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ABSTRACT Currently, with the widespread of the intelligent Internet of Things (IoT) in beyond 5G,
wireless federated learning (WFL) has attracted a lot of attention to enable knowledge construction
and sharing among a huge amount of distributed edge devices. However, under unstable wireless channel
conditions, existing WFL schemes exist the following challenges: First, learning model parameters will be
disturbed by bit errors because of interference and noise during wireless transmission, which will affect the
training accuracy and the loss of the learning model. Second, traditional edge devices with CPU acceleration
are inefficient due to the low throughout computation, especially in accelerating the encoding and decoding
process during wireless transmission. Third, current hardware-level GPU acceleration methods cannot
optimize complex operations, for instance, complex wireless coding in the WFL environment. To address
the above challenges, we propose a software-defined GPU-CPU empowered efficient WFL architecture
with embedding LDPC communication coding. Specifically, we embed wireless channel coding into the
server weight aggregation and the client local training process respectively to resist interruptions in the
learning process and design a GPU-CPU acceleration scheme for this architecture. The experimental
results show its anti-interference ability and GPU-CPU acceleration ability during wireless transmission,
which is 10 times the error control capability and 100 times faster than existing WFL schemes.

INDEX TERMS Internet of Things, wireless federated learning, LDPC, GPU-CPU.

I. INTRODUCTION

RECENTLY, Japan and the European Union reached
consensus on strengthening cooperation on the new

generation of communication standard “Beyond 5G”. With
rise of the concept beyond 5G, the Internet of Things (IoT)
has developed rapidly [1]. It is widely used in scenarios
that require low-power computing and remote access con-
trol, such as health detection [2], logistics [3], and automated
home [4]. As a result, many IoT devices have been spawned,

which are designed to achieve automatic data transmission
and provide ubiquitous wireless connections to billions of
devices with sensing [5], communication [6], computing and
control capabilities, such as smartphones and sensors. In
addition, the huge amount of data generated by the devices
of the IoT can be used to extract useful information through
machine learning, thus achieving a variety of intelligent
IoT services. Emerging applications of the intelligent IoT
include automobile driving [7], [8], unmanned aerial vehicles
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(UAV) [9], [10], robots [11], health care [12], supply chain
finance, and so on. However, in the 6G era, the paradigm shift
from ‘interconnected things’ to ‘interconnected intelligence’
through modern machine learning technology is facing three
major challenges. First, data transfer with private information
to a cloud server is vulnerable to eavesdropping and data
tempering attacks. Second, due to the limited wireless chan-
nel transmission resources, the machine learning training
model which aggregates a large amount of distributed data
through the wireless network channel may lead to network
congestion, which causes network delay to be too long and
affects the efficiency of machine learning.
In order to solve the above problems, researchers have

studied and designed federated machine learning (FL) [13].
FL is a novel distributed learning system, which is also
considered as a promising privacy-sensitive and low-latency
intelligent IoT application solution with the ability to uti-
lize distributed computing resources. We consider a scenario
where there is such a network structure with a server and
several clients in a wireless network environment. In this
wireless network environment, if all data of the client is sim-
ply transmitted to the server, it will be a heavy burden for the
wireless network with limited resources, and the server can-
not obtain all the wireless data quickly, which will affect the
performance of FL model. Compared to traditional machine
learning, FL has more prospects for data privacy. FL allows
the training data stay on the local, and only requires each
IoT device to upload its locally updated model to an edge
aggregation server over wireless transmission during model
training. This enhances devices privacy and data security by
preventing data collected on IoT devices from being leaked
to other devices and aggregation servers. Among them,
WFL [14], [15], [16], [17], [18] is the most recent research
hotspot, and many new studies have also been generated
around WFL. Such as communication problems [19], [20],
user selection problems [21], [22], [23], [24], [25], security
problems [26], [27], and automatic modulation classification
problems [28], [29]. WFL relies on both cloud servers and
edge devices. A complete federated learning process includes
multiple rounds. Each participant uses local data to perform
local training to obtain a local model, and sends the weights
parameter to the cloud server through wireless channel cod-
ing which can do correction and error detection of wireless
transmitted digital signals and enhance the ability of data to
withstand various interference. The cloud server aggregates
the weights parameter of each participant to obtain a global
model. Then, the weights parameter of the global model are
sent back to the edge devices for the next round of training
until the model converges. WFL can share federated learning
models to complete learning tasks without sharing training
data. Because the data does not leave the local during the
training process, so the data security of the participants is
guaranteed, and a lot of communication overhead is saved.
Although WFL has the above characteristics, its

performance is still affected by the following factors [30].
First, earning model parameters will be disturbed by bit

FIGURE 1. Knowledge exchange by wireless transmission in intelligent IoT network.

errors because of interference and noise during wireless
transmission. In the wireless transmission medium, unstable
uplink and downlink transmission will cause the parameter
weights of the model to be incorrectly transmitted. Second,
traditional edge devices with CPU acceleration are inefficient
due to the low throughout computation, especially in accel-
erating the encoding and decoding process during wireless
transmission. Third, current hardware-level GPU acceleration
methods cannot optimize complex operations, for instance,
complex matrix multiplication in wireless channel coding in
the WFL environment.
To solve the above challenges, first, we designed a new

architecture that optimize WFL with wireless channel cod-
ing. Specifically, we embed the encoding and decoding
process into the local learning process and the server param-
eter aggregation process of WFL. Through wireless channel
coding, the model parameters obtained by learning and
aggregation can be checked and corrected while transmit-
ting in the wireless channel, so the transmission process of
model parameters of WFL is more reliable. Second, we also
designed a software defined CPU-GPU hybrid architecture to
speed up the encoding and decoding process of model param-
eters by wireless channel coding. Compared with traditional
hardware acceleration, software-defined GPU-CPU acceler-
ation can accelerate the wireless channel coding process
of specific model parameters through software program-
ming. Third, The software-defined acceleration method we
designed makes the acceleration not limited to hardware
conditions. It can optimize the transmission of different
parameters of different edge devices through software pro-
gramming, and has strong portability. Finally, it is worth
mentioning that our work is the first we know to consider
combining the parameter transmission process with the wire-
less channel coding work, using communication optimization
learning. Simulation experiment shows that the WFL archi-
tecture with wireless channel coding embedded is more
anti-interference compared with the WFL without wireless
channel coding. In addition, we also prove that the GPU-
CPU hybrid acceleration architecture can greatly improve the
wireless channel coding efficiency, compared with pure CPU
acceleration method and pure GPU acceleration method.
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The remainder of this article is organized as follows. In
Section II we will introduce recent related works about WFL
optimization and GPU acceleration methods. Section III
we will introduce the system model of anti-interference
WFL architecture embedded with wireless channel coding.
Section IV shows the algorithm we designed to implement
the anti-interference WFL architecture. In Section V we
designed experiment to simulate a real wireless environ-
ment to test the anti-interference and acceleration ability of
the anti-interference WFL architecture. Finally, Section VI
concludes this paper and points out future work.

II. RELATED WORKS
In recent years, research on WFL has received a lot of atten-
tion. Researchers have tried to optimize WFL from different
aspects. Under the condition of limited wireless network
resources [31] and client energy resources [23], [32] partic-
ipating in WFL local training, Zhou proposed a bandwidth
allocation algorithm with low energy consumption [33],
which enables clients to engage in learning more sustainably.
Xu and Wang proposed to intelligently select clients partici-
pating in WFL local learning based on energy consumption
from the long-term perspective of learning as a whole [34],
not limited to learning rounds. By optimizing the joint client
selection and bandwidth allocation under long-term client
energy constraints, the long-term performance of wireless
federated learning is guaranteed in complex network envi-
ronments. Based on the expected convergence speed of the
WFL algorithm, Chen et al. quantifies the influence of wire-
less factors on WFL, and under the given user selection and
uplink resource block (RB) allocation scheme [35], derives
the optimal transmit power for each user, thereby optimiz-
ing user selection and uplink RB allocation to minimize the
WFL loss function. The above studies all aim to optimize
the resource allocation of clients participating in WFL local
training, and do not consider the influence of the instability
of the wireless channel on the transmission of model param-
eters between the client and the server in complex wireless
environment.
In the wireless network environment, wireless channel

coding is the guarantee of fast and correct data transmis-
sion. Afshin Abdi compresses the stochastic gradient (SG)
transmitted in WFL based on Random Linear Coding (RLC)
to reduce communication overhead and accelerate conver-
gence [36]. Amiri and Gündüz proposes a new simulation
scheme called A-Distributed Stochastic Gradient Descent
(A-DSGD) by exploiting the additional properties of wire-
less MACs for over-the-air gradient computation [37]. In
A-DSGD, these devices first thin out their gradient estimates
and then project them into a low-dimensional space imposed
by the available channel bandwidth. These predictions are
sent directly through the MAC without using any digital
codes. Because A-DSGD utilizes the limited bandwidth more
efficiently and the natural alignment of gradient estimates
across channels, it converges faster. Although the above
researches optimize the communication process of model

parameter transmission between client and server in wireless
environment, they do not consider the influence of wire-
less transmission error on model parameters. We simulate
the communication process of model parameter transmission
between client and server in WFL, and embedded wireless
channel coding inside, under different bit error rates, the
accuracy of model parameter transmission is ensured, so as
to ensure the accuracy and reduce the loss of WFL.
With the development of hardware technology, the com-

puter has more and more CPU calculation and operation
units, which makes the program run faster and faster.
However, in some scenarios, compared to the CPU, the
number of computing units of the GPU is much higher,
even if the computing power of the GPU is not as good as
CPU, it can perform thousands of calculations at the same
time, which is more efficient. In the communication pro-
cess of WFL, GPU acceleration can greatly accelerate the
process of encoding and decoding model parameters, which
improves the efficiency of learning. Ling and Cautereels
studied GPU as a digital signal processing accelerator for
cloud RAN [38], which improves the throughput of data and
accelerates the decoding process of LDPC. Chance Tarver
works by changing the parallelization strategy of mapping
GPU cores to blocks, using many GPU cores to quickly
compute a codeword for low latency, or using cores to
process multiple codewords simultaneously for targeted high-
throughput applications [39]. The above researches are based
on GPU hardware optimization to speed up the encoding and
decoding process. By analyzing the operation characteris-
tics of wireless channel coding, we propose a GPU-CPU
hybrid architecture at the software level, which acceler-
ates the encoding and decoding process of model parameter
communication between the WFL client and server.

III. SYSTEM MODEL
In order to reduce the influence of wireless channel insta-
bility on the communication process of WFL and improve
the anti-interference ability of WFL, we designed an WFL
architecture with wireless communication coding embedding
in, and designed a software-defined GPU-CPU hybrid accel-
eration architecture to accelerate the encoding and decoding
process between the client and the aggregation server. Next
we will introduce our designed anti- interference WFL
architecture embedded with wireless communication cod-
ing, and a software-defined GPU-CPU hybrid architecture
for accelerating wireless channel coding.
The proposed framework of anti-interference WFL archi-

tecture embedded with wireless channel coding is shown in
Fig. 2, which consists of three planes as listed below.

A. ANTI-INTERFERENCE WIRELESS FEDERATED
LEARNING PLANE
This plane is formed by connecting an aggregation server
with many edge devices with limited wireless communi-
cation resources, such as smartphones, tablets, unmanned
autonomous, drones and industrial equipment, etc. network
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FIGURE 2. Anti-interference wireless federated learning framework.

composition. In order to handle the high-frequency commu-
nication between aggregation servers and edge devices, it
is necessary to ensure fast and stable wireless communica-
tion. However, the instability of the wireless channel limits
the communication process between the aggregation server
and the edge device. If there is no error correction method,
when error happens in the wireless transmission, or when it
is attacked by byzantine attacks, data poisoning, and model
inference, the model trained by WFL will be unreliable,
especially in an open wireless network environment.

B. WIRELESS CHANNEL CODING EMBEDDING PLANE
The wireless channel coding embedding plane is composed
of the aggregation server and the edge client. Each end is
further divided into a wireless channel coding module and
a wireless channel decoding module. The wireless channel
coding module uses the aggregation model parameters of the
aggregation server and the local model parameters of the
edge client as information symbols, and encodes the block
model parameters, so that the wireless transmitted data has
error detection and even error correction capabilities. The
wireless channel decoding module code decodes the local
model parameters received by the aggregation server and
the global model parameters received by the edge client.
Through wireless channel coding, even if it is subjected
to unstable wireless transmission, after error detection and
error correction of the parity bit, the finally decoded model
parameters are close to or even the same as those before
coding, so the performance of WFL can be guaranteed.
Commonly used wireless channel codes mainly include

Low Density Parity Code (LDPC), Cycle Redundancy
Check (CRC), Turbo Code and Polar Code.

C. CPU-GPU HYBRID ACCELERATION
ARCHITECTURE PLANE
Today, many studies have realized hardware-accelerated
wireless channel coding, such as using a graphics processing
unit (GPU) as an alternative to FPGA and ASIC decoders

to accelerate the decoding process of LDPC. According to
the characteristics of wireless channel coding and decod-
ing in mathematical calculation, we defined a CPU-GPU
hybrid acceleration architecture from the software aspect, and
dynamically accelerate the encoding and decoding process
of model parameters, which is simpler and more portable
than hardware acceleration.
The wireless channel coding embedded anti-interference

wireless federated learning framework we designed, while
retaining the characteristics of FL data not leaving the local,
through wireless channel coding, further guarantees the com-
munication security between the aggregation server and the
edge device. First, the aggregation server encodes the ini-
tial model parameters and sends them to all edge devices
participating in the learning through wireless transmission.
The edge device decodes the received model parameters,
initializes the local model, and performs training accord-
ing to the local data. After the local training round ends,
each edge device encodes its model parameters and returns
them to the aggregation server through wireless transmis-
sion. The aggregation server decodes all model parameters,
and aggregates all model parameters into parameters of a
global model through an algorithm. Repeating this process
until the global model sent to the edge devices reaches con-
vergence, and the entire WFL task is completed. In this
process, the GPU-CPU hybrid acceleration architecture we
designed dynamically optimizes the communication process
between the aggregation server and the edge clients, and
reasonably allocates CPU acceleration and GPU accelera-
tion to the encoding and decoding processes. On the premise
of reducing communication overhead and saving computing
resources, the accuracy of model parameter transmission is
guaranteed.
In order to realize this anti- interference WFL architecture,

next we will show the specific implementation algorithm of
our designed wireless channel coding embedded in wireless
federated learning and software-defined GPU-CPU hybrid
acceleration architecture.

IV. ALGORITHM
The specific implementation algorithm of wireless channel
coding embedded in WFL and the software-defined GPU-
CPU hybrid acceleration architecture is proposed in this
section.

A. WIRELESS CHANNEL CODING EMBEDDING IN
WIRELESS FEDERATED LEARNING
In order to realize the anti-interference WFL architecture, we
embedded wireless channel coding in both the edge client
side and aggregation server side of WFL. For the edge client,
decoding is performed when receiving global model parame-
ters from the aggregation server, and encoding is performed
when sending local model parameters to the aggregation
server. For the aggregation server, encoding is performed
every time the aggregated global model parameters are sent
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FIGURE 3. Wireless coding embedded wireless federated learning algorithm.

to the edge client, and decoding is performed when receiv-
ing an update of the local model parameters uploaded by
the edge client.
As shown in Figure 3, this framework consists of one

cloud server and N edge clients. Each user k has a local
dataset Dk. For each local dataset Dk, Dk = {xki, yki}Dki=1,
where {xki} ∈ R

d is the input vector of user k, and yki is
its corresponding output (we currently only consider single-
output federated learning algorithm). We define the vector
ωi as the local model parameter trained by xki and vector g
as the global model parameter aggregated by ωi. For each
client i, their task is to train the optimal parameter ωi to
minimize the loss function of the local model. And the entire
FL process translates into solving the following optimization
equation:

Fk
(
ωi, xk1, yk1, . . . , xkDk , ykDk

)

= 1

Dk

Dk∑

i=1

f (ωi, xki, yki) (1)

g =
K∑

k=1

nk
n

ωk (2)

where f (ωi, xki, yki) is the loss function describing the
performance of the FL model obtained by the input vec-
tor xki and output vector yki. Among them, g is the weight
parameter of the aggregation model obtained based on the
model parameter ωi uploaded by the edge client to the
aggregation server according to the federated average algo-
rithm. As with any machine learning, the most important
factor affecting learning performance is the weight param-
eters of the machine learning model. For the research in
this paper, it is the weight parameter g of the aggregation
model. Whether g can be transmitted quickly and accurately
is directly related to the performance of WFL. Therefore,

we embedded wireless channel coding in the WFL model,
to design an anti-interference WFL architecture with error
checking and error correction, and perform wireless chan-
nel coding on the weight parameter g of the aggregation
model of wireless transmission so that g can be transmitted
accurately, ensuring performance of WFL.

B. WIRELESS ENCODING
Wireless channel coding is a process of matrix transformation
and matrix operation. First, we need to divide the global
model parameters g into information symbols for wireless
transmission, and transform it into a binary matrix as the
basis of operation. The global model parameter g contains
the weight parameter of each node of the model whose
type is a floating-point number. We need to convert the
weight parameter g of the floating-point number into a binary
matrix for encoding operation. Dividing the floating-point
number weight parameter g into an integer part F and a
fractional part f , and the subscript represents the number of
digits. We convert the integer and fractional parts to binary
and store them in the matrices A = [a1, . . . , ai, . . . , an] and
B = [b1, . . . , bi, . . . , bn], and then merge the matrices A and
B separately:

[
ai

] =
⎧
⎨

⎩

[
0
]
b, (Fn\2 = 0)

[
1
]
b, (Fn\2 = 1)

i ∈ [1, n] (3)

[
bi

] =
⎧
⎨

⎩

[
0
]
b, (fn × 2 < 0)

[
1
]
b, (fn × 2 ≥ 1)

i ∈ [1, n] (4)

where Fn is the integer part of Fn−1 divided by 2, written
as Fn = [

Fn−1/2
]
, and fn is the fractional part of fn−1

multiplied by 2, written as fn = fn−1 × 2 − [
fn−1 × 2

]
.

Because the storage method of floating-point numbers in
the computer follows the IEEE 754 floating-point number
counting standard, it can be expressed as:

V = (−1)S ×M × 2E (5)

Therefore, we also need to convert the matrix after the
matrix A and B are combined into a representation form
composed of sign bits S, exponent codes E, and mantissa
bits M. According to the positive or negative of the weight,
the value of the sign bit S is taken, and the positive number
is 0, and the negative number is 1. After moving the decimal
point, the value of the exponent E is equal to the number
of digits moved after the representation is reproduced in
scientific notation. Take the mantissa M according to the
precision to get the value of the mantissa bits. Finally, a
binary matrix of weight parameters X = [SME] is obtained.
Secondly, we need to construct the parity matrix H appli-

cable to the global model information symbol binary matrix.
Parity matrix H is a sparse matrix composed of only 0 and 1.
According to the shape of the segmented global model
information symbol binary matrix, the shape of the parity
matrix H is determined. As follows, on the basis of confirm-
ing the shape of the parity matrix H, we define the m × n
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mother matrix M(H) of the parity matrix H, and use the 0
and 1 in M(H) to be all 0 of L × L The parity matrix H
can be obtained by replacing the sub-matrix with the cyclic
sub-matrix Paij of L × L We define cyclic shift sub-matrix
P and parent matrix M(H) as:

P =

⎡

⎢⎢⎢⎢⎢
⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

⎤

⎥⎥⎥⎥⎥
⎦
M(H) =

⎡

⎢⎢⎢⎢⎢
⎣

1 0 · · · 0 1
0 1 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 1
1 0 · · · 1 0

⎤

⎥⎥⎥⎥⎥
⎦

(6)

Replacing each 1 in the above formula with an L×L cyclic
shift sub-matrix Paij , and replace each 0 with an L×L all-zero
matrix to obtain a mL× nL H matrix:

M(H) =

⎡

⎢⎢⎢⎢⎢
⎣

Pa11 0 · · · 0 Pa1n

0 Pa21 · · · Pa2(n−1) 0
...

...
. . .

...
...

0 Pa(m−1)2 · · · 0 Pa(m−1)n

Pam1 0 · · · Pam(n−1) 0

⎤

⎥⎥⎥⎥⎥
⎦

(7)

where aij is the shift term. The unit matrix is cyclically
shifted to the right by a to obtain the cyclic sub-matrix
Paij . When storing the H matrix, we only need to store the
value of each aij in the above formula, instead of storing the
position of each 1.
As long as M(H) is expanded, we get the constructed

parity matrix H. In order to perform matrix operations with
the global model information symbol binary matrix, we need
to change the parity matrix H into a generator matrix G
through matrix transformation. First, we perform row-column
transformation on the H matrix, and change the right half of
the matrix into an identity matrix to obtain the intermediate
matrix H′ = [

PT , I
]
. Convert the left half of the middle

matrix H′ to rank and exchange it with the identity matrix
of the right half to obtain the generator matrix G = [

I,P
]
.

The specific process is as follows:

H′ =

⎡

⎢⎢⎢⎢⎢
⎣

Pa11 · · · 0 1 0 · · · 0 0
0 · · · Pa21 0 1 · · · 0 0
...

. . .
...

...
...

. . .
...

...

0 · · · Pa(m−1)2 0 0 · · · 1 0
Pam1 · · · 0 0 0 · · · 0 1

⎤

⎥⎥⎥⎥⎥
⎦

(8)

G =

⎡

⎢⎢⎢
⎢⎢
⎣

1 0 · · · 0 0 Pa11 · · · 0
0 1 · · · 0 0 0 · · · Pan2

...
...

. . .
...

...
...

. . .
...

0 0 · · · 1 0 0 · · · Pa(m−1)n

0 0 · · · 0 1 0 · · · Pamn

⎤

⎥⎥⎥
⎥⎥
⎦

(9)

After obtaining the generator matrix G, we do r = X×G
to get the encoded information r.

[
SME

] ×

⎡

⎢⎢⎢⎢
⎢
⎣

1 0 · · · 0 0 Pa11 · · · 0
0 1 · · · 0 0 0 · · · Pa2n

...
...

. . .
...

...
...

. . .
...

0 0 · · · 1 0 0 · · · Pa(m−1)n

0 0 · · · 0 1 0 · · · Pamn

⎤

⎥⎥⎥⎥
⎥
⎦

(10)

Obviously, because the left side of the generator matrix
G is an identity matrix, the left side of the encoded
one-dimensional matrix r we get is the same as the global
model information symbol binary matrix X, and the check
bit is behind it. This is why G is called a generator matrix.
On the basis of retaining the original information, it gener-
ates a check digit for verification, which provides a basis
for error detection and correction in subsequent decoding.

C. WIRELESS DECODING
In wireless signal transmission, noise, pulses caused by alter-
nating current or lightning, transmission equipment failure
and other factors will cause bit errors, causing the transmit-
ted binary signal to send bit flips (from 0 to 1 or from 1
to 0). Therefore, we add wireless channel coding and add
check bits on the basis of the original information symbols.
If a bit-flip error occurs in the wireless transmission of the
global model parameter g, it can check the position where
the bit flip occurs and correct it. We embed a bit-flip decod-
ing method in the client, and the client performs decoding
after receiving the encoded global model parameter g from
the server.
We set when clients received the original information

symbols with parity bits like r = [r1 · · · ri · · · rn].
Now the parity matrix H will do its job. We do matrix

multiplication r×HT , then we can get multiple syndromes s.

si =
n∑

k=1

pik · rk (11)

When we compute the syndrome s, we use modular two
addition. When the results of the syndrome si are all 0,
it means that the wireless transmission is correct. When
the result of the syndrome si is 1, it means that the coded
information matrix r involved in the calculation of the syn-
drome si may have bit errors during wireless transmission.
At this time, in the syndrome si whose calculation result is
1, the coded information matrix ri that participated in the
most calculation times has the greatest possibility of error
in wireless transmission, so we perform bit flipping on the
ri that participated in the most calculation times, and then
re-calculate the syndrome s until the result of the syndrome s
is all 0, and we have obtained the correct binary information
matrix r of the global model parameters. After reconverting
the binary information matrix r into floating-point numbers
and importing them into each node of the local model, the
local model update of the clients are completed, and a new
round of local training can be started.
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Algorithm 1: LDPC Wireless Channel Coding
Algorithm
Input: WFL model parameter i, code length N, code

rate r, parity matrix H, generator matrix G.
Output: global model parameters g.

1 for convergence == 0 do
// Local model parameters obtained

by local training.
2 local_model[] = local_training(i, local_data);

// Turning local model parameter
into bit matrix called
information matrix.

3 info_matrix[] = Binary(local_model, N, r);
// Encoding

4 Encoded[] = LDPC_Encoder(info_matrix, G);
// Wireless transmission
// Decoding

5 local_model = LDPC_Decoder(Encoded);
// Cloud server Aggregation

6 global_model_parameters g =
Aggregation(local_model);
// Judge whether convergence

7 if convergence == 1 then
8 Output g;
9 Break; // Convergence

10 else if convergence == 0 then
11 i = g; // Next round

12 End

In the next section, we will design experiments to test
our designed software-defined GPU-CPU empowered WFL
with Embedding LDPC Communication Coding in terms of
anti-interference and acceleration ability.

V. EXPERIMENT
A. EXPERIMENT SETUP
Our experiments are deployed on the hardware with
2.90-GHz Intel Xeon Gold 6326 CPU, 256-G RAM, and 8-T
disk. The operating system is Linux Ubuntu 20.04 LTS and
the simulations are conducted on Python 3.8. The parameters
of the our experiments are presented as follows.
We set the number of clients m = 10, the global iteration

round G = 100 (that is, the number of communication iter-
ations between the server and the client), the local iteration
round L = 5, the number of clients participating in training
in each round k = 5, the number of samples for each round
of local training is s = 32, and the learning rate lr = 0.01.
The frame of encoder code length N = 648 and the code
rate r = 1/2.

Obviously, different from the ideal conditions, in the
actual environment, the wireless transmission will be affected
by various factors. Errors occur during the transmission
of model parameters, which affects the convergence of

FIGURE 4. Model accuracy curves with wireless coding under different bit error
rates.

FIGURE 5. Model loss curves with wireless coding under different bit error rates.

the model and affects the accuracy and loss of learning.
Therefore, we set the parameter p of the bit error rate to
indicate the degree of bit errors that occur during wireless
transmission. It represents the probability that a bit flip may
occur in the binary information during transmission.
Next, we will conduct experiments on the anti-interference

performance and encoding-decoding acceleration capabilities
of our proposed framework.

B. EXPERIMENT RESULT
1) Anti-interference experiment: The convergence of
our proposed wireless channel coding embedded anti-
interference WFL architecture over p = 0.01, 0.02, 0.03, 0.04
and traditional federated learning without code embedded are
shown as Fig. 4 and Fig. 5.

From Fig. 4, We can see that along the number of epoch
increases, the Accuracy of our proposed Code-embedded
anti-interference WFL architecture gradually increases and
converges to a high stable value. Specially, We can see that
when the bit error rate is low, the WFL architecture with
wireless channel coding embedding has similar performance
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TABLE 1. Performance comparison between coded and non-coded wireless federated learning.

FIGURE 6. Model accuracy curves without wireless coding under different bit error
rates.

to traditional FL. Therefore, the impact of embedding wire-
less channel coding on FL performance is negligible. As
the bit error rate increases, the time it takes for the wireless
channel coding embedded WFL architecture to reach conver-
gence increases and fluctuates slightly. The same effect can
be seen from Fig. 5. Fig. 5 is the change curve of the loss
and epoch rounds of the anti-interference WFL architecture
and traditional WFL under the same conditions. When the bit
error rate is low, the loss of anti-interference WFL is almost
the same as that of traditional WFL under ideal conditions.
The loss for anti-interference WFL increases slightly as the
bit error rate increases. Therefore, from the two aspects of
model accuracy and loss, the anti-interference WFL architec-
ture will not have a negative effect on the convergence of the
model. Therefore, we designed an experiment to simulate the
WFL embedded with wireless channel coding and ordinary
WFL without wireless channel coding in the actual environ-
ment, and compared the performance of the two architecture
under the influence of bit errors. As shown in Fig. 6 and
Fig. 7, the change curve of model accuracy and loss with
epoch rounds.
We plot the accuracy, loss and bit error rate p of the envi-

ronment where the anti-interference WFL embedded with
wireless channel coding embedded and ordinary WFL with-
out wireless channel coding embedded is plotted into the
following table.
From Table 1, we can find that before the bit error rate

p reaches 0.3, the performance of wireless federated learn-
ing embedded in anti-interference wireless channel coding
is stable at the level of wireless federated learning under

FIGURE 7. Model loss curves without wireless coding under different bit error rates.

ideal conditions. When the bit error rate p reaches 0.3,
There is a slight decrease in accuracy and loss. In contrast,
the common federated learning without code embedding,
only when the bit error rate p is between 0.001 and 0.005,
the learning performance is close to the level of wireless
federated learning under ideal conditions. When the bit
error rate p reaches 0.01, the learning performance drops
greatly, and the learning performance is not even as good
as the performance of the anti-interference federated learn-
ing framework in the environment of 10 times bit error rate
(i.e., p = 0.01). When the bit error rate p exceeds 0.01,
because there are too many bit errors in the transmitted
model parameters, the output of model accuracy and loss are
num, and the learning cannot proceed normally. Therefore,
the embedding of wireless channel coding greatly improves
the anti-interference ability of the wireless federated learn-
ing framework, enabling the learning to receive accurate
model parameters in a complex environment for model
update and training, ensuring the wireless federated learning
performance.
2) GPU-CPU hybrid acceleration experiment: To reduce

the impact of encoding embedding on learning efficiency, we
designed a software-defined GPU-CPU hybrid acceleration
architecture.
According to the characteristics of wireless channel cod-

ing, we divide the acceleration into two parts. The first part
is the calculation of converting the model parameters of the
floating point type into binary matrices, and the calculation
of generating the parity matrix H through matrix transforma-
tion. The second part is the multiplication of binary matrix
and generator matrix and the syndrome calculation of bit flip
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FIGURE 8. Encoding and decoding time comparison of different acceleration
methods.

decoding. The first part is mainly characterized by small
calculations but high computational complexity, which is
suitable for CPU acceleration. The second part is a large
amount of calculation, high throughput, repetitive and sim-
ple calculation content, suitable for GPU acceleration. Under
the condition of the same bit error rate p, we accelerate the
coding process with pure CPU acceleration and GPU-CPU
hybrid acceleration respectively to obtain a comparison chart
of the time spent by each acceleration method when the
model reaches convergence.
Obviously, compared with the GPU-CPU hybrid acceler-

ation method, CPU acceleration method spent more time to
reach convergence. The convergence speed of the GPU-CPU
hybrid acceleration method is 5 times that of the pure CPU
acceleration method.

VI. CONCLUSION
In this article, we proposed a software-defined GPU-CPU
empowered efficient wireless federated learning architecture
with LDPC communication coding embedded, which inte-
grates FL and wireless coding to enhance the performance of
wireless federated learning while guaranteeing information
privacy between the clients who participate in FL. In this
proposed framework, we first discuss the influence of the
framework itself on learning performance from two aspects
of model accuracy and loss. Next, we designed a simula-
tion experiment to simulate the accuracy and loss of our
proposed framework and the common framework under dif-
ferent bit error rates p. In addition, we compared pure CPU
acceleration and GPU-CPU hybrid acceleration to improve
the encoding speed. Finally, the experimental results show
that the anti-interference wireless federated learning frame-
work we proposed can ensure the accurate transmission of
model parameters in complex environments. Moreover, the
GPU-CPU acceleration module defined at the software level
improves the speed of encoding calculation in the frame-
work, improves the learning efficiency of the framework,
and solves the problem of learning efficiency decline caused

by encoding embedding. In future work, we will study the
impact of parity matrix on communication optimization when
using LDPC codes to optimize WFL communication under
different WFL tasks. In addition, we will compare different
wireless channel codes to optimize the communication pro-
cess of WFL based on the rules and characteristics of model
parameters.
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