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A B S T R A C T

The massive growth of diversified smart devices and continuous data generation poses a challenge to commu-
nication architectures. To deal with this problem, communication networks consider fog computing as one of
promising technologies that can improve overall communication performance. It brings on-demand services
proximate to the end devices and delivers the requested data in a short time. Fog computing faces several issues
such as latency, bandwidth, and link utilization due to limited resources and the high processing demands of end
devices. To this end, fog caching plays an imperative role in addressing data dissemination issues. This study
provides a comprehensive discussion of fog computing, Internet of Things (IoTs) and the critical issues related to
data security and dissemination in fog computing. Moreover, we determine the fog-based caching schemes and
contribute to deal with the existing issues of fog computing. Besides, this paper presents a number of caching
schemes with their contributions, benefits, and challenges to overcome the problems and limitations of fog
computing. We also identify machine learning-based approaches for cache security and management in fog
computing, as well as several prospective future research directions in caching, fog computing, and machine
learning.

1. Introduction

Currently, the number of heterogeneous smart devices is exponen-
tially increasing, using the idea of the Internet of Things (IoT) to connect
everything together [1]. In IoT, diversified devices such as smart-phone,
smart meters, sensors, Personal Digital Assistants (PDAs), and smart ve-
hicles are connected through the Internet to communicate and exchange
different kinds of information. Such devices' interconnection facilitates
modern IoT-based applications such as energy management, product
tracking, patient surveillance, and environment monitoring [2]. Indeed,
IoT plays a significant role in multiple domains including e-health-care
[3], smart city, intelligent transportation [4], smart grid [5], disaster

management, smart homes, and industrial automation. It comprises the
new interaction between humans and things to deliver new services and
infrastructures that can improve the quality of modern life. In addition,
the increasing of heterogeneous connected devices and IoT-based ap-
plications leads to excessive data generation with many computing re-
sources such as communication bandwidth, storage, power, and energy
[6]. According to Cisco's latest forecast, 50 billion devices will be con-
nected through the Internet at the end of 2021 and this number will reach
500 billion by 2025 [7]. Therefore, a gigantic amount of data is contin-
uously producing and this amount will reach up to 500 zettabytes within
2021 [6]. According to the global data centers, the IP data traffic alone
will reach up to 10.4 zettabytes, with IoT-based environments generating
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45% of data, that will be processed, stored, and analyzed at the network
edge [8].

Concerning the heterogeneity, some IoT-based applications demand
fast data dissemination, are associated with generating a large amount of
data volume that could be abundant for the network, and some include
private information that should be cached and processed nearby the
clients [9]. Besides, IoT-based smart devices are used to collect and
transmit multimedia-related data such as voice, photos, and videos,
which usually consume a large number of network resources. Conse-
quently, such type of data results in high network congestion and max-
imizes the processing load on the control system and devices [10]. To
address such challenges of IoT-based environments, fog computing has
recently been combined with IoT applications to bring the data pro-
cessing and caching facilities nearby the end-users [11]. Indeed, fog
computing distributes the available computing resources (caching, data
processing) at the network edges [12,13].

Fog computing is a distributed computing infrastructure that uses IoT
devices at the network edges to perform extensive communication
through caching facilities collaboratively. It is a most flexible approach to
connect the fog nodes with IoT devices that can minimize the processing
burden on a device and data retrieval latency for the delay-sensitive
applications [14]. Moreover, it can save bandwidth and resources
(power and energy). Fog computing is the extension of cloud computing
that was developed to distribute computing resources and services close
to the consumers. It offers a local cache with data processing capabilities
and fulfills the subsequent end-consumers requirements quickly [15].
However, cache management in a fog networks have several challenges.
For example, fog computing offers or sales by service providers who want
to increase their revenue. Therefore, a critical issue is to incentivize the
content providers to sell their fog-based resources concerning the user
Quality of Service (QoS).

Besides, fog computing has limited capacity and resources (cache) to
efficiently allocate resources to the end-users. Efficient content caching is
the core part of fog computing. Therefore, low-quality-based caching
schemes can increase the burden on the network and consumes more
resources. As an emerging technique, fog network has been increasing
the demands for efficient caching schemes. Moreover, the caching
schemes should be compatible with IoT-based applications [16]. In
addition, the cache-based side channel attacks and data security for the
authorized user become a challenge in cache of fog computing [17].
Therefore, Machine Learning (ML) is considered as a promising solution
to cope with these challenges, and recently, it has gained significant
attention from the research community. ML uses stochastic gradient
descent to identify the optimal solution for complex problems [18]. In
ML, several flexible techniques have been proposed to provide security
and a centralized location for raw data processing. Besides, ML-based
schemes facilitate and maximize the performance of each fog node to
make the right decisions by caching the right data items. In addition, ML
is the most suitable approach to predict the user demands and map the
users’ inputs with the outputs actions. Moreover, it is used to improve the
overall caching performance of a network by identifying the end-users
requirements to discover early information from a large number of
content streams [19]. The main contributions of the present study are
summarized as follows:

� We present a background and overview of fog computing with IoTs in
which the adaptation of cloud to fog and their challenges are
determined.

� A critical review of existing and related surveys is defined with their
contributions and limitations.

� The collaboration and relationship between fog computing and IoT
are analyzed for fog-based IoTs environments.

� A review of caching techniques that were developed to improve the
fog networks is discussed.

� This survey provides detailed knowledge about the challenges of fog
computing and identifies their solutions using caching techniques.

� We also present the role of caching techniques to improve the quality
of service in IoT based fog computing.

� We introduce the contributions of caching to achieve high perfor-
mance of IoT-based fog networks in terms of latency, offloading,
energy/power consumption, cost reduction, efficient scheduling,
bandwidth minimization, and backhaul link utilization.

� A detailed survey is presented on Machine learning-based techniques
to improve the cache management and security risks in fog
computing.

� Finally, we collect the issues essential to be addressed and determine
important future research direction. Fig. 1 illustrates the taxonomy of
this survey.

The paper is categorized as follows. Section 2 presents the back-
ground and overview of the computing paradigm. Section 3 describes the
critical analysis of related surveys. Section 4 provides knowledge about
the collaboration of fog computing with IoT. Section 5 presents the
caching concept and fog-based caching schemes. Section 6 describes the
caching contributions and schemes to overcome the fog computing par-
adigm's challenges. Section 7 provides a review of ML-based techniques.
Section 8 refers to the summary of security risks and insights of fog
computing, caching solutions, caching challenges, and the benefits of ML-
based caching techniques. Section 9 presents an overview of issues and
future research directions. Finally, in Section 10, we conclude the paper.
Table 1 shows the notations and corresponding acronyms.

2. Background and overview

Cloud computing is considered as a resourceful approach to process
data due to its flexible storage and power computation characteristics.
Most of the computations are executed in the cloud because cloud
computing supports a centralized model. Consequently, all the dissemi-
nated data is transmitted through the centralized cloud [20]. Therefore,
the network links become congested as a large amount of data are
transferred, leading to bottlenecks in cloud computing. This may also
result in increased data retrieval latency. Besides, some IoT-based ap-
plications need mobility support and quick response, such as
latency-sensitive applications, smart transportation, smart health-care,
smart grid [32,33]. All these applications need emergency responses
without delay in transferring data. In addition, some decisions could be
taken locally instead of having them in the cloud. However, if there is a
need to decide between clouds, there is no need to transfer entire data to
the cloud for processing [34]. The reason is that the entire data is not
needed for making decisions and analysis. However, the extensive
growth of IoT has been imposing serious challenges for the cloud services
in which latency, bandwidth, privacy, and reliability are the most diffi-
cult to be resolved by using the current cloud computing architecture
[21].

To cope with these challenges, the cloudlet was proposed, in which
computing resources are distributed as proximity to the consumers for
having local processing and storage. It reduces the dissemination cost by
minimizing transferring data and decreasing data retrieval latency by
processing data near the consumers. Moreover, in cloudlet, the optimal
offloading approach reduces the computation and communication costs
as well [35]. However, the cloudlet can only be accessed through WiFi
access points, which typically have a small coverage area and therefore
do not provide ubiquitous computing. Compared to cloud computing, the
cloudlet is resource-constrained and cannot meet the requirements of
resource provisioning and stable services. As a result, Mobile Cloud
Computing (MCC) was developed to provide cloud-based resources and
services to mobile consumers and make cloud computing advantageous
for the end-users. Some tasks are partially performed at the device con-
nected to the network edges in MCC [36]. In contrast, the cloud is syn-
chronized for data archival [22]. However, MCC is considered to be
resource-constrained in terms of physical devices. After all, they have
limited cache storage and are resource-constrained in terms of physical
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devices because they have limited cache and power capacities [37]. If
there is a need to handle multiple IoT-based applications, it will lead to
resource contention and increased data processing latency.

Therefore, to address the challenges of cloud computing and cloudlet,
fog computing, which is an integrated cloud-centric and network edge
device to perform data processing and storage, has recently been
designed to enable a more efficient computing architecture. Geographi-
cally, it is distributed computing connecting diversified devices at the
network edges to provide communication, computation collectively, and
storage services [37]. Salvatore J, Stolfo expressed the word fog
computing, which was later widely introduced by Cisco, is now accepted
worldwide. It is a distributed form of cloud computing that brings out the
computing resources (storage, data processing) and services to the
network edges [38]. Besides, it allows the applications to run at the
end-consumers’ devices. As a result, the service latency is reduced, and
Quality of Service (QoS) and Quality of Experience (QoE) are enhanced
[39]. Fog computing works as a bridge between the cloud and things by
providing faster data processing and minimizing overall network costs
[23,40]. It supports several applications such as time-critical and Internet
of Everything (IoE). Therefore, fog computing can efficiently meet the
demands of the latency-sensitive and real-time applications by reducing
network resources and bandwidth usage. Table 2 illustrates the summary
of different computing architectures with their contributions, benefits,
and limitations.

Regarding fog computing structure, an additional resourceful layer is

added between the cloud and end-devices to address the present chal-
lenges of cloud computing [41]. Besides, it delivers efficient computing
services with multiple qualities of high reliability, low latency, mobility,
high security, and interoperability. It composes many fog nodes, in which
a data management system, multiple edge-devices, and edge data centers
are involved in making a complete fog platform [42]. The consumers and
devices are connected to fog nodes through wireless mediums, such as
5G, Bluetooth, and WiFi. The data is primarily processed at fog nodes,
and then it sent to the cloud data center to perform further processing and
storage. Therefore, fog computing plays an important role in providing
efficient traditional cloud computing services to network edges and
making the computing architecture more affluent [43]. Fig. 2 illustrates
the emerging architectures of cloud and fog computing. The end-users
and devices are connected to the distributed fog nodes to collect the
computing resources and services.

3. Related studies

According to the recent surveys on fog-based computing architecture,
the researchers focus on reviewing fog computing definition, related
concepts, and representative applications. Besides, they highlight the
provided services, virtual functionality, and architecture issues regarding
the design and implementation of the fog system. In a survey by Yi et al.
[24], a detailed description of fog computing fundamentals is provided.
In addition, fog approaches, usage of resources, and services are

Fig. 1. Paper taxonomy.
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summarized to identify the problems such as bandwidth, latency, and
energy consumption.

Kitanov et al. [25] a survey in which a review on fog computing, 5G,
and their related technologies is presented. Furthermore, this survey
describes trustworthy fog computing services for the beyond 5G tech-
nology and virtual functionality for fog computing. Hu et al. [26] survey
presents a summarized overview of fog computing and its key technol-
ogies such as naming, storage, communication, privacy, and security.
Moreover, it provides details about the open issues, challenges, and ap-
plications of fog computing. Mukherjee et al. [27] present a detailed
description of the fundamental of fog computing. Also, fog approaches,
resources, and services are summarized to identify the problems such as
bandwidth, latency, and energy consumption. In a study by Bellavista
et al. [28], the main applications of IoT and their requirements to work
with fog computing are described. Furthermore, an overview of the
related proposal and integrated platformwith fog computing is presented

in this survey. Martinez et al. [29] present a survey on the realization and
implementation of fog systems in which different aspects of fog
computing such as designing, infrastructure resources provisioning of fog
computing for IoT-based applications, and resource allocation are
described.

Recently a survey by Islam et al. [30] is conducted to explain
context-aware scheduling techniques in fog computing comprehensively.
Moreover, this survey presents a comparison of scheduling-based tech-
niques based on performance metrics, context-aware, evaluation tools,
and case studies. Further, the context-aware parameter analysis, perfor-
mance metrics, and taxonomy are described in detail. Challenges and
issues of fog computing also are defined in this study. The study by
Junaid et al. [31] recently is conducted to describe the ML-based tech-
niques for edge networks and determines the factor to improve the
caching objectives such as content caching location and replacement.
However, based on the current prospective and aim of the present study,

Table 1
Notations and acronyms.

Notations Acronyms Notations Acronyms

Personal Digital Assistants PDAs Computation Caching Policy CCP
Quality of Service QoS Cache-Based Approach CBA
Machine Learning ML Internet Service Provider ISP
Mobile Cloud Computing MCC Social Aware Edge Caching SAEC
Quality of Experience QoE Cost-Aware CoA
Internet of Everything IoE Efficient Caching Method ECM
World Wide Web WWW Cloud Radio Access Network CRAN
Wireless Local Area Network WLAN Fog Radio Access Network FRAN
Cyber-Physical System CPS Ultra-Dense Network UDN
Steiner Tree-based Caching STC Remote Radio Heads RRHs
Steiner Tree ST Central Processing CP
Device to Device D2D Mobile Social Networks MSNs
Genetic Algorithm GA Most Popular Cache (MPC) MPC
Smart Collaborative Caching SCC Capacity Aware Edge Caching CAEC
Information-Centric Networking ICN Supervised Learning SL
Secure Caching Scheme SCS Un-supervised Learning UL
Mobile Social Network MSN Conventional Neural Network CNN
Energy Efficient Proactive Caching EEPC Bidirectional Deep-recurrent Neural Network BRNN
User Terminal UT Similarity-based Learning Approach SLA
Access Point AP Transfer-based Learning Approach TLA
Semi Define Relaxation SDR Recommendation-based Q Learning RQL
Mobile User Equipments MUEs Popularity Prediction-based Caching Strategies PPCS
Deep Learning-based Content Caching ABC Reinforcement Learning-based Caching Strategies RLCS
Capacity Aware Edge Caching CAEC Reinforcement Learning RL
Edge Cache Hit Ratio ECHR Federated-based Learning FL
Energy-Efficient Caching EEC Application Programming Interfaces APIs
Application Based Caching DLCC Popularity-based Caching Scheme PCS
Deep Learning DL Cooperative Content Caching CCC
Wireless Sensor Network WNS Combinatorial Multi-Armed Bandit CMAB

Table 2
Computing architectures.

Name Contributions Benefits Limitations

Cloud
Computing
[20]

It is considered as a resourceful centralized approach
to process data due to its flexible storage and power
computation characteristics

It provides a centralized platform to process data
using robust storage and computational resources

For latency sensitive applications, it has some
limitations like latency, bandwidth, and privacy

Cloudlet [21] It is proposed to provide computing resources that
are distributed in proximity to the consumers for
local processing and storage

It minimize the cost of transferring data and latency
by processing data near the consumers

It can only be accessed through WiFi access points,
which typically have a small coverage area and
therefore do not provide ubiquitous computing

Mobile Cloud
Computing
[22]

It is developed to provide cloud-based resources and
services to mobile users and make cloud computing
advantageous for the end-users

Some tasks are partially performed at the device
connected to the network edges in MCC and the
latency is minimized

It is considered to be resource-constrained due to
constrained oriented devices to handle multiple
applications and increase processing latency

Fog Computing
[23]

It is an integrated cloud center and network of edge
devices to perform data processing and storage to
make a more effective computing architecture.
Geographically, it is distributed computing,
connecting diversified devices in which diversified
devices are connected at the network edges to
provide communication, storage collectively, and
computational services. It works as a bridge between
the cloud and things by providing faster data
processing and minimizing overall network cost

It brings out the computing resources and services
to the network's edges. Moreover, it allows the
applications to run at the end-consumers devices to
reduce the service latency and improve Quality of
Service (QoS). Fog computing can efficiently meet
the demands of latency-sensitive and real-tim
applications by reducing network resources and
bandwidth usage. It supports several applications
such as time-critical and Internet of Everything

Regarding fog computing structure, an additional
resourceful layer is added between the cloud and
end-devices to address the present challenges of
cloud computing. It composes many fog nodes, in
which a data management system, multiple edge-
devices, and edge data centers are involved in
making a complete fog platform. It has less storage
and resources as compared to cloud computing
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this article does not provide content caching mechanisms and the con-
tributions of caching in fog networks. These surveys neither describes the
caching module of fog computing in detail nor discuss its contributions
and advantages, as shown in Table 3. However, the present study pro-
vides a comprehensive overview of caching modules and their contri-
butions to enhancing the performance of fog computing architecture.
Moreover, this study provides knowledge on how caching improves the
data dissemination performance of fog nodes. Besides, several caching
techniques are described to address the key issues of fog computing, such
as data transmission latency, data offloading, bandwidth consumption,
link utilization, and energy consumption.

4. Collaboration of fog computing with IoT

IoT is an incredible transformation of the connected trend that is
broadly accepted throughout the world. Just the World Wide Web
(WWW) was developed to connect computers and people to the Internet,
the IoTs are used to connect all places. Indeed, it can interconnect the
environments, machines, people, and devices. Moreover, it provides
Internet services for the QoS, minimizing the complexity of integrating
the physical world with the communication systems. Indeed, it extends
the communication services of current Internet technologies, connecting
the diversified things (devices and objects) and facilitates their dissem-
ination of the required information [44]. In addition, these connected
devices can think, learn, understand, and make decisions about the
physical and social world. It is expected that the connected things will
behave as autonomous agents and will be able to sense and analyze the
environments to make intelligent decisions to accomplish the goals [45].

To achieve the communication goals, an intelligent agent needs to
deployed that has the ability to sense the heterogeneous environments to
learn and cooperatively adopt scalable and secure intelligent services. In

these circumstances, fog computing plays a significant role in improving
and achieving the IoT goals [46]. It provides a decentralized platform and
extends the cloud services to the network edges analysis and processing
on smart IoT-based devices, rather than sending data to the traditional
cloud. It is the most promising approach for IoT-based applications as it is
used to determine incoming data in real time and works within a limited
bandwidth. As a result, several benefits can be obtained, such as less
resource usage, less complexity, and higher efficient power and lower
energy usage. Moreover, fog computing delivers hierarchical-based
three-layers architecture for provides efficient computing services to
the IoT end devices [47]. The three layers are the terminal layer, fog
layer, and cloud layer, as shown in Fig. 3. The terminal layer is respon-
sible for extending cloud computing services for the end devices and is
located near the end-consumers physical environment. It comprises
several IoT-based smart devices, such as mobile phones, sensors, smart
vehicles, readers, and smart cards, which devices are used to sense the
data to process and transmit the sensed data to the upper layer.

The fog layer is composed of a large number of distributed fog nodes,
where gateways, access points, routers, switches, fog services, and base
stations are merged. This layer is located at the network edge, where fog
nodes are extensively dispersed among the end-devices and cloud layers,
e.g., bus terminals and shopping centers. The end devices are connected
to the fog nodes to obtain the computing services [48]. Both (devices and
fog nodes) can perform the computing operation, such as process,
transmit, and caches the incoming data. Usually, it is static, performing
computing operations from a fixed location, and it can be dynamic
(mobile), operating from a moving carrier. Indeed, the fog layer provides
cloud resources at the network edges and performs real-time analysis to
achieve latency-sensitive applications.

The cloud layer comprises several servers and storage devices that
offer high-performance computing resources and services to various

Fig. 2. Computing architecture.
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applications, such as smart transportation, smart home, and smart fac-
tories. It has powerful computing resources to perform extensive
computation analysis and provides storage to permanently store a huge
amount of data [49]. In this computing architecture, each device is
connected with a fog node, using a wired connection or wireless me-
diums, such as WiFi, 4G, 5G, Bluetooth, ZigBee, and Wireless Local Area

Network (WLAN). Each fog node can be contented by using wired or
wireless connections to the wireless communication technologies (WiFi,
4G, 5G, Bluetooth, ZigBee). It is connected to the cloud through an
IP-based network. Moreover, this architecture technically supports the
Cyber-Physical System (SPC), IoTs, and mobile networks to provide data
storage and processing. Fog computing enhances data dissemination,

Table 3
Goals and limitation of related studies.

Year References Main Focus/Goals Limitations

2015 Yi et al. [24] In this survey, the fog computing definition and its related concepts and
representative applications are discussed. It highlights the issues of
architecture regarding the design and implementation of fog systems

provides a general overview of fog computing architecture, and this survey
is limited to the design and implementation of fog systems. It does not
provide any detail regarding caching and its implementation

2016 Kitanov et al.
[25]

A review on fog computing, 5G, and related technologies are provided in
this survey. Furthermore, in this survey, trustworthy fog computing services
for the beyond 5G technology and virtual functionality for fog computing
are also described

It provides a general overview of fog computing trustworthy technologies
for the beyond 5G networks. This study is limited to the introduction of fog-
based services to make hybrid environments. However, it lacks of caching
knowledge

2017 Hu et al. [26] This survey summarizes the naming, storage, communication, privacy, and
security and provides details about the open issues, challenges, and fog
computing applications

This survey is limited to detailing the key technologies of fog computing like
security, privacy, protection, communication. However, it presents a
summary of the storage technology applied in fog computing

2018 Mukherjee
et al. [27]

A detailed description of the fundamentals of fog computing is presented.
Besides, fog approaches, resources, and services are summarized to
determine critical problems like bandwidth and latency

This survey provides state-of-the-art fog computing network application and
research aspects. Indeed, this survey is limited to the basic introduction,
research trends, and challenges of fog computing

2019 Bellavista
et al. [28]

In this survey, the main applications of IoT and requirements to work with
fog computing are described. Furthermore, an overview of the related
proposal and integrated platform with fog computing is presented in this
survey

This survey describes the IoT-based applications and domains integrated
with the fog platform. It is limited to emerging technologies of fog
computing and IoT environments. It does not provide any description of fog
caching modules

2020 Martinez et al.
[29]

A detailed description of the realization and implementation of fog systems
that includes designing, infrastructure resources provisioning of fog
computing for IoT-based applications, and resource allocation are presented
in this survey

In this survey, the design of fog computing and its application for IoT-based
environments are discussed. However, It lacks caching-based technologies.
It is limited to the basic architecture of fog computing and its installations

2021 Islam et al.
[30]

This survey presents comparison and performance of scheduling-based
techniques on the basis of performance metrics, context-aware, evaluation
tools, and case studies

It provides knowledge about fog computing based scheduling techniques as
well as comparison, metrics, and tools. It lacks of fog computing based
caching and its implementations

2021 Junaid et al.
[31]

This survey presents the ML-based caching techniques, the role of NFV, 5G,
and SDN in the edge caching system

It describes multiple factors of ML-based techniques and defines the caching
objectives such as location and replacement

Fig. 3. Three-layer computing architecture.
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storage efficiency, and QoS in terms of data explosion [50]. Fog
computing offers multiple services to the IoT-based environment [51].
For instance, data distribution, scalability, mobility, location, real-time
execution, standardization, and, most importantly, temporary storage
[44]. In fog computing, temporary storage (cache) plays a significant role
in providing enhanced computing services for IoT-based smart environ-
ments. The fog-based caching techniques are described and analyzed in
the following sections to find the best caching solution for IoT-based
environments.

5. Caching in fog computing

Today, an enormous amount of IoT-based data traffic is generated
constantly from billions of sensors in heterogeneous devices. These de-
vices can process and store incoming data. However, these devices can
not handle such a huge amount of data, even for a short time. Due to IP-
based Internet architecture, a large amount of redundant data is created
and disseminated which is very difficult to manage, process and store
using limited resources (bandwidth, power, energy). To manage such an
enormous amount of data in the middle of the network, fog nodes pro-
vide cache storage to store data temporarily. Moreover, it also delivers
data processing services and increases the availability of desired data to
meet the requirements of subsequent future end-users [52]. Furthermore,
storage services can analyze, filter, and compress the data to perform
efficient data dissemination. It may help to learn about the local infor-
mation concerning the behavior of a system. Besides, the storage services
are capable of enhancing the reliability of a system by providing a proper
system behavior to communicate with the end devices [53].

In the fog paradigm, the cloud resources and services are provided at
the networks' edges close to the end consumers. Today, it has become an
essential requirement to efficiently together and deliver data due to the
massive growth in data-generating by smart devices. Therefore, tempo-
rary storage (caching) is a promising technique to manage such a huge
amount of data. It provides significant approaches to improve the entire

network's performance concerning the various aspects, such as response
time, reliability, and data retrieval latency, as shown in Fig. 4. In fog-
based IoT scenarios, caching is deployed at the fog nodes, significantly
reducing the traffic load and computational complexity at the cloud [54].
Thus, several fog-based caching techniques are developed to improve the
IoT's productivity and efficiency of fog-based resources and services. In
the following sections, different caching mechanisms to efficiently
manage fog storage are described.

5.1. Steiner tree-based caching

In fog networks, the computing resources are shared or cached using
the fog clusters to provide the mobile devices’ services. However, it is
difficult to share or cache the fog-based resources among the fog servers
at a minimum cost. Therefore, in this study, to improve the performance
of the fog network, a Steiner Tree-based Caching (STC) is proposed [55].
In STC, the Steiner Tree (ST) is produced to reduce the total cost for a
path in such a way as to minimize the usage of fog servers and caching
resources. To implement the ST, the graph theory is used to determine
the connected tree with the following characteristics: The set of nodes
have some predefined nodes, the selected weighted edges should be the
original graph, and the sum of weighed edges should be the smallest.
Thus, the ST is proposed to analyze caching or resource sharing among
the fog clusters. The STC is compared with the traditional shortest path
techniques. The results show that the STC can reduce the cost of resource
sharing and content caching.

5.2. CachinMobile caching

CachinMobile [56] is proposed to improve the energy consumption in
fog-based networks. In this technique, the cache of edge nodes is
enhanced to increase the responses for the incoming requests using De-
vice to Device (D2D) communication and social network. The requests
from the end-users are sent to the caching-based edge nodes via D2D

Fig. 4. Caching-based fog computing architecture.
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communication. The content is sent to the end-users if it is found at the
edge node. Otherwise, the incoming request is forwarded to the neighbor
nodes to download the required content. For content caching optimal
content placement scheme among the caching nodes is deployed in such
a way as to minimize the transmission energy. Moreover, a Genetic Al-
gorithm (GA) is used to find the location for content placement. A group
of influential social users are recommended as an edge node for the
caching of popular content. The proposed caching scheme is compared
with random caching and no caching schemes. The outcomes show that
the CachinMobile enhances the content placement by reducing the
transmission energy consumption.

5.3. Smart collaborative caching

The IoT data through fog computing is significant to enhance the
cacheable nodes in fog-based networks. It is hard to meet the latest de-
mands due to the limited resources and caching capabilities of fog
computing. Therefore, a Smart Collaborative Caching (SCC) [57] is
proposed by Information-Centric Networking (ICN) rules to improve the
caching performance of IoT-based fog networks. The SCC enhances the
procedure of content caching, resource pooling, and node locating. The
SCC focuses on IoT nodes and data distribution via the ICN and fog
networks. Moreover, due to resource-constrained IoT nodes, the data
caching approach stores the popular contents based on ICN. During the
data caching procedure, the caching node is selected regarding the
connecting user and network centrality. The basic contribution of SCC is
to enable ICN caching capabilities in IoT to improve the network
connection among the devices and provide cooperative caching in the fog
network. In addition, content processing, cluster composition, and posi-
tion management are considered in SCC to enhance the overall perfor-
mance of fog networks. More specifically, content finding, joining,
caching, and leaving were enhanced. A topology with 100 publishers,
100 subscribers, and N clusters is selected to validate SCC. The com-
parison among IP-based network ICN SCC, ICN flooding, and ICN
SCC-Enhanced is made for the performance evaluation. Therefore, the
ICN SCC and ICN SCC-E outperform in terms of transmission latency.

5.4. Secure caching scheme

Caching the data at the edges of the fog networks is a promising
approach to mitigate the burden on the network links and enhance the
quality of experience for mobile users. However, network nodes may be
attacked by malicious users, so secure caching becomes a challenge for
fog computing. Thus, a Secure Caching Scheme (SCS) [58] is proposed to
mitigate the disasters in fog computing-based Mobile Social Network
(MSN). The scrambling and partitioning methods are formulated to
encrypt data items without increasing size and combined them with
additional information to develop a disaster backup caching scheme.
These data items are encrypted and sent to the user, while copies of that
encrypted data are cached locally on different nodes. Based on the goals
of data transmission latency and recovery time, an auction game model is
developed to find the best computation to maximize the average utility of
the node. The outcomes show that the SCS performs better in terms of
improving resource efficiency and data security.

5.5. Energy efficient proactive caching

Energy Efficient Proactive Caching (EEPC) [59] is proposed to
improve the caching and data distribution services between fog Access
Point (AP) and User Terminal (UT). Therefore, proactive caching is
designed for a fog network that consists of an AP and one UT over the
finite-time horizon. The correlation among the consecutive
delay-sensitive tasks is cached at the current slot to facilitate subsequent
computing. A long-term weighted sum energy minimization problem is
formulated to predict the length of task input bits. The minimization
problem has three slots and inadequate task input prediction, and

together enhance the caching decisions and computation offloading.
Therefore, an offline solution that depends on Semi Define Relaxation
(SDR) is provided to serve as a performance upper bound. Further, a
sliding window based on an online algorithm is used to predict error into
account. To evaluate the benefits of caching, the proposed algorithm is
evaluated by comparing it with the several benchmarks. The outcomes
show that the online algorithm with a small window displays exceptional
robustness against prediction error.

5.6. Genetic algorithm-based task caching

The Mobile User Equipments (MUEs) have the significant ability to
cache the requested tasks to improve the gain using D2D networks.
Therefore, the task caching in fog networks can be expressed as follows:
requests from multiple MUEs can be satisfied by caching a task locally at
neighboring MUEs for multiple MUE requests, or by establishing a
distributed task cache, to obtain themaximize gains. Thus, in this study, a
task caching scheme [60] is proposed for D2D based fog computing. A
task caching optimization is established to improve the gain by caching
tasks at the D2D network. In this study, task offloading, MUE association,
resource allocation, and task caching are considered to optimize for
maximizing the MUEs' utility to reduce the process energy consumption
and serving delay. The task caching is used in off-peak time, while the
offloading occurs in different periods. Moreover, the caching of tasks is
done regarding the requests history where the subsequent requests are
unknown. The task caching decision scheme depends on the MUS’
preference. However, task offloading and optimization depend on task
caching, such as the current channel condition. The basic goal of caching
scheme is to enhance the D2D fog network performance when the sub-
sequent requests and the end-user are unknown. A task optimization
problem is formulated to maximize the gains using D2D sharing and local
caching. With the help of stochastic theory, a task cache optimization
problem is built and solved using a GA-based algorithm to improve the
average utility through task caching. Thus, a near-optimal algorithm for
task caching is developed based on GA to solve this problem. Further-
more, the task caching benefits for D2D based fog networks are explored.
Thus, the result shows that the task caching scheme outperforms well in
improving the total utility of the system.

5.7. Application based caching

Application Based Caching (ABC) [16] is recently being developed to
improve the caching performance in fog computing. As an emerging
paradigm, fog computing significantly increases the demand for efficient
caching schemes to maximize the caching gain, and these schemes should
be compatible with IoT-based heterogeneous applications. The
low-quality caching schemes may sometimes increase the networks’
burden and consume extra resources due to the high miss ratio. To cope
with such challenges, ABC is developed to provide caching prediction
criteria. Moreover, the variations in IoT-based applications are consid-
ered to make caching decisions rather than content popularity, spatial of
the temporal locality to determine what to cache. Besides, the IoT devices
demand high-performance caching schemes because these devices are
combined with limited storage, leading to cache and evicting data con-
tents more frequently. Therefore, it requires a short delay in response to
making content retrieval transparent for the end-users. Thus, ABC is
designed to implement the data prefetching based on the specified
application. The evaluation for ABC is established in the NS-2 simulator
in terms of response time, hit rate, and bandwidth consumption. The
outcomes show that the ABC has achieves efficient caching performance.

5.8. Capacity aware edge caching

Capacity Aware Edge Caching (CAEC) [61] schemes are developed in
which capacity-aware edge caching is designed by considering two fac-
tors such as the limited capacity of fog cache and connectivity capacity of
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the Base Stations (BSs). In CAEC, the edge data distribution is measured
as a multiclass processor queuing process and formulates CAEC as an
optimization problem in average download time. To find the best per-
formance of CAEC using different cache capacities in fog nodes and
last-mile connectivity capacities of BSs, an algorithm is proposed an
alternating direction method of multipliers. CAEC improves the data
delivery and cache usage in fog networks. In CAEC, the optimal caching
place is determined to store the data items so that the data hit ratio is
maximized, and the average downloaded time gets reduced. Moreover, it
improves traffic allocation balance and enhances the connectivity and
cache capacity in fog networks. The experiments are performed between
traditional Edge Cache Hit Ratio (ECHR) and CAEC to evaluate CAEC.
The results show that it is helpful to use the available cache capacity of
the fog nodes to maximize the ECHR, while the connectivity capacity of
the BS is sufficient.

5.9. Energy-efficient caching

Energy-Efficient Caching (EEC) [62] scheme is proposed to improve
fog-based networks’ delay and energy efficiency. Several studies are
presented to elaborate on the problem of high energy consumption and
designed several techniques to reduce the delay and energy consumption
in fog computing. In addition, a few studies focus on how to implement
the node-based techniques. The cache placement is a difficult problem in
the fog-based networks, it is a challenge to achieve efficient data distri-
bution to the end users. It demands the simultaneous determination of
several factors like the quality of network connections, content, and user
activities. Therefore, to enhance the fog network performance
energy-aware scheme, load balancing and content filtration are imple-
mented. In EEC, the frequently requested content is determined through
random distribution, and the active fog node is selected based on energy
level, number of neighbors, and operational power. Therefore, the cho-
sen content is cached on the fog-based active nodes using the filtration
method, and the load balancing method is used to maximize the system
efficiency of the cached-based fog network. The EEC is evaluated with a
simple caching scheme without caching, and the outcomes show that the
EEC achieves better performance in terms of energy efficiency and delay.

5.10. Deep learning-based content caching

Deep Learning-based Content Caching (DLCC) [63] is proposed to
improve the performance of cache in Fog-Access Point (F-AP). Recently,
the proactive caching of frequently accessed content in F-AP-based cache
is considered as a promising approach to reduce delay-related problems
caused by varying requirements of multimedia data traffic. Due to dy-
namic user preference, it is difficult to determine the users’ content to
cache efficiently at F-Aps. Several studies implement Deep Learning (DL)
to predict the future popular contents that may solve the content place-
ment problems in the F-AP cache. Therefore, DLCC helps to cache the
future predicted content in fog-based networks proactively. In DLCC, a
2D conventional neural network-based method is formulated to optimize
the caching model. The performance of DLCC is compared using different
Zipf probability distributions with randomized replacement and transfer
learning cooperative caches and evaluated. The results show that the
DLCC has greater prediction accuracy than the benchmark. Moreover,
DLCC achieves high cache hit performance and significantly reduces the
delay.

5.11. Popularity-based caching

The emergence of the Internet of Everything (IoE) has put several
challenges for fog computing to deliver user-requested data efficiently.
As the fog nodes provide data storage and processing at the geographi-
cally distributed IoT heterogeneous devices. The latency becomes a
crucial issue for the continuous increase of time-sensitive applications in
fog computing. Therefore, to increase the system efficiency and QoS, a

content Popularity-based Caching Scheme (PCS) [56] is proposed for fog
computing. The incoming requests are measured to identify the popular
data item based on IoT user interests to implement the popularity-based
data caching. The users are grouped into clusters based on their interests,
and each cluster is attached to the nearest fog nodes. The popular data
items are cached at the fog nodes attached to the clusters according to the
PCS. Thus the overall service delay is reduced, and the throughput of the
system is maximized. However, to further minimize the delay, the D2D
communication is performed in case of a cache miss. Moreover, the as-
sociation rules are formulated for the prediction of future demands. Thus,
PCS displays better outcomes to reduce latency and increase the cache hit
ratio by caching the popular data items at fog nodes close to the IoT
devices.

5.12. Cooperative content caching

The latency demands and increasing data traffic requirements by
emerging IoT-based applications have continuously posed new chal-
lenges for efficient data delivery. Therefore, Cooperative Content Cach-
ing (CCC) [64] is proposed to cope with these challenges. The CCC
proactively caches the data items at the node to reduce the overall data
retrieval latency in fog computing. Moreover, it provides an allocation
power scheme that dynamically enables users to fetch their desired data
items from the nearest F-APs, or the data can be retrieved from the UEs
using D2D communication. Furthermore, the CCC efficiently allocates
transmission power to improve the transmission rate for the D2D based
UEs. The CCC problem is expressed as a Combinatorial Multi-Armed
Bandit (CMAB) framework. A multi-agent reinforcement learning-based
algorithm is proposed by considering popularity prediction and user
preference to deploy an optimal caching strategy. To reduce the data
retrieval latency for each UE, the power allocation issue is designed to
increase the sum of data rates of end-users. Thus, a Q-learning power
allocation scheme iss developed. In evaluation, both the power allocation
strategy and CCC performed better in latency and cache hit ratio. Table 4
shows the summary of the above caching strategies with their goals and
achievements.

6. Caching contributions in fog computing

Caching plays an important role in fog computing to improve the
overall IoT-based fog networks. In this section, the fog-based caching
contributions and appropriate caching techniques are determined to find
the optimal solution for improving fog-based IoT networks’ performance.

6.1. Offloading

Data offloading is one of the most prominent methods that outsource
low power devices (smart wearable, smartphones) to perform processing
for a given task with higher capabilities and resources. Offloading will
not be beneficial if the computational requirements are not as much of a
communication cost [65]. Therefore, a device can perform offloading,
while offloading benefits are important compared to execution costs
[66]. Thus, offloading's ultimate objective is to minimize the overall
processing for a device to increase the battery life. Today, the rapid
growth of IoTs has been leading to explosive data generation in both
engineering and commercial fields. Besides, many heterogeneous smart
devices, objects, and sensors are integrating by using IoT platforms.
These physical devices, such as smart devices and sensors are linked
together through Internet connections and make a Network [67]. In
addition, it is challenging to find the appropriate resources for the
execution in offloading, and the task cannot be executed efficiently if the
resources are insufficient. Thus, the overall network performance de-
creases. Besides, the allocation of computing resources to compute the
dynamic entries is another offloading problem in IoT-based scenarios
[68].

Now, scaling in offloading is the most difficult task to perform in large
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scale IoT-based scenarios. The reason is that available IoT-based projects
are combined with approaches that are usually ad hoc in nature [69].
These approaches cannot be migrated or scaled in a new environment
[70]. Besides, communication between the cloud and the IoT becomes
challenging due to the lack of IoT standard platforms that can be used for
low-power devices for offloading in large-scale IoT-based environments.
Hence, if there are a large number of resources available for offloading,
the task will not be exploited. Conversely, if fewer resources are avail-
able, extensive downloading will be required to complete the offloading
process [71].

Fog caching is considered to be the most promising approach to
address these challenges and perform offloading efficiently. Fog caching
offers distributed storage to manage the large amount of data generated
by IoT devices, reducing the load on the entire network and edge devices.
Therefore, distributed fog cache works with the end devices to perform
offloading and improve the process's overall efficiency. Moreover, it re-
duces the time of execution for a task [72].The limitations of IoT devices
to perform offloading can be minimized by performing the computa-
tional offloading at fog cache instead of low power devices. Therefore, it
is an impressive way to offload the computational tasks using distributed
cache-based fog approaches to reduce the computation overhead signif-
icantly. Also, the IoT devices will reduce the latency, response time, and
energy consumption by task offloading through caching [73]. Conse-
quently, the data is cached at the network edges near the end devices, and
the offloading is performed with short latency.

Many fog-caching offloading techniques are recently developed [74],
such as an energy consumption oriented offloading algorithm for fog
computing. With this technique, an offloading algorithm is developed to
reduce energy consumption [75]. A caching scheme named GA-based
task caching mechanism is proposed by Lan et al. [48] to support off-
loading in D2D networks. In this scheme, caching is used to enhance the
offloading performance of fog in terms of average caching utility, the

utility of multiple mobile user equipment, and the total utility. Compu-
tation Caching Policy (CCP) [76] is proposed to enhance the offloading
capabilities by measuring three primitives: the popularity of task, input,
and output sizes. CCP reduces the uplink traffic between User Equipment
(UE) and serving small cells. Moreover, it decreases the computation and
communication cost and increases the capacity to offload more tasks.
Besides, it reduces the usage of computational resources and offloading
latencies.

6.2. Scheduling

Today, the IoT ecosystem's swift development is associated with bil-
lions of devices that connect and communicate. However, these devices
are imposing stringent latency, power consumption, processing delay,
and execution time requirements. Fog computing technology is proposed
to process data at the gateway or provide device-level processing to cope
with these acute requirements. Fog nodes are connected collaboratively
to provide elastic computation resources and services, such as storage
and processing [77]. However, fog computing offers promising features.
It is still facing high latency problems due to a lack of appropriate re-
sources and scheduling algorithms. Indeed, it depends on several factors
that make resource allocation a challenging task in fog computing, such
as resource scarcity, geographic restrictions, heterogeneity, and varying
demands of the resources [78].

The primary objective of resource allocation and scheduling is to
maximize the efficiency of using the resources, increases the profit of fog
nodes and IoT devices, and meet the Quality of Services (QoS) re-
quirements. Most of the fog techniques focus on minimizing the perfor-
mance of execution time and latency minimization. However, there is a
significant gap in these techniques to perform resource re-allocation to
the jobs. Therefore, the overall efficient resource allocation and sched-
uling are reduced [79]. Since the beginning of IoT and fog computing

Table 4
Goals and achievements of existing caching techniques for fog computing.

Year Reference Aim/Goal Achievements

2015 Su et al. [55] Steiner Tree-based Caching (STC) is proposed to reduce the total cost for a path so as to
minimize the usage of fog server and caching resources

It minimize the cost of resource sharing and reduces the cost
of content caching at fog nodes

2016 Wang et al. [56] CachinMobile provides optimal content caching between nodes and uses GA-based
algorithm to minimize transmission energy. A group of influential social users are
recommended as an edge node for the caching of popular content

It improves the content placement and reduces energy
consumption in data transmission

2017 Song et al. [57] Smart Collaborative Caching (SCC) is proposed ICN rules to improve content caching,
resource pooling, and node locating. Due to resource-constrained IoT nodes, the data
caching approach stores the popular contents based on network centrality

SCC implements the ICN content caching rules in fog
computing and reduces the data transmission latency

2018 Su et al. [58] Secure Caching Scheme (SCS) is proposed to develop a disaster backup caching scheme.
The scrambling and partitioning methods are formulated to encrypt data items without
increasing size and combined them with additional information. The encrypted is sent
and cached in SCS

SCS reduces disasters by encrypting data in fog computing,
improves resource efficiency, and increase data security

2019 Xing et al. [59] Energy Efficient Proactive Caching (EEPC) is proposed to improve the caching and data
distribution services between fog Access Point (AP) and User Terminal (UT)

EEPC enhances the striking robustness against prediction
error

2019 Lan et al. [60] In task caching, task offloading, MUE association, resource allocation, and task caching
are considered to optimize for maximizing the MUEs' utility to reduce the process energy
consumption and serving delay

It Caches the data of requested tasks to improve the gain
using D2D networks and Improve system utility

2020 Almobaideen
et al. [16]

Application Based Caching (ABC) is developed to provide caching prediction criteria by
considering variations in IoT-based applications to make caching decisions. More
specifically, ABC implements the data prefetching based on the specified application

ABC improves bandwidth consumption. It reduces content
retrieval latency. It increases the overall cache hit ratio

2020 Li et al. [61] Capacity Aware Edge Caching (CAEC) schemes are developed to develop capacity-aware
edge caching by considering two factors, such as the limited capacity of fog cache and
connectivity capacity of the Base Stations (BSs)

CAEC improves data delivery and cache usage and the
Improve usage of cache capacity and connectivity capacity
of BS

2020 Shahid et al. [62] In Energy-Efficient Caching (EEC), the frequently requested content is determined for
caching through random distribution. The active fog node is selected based on energy
level, number of neighbors, and operational power

EEC achieves better energy efficiency and minimizes the
data retrieval delay

2021 Bhandari et al.
[63]

In Deep Learning-based Content Caching (DLCC) a 2D conventional neural network-
based method is formulated to optimize the caching model that helps to cache the future
predicted content in fog-based networks proactively

DLCC achieves a high cache hit rate and reduces the data
retrieval delay

2021 Gupta et al. [56] Caching Scheme (PCS) implements popularity-based data caching. The incoming
requests are measured to identify the popular data item on the basis of IoT user interests,
and the popular data is cached at the fog nodes that are attached to the clusters

PCS reduces the overall service delay, improves the system
throughput, and increases the cache hit ratio

2021 Jiang et al. [64] Cooperative Content Caching (CCC) provides an allocation power scheme that enables
the users to fetch their desired data items from the nearest F-APs dynamically, or the data
can be retrieved from the UEs using D2D communication

CCC reduces the overall data retrieval latency in fog
computing and enhances the overall cache hit ratio
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paradigm become an enormous evolution in the field of the connected
world, a huge number of applications, such as online interactive gaming,
augmented reality, face recognition, and natural language, are inte-
grating and attracting many researchers to explore procedures or
methods that can efficiently perform device-level computing [80].
However, these kinds of applications are computing incentive or data
incentive that needs huge resources and usually consumes extensive
energy. Hence, caching is a promising approach to perform efficient
tasks’ execution requested by end-devices in addressing job scheduling
issues. Indeed, the cache is equipped within the gateway to perform
scheduling.

Caching algorithms are deployed in the network to minimize the
propagation delay, internal processing time, and execution time for the
jobs [81,82]. The cache-based job scheduling algorithms deliver several
advantages over traditional fog computing, such as lower latency, shorter
execution time, lower power consumption, and less processing delay.
Caching is one of the most flexible technologies to speed up data retrieval
and improves system efficiency. Usually, caching offers storage to absorb
data traffic by caching the frequently requested data items near the edge
devices, provides low processing cost, and eliminate the single point of
failure [83]. Therefore, the combination of fog computing and caching
enables the fog node to identify the user requirements and select the most
appropriate data item to be cached at intermediate fog nodes [84].
Caching not only decreases the latency and execution time via providing
fast processing but also minimizes the burden on network, power, and
energy consumption [85].

Recently, a cache-enabled fog computing job scheduling technique
named Cache-Based Approach (CBA) is proposed in Ref. [86]. This
technique integrates caching and the concept of a smart gateway to
solving the resource re-allocation problem in fog computing by providing
a CBA scheduling algorithm. CBA incorporates the cache module into the
smart gateway to store the job and information. Therefore, CBA signifi-
cantly increases the overall scheduling performance by reducing the la-
tency, execution time, power consumption, and internal processing
delay.

6.3. Energy and power saving

The demand for energy/power is exponentially increasing due to the
immense usage of advanced mobile applications. Fog computing is a
novel technique with the extra potential to deliver the desired data close
to the end-users. It enables future technologies to provide efficient data
dissemination services to end devices and users. It consumes less energy
than cloud computing to perform task offloading, computation, and data
delivery. It delivers energy-efficient techniques to provide computing
services near the end-users. It reduces the energy consumption of the
cloud server as it is closed to the network edges. However, energy effi-
ciency becomes a critical issue with the continuous expansion of fog
networks on a large scale.

Many types of research are conducted to minimize the energy con-
sumption in fog networks in which the researchers keenly focus on job
scheduling to reduce the energy consumption. In addition, the node-
based techniques neglect to improve energy efficiency [86]. Moreover,
if the fog network becomes energy efficient, the overall performance of
the network will be improved. In addition, fog computing delivers Access
Points (APs) at the edge of the network with storage and computing
capabilities that provide computing resources and services to the low
power edge devices. These wirelessly connected devices can find the
computing services from the nearby cached-based APs for task off-
loading. In this way, the energy-saving computation can perform in
real-time. Indeed, edge caching alleviates the air traffic and saves the
edge servers from performing repeated computation by caching the
popular data items at the network edges [87].

Now, fog computing is seen as the most promising paradigm that uses
high energy to support IoT-based applications. Fog nodes are equipped
with small batteries that can recharge by renewable energy resources such

as wind turbines and solar panels. Several techniques are developed to
reduce the energy consumption in fog computing. The energy consump-
tion can be reduced by improving the data transmitting power, network
size, and remote radio unit density. However, these kinds of mechanisms
can reduce energy consumption while the network load is very small.
Moreover, these mechanisms do not involve fog features and caching ca-
pabilities. Furthermore, caching is the most significant approach to deliver
fog services during peak traffic demands. It can meet the user re-
quirements by sending the cached data items during off-peak traffic [88].

Caching plays a significant role in coping with energy efficiency by
caching popular contents at a network node, which improves the quality
of energy consumption. To improve the energy efficiency in fog net-
works, a popularity-based caching technique is developed in Ref. [62].
With this technique, energy-aware mechanisms such as load balancing
and content filtration are implemented. The load balancing mechanism is
selected to improve the system efficiency in the cached-based fog
network. However, the filtration mechanism is used to cache the popular
data items on active nodes. Therefore, the experiments show that the
proposed caching technique consumes 92.6% less energy than a network
without caching. In another study by Xing et al. [59], dynamic-based
computation caching is proposed to reduce the computation burden.
Moreover, it reduces the overall energy consumption.

6.4. Bandwidth and cost reduction

Cloud computing is a platform where the system offers services and
resources over the Internet. It provides highly scalable and on-demand
computing capabilities to enhance the overall data dissemination for
the end-users. The reason for moving computation tasks and storage to
fog computing is to provide extra capacity and power compared to the
limited resources of the end devices. Data traffic is growing exponentially
due to massive use of IoT-based applications and devices, which are
connected with the fog networks causing bottlenecks and congection due
o bandwidth constraints [89]. Therefore, the research community is
trying to find an optimal approach that can reduce bandwidth
consumption.

However, caching is considered as a promising technique that gains
popularity to deliver computing resources and storage to perform tasks at
the network edges. It reduces the data delivery distance and the traffic
load on network channels. Therefore, a large volume of data is processed
at the network edges as an alternative to the cloud. Thus, a very small
number of tasks remain to perform at cloud servers, which significantly
reduces bandwidth consumption. Hence, a large amount of bandwidth
could be saved in caching based networks [90]. Besides, reduction in
data traffic and operational cost for the Internet Service Provider (IPS) is
a significant aspect of cache-able networks. Consequently, the overall
load on the provider links and transit becomes minimized. It shows that
caching can reduce inter-domain costs, and inter-domain costs are the
most crucial issue, as inter-domain traffic grows 60% in a faster year
compared to the cost reduction offered by the current technologies [91].
The inter-domain cost can be minimized by increasing the cache space.
However, it will increase capital expenditures. This trade-off can be
tackled by deploying an optimal caching scheme. Currently, caching is
implemented to provide benefits from the user perspective and reduce
the ISP cost. In caching, the content retrieval cost is considered
in-network operations to make the network profitable for ISPs.

Social Aware Edge Caching (SAEC) [92] is proposed to minimize the
bandwidth consumption in fog computing. According to SAEC, the most
requested data items are cached near the end-users at the network's
edges. Therefore, the stretch between the user and the locally stored data
is reduced. The bandwidth is significantly improved because there
remain fewer requests to forward the remote cloud server. In Cost-Aware
(CoA) [93] caching, cost reduction is considered as a basic goal for the
benefit of ISPs. CoA considers the operational cost to reduce the load on
network channels.
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6.5. Data availability

Today, the rapid growth of technologies and IoT applications, such as
automotive electronics, home appliances, sensors, and actuators, are
incorporated in a sole hub known as the Internet of Everything (IoE).
These devices facilitate humans’ daily lives by providing intelligent
services to various applications, such as smart cars, smart transportation,
smart home, e-health care, and augmented reality [94]. Moreover, the
IoT sensors have limited computing resources that cannot provide effi-
cient QoS requirements to IoT-based applications. Therefore, task and
data offloading are considered to be flexible approaches to earn profit for
IoT-based applications [95]. For the remote execution, these devices are
used to offload intensive data to the centralized cloud server.

Indeed, the cloud provides storage and processing resources to
improve overall cloud-IoT communication. Consequently, the cloud ex-
ecutes processing on the data received from the heterogeneous devices
and sends them back. Accordingly, the cloud paradigm delivers stan-
dardization for the communication of diversified IoT devices. However,
the centralized cloud cannot satisfy the high demands of IoT-based time-
sensitive applications such as augmented reality, voice and face recog-
nition, image and video processing [96]. Since the distance between the
cloud and end-device is extremely large, which increases the service la-
tency during data dissemination. A standard approach is required to
perform efficient communication for such heterogeneous devices.

To cope with these challenges, researchers suggest using cache-based
fog computing approaches that leverage the processing and caching fa-
cilities near the IoT devices to perform intensive operations on data [97].
It delivers distributed resources and fetches the cloud computing services
at a single hop distance from the end devices. Consequently, the
latency-sensitive applications can be computed at cacheable fog nodes,
and there is no need to send the applications to the cloud for execution.
Since the fog nodes are deployed at a single hop stretch, it provides agile
computation with reduced data retrieval latency for the end-users and
IoT devices. However, fog storage capacity is much smaller compared to
the data generated by IoE device, which means that there are key chal-
lenges in achieving efficient data dissemination performance. As a result,
a limited amount of data can be stored at fog nodes.

To increase the storage performance in terms of throughput and la-
tency, caching provides several techniques to cache popular data and
enhance the overall network performance. In fog-caching, the popular
data items are cached near the end devices to meet the subsequent re-
quests. In addition, the incoming requests are sent to the cloud when the
required data item is not available at the fog node, and hence, the overall
latency is increased. Therefore, cache maximizes the availability of
popular and desired data and reduces the average latency and execution
time. Moreover, it decreases the computational cost, processing, and
network load. Besides, it reduces the access latency and improves the
overall throughput of the fog nodes.

Recently, a popularity-based caching scheme named Efficient Cach-
ing Method (ECM) by Riya et al. [64] is proposed to improve fog
computing-based IoE environments. In this caching scheme, users’ in-
terest is measured proactively and form group clusters of users with
similar interest, and the cluster is mapped within the fog node. ECM
maximizes the data hit rate and network throughput. Moreover, it re-
duces the average latency.

6.6. Throughput

With the rapid production of various types of advance mobile appli-
cations and a massive amount of connected devices, fog computing are
facing unprecedented data traffic. Although, cloud computing can pro-
vide stable and reliable services the end-devices, data traffic's continuous
proliferation implies inconceivable pressure on Cloud Radio Access
Network (C-RAN) due to the limited capacity of front-haul and back-haul
links. This may cause interruption or congestion in data dissemination,
especially at off-peak periods. Since some social applications are

becoming more popular, and the redundant data traffic over the network
channels is frequently transferred, which increases the network over-
head. In this case, an efficient solution is required to transfer the cloud
resources to the edges of the networks and provides the facility to
perform computation and caching of popular data. As a result, fog
computing technology moves the computation of the cloud towards the
network edges. It can overcome the core issues of data explosion in IoT-
based environments. Instead, it is now processed at the network edges to
send the raw data toward the cloud. However, a large amount of raw data
is still being processed, which creates massive communication conges-
tion in the whole network [98]. Therefore, caching is considered to be
the most favorable approach to overcome such problems.

To improve system performance, cache memory is distributed with
fog nodes to perform caching of popular data items close to the IoT de-
vices an approach that minimize communication overhead and latency.
Moreover, caching of the frequently fetched data items near the IoT de-
vices increases the data hit rate, and hence, the overall throughput of the
network is improved. Now, the Fog Radio Access Network (FRAN) pro-
vides caching facilities that can effectively minimize the front-haul
congestion by caching the popular data items near the edge devices. It
distributes edge caching, which is a key component to improve the
overall throughput of fog computing. Recently, Jiang et al. [99] proposed
a popularity-based caching scheme to improve the fog architecture. In
this scheme, the frequently requested data items are selected through
popularity prediction and locally cached the items chosen near the end
devices in real-time. Therefore, the subsequent requests are accom-
plished there, which increases the overall data hit performance.

6.7. Latency and path stretch

Currently, latency is becoming a challenge for data transmission in
modern applications such as virtual reality augmented reality, ultra-low
latency dissemination, and computation [100]. The efficient latency re-
quirements for such types of applications cannot be achieved through the
traditional cloud because it needs a round trip delay for the successful
transmission [101]. To cope with such delay-based issues, fog computing
is offered in a distributed cloud manner in which fog nodes provide fa-
cilities to perform key functions (data computation and storing) at the
network edges near the end-devices [102]. Besides, fog nodes are
distributed in physical proximity, bringing the cloud resources at the
network edges to provide low latency computations. However, fog
computing still cannot meet the satisfactory level of efficient latency
requirements and face delay-related challenges. For example, the limited
capacity of backhaul and forward links leads to delays in data trans-
mission. In these cases, the caching function plays an important role in
improving the overall data transmission. It also plays an in important role
in improving the system throughput by reducing the data transmission
distance and latency. For example, fog caching in a vehicular network
can minimize the distance covered by the data in a network.

In a study by Mohammed et al. [100], a popularity-based caching
strategy is proposed to reduce the content retrieval latency. The tasks are
categorized according to the requested frequency and determined by the
popular tasks in the given caching strategy. The popular tasks are pro-
actively cached using cloudlet. Consequently, the computation latency is
minimized, and the cost of computing delay is reduced. Thus, according
to Mohammed et al. [100], the proposed caching scheme can minimize
computational latency up to 91%. In another study by Lee et al. [103], a
caching scheme is proposed to improve fog networks' latency perfor-
mance. An Online Computational Caching (OCC) is implemented in a fog
network that optimizes the input intermediate computational results on
the arrival of users’ operations. It reduces computational latency and
transmission latency and can minimize the total latency by up to 27%.

6.8. Fronthaul link load

Due to the exponential demand for mobile applications and smart
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devices, the development of mobile networks and the phenomenal
growth of data traffic has created significant problems for the entire
communication architecture. Currently, Ultra-Dense Network (UDN) is
considered as a promising approach for mobile networks to meet the
demands of explosive data traffic. However, such a huge volume of data
traffic causes trouble for the communications through fronthaul and
produces high congestion on network links. Cloud Radio Access (CRAN)
and Fog Radio Access Network (FRAN) are considered as promising
techniques to alleviate the high demands of fronthaul link capacity by
deploying the BaseBand Units (BBUs) close to the fog nodes and near the
end-users. FRAN is a promising technique that can significantly improve
the 5G cellular networks’ spectral efficiency via fog computing and
CRAN. To this end, in the FRAN system, the User Equipments (UEs) and
Remote Radio Heads (RRHs) are capable of performing cooperative ratio
resource management, signal processing, and caching [104].

Nevertheless, the distributed edge caching plays an imperative role in
reducing the load on fronthaul channels effectively. Since the sharing of
popular data items using social applications produces a huge amount of
mobile data traffic. However, in the caching system, multiple users’ de-
mands for similar data items will be satisfied without duplicate trans-
mission if the most requested data item is cached at the edge node. The
core objective of caching in FRAN is to minimize the heavy burden on
fronthaul and radio access networks. Recently, in Ref. [105] a caching
scheme is proposed in which popular data items are cached within the
FRAN network to reduce the dissemination rate under the limited ca-
pacity of fronthaul.

In another study [106], a comprehensive analysis is presented to
enhance the total data delivery delay using fronthaul. Moreover, in this
study, the analysis is established to find the optimal caching scheme to
improve the performance of fronthaul.

6.9. Backhaul traffic load

Fog Radio Access network (F-RAN) is recently proposed to enhance a
fog computing network's overall performance. In F-RAN, the Radio Units
(RUs) are equipped with cache storage that helps to store frequently
accessed data items. The user requests are served from the cluster of RUs,
and the local cache of F-RAN serves multiple requests for the same data
items, or it can be fetched from the remote data center via backhauls links
[105]. In this way, caching of the frequently fetched data items can
significantly minimize the load on backhaul links. C-RAN is considered as
a promising approach to enhance interference management because of
Central Processing (CP) [107] to optimize the spectral efficiency in data
channels. A simple way to improve spectral efficiency is to minimize the
distance between the sender and the receiver. A number of low-cost RUs
are densely deployed to cope with this, and these low-cost RUs are
connected to CP through backhaul links [108]. Therefore, the backhaul
links between RUs and CP become congested due to limited capacities of
backhaul, and thus, overall network performance is reduced. Offering
local cache within RUs is shown as the most flexible approach to mitigate
congestion in backhaul links.

Thus, F-RAN provides cache space for popular and frequently
requested data items to be cached at the network edges without the need
to retrieve them from the remote CPs via backhaul links [109]. There-
fore, at higher spectral efficiency, the overhead is minimized and the
overall content retrieval latency is reduced, so the overall bottleneck in
backhaul link is minimized and area spectral efficiency is improved. A
portion of multimedia data show significant growth in data traffic, such
as sports matches and movies. To handle such a huge amount of multi-
media data, caching plays a necessary role by caching popular data files
near the end-users that can significantly reduce the burden on backhaul
channels and minimize the latency for a large number of end-users. To
this end, two caching schemes were proposed, namely coded caching and
un-coded caching.

In coded caching, the data items are cached in terms of parity bits at
different locations using fountain code, while, in un-coded caching, the

whole data item or object is cached. In an un-coded caching strategy, the
frequently accessed data items are cached at each RU until full cache
space. All the RUs behave cooperatively to serve the incoming users’
requests using the backhaul links [110]. These strategies are developed
to improve the joint design of dynamic clustering, multicast beamform-
ing, and backhaul traffic balancing. The dynamic clustering and beam-
forming are cooperatively enhanced to reduce power consumption.
However, the traffic on each backhaul channel is optimized according to
their link capacity.

6.10. Caching to mitigate disasters

Data dissemination over the Mobile Social Networks (MSNs) is
considered as a promising approach for mobile users to share their in-
formation. Recently, research shows that the number of mobile devices
already exceeds the number of people on earth [113]. The immense
growth of mobile users has produced an exponential increment in mobile
data traffic. Consequently, it needs the extra capacity of backhaul links to
disseminate such a huge amount of mobile traffic [111].

Now the MSNs face data delivery related issues in which delay is
critical regarding mobile users’ perspective. Therefore, addressing these
issues is important to deliver large amounts of mobile data in the core
network. To cope with this, fog-based caching plays an imperative role in
enhancing the overall data transmission over the MSNs. Indeed, caching
can efficiently deliver diverse data items by minimizing the huge amount
of redundant transmission. As a result, the traffic burden and usage of
backhaul links are reduced. Moreover, it minimizes the latency to deliver
data items in MSNs. Caching can contribute to MSNs in multiple ways.
The popular data items are cached at the network edges near the mobile
users that mitigate the delay in transmission and improve the Quality of
Experience (QoE) [114]. Moreover, caching reduces the duplicate
transmission over the backhaul in core MSNs.

According to disaster backup, caching plays a significant role in
minimizing data loss. For instance, popular and critical data items will be
lost if a network node's operating system stops working or when mali-
cious users attacks spread the virus. Therefore, fog caching is a promising
approach to alleviate disaster-related problems. Caching also plays an
important role in natural disasters, such as earthquakes and fires, where
fires can cause network nodes to lose power and potential for losing
important data is high. In these situations, the popular and important
data items are cached at multiple nodes as the backup to use during a
node's failure [112].

Secure Caching Scheme (SCS) is proposed by Su et al. [58] to enhance
the MSNs in fog computing and minimize the data loss during disasters.
In this scheme, data is encrypted with partitioning and scrambling
methods to improve privacy, and these data items are delivered to mul-
tiple locations to be cached. The proposed caching scheme outperforms
in terms of improving resource efficiency and security.

6.11. Data distribution

In fog computing, data processing and storage are executed at the
central unit. However, data storing at the central cloud is not suitable
because it may cause a delay in response, high storage cost, and
congestion on network channels due to high data traffic between cloud
and fog nodes. At the fog layer, the data distribution depends on the
geographic producer's location and end-users. However, data storage
consists of different factors such as distribution, dissemination, and
replication. In large networks, where many devices are interconnected,
data dissemination techniques need to distribute data to all nodes fairly.
However, caching is considered as a promising approach to fairly
distributing data among the nodes in fog computing. Thus, caching
schemes are used to handle a large amounts of information in a fog-based
caching system that sends data items to different network nodes and
caches them close to the end-users. As a result, delay and latency in data
propagation is reduced. It also improves the availability of desired data.
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Recently, Most Popular Cache (MPC) [112] and Capacity Aware Edge
Caching (CAEC) [61] schemes are developed to enhance the data dis-
tribution in fog computing. The MPC only caches the most frequently
requested data items to avoid load on a network node and fog storage
capabilities. Moreover, it minimizes the delay and improves the packet
delivery ratio in a fog-based caching network. Besides, it increases the
data hit ratio and minimize caching operations. However, CAEC im-
proves the data delivery and cache usage in fog networks.

In CAEC, the optimal caching place is determined to store the data
items. In this way, the data hit ratio is maximized, and the average
downloaded time is reduced. Moreover, it improves traffic allocation

balance and enhances the connectivity and cache capacity in fog net-
works. Table 5 shows the present challenges of fog computing and their
corresponding caching schemes as solutions with basic goals and
advantages.

7. Fog caching in machine learning prospective

Cache module plays a significant role in improving the fog computing
networks’ performance. Due to the continuous development and growth
of fog computing at a large scale network, cache management becomes a
hurdle in improving the overall network performance. Moreover, cache

Table 5
Fog computing challenges and caching schemes with their aims and advantages.

Aspects Challenges Techniques Aim/Goal Advantages

Offloading [67] Limited resources Scaling in offloading
Inadequacy of standard platform
Allocation of computing resources

GA based task
caching [75]
CCP [76]

This caching is used to enhance the
offloading performance of fog computing.
CCP is proposed to enhance the offloading
capabilities by measuring three primitives:
task popularity, input, and output sizes

Improve the utility of the system Reduce the
uplink traffic, computation and
communication cost CPPReduce offloading
latencies

Scheduling [80] Latency Heterogeneity Execution time
Resource scarcity Power consumption
Resource allocation Geographic
restrictions Internal processing time

CBA [86] This technique integrates caching and the
concept of a smart gateway to solve the
resource re-allocation problem in fog
computing by providing a CBA scheduling
algorithm. CBA incorporates the cache
module into a smart gateway to store the
job and information

Minimize latency Increase the overall
Scheduling performanceI mprove execution
time Reduce power consumption Enhance
internal processing delay

Energy and Power
Saving [86]

Network size Data delivery Task offloading
Energy efficiency Energy consumption
Transmitting power Mobile applications

PC [62]
DCC [59]

PC provides load balancing to improve the
system efficiency and filtration to cache
popular content on active nodes. DCC
provides caching space to perform a task in
caching-based fog computing

PC consume 92% less energy than they
would without caching networkDCC reduces
the overall energy consumptionDCC reduces
the computation burden

Bandwidth and Cost
Reduction [90]

Bottleneck Congesting Inter-domain cost
Bandwidth limitations Content retrieval
cost Operational cost for ISP

SAEC [92]
CoA [93]

SAEC is proposed to minimize the
bandwidth consumption in fog computing.
CoA reduces the cost for the benefit of ISPs.
It considers the operational cost to reduce
the load on network channels

Reduce storage costs Reduce average delay
Reduce the link load Minimize operational
cost for ISPs Minimize bandwidth cost and
consumption

Data Availability
[94]

Throughput Data traffic Service latency
Remote execution Limited amount of
computing resources

ECM [64] In ECM, the users' interest is measured
proactively and forms a group like clusters
of the users with similar interest and the
cluster is mapped within fog node

Reduces the average latency Cache the
popular files effectively Improve the hit rate
and network throughput

Throughput [98] Unprecedented traffic Congestion at off-
peak periods Limited capacity of front and
backhaul Redundant data traffic and
network overhead

PC [99] PC is proposed to improve fog caching by
selecting the frequently requested content
through popularity prediction, and these
content are locally cached near the end-
users in real-time

Enhance the overall network throughput
Increase the overall data hit performance
Subsequent requests are accomplished in less
time

Latency and Stretch
[100]

Delay in successful transmission Limited
capacities of back and front-haul links
Ultra-low latency dissemination and
computation

PCS [100]
OCC [103]

In PCS, tasks are categorized based on the
request frequency. Popular tasks cached
using cloudlet. OCC optimizes the input
intermediate computational results on the
arrival of users' operations

PCS reduce the costPCS minimize the
delayOCC minimizes Transmission
latencyPCS and OCC reduce the
computational latency

Fronthaul link load
[105]

Heavy burden Spectral efficiency
Duplicate transmission Huge volume of
data traffic Incredible growth of mobile
applications and smart devices

PC [105]
CA [106]

In PC, popular data items are cached to
reduce the dissemination rate under the
capacity of fronthaul. In CA, the analysis is
established to find the optimal caching
techniques to improve the performance of
fronthaul

PC reduces the dissemination rate Caching
enhances the delivery delay Improve the
performance of fronthaul.

Backhaul traffic
load [108]

Load on backhaul links Content retrieval
latency The bottleneck in backhaul links
Spectral efficiency in data channels
Congested Backhaul links between RUs
and CP

Coded, un-
coded caching
[110]

In coded caching, the data items are cached
in terms of parity bits at different locations
using fountain code while, in un-coded
caching, the whole object is cached each
RU until the cache space is full. All the RUs
behave cooperatively to serve the
incoming requests

Power consumptionD ownlink efficiency On-
demand data broadcasting Improve dynamic
clustering and beamforming Enhance
backhaul channel according to link capacity

Caching in Disaster
[111]

Delay Malicious users attack Data loss
during system failure Earthquake and fire
can make power failure

SCS [58] SCS minimizes data loss during disasters
which improves privacy by encrypting the
contents using partitioning and scrambling
methods, and these contents are cached at
multiple locations

Improve privacy Enhance security Reduce
the data loss Maximize data delivery
Improve resource efficiency

DataDistribution
[61]

Delay in response Fairly distribution of
data High storage cost due to high Data
traffic The distribution of data stored at the
fog layer depends on the geographic
producer's location

MPC [112]
CAEC [61]

MPC caches the most frequently requested
data items. In CAEC, the optimal caching
location is determined to store the data
items. It improves the balance of traffic
allocation, and enhances the connectivity
and cache capacity

MPC minimizes delayMPC improves packet
deliveryCAEC improves the data
deliveryCAEC reduces the average
downloaded timeCAEC enhances the
connectivity and cache capacity
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placement is a significant problem in fog-based IoT networks to distribute
highly requested contents to end-users efficiently. We mention in earlier
sections the caching plays an imperative role in improving the perfor-
mance of fog networks [115]. However, it is facing several critical
problems due to the limited cache size. Fog computing is a novel
approach to bring the resources, data, and services at the edges of the
network near the end consumers to reduce transmission delay and energy
consumption [116]. However, it is challenging to perform caching and
processing operations for all incoming data items due to the limited size
of available cache at fog nodes. Therefore, it is most important to know
about the exact data for caching prior [117,118].

Data caching within the fog nodes is dependent on multiple factors
such as network topology, change locations, and the varying nature of
different IoT-based end users. Thus, subsequent requests for different
data items are highly unidentified before taking caching decisions [119].
To this end, Machine Learning (ML) proposes flexible techniques to
provide a centralized location to process raw data. Besides, ML-based
schemes facilitate and maximize each fog node's performance to make
the right decisions by caching the right data items. In addition, ML is the
most suitable approach to predict the user demands and map the users'
inputs with the outputs actions [120]. Moreover, it is used to improve the
overall caching performance of a network by identifying the end-users
requirements to discover early information from a large number of
content streams. Furthermore, in ML, a large number of contents are
exploited to identify the popularity of a data item, is a suitable approach
to filter the data and information [121]. As a result, the subsequent
processing is easy to analyze the connection between the features cor-
responding outputs of the data [122]. ML techniques are categorized into
supervised learning (SL) and Un-supervised Learning (UL).

In SL, the system provides learning-based algorithms with known
quantities that help in making future decisions. However, in UL, the
system provides algorithms with unlabeled data to make decisions
without any prerequisite information or guidance. ML can emerge with
fog computing at the terminal, fog, or cloud layer. ML is used for data
sensing at the terminal layer, and diverse schemes and methods are
available for data sensing. The complex features of datasets such as vi-
brations, videos, and model reading from the IoT-based devices can be
identified using the ML methods like Conventional Neural Network
(CNN) [123]. At the fog layer, ML is responsible for resource manage-
ment and data caching (storage). For this purpose, ML-based algorithms
are used to sample and compressed the data received from the IoT de-
vices and aggregated the compressed data at fog nodes for additional
processing. Therefore, to address the different challenges of fog
computing, many ML-based caching techniques are developed to
enhance fog networks. For example, in Refs. [124,125], a ML-based
caching scheme named online proactive caching is developed to pre-
dict time-series requests for contents and updated the network edge
caching. In this scheme, Bidirectional Deep-recurrent Neural Network
(BRNN) and convolution neural network models are used to predict
content popularity and reduce computational costs. Later, a fully con-
nected neural network is integrated to predict and learn samples from
BRNN. The experiment results show that proposed scheme improves
prediction accuracy and maximizes the data hit rate for end devices.

In a study by Lan et al. [126], an intelligent computation offloading
technique with caching to improve the offloading in fog computing is
proposed. It reduces long-term energy consumption and task processing
time. In this scheme, a Deep Reinforcement Learning (DRL) based algo-
rithm is proposed to solve complex optimization problems. Thus, the
proposed technique performs better in terms of energy consumption and
computation latency. The following sections describe diverse ML-based
techniques that improve cache management in fog computing. The
techniques like clustering of fog servers are explained in the following
sections.

7.1. Clustering-based fog approach

Clustering works under UL, where the information is not guided. In
this approach, the fog-based nodes are combined into clusters to satisfy
the demands of IoT-based end devices [127]. Data items are cached at
different fog nodes after being coded into segments. Whenever a request
is received from the user, it sends to the fog clusters and is satisfied based
on cached data items. The user of IoT devices can fetch the data items if
the data items are cached at clusters of fog nodes; otherwise, the requests
forward to the cloud server to download the required data items.
Moreover, the caching performance changes with the size of clusters,
which means that if the cluster includes more fog nodes, the user can get
data from the nearest nodes. Therefore, cache diversity is improved, and
efficient caching performance can be achieved. Thus, to balance the
trade-off, the size of the cluster should be optimal.

7.2. Similarity-based learning approach

In the Similarity-based Learning Approach (SLA), the fog nodes are
combined with a pair of similar IoT-based devices and less similar IoT-
based devices. In SLA, the intelligent fog node is used to determine the
similarity function, or distance function among the given set of similar
IoT-based devices through learning about the different features of de-
vices [19]. Besides, parameters like physical location (link quality) and
common interest are measured to identify the similarity between
IoT-based devices. With the help of a one-to-one function, the intelligent
node determines the new devices are similar or not to meet the future
demands of new devices.

7.3. Transfer-based learning approach

In the Transfer-based Learning Approach (TLA), the intelligent node
has pre-knowledge to solve the problems and cache the data items [128].
In TLA, fog nodes use the source domain and target domain to complete
the given task. The source domain is responsible for getting the infor-
mation from the interaction of IoT-based devices. In contrast, the target
domain is responsible for following the requests pattern made by IoT
devices. The source domain is the combination of IoT devices and the
data that was requested earlier. Moreover, it knows the popularity ma-
trix, where the popularity of each content is measured by taking the sum
of received requests for content. The TLA gets the user-data relationship
from the source domain to create a link between the source domain and
target domain to find similar content. Therefore, both source domain and
target domain are combined to determine the popularity matrix [131].
Thus, the content showing a higher popularity matrix is cached at the fog
nodes near the IoT devices.

7.4. Recommendation-based Q learning approach

In local caching-based systems, the end-users do not have any infor-
mation about the cached data items, and they do not know where to send
the requests to fetch the desired data items. Therefore, Recommendation-
based Q Learning (RQL) algorithms are most suitable to enhance system
efficiency [129]. To improve caching efficiency of the system, fog nodes
broadcast messages to the end-users to provide information about the
cached data. The broadcast message introduces content and its rank about
popularity value (howmany requests the content has received). The value
of the message influences the decision making by the user to send requests
for fetching the content even though the requesting rate for content,
arrival, and departure rate of end-devices are unknown. A Q-based
learning scheme is considered the appropriate approach to enhance the
system performance by minimizing delay and improving the system
throughput. Thus, it shows promising accuracy to determine the subse-
quent requirements of the fog nodes by considering the Q values. The ratio
for an i-th content depends on the number of IoT-based end devices con-
nected with the system and the number of devices connected within a
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particular period. Consequently, the unknown requests for i-th content
depend on the caching action within the previous and current time in-
terval. Therefore, the Q value is assigned to the state action pair in learning
schemes, increasing the reward. The number of IoT-based devices is
selected for taking action within a particular period. Thus, the reward for
the subsequent action is determined by observing the previous actions,
and a new learning value ismeasured [129]. RQLmaximizes the long-term
reward for a system to improve the overall caching performance.

7.5. Deep reinforcement-based learning approach

This approach intelligently observes the environment automatically
to learn about the caching strategy regarding the history [132,133]. The
integration of deep neural networks is a promising approach to learn
about raw and high-dimensional data automatically. However,
learning-based caching strategies are divided into Popularity
Prediction-based Caching Strategies (PPCS) and Reinforcement
Learning-based Caching Strategies (RLCS). In the PPCS, the popularity of
content is measured and then caching policy is developed based on the
popularity prediction [119]. Several parameters like context informa-
tion, user content relation, and traffic patterns are selected to determine
(predict) the popularity of a content [134,135]. The RECS emerges the
content popularity and content placement to work as a single entity. In
this approach, Reinforcement Learning (RL) agents are trained on raw
and high dimensional observations. Therefore, the fog nodes observe the
environment to obtain the state of the environment, and then, according
to the caching policy, the corresponding state is obtained [136]. The
basic goal of deep reinforcement learning is to maximize the reward
during the agent taking actions at a particular state.

7.6. Federated-based learning approach

The conventional ML techniques depend on the central entity for the
data processing and caching. However, it is not possible to fetch the data
from a private server. It increases the communication overhead to
disseminate the data from a large number of IoT devices to the central ML
processors [130]. To cope with this, Federated-based Learning (FL)
provides decentralized-based ML techniques to keep the data at the
origin (where the data was generated), and locally trained models are
disseminated to the central processor. These techniques significantly

reduce network bandwidth and energy consumption by disseminating
the features rather than the entire data stream. Moreover, FL-based ap-
proaches also reduce the delay in real-time responses [137]. In addition,
these approaches increase the processing power of the devices. They use
private data to perform model training in a distributed manner to keep
data at the origin (place of data generation). Furthermore, the content
popularity prediction can be computed with the help of FL approaches
[138]. Table 6 summarizes the goals and benefits of ML-based techniques
that are the most promising approaches to enhance the overall caching
performance of fog networks.

8. Cache security risks and insight

The fog system is still facing security-related problems. To optimize
web services, the fog computing has some security related issues, for
example, applications are vulnerable to the code injection attacks if user
input is not properly valid. In SQL injection, for example, user-supplied
SQL code is automatically executed to help unauthorized users access
and modify data. Consequently, the whole fog system will compromise
and forward the unauthorized (modified) data to the central server.
Likewise, insecure Application Programming Interfaces (APIs) attacks
such as cookie hijacking and sessions are insecure direct object references
for unauthorized data, malicious redirections, drive-by attacks, and
illegal information can force fog computing to expose the system and its
authorized users. Moreover, web attacks also target the other applica-
tions within the same fog system by integrating the scripts and damage
sensitive information. Furthermore, cache-based side-channel attacks are
also challenging security risks for the cache management module in the
fog system. For example, exposing the cryptographic hash functions or
keys can result in the leaking of sensitive information. In practical
implementation, preventing cache-based attacks is expensive. Recent
studies show that the cache-interferences are challenging for both soft-
ware and hardware modifications.

From the present study, it is clear that fog-based networks face several
issues such as offloading, scheduling, energy consumption, the high
burden on front-haul, backhaul links, high bandwidth cost, latency, data
availability, and data distribution. To improve the performance of fog-
based networks, caching seems like a promising method to cope with
the fog paradigm's existing issues. Caching has several benefits over
traditional fog-based networks. Most researchers show their interest in

Table 6
Machine learning techniques with aim/goal and benefits.

Techniques Reference Aim/Goal Benefits

Clustering-based Fog
Approach [127]

Alghamdi
et al. [127]

In this approach, fog-based nodes are combined into clusters to
satisfy the demands of end devices. Data items are cached at
diverse fog nodes after being coded into segments to achieve
better performance

Provide coded-based caching Provide load balancing Improves
cache diversity mechanisms to improve system efficiency

Similarity-based Learning
Approach [19]

Xu et al. [19] In SLA, the intelligent fog node is used to determine the
similarity function or distance function among the given set of
similar devices by learning their features

Use only previous knowledge to find the similarity Efficient if
similar device arrives

Transfer-based Learning
Approach [128]

Li et al. [128] In TLA, the intelligent node has pre-knowledge to solve the
problems. It caches the data items using the popularity matrix,
and fog nodes use the source domain and target domain to
complete the given task

Provide a popularity matrix to cache the content efficiently and
solve the issues by manipulating existing knowledge

Recommendation-based Q
Learning Approach [129]

Guo et al.
[129]

In local caching-based systems, the end-users do not have any
information about the cached data items, and they do not know
where to send the requests to fetch the desired data items.
Therefore, RQL algorithms are most suitable to enhance system
efficiency. RQL maximizes the long-term reward and
performance

In this approach, the end-devices can identify the data to be
cached to which node using data priorities. RQL maximizes the
long-term reward for a system to improve the overall caching
performance

Deep Reinforcement-based
Learning Approach [119]

Zhu et al.
[119]

In PPCS, the popularity of a content is measured and caches the
content. The basic goal of deep reinforcement learning is to
maximize the reward during the action taking by an agent at a
particular state

Reduce the long-term cost of downloading content. Overlapping
coverage of fog nodes is considered

Federated-based Learning
Approach [130]

Li et al. [130] The conventional ML techniques depend on the central entity for
the data processing and caching. Furthermore, the content
popularity prediction can be computed with the help of FL
approaches

Use the private contents to minimize communication overhead,
bandwidth, and energy consumption
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exploring its capabilities that will enhance the fog computing infra-
structure. It is one of the most suitable techniques to improve data dis-
tribution and dissemination in fog-based environments. Thereupon, a
number of flexible caching schemes are developed to enhance the
different fog environments. Most of these caching schemes are appro-
priate to meet fog computing requirements. For instance, caching can
reduce the huge amount of duplicate transmission.

The massive growth in data traffic and multiple dissemination of
similar content continues to pose a number of challenges, the most
important of which are inefficient resources utilization, redundant
transmission, network congestion, energy, bandwidth, and cost con-
sumption, and which are not easily solved by the current fog-based
caching technologies. Moreover, cache management becomes a critical
issue because of its limited capacity to handle or accommodate the huge
amount of transmitted data. Consequently, it needs to enhance the fog-
based caching infrastructure regarding user perspectives. For example,
the end-users are keenly interested in downloading their desired data
within short latency. Moreover, cache placement is a significant problem
in fog-based IoT networks to distribute highly requested contents to end-
users efficiently. Besides, fog computing has limited capacity and re-
sources (cache) to efficiently allocate resources to the end-users. Efficient
content caching is the core part of fog computing. Therefore, low-quality-
based caching schemes can increase the burden on the network and
consumes more resources. Moreover, the caching schemes should be
compatible with IoT-based applications [16]. ML is considered as a
promising solution to cope with these challenges, and recently, it has
gained significant attention from the research community. ML uses sto-
chastic gradient descent that can determine the optimal solution for
complex problems [139].

ML-based data handling and caching techniques play an imperative
role in providing security and popular data items with less delay and
caching these data items near the end-users. Hence, the subsequent re-
quests can fetch these cached data items within a short time. ML provides
diverse techniques to handle the data by managing the cache efficiently,
as described in previous sections.

9. Future research directions

Regardless of the promising view of cached-based fog computing,
several issues still needed to be addressed, as given in the following.

9.1. Energy management

As the fog networks consist of distributed nodes that consume more
energy compared with the cloud counterparts. Thus, it needs much effort
to propose and optimize an efficient energy-saving caching scheme for
fog networks. For instance, an optimal caching scheme needs to be
designed to use resources to minimize energy consumption efficiently.

9.2. Strict latency

It is one of the significant issues of fog and cache-based fog computing
paradigms. Industrial systems such as manufacturing, goods packing, gas,
and oil systems generally measure the end-to-end latency within a few
milliseconds. However, potential applications, such as drone flight con-
trol, vehicle to roadside communication, and virtual reality, need tens of
milliseconds. In such systems and applications, strict latency is required
to accomplish the tasks. It creates a issue for cached-based fog
computing.

9.3. High demands of network bandwidth

The number of mobile devices is growing very fast and generates a
gigantic amount of data traffic. For instance, currently, the generated

data from an autonomous vehicle is predicted as one gigabyte per second.
The Google data traffic is estimated as one petabyte per month. To
transmit such a massive amount of data (cloud to fog nodes), computing
architecture needs more network bandwidth and extensive cost. There-
fore, the integrated cache-based fog network will be required to enhance
fog infrastructure for efficient data processing and storage to provide
data dissemination with efficient bandwidth consumption.

9.4. Irregular connectivity

Currently, a large number of devices are connected with the Internet
through wireless channels, and some devices may face from the fluctu-
ating wireless signals and suffer from irregular connectivity to fog nodes.
For instance, moving devices usually suffer from such kinds of issues in
which drones, vehicles, or a mobile terminal of a cellular system. How-
ever, communication services such as data gathering, analytics, and
control are highly recommended. Therefore, fog computing architecture
is highly desirable to design an efficient caching scheme that gives
consistent service availabilities under fluctuating and irregular connec-
tivity conditions to serve urgent demands.

9.5. Mobility

A number of content providers, computing nodes, and caching nodes
can be mobile devices. It is very hard to find an appropriate computing
and caching node in a network in these circumstances. Route failure and
data requests failure depend on the mobility of a network node. Thus, the
overall network performance is reduced during irregular mobility.
Consequently, it is essential to address the mobility-related issues by
deploying an efficient caching scheme having mobility features to
improve the fog network effectiveness.

9.6. Security and privacy

Cloud servers offer obvious protection and are more secure against
security threats compared to fog nodes. However, in fog computing, the
caching facilities and services are provided in a distributed manner.
Therefore, such distributed systems usually have fewer safety features
and are vulnerable to attacks. As a result, cache-based fog computing
architecture is facing security-related issues. Likewise, cached-based
computing has limited resources (limited sizes) to identify the threats
and protect the distributed system from attacks. Thus, there is a need to
integrate security features within caching schemes to secure communi-
cation and data caching.

9.7. Network consistency

Most caching and computing systems are generally organized in
distributed manners that may cause oscillation, divergence, and incon-
sistency for the global computing network. For instance, this may happen
when an un-organized mobile system is combined with a virtual pool of
unpredictable shared resources. Consistency is considered as a typical
issue of distributed networks, and several distributed systems such as
analytics and stream mining require extra demand to address this issue.
Therefore, it can handle by providing consistent data dissemination
through using appropriate caching and computing resources.

9.8. Fog computing in machine learning perspective

Despite the broad usage of robots services and IoT-based industrial
applications, real-time applications, there are still some problems with
real-time applications, such as low efficiency in completing services and
tasks. Therefore, providing a collaborative environment for the real-time
processing of a smart and industrial application requires emerging ML-
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based intelligence for fog-based caching systems that can respond quickly
and decide on real-time processes.

9.9. Utilization of resources

Fog computing offers an efficient platform for diversified technolo-
gies to provide several services to the IoT-based end-devices and users.
However, the connection to and use of resources is huge challenge that
needs to be addressed effectively. Besides, it is imperative to develop an
efficient caching technique for task scheduling to utilize resources
properly.

9.10. Latency management

It is crucial to consider the latency to ensure the efficient level of QoS
in fog computing scenarios. The research on fog-based caching is still in
its early stage regarding the latency for service delivery to ensure effi-
cient QoS in the whole system.

9.11. Lack of cache space

To deploy an ML-based system, it is important to have adequate data
within the learning system to complete the learning process. However, in
fog computing, the nodes have limited cache capacity and do not ensure
the learning process to complete efficiently. Therefore, the selection of
appropriate data during the learning process by developing an effective
ML-based caching technique is an important issue that needs to be
addressed.

10. Conclusion

Cache-based fog computing is a promising high potential communi-
cation architecture that is broadly acceptable due to the considerable
development of mobile Internet and IoT. Fog computing provides extra
services and caching space at the network edges to efficiently use edge
devices. It significantly reduces transmission latency and energy con-
sumption. It can efficiently meet the requirements of latency-sensitive
and real-time applications. This survey presents a comprehensive over-
view of fog computing and its relation to IoT-based environments. A
summary of existing surveys is described with their contributions and
limitations. In addition, caching in fog computing, caching mechanisms,
and its contributions regarding different perspectives to enhance fog
networks’ overall performance are thoroughly explained. Moreover, an
acute survey on the challenges of fog computing is also presented. The
ML-based caching techniques are summarized to determine how to
support the cache module in fog infrastructure. Therefore, ML cache-able
fog nodes can serve more effectively to improve the overall system per-
formance. In the end, open issues and future research directions like strict
latency, intermittent connectivity, mobility, security, consistency are
presented.
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