologies formulate a comprehensive and advanced 
approach to safeguarding IoT ecosystems against the dynamic array of cybersecurity 
challenges. 

Challenges and Limitations 

While the adoption of deep learning in IoT cybersecurity marks a significant advancement, it 
is not without its technical and ethical challenges, as well as certain limitations in the existing 
research. Most prominent of the technical issues are as follows: 

a) Deep learning models, particularly advanced ones like CNNs and RNNs, re-quire 
substantial computational power and memory, challenging for re-source-limited IoT 
devices. This dependence on cloud or edge computing can introduce latency and new 
security risks during data transmission. 

b) Effective training of deep learning models necessitates large volumes of high-quality, 
characterized data. In IoT cybersecurity, acquiring such data is problematic due to privacy 
concerns and the sensitive nature of security data. Also, the need for continual model 
updates to combat evolving cyber threats poses challenges in maintaining model 
effectiveness. 

c) The application of deep learning in IoT can lead to potential privacy breaches, necessitating 
strict data anonymization and adherence to privacy regulations like GDPR and HIPAA. 
There's also the risk of biased outcomes from AI models if the training data is not 
representative of real-world scenarios. 

d) Deep learning models in IoT cybersecurity are often "black-boxes" with non-transparent 
decision-making processes. This lack of explainability is problematic in security contexts 
where understanding model predictions is crucial. 

e) Current research primarily addresses conventional cyberattack patterns, with limited 
attention to more sophisticated or emerging attack vectors. This focus might leave IoT 
systems vulnerable to new types of cyber threats. 

f) There's a significant requirement for research that integrates deep learning theory, 
cybersecurity expertise, and IoT technology. Much of the existing re-search is conducted 
in isolation, potentially leading to solutions that aren't fully practical in real-world IoT 
environments. Collaborative research efforts are essential to develop holistic cybersecurity 
solutions for the IoT landscape. 

Conclusion and Future Directions 

In the domain of IoT cybersecurity, the integration of DL has catalyzed significant 
advancements, particularly in enhancing anomaly detection, IDS, and malware recognition. 
Deep learning architectures like CNNs and RNNs have demonstrated remarkable efficacy in 



Tariq, Ahmed, Bashir, Khan 3449 

Kurdish Studies 
 

extracting intricate features from high-dimensional IoT data, crucial for identifying and 
neutralizing sophisticated cyber threats. Advanced DL models, including GNNs and 
Transformer Models, are emerging as potent tools for understanding complex IoT network 
interactions and predicting potential vulnerabilities. These models, leveraging attention 
mechanisms, excel in interpreting inter-device relation-ships, are vital for comprehensive IoT 
security frameworks. 

Future research in DL for IoT cybersecurity is poised to focus on developing lightweight, 
efficient models suitable for deployment in resource-constrained IoT de-vices, ensuring real-
time threat detection without compromising performance. The exploration of Federated 
Learning and Edge Computing paradigms is crucial for maintaining data privacy while 
facilitating decentralized model training and faster decision-making. Moreover, the integration 
of XAL will be pivotal in ensuring transparency and trust in DL-driven security solutions. 
Continuous advancements in adversarial learning are expected to bolster DL model resilience 
against sophisticated evasion techniques. Addressing the challenges of dynamic IoT 
environments and evolving cyber threats, future research will likely converge on optimizing 
DL models for greater scalability, efficiency, and adaptability, ensuring robust protection for 
increasingly complex IoT ecosystems. 
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