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Privacy-Preserving Federated Learning of Remote
Sensing Image Classification With

Dishonest Majority
Jiang Zhu, Jun Wu , Senior Member, IEEE, Ali Kashif Bashir , Senior Member, IEEE,

Qianqian Pan , Member, IEEE, and Wu Yang

Abstract—The classification of remote sensing images can give
valuable data for various practical applications for smart cities,
including urban planning, construction, and water resource man-
agement. The federated learning (FL) solution is often adopted to
resolve the problems of limited resources and the confidentiality
of data in remote sensing image classification. Privacy-preserving
federated learning (PPFL) is a state-of-art FL scheme tailored for
the privacy-constrained situation. It is required to address safe-
guarding data privacy and optimizing model accuracy effectively.
However, existing PPFL methods usually suffer from model poison-
ing attacks, especially in the case of dishonest-majority scenarios.
To address this challenge, in this work, we propose a blockchain-
empowered PPFL for remote sensing image classification frame-
work with the poisonous dishonest majority, which is able to defend
against encrypted model poisoning attacks without compromising
users’ privacy. Specifically, we first propose the method of proof
of accuracy (PoA) aiming to evaluate the encrypted models in an
authentic way. Then, we design the secure aggregation framework
using PoA, which can achieve robustness in a majority proportion of
adversary settings. The experimental results show that our scheme
can reach 92.5%, 90.61%, 87.48%, and 81.84% accuracy when
the attacker accounts for 20%, 40%, 60%, and 80%, respectively.
This is consistent with the FedAvg accuracy when only benign
clients own the corresponding proportion of data. The experiment
results demonstrate the proposed scheme’s superiority in defending
against model poisoning attacks.

Index Terms—Artificial intelligence, privacy, remote sensing,
security.
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NOMENCLATURE

w
(t)
i Local model.

w(t) Global model.
p
(t)
i Precision rate.

l
(t)
i Loss.

μ
(t)
i Trust score.

C(t)
i Satellite client identity.

D Data resource.
σ Digital signature.
ctr TEE index.
[w

(t)
i ] Encrypted local model.

[w(t)] Encrypted global model.
n Number of prediction classes.
m Number of clients.
skt TEE private key.
vkt TEE publick key.
pk Private key.
sk Publick key.
prog Program in TEE.

I. INTRODUCTION

R EMOTE sensing is the process of detecting and monitoring
the physical features of a location by measuring its emitted

and reflected radiation from a distance, often via a satellite or
airplane [1], [2]. Remote sensing applications have diverse do-
mains, with the smart city domain being one of the most promi-
nent ones. This domain encompasses a range of applications,
such as monitoring natural catastrophes, weather forecasting,
and remote surveillance [3], [4], [5], [6]. A smart city is a modern
urban concept that integrates humans, the physical world, and
digital technologies. This can improve the quality of life and
make our cities more inventive and environmentally friendly [7].
Image classification in remote sensing is a real-world practical
application example. It is feasible to apply advanced smart city
processes and remote operations for tasks, such as detecting ob-
jects, analyzing images, and geographic mapping [8]. However,
the variability and complexity of the remote sensing data create
a difficult challenge. On the one hand, sensing data is usually
scattered across numerous entities due to the increase in data
collection from multiple sources [5]. On the other hand, remote
sensing data is privacy-sensitive information that may reveal
sensitive infrastructure and military facilities [9]. As a result,
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Fig. 1. Remote sensing image classification via PPFL in smart cities.

access to such data is limited to authorized personnel to prevent
unauthorized use or disclosure of sensitive information. Hence,
from a practical and privacy-concerning perspective, an adaptive
paradigm, such as federated learning (FL) [5] is frequently used
to address these issues.

FL is an emerging approach in collaborative machine learning,
where training is conducted in parallel and distributed among
multiple clients. In FL, the training process is carried out on
individual devices or nodes, which collect and analyze data
locally before sharing only relevant updates with the central
server [10]. Nevertheless, traditional FL does not protect the
privacy of locally uploaded model parameters, which is also
proven to be detrimental to privacy [11], [12]. To alleviate secu-
rity issues, PPFL has been the topic of extensive academic study.
One typical PPFL architecture via homomorphic encryption [13]
used in remote sensing image classification is shown in Fig. 1.
Satellites capture images in space that carry sensitive data. The
satellite then uses these images to train a local model for a
specific purpose, encrypts it using a homomorphic encryption
algorithm, and delivers it to the edge server. Edge servers collect
these encrypted local models, aggregate them, and transfer the
global model to satellites for decryption. Finally, the edge servers
perform specific actions using the decrypted global model.

Existing PPFL schemes attempted to solve privacy issues,
but other problematic issues still exist. Model poisoning attack
is the foremost concern [14], [15]. In model poisoning attack,
the attackers produce a poisonous local model, which is then
uploaded and aggregated by the server to create a poisoned
global model, which may make incorrect predictions. Because
PPFL frequently encrypts the data before it is delivered to the
server, it is more difficult to distinguish between parameters
that are harmful and those that are beneficial. To tackle this
problem, researchers have proposed a number of secure ag-
gregation solutions to reduce the risk of harmful actions as a
defense mechanism against model poisoning attacks. Although
these rules can remove malicious parameters through various
approaches, they have some restrictions or flaws and do not
apply to real-life situations. For example, oblivious defender
for private Byzantine-robust federated learning (FLOD) [16] is
a novel Hamming distance-based aggregation method, which
can resist model poisoning attacks when the Byzantine users
are ≥ 50%. The approach involves the deployment of two

noncolluding task-specific servers to perform safe aggregation,
which can be impractical and does not consider malicious server
behavior. Truth discovery-based federated learning (TDFL) [17]
is an efficient way to resist model poisoning in a dishonest-
majority setting, the solution requires prerequisite knowledge
of adversary percentage. Multishuffler secure federated learning
(MSFL) framework [18] shuffles users and the local model to
build trust between local trainers and aggregators. However,
the MSFL involves a hierarchical shuffling process and, hence,
cannot avoid the single point of failure issue. To sum up, although
existing solutions can solve the problem to some degree, they
all have some impractical limitations, such as a single point of
failure problem, previous knowledge of adversary percentage,
and the requirement of two noncolluding task-specific servers.
Therefore, they do not resolve the problem or perfectly fit this
situation.

To solve those issues, we propose a homomorphic encryption
and blockchain empowered PPFL scheme for remote sensing
image analysis. Our proposed scheme involves satellites that
capture images and transmit them to edge servers, which act as
agents to facilitate FL. Furthermore, we adopt trusted execution
environment (TEE) [19] as a mean to generate a credible proof
namely PoA for each local model. In addition, we use blockchain
to record necessary data and aggregation processes to achieve
transparency. The main contributions of our work are shown as
follows.

1) Inspired by the concept of proof of work, we design
a natural construction that provides direct evidence to
prove the performance of a local model called PoA. Based
on TEE, our strategy can resist model poisoning in a
dishonest-majority setting.

2) We develop a blockchain-empowered PPFL framework
to facilitate transparent processes and protect privacy. In
order to guarantee the confidentiality of model parameters
on the local data of clients, we encrypt local parameters
using the CKKS cryptosystem [20]. The framework al-
lows satellite imagery owners worldwide to jointly train a
global image classification model, free from impractical
limitations in existing schemes.

3) We provide comprehensive security analysis of the scheme
and demonstrate extensive experiments using a well-
known dataset. The experiments conducted show that
the proposed scheme can effectively resist poisonous en-
crypted models and achieve robust aggregation.

The rest of this article is organized as follows. In Section
II, we introduce the related literatures. Then, we overview the
preliminaries in Section III. Next, we overview the problem
formulation in this work. Section IV elaborates on the proposed
scheme. Section V gives the theoretical security and privacy
analysis. Section VI evaluates the performance of the proposed
scheme. Finally, Section VII concludes this article.

II. RELATED WORK

In this section, we briefly review the state-of-the-art research
works focusing on remote sensing image classification and
defense against model poisoning attacks.
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A. Remote Sensing Image Classification

Remote sensing image classification has attracted a lot of
interest and made some impressive strides in recent years. In
2019, with support vector machines (SVM), Geiß et al. [21]
followed the idea of learning invariant decision functions for
remote sensing image classification. They set up a self-learning
process to eliminate useless virtual samples from a process that
could generate invariances in any way so that models can be
made that are both reliable and sparse. In 2019, Wang et al. [22]
investigated the efficiency of the random forest (RF) algorithm
for classifying remote sensing images of coastal wetland habi-
tats. Their results suggested that the RF algorithm is superior
to the SVM and k-NN algorithms in terms of classification
accuracy and suitability for coastal wetland categorization. In
2020, Li et al. [23] suggested an innovative MLRSSC-CNN-
GNN scheme, which is capable of mining both the occurrences
of visual elements in the scene and their spatial-topological con-
nections. In 2021, Alhichri et al. [24] proposed a deep attention
convolutional neural network (CNN) named EfficientNet-B3-
Attn-2 in remote sensing to classify scenes. By introducing the
attention mechanism, the model takes the original feature maps
and creates a new map that is a weighted average of them. In
2021, Cheng et al. [25] developed a straightforward yet success-
ful scheme named Siamese-prototype network to classify remote
sensing scenes. Experimented with prototype self-calibration
and intercalibration, the authors claimed that the model could
improve the accuracies of subsequent inference. Using an evolu-
tionary algorithm to code and search the deep learning network
architecture, Ma et al. [26] proposed SceneNet in 2021. As a
result, it is possible to extract scene information from remote
sensing images in a hierarchical structure that is both flexible and
powerful. For the high spatial resolution scene categorization,
Xu et al. [27] developed a deep feature aggregation framework
powered by graph convolutional network in 2022. In terms of
overall accuracy, the authors claimed that the proposed scheme
outperforms some state-of-the-art scene classification methods.
In 2022, Chen et al. [28] proposed CNSPN, a new few-shot
remote sensing scene classification method based on prototype
networks, which uses the semantic information of the image
class names to achieve better performance. While recent studies
have made significant strides in improving the accuracy of
remote sensing image classification methods, a more realistic
and privacy-conscious approach demands the development of a
robust paradigm to address security concerns.

B. Defense Against Model Poisoning Attacks

FL is susceptible to model poisoning attacks during the local
learning phase, where malicious individuals intentionally ma-
nipulate the local model updates to cause the global model to
misclassify a set of targeted inputs. Such attacks can significantly
degrade the performance of the trained model and potentially
compromise the privacy of the data. To mitigate the impact of
these attacks, effective safeguards must be in place to ensure
the integrity of the learning process. These techniques can help
maintain the robustness and accuracy of the FL model in the
presence of adversarial attacks.

FL with secure aggregation has been proposed to further
protect the privacy of the datasets. Studies focusing on solutions
against model poisoning attacks have been widely reported
in the literature. Fang et al. [14] proposed a novel trimmed-
means method with validation dataset, which identifies the local
model by directly measuring the performance of the model. Yin
et al. [29] proposed a scheme based on median statistics, which
calculates the median of local gradients as the global update in
FL. Euclidean distance represents the length of a line segment
between two points in Euclidean space [30]. It is quite popular
among researchers to evaluate the similarity between gradients
in FL. Krum is a scheme proposed by Blanchard et al. [31]
that chose the gradient with the closed Euclidean distance to its
neighboring gradients as the global gradient. It is quite obvious
that this scheme [31] will face the difficulty of reaching global
convergence. Therefore, Mhamdi et al. [32] proposed a new
scheme based on Krum [31], which aggregates the gradients
chosen by Krum [31] for the global gradient. Shen et al. [33]
adopted machine learning method to cluster local gradients and,
therefore, to detect the anomaly in the local gradients. Holding
the belief that malicious gradients almost always have variants
that are similar to one another but different from benign ones,
Fung et al. [34] proposed a scheme using cosine similarity to
identity outliers in a non-IID setting. Liu et al. [35] proposed the
privacy-enhanced federated learning against poisoning attacks,
which adopted pearson correction coefficient as the identifi-
cation method in their work. Ma et al. [36] further proposed
ShieldFL, which uses cosine similarity to detect malicious gradi-
ents while keeping it encrypted. It allows the aggregation server
to compute the similarity on encrypted gradients. We observe
that the methods mentioned above [29], [31], [32], [33], [34],
[35], [36] compute the similarity between uploaded parameters
to assess if a model is malicious. By computing similarity to
identify outliers, these approaches rely primarily on the funda-
mental principle that the majority of clients are harmless. Thus,
when adversaries are in the majority, these schemes will fail
inexorably.

To address this issue, researchers have proposed many so-
lutions to achieve robust aggregation in a dishonest-majority
setting. Dong et al. [16] proposed FLOD, a novel aggregation
method, which relies on a small clean dataset to resist ≥ 1/2
Byzantine users. Due to the dataset’s lack of transparency, the
suggested solution relies on an essential assumption regarding
the dataset’s pristine condition. As a result, the plan is sound
from an intellectual perspective but fails to take into account
its applicability in the real world. In addition, FLOD requires
two noncolluding servers to perform secure two-party computa-
tion, which naturally introduces single point of failure problem.
Similarly, Cao et al. [37] proposed a Byzantine-robust federated
learning via trust bootstrapping. By training a benign model on
the server using clean validation data, the server can, therefore,
identify the malicious model update by measuring the cosine
similarity of each uploaded parameters. Yet, the same problems
of single point of failure and root data transparency still exist.
Xu et al. [17] proposed a Byzantine robust FL method based
on truth discovery called TDFL. The technique can function
without an external server model or validation dataset. The only
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drawback is that protections are only adequate if the proportion
of poisoners is known in advance. Miao et al. [38] presented a
Byzantine-robust solution via blockchain systems, which cannot
only achieve robust aggregation but also address the single point
of failure problem. However, it still did not solve the root data
transparency problem. MSFL [18] is a framework proposed by
Zhou et al. The framework shuffles the users as well as the
local model to build mutual confidence between local trainers
and aggregators. Nevertheless, the MSFL contains a hierarchical
shuffling process and, therefore, cannot avoid a single point of
failure problem. To eliminate those impractical limitations, we
proposed a robust PPFL scheme that not only resists poisoning
attacks with dishonest majority but also avoids limitations from
existing schemes.

III. PRELIMINARIES

In this section, we briefly introduce some preliminaries of
TEE and PPFL.

A. Trusted Execution Environment

A TEE is a code execution environment, in which the loaded
code and data can be protected with the highest confidentiality
and integrity [19], [39]. It means that the code and data inside
TEE cannot be tampered by any unauthorized entities, including
the computer owner itself. However, due to the various side-
channel attacks [40], researchers [40], [41] have been building
secure application on trusted hardware only leveraging the in-
tegrity. There is a clear delineation between the tasks that can
be completed with complete transparency and those that must
maintain a certain level of secrecy. In this research, we bypass
many important and practical worries about side-channel attacks
resulting from the execution of arbitrary code on platforms at the
expense of compromising the confidentiality. TEE relies on the
creation of a protected memory area called enclaves to build an
isolated environment. Enclaves with minimal trust assumptions
are referred to as transparent enclaves [40]. By only focusing
on the integrity, a transparent enclave assumes that the host can
inspect all the code and data in the isolated memory area. It is
worth noting that the security of TEE platforms like SGX is
predicated on the idea that the platform’s attestation key would
be kept a secret. Xing et al. [19] mentioned techniques to protect
cryptographic code against side channels. Therefore, it is reason-
able to suppose that the enclave’s protection of the attestation
key involves the implementation of side-channel protections.
When Intel SGX-capable computers are provisioned, attestation
data is signed and confirmed with ECDSA-signed collateral
acquired from Intel. These documents are then cached in the data
center’s caching service for safekeeping [19]. Therefore, we do
not elaborate on the attestation key management scheme in the
following sections. We can presume that the hardware platform
handles everything. The abstract functionality for transparent
enclave execution FTEE is usually parameterized by a secure
signing scheme {SignskT ,VerifyvkT } with a keypair (skT , vkT ).
In order to execute programs in TEE, the client should first
use “Install” command on the input prog. Then, it produces a
digital signatureσ = SignskT (Hash(prog)) that is returned to the

server. The generated digital signature will serve as a proof of the
successful installation of the specific program prog. The client
is then allowed us to run the command “Compute” taking some
inputs inp and some fresh randomness rnd to generate the output
outp. It is worth noting that the program prog may accept further
inputs in various rounds as indexed by a counter ctr and may be
stateful. It may then output the corresponding data in accordance
with the inputs received. Simply put, we make the assumption
that the functionality is capable of computation and can generate
signed results. In each round ctr, TEE outputs a state tuple
{inp, oup, ctr, σctr} with σctr = SignskT (ctr, inp, oup). There-
fore, by verifying the digital signature every round, the server
is convinced that oup is produced correctly by prog with-
out worrying that the client will sabotage the code and
data.

In order to implement a realistic instantiation, our scheme
makes use of the popular intel SGX [19] as the underlying TEE
service.

B. Privacy-Preserving Federated Learning

PPFL is a paradigm that has been widely investigated in
recent years. It allows users to train their models locally and
upload the local parameters directly to the semihonest server
for aggregation without revealing anything private to the third
party. Users receive the global model from the server and utilize
it to update the global model. As literature suggests [42], it is
obviously not safe to share plaintext local models with server.
Curious servers can easily recover lots of information from
the models. Many approaches have been proposed to ensure
that the uploaded local models do not leak anything private.
Existing methods can be divided into four varieties, including
the techniques of differential privacy, secure multiparty com-
putation, secure aggregation, and homomorphic encryption. In
this work, we mainly focus on fully homomorphic encryption
enabled PPFL due to its properties of strong privacy and no
accuracy loss.

Typically, fully homomorphic encryption scheme, such as
CKKS [20] consists tuple of algorithms (KeyGenerate, Encrypt,
Decrypt) as follows.

1) KeyGenerate(k) → (PK,SK). Upon receiving security
parameter k, the KeyGenerate function generates a key
pair (PK,SK).

2) Encrypt(pk, x)→ c. Encrypt is a homomorphic encryption
function which takes public key pk and plaintext s as inputs
and returns ciphertext c.

3) Decrypt(sk, c) → x. Decrypt takes the ciphertext and
private key sk as inputs and outputs the corresponding
to c.

The key advantage of the homomorphic encryption scheme is
that it enables users to perform computations on encrypted data
without the need for decryption. Therefore, in PPFL, clients
can upload encrypted parameters for aggregation so that they
do not need to worry about privacy leakage. In our research,
we investigate aggregation rules where users send local models
to the master device instead of gradients. We generalize the
procedures of PPFL in Algorithm 1.
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Algorithm 1: General Procedures of PPFL.
Input: The security parameter λ, clients set C participating
the training process, data resources of clients
{Di |i ∈ {1, 2, . . . ,m}, number of total training rounds T .

Output: The final well-trained global model.
1: Initialization:
2: a). The key center generates a key pair by {PK,SK}

= KeyGenerate(λ);
3: b). The key center establishes a secure communication

channel and passes the keypair to the aggregation
server and each client;

4: c). The server initializes the initial model parameter
w0;

5: e). Initialize the training iteration index by t = 1.
6: Procedure:
7: for t ≤ T do
8: (I). For clients:
9: for ∀i ∈ {1, 2, . . . ,m} do

10: C
(t)
i computes the t-th round local model

parameters w(t)
i with Stochastic Gradient Descent

(SGD).
11: [w

(t)
i ] = Encrypt(w

(t)
i ,PK);

12: C
(t)
i uploads the encrypted model parameters

[w
(t)
i ] to the server;

13: end for
14: (II). For server:
15: for ∀t ∈ T do
16: for ∀i ∈ {1, 2, . . . ,m} do
17: [w(t)] = ParaAgg([w

(t)
1 ], . . . , [w

(t)
i ]);

18: end for
19: end for
20: The server distributes the aggregated ciphertext

[w(t)] to all Ci;
21: (III). For clients:
22: for ∀t ∈ T do
23: for ∀i ∈ {1, 2, . . . ,m} do
24: w(t) = Decrypt([w(t)],SK);
25: end for
26: Ci updates its local model using the distributed

parameters w(t)

27: end for
28: end for
29: return The global model with parameters wT .

IV. PROBLEM FORMULATION

In this section, we present the system model, threat model,
and design goal respectfully.

A. System Model

The system model considered in this article is shown in Fig. 2.
It mainly consists of three types of entities, namely the trusted
authority (TA), satellites, edge servers, and blockchain system.

Fig. 2. System model.

1) TA: TA is responsible for producing the public and private
keys (pk, sk) necessary for encryption and decryption
based on the homomorphic encryption, and then dis-
tributes them to the edge servers so that safe communi-
cations may be achieved.

2) Satellites: While capturing images for remote sensing,
each satellite also trains a local image processing model
using the image data it collects. During each iteration of
FL, satellites generate a PoA, which contains the encrypt
the parameters of their local models and send the PoA
to the edge servers that correspond to those satellites. In
addition, the satellites will select some relatively insensi-
tive data and send it to the edge server. The satellites will
be able to utilize the revised model once it has been sent
to them by the edge servers once they have updated the
global model.

3) Edge servers: Edge servers, in their capacity as the agents
of each satellite cluster, are tasked with the responsibility
of publishing to the blockchain the local PoAs as well
as the clean auxiliary data. Therefore, edge servers also
act as blockchain miners to maintain the network. They
are also responsible for PoA verification, aggregating,
and updating the latest global model parameters on the
blockchain, and then distributing these parameters to the
satellites, which is an essential responsibility they take on.

4) Blockchain system: Blockchain is responsible for record-
ing the collected PoA from the edge servers. Following
this, the aggregation process is carried out by edge servers
in order to produce a new global model update block
based on the verified updates recorded in the blockchain
concerning volunteer bias. This new global model is then
sent back to the satellites by means of the edge servers.

B. Threat Model

In our proposed system, we assume a fully trusted key center
and honest-but-curious edge servers. The edge servers follow the
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FL protocol honestly, but are curious about the local datasets of
the satellites in order to infer them from the parameters. In our
system, we consider two types of satellite clients, i.e., benign
clients and malicious clients. Inspired by previous work [36],
we define benign satellite clients and malicious satellite clients
as follows.

1) Benign satellite clients: A satellite client Ci is benign if
and only if Ci honestly train and upload local model w(t)

i

on its local dataset Di.
2) Malicious satellite clients: A satellite client C∗

i is an ad-
versary such that C∗

i lunches a model poisoning attack by

uploading poisonous model [w(t)∗
i ] to damage to global

model. It is worth noticing that in our scheme, we do
not limit the total percentage of malicious clients, which
means that we can accept arbitrary proportion of malicious
clients to achieve better robustness.

As for the adversarial clients who launched model poisoning
attacks, we adopt the following settings.

1) Adversarial goals: A compromises the integrity of the
local training procedure in order to reduce the accuracy of
the global model. In order to do this, the parameters of the
local model might be deceitfully manipulated.

2) Adversarial capability and knowledge: A controls arbi-
trary malicious clients C∗. C∗ has fully control of local
dataset, local model wi, and the training process.

C. Design Goal

Under the abovementioned threat model, our scheme is de-
signed to achieve three design goals.

Goal 1 (Privacy): The confidentiality of our defense scheme
must to be ensured. Specifically, it is imperative that no confi-
dential information be shared with any third parties.

Goal 2 (Transparency): Every activity should be recorded
on the blockchain to facilitate transparency and stop dishonest
clients from denying them.

Goal 3 (Robustness): The proposed scheme should defend
against model poisoning attacks from malicious clients. Each
client should provide proof to show the correct evaluation re-
sult of the local model, which is the direct delivery of the
performance. The proof should also satisfy the property of
authentication, which ensures that a good process generates the
proof. In our scheme, we provide authentication through TEE.
Our scheme should resist the model poisoning attacks under
homomorphic encryption-based PPFL setting with an arbitrary
size of malicious users C∗.

V. PROPOSED SCHEME

In this section, we first introduce the overall workflow to pro-
vide comprehensive understanding of our approach. Then, we
elaborateon the technical details, including construction of PoA
as well as homomorphic encryption and blockchain empowered
PPFL framework.

A. Construction of PoA

We propose PoA, a model assessment strategy to evaluate the
model based on test accuracy rate and loss function in order
to detect model poisoning attacks. Following the completion of
the evaluation, a score is assigned to each model, and this score
will become an essential component of the aggregation process.
However, since each client is responsible for the evaluation,
it is a major challenge to prevent the client from making up
the result of the evaluation. In order to resolve this issue, it is
necessary to use a certain technique that may bind the encrypted
model and the evaluation result together. In this article, we solved
this problem by putting both the evaluation and the encryption
tasks into TEE. After each epoch, each client must put the plain
model and the validation data sent from the server inside TEE
and upload the following output to the server. The program
implementing all these operations within TEE is distributed by
the server. After receiving the program prog, each client needs to
run the command “Install” and return σ = Signskt(Hash(prog))
to the server as a token. By verifying the digital signature,
the server is convinced that prog is correctly installed in
TEE.

To begin, to complete the assessment process, it is necessary
to obtain from the edge server the validation data, which in
this instance are the test samples, along with the corresponding
digital signature. Prog verifies the integrity of the samples and
abort when fails. The samples are then fed to the model to make
predictions and calculate the loss function. For the ith model of
round t, we use the validation data to derive the accuracy rate
and the loss from it, respectfully denoted as p

(t)
i and l

(t)
i . The

prediction result and the loss are also considered privacy of each
client, therefore, we generalize these two factors using (1) and
(2)

S(t)
pi

= logn

(
max

{(
p
(t)
i − 1

n

)
, 0

}
· n+ 1

)
(1)

S(t)
li

=
2 · e−l

(t)
i

1 + e−l
(t)
i

. (2)

The trust score μ
(t)
i , which is the direct evaluation result of the

model is then produced using the following equation:

μ
(t)
i = (S(t)

pi
+ ·S(t)

li
) · S(t)

pi
· S(t)

li
. (3)

The abovementioned functions are precompiled into prog to
compute a trust score μ(t)

i . In the meanwhile, we need to encrypt
the model using homomorphic encryption algorithm. Utilizing
the CKKS cryptosystem [20], which supports a particular kind
of fixed-point arithmetic typically referred to as block floating-
point arithmetic, our framework, therefore, is able to perform
safe PPFL across the edge servers. The encrypted model and
the trust score are packed together as the whole output of prog.
After the completion of prog, it will generate a digital signature
of inputs, outputs, and the index ctr to guarantee the integrity of
the whole computation process.
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Fig. 3. Work flow of homomorphic encryption and blockchain empowered
PPFL framework.

B. Homomorphic Encryption and Blockchain Empowered
PPFL Framework

In this article, we develop a blockchain-based PPFL frame-
work for remote sensing image processing to facilitate coop-
erative global model update aggregation and verification. In
this architecture, edge servers establish a decentralized net-
work in place of the central server, typically in standard FL
designs. We adopt the blockchain as the underlying infrastruc-
ture since it is more resistant to attacks due to its immutable
and auditable properties. Chain-based PoAs and auxiliary data
may be publicly validated, minimizing poison attacks’ effects.
Furthermore, model parameters information is always kept in
ciphertext on the chain, guaranteeing that it is never accessible
to unauthorized or untrusted devices and avoiding single point
of failure problem. The proposed architecture holds potential
for significantly enhancing the security and resiliency of the FL
process. In this framework, each cluster of satellites is assigned
an edge server to act as an agent, which is consistent with real-life
scenarios. The proposed scheme consists of four processes,
system initialization, framework setup, local computation, and
global model aggregation. The proposed homomorphic encryp-
tion and blockchain empowered PPFL framework is shown in
Fig. 3. Here, we break down each step of the procedures in
depth.

1) System Initialization: First and foremost, TA implements
key generation and distribute them to the satellites in the initial-
ization process. Each satellite gets a keypair (pk, sk) for digital
signature and homomorphic encryption. It is worth noticing that
the asymmetric key pair (pkT , skT ) used in TEE to generate
digital signature is obtained from TEE service provider when
the capable systems are provisioned [19]. Therefore, it is not the
KGC’s responsibility to distribute the TEE asymmetric key.

2) Framework Setup: As shown in Algorithm 2, the whole
process of framework setup consists of three stages, and we will
introduce them one by one.

a) Validation data preparation: Before we can get started
with the actual training, there is some groundwork that needs to
be laid out to ensure that our plan will go off without a hitch.
Since our method requires a dataset that is both small and clean
in order to generate a PoA, it is vital to maintain track of the
dataset and make sure that it has not been tainted in any way.
We achieve this by recording the auxiliary data on blockchain.

Algorithm 2: Framework Setup.

1: for i ∈ {1, 2, . . . ,m} do
2: Validation data preparation
3: Ci selects less sensitive images di from its own data

resource Di where di ∈ Di;
4: Ci use sk to sign the data di and generates a digital

signature σdi
;

5: Ci sends tuple (σdi
, di) to the corresponding edge

server which will publish the tuple to the blockchain;
6: The edge server maintains a clean validation dataset

Dv which is
∑m

i=1(σd, di);
7: TEE program installation
8: Ci compiles essential program prog according to the

private key pk;
9: Ci invokes FTEE(“Install”, prog) and receives σ =

SignskT
(Hash(prog));

10: Ci sends tuple (σ, prog) to the miner which will
publish the tuple to the blockchain;

11: Global model initialization
12: Ci initializes and encrypts the random global model

[w0];
13: Ci sends [w0] to the interrelated server;
14: if there exists a [w0] on blockchain then
15: The edge server returns the formerly published

[w0];
16: else
17: The edge server uploads [w0] and return it back to

the satellites;
18: end if
19: end for

Every satellite will select specific images that are less sensitive
and sends them to the edge server to store those records in the
blockchain network voluntarily.

b) TEE program installation: The satellites need to com-
pile the corresponding prog based on pk. Then, each client
invokes FTEE to install the program and stores prog along with
the token on the blockchain network, which proves the validation
of the correctness of the TEE procedure.

c) Global model initialization: Furthermore, the global
model’s random initialization [w0] is generated by the satellite
clients and uploaded to the blockchain to ensure that it is acces-
sible and, therefore, verifiable to everyone. If multiple records
are uploaded, the clients will select the earliest uploaded one.

3) Local Computation: In Algorithm. 3, the local training
and the PoA generation steps are performed iteratively until it
reaches global convergence.

a) Local training: The tth training iteration entails each
edge server retrieving the latest global model from the
blockchain and passing it to the satellite clients. Then, each
satellite C(t)

i locally trains the individual model w(t)
i on their

own data resource.
b) PoA generation: After the completion of the local train-

ing, the edge servers collect data from the blockchain network,
organizes it into a validation dataset, and distributes it to the
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Algorithm 3: Local Computation.
1: for t ≤ T do
2: for i ∈ {1, 2, . . . ,m} do
3: Local training
4: Edge server sends the latest global model [w(t−1)]

back to C(t)
i ;

5: C
(t)
i decrypts [w(t−1)] and uses its data resource to

compute the t-th round local model parameters
w

(t)
i ;

6: PoA generation
7: C

(t)
i initiate a request to its responding edge server

to retrieve the validation dataset Dv;
8: C

(t)
i invokes FTEE on (“Compute′′, ctr, C(t)

i ,w
(t)
i ,)

and receives PoA (ctr, [wt)
i ], μ

(t)
i , σctr) from TEE;

9: end for
10: end for

Algorithm 4: Global Model Aggregation.
1: for t ≤ T do
2: Edge servers receive PoAs from satellites and

publish them to the blockchain network;
3: if there are m PoA blocks on the blockchain then
4: Aggregate PoAs

5: [w(t)] = η · μ
(t)
i∑

i∈[1,m] ·μ
(t)
i

· [w(t)
i ];

6: Send [w(t)] to blockchain network;
7: end if
8: if there is a new global model on the blockchain then
9: Fetch the encrypted global model [w(t)] and send

it to each satellite C(t)
i ;

10: end if
11: end for

satellites. The client invokesFTEE to run the previously installed
prog to generate a PoA, which is later uploaded to blockchain
network by edge server.

4) Global Model Aggregation: The detailed process of
global model aggregation is described in Algorithm 4. In
theory, all participating edge servers are permitted to update
the global model. The intended server will upload the com-
putation result to the blockchain network in order to urge
them to do the computation correctly. After each edge server
uploads its PoA to the blockchain network, one voluntary
server will collect all blocks and aggregate the ciphertext as
follows:

[w(t)] = η · μ
(t)
i∑

i∈[1,m] ·μ
(t)
i

· [w(t)
i ]. (4)

VI. THEORETICAL ANALYSIS AND PROOF

In this section, we provide comprehensive analysis of the
security property and briefly analyze the privacy of our proposed
scheme.

A. Security Property

In the our setting, the secure properties of fully homomorphic
encryption-based PPFL has been widely discussed in previous
work already [42]. To prove our aggregation scheme achieve
robustness and does not reveal any private information about
local models, we only discuss the secure properties of PoA in
this section.

1) Correctness Analysis: To ensure that the aggregation
scheme can effectively identify malicious models in an arbitrary
proportion of adversary setting, we need to make sure that PoA
provides reasonable weights for individual models.

Theorem 1: There is an error term that occurs between the
honest model and the dishonest ones as

∑
i∈Adversary w

τ
i =∑

i∈Benign wi +Δ.
Proof: We generalize the model poisoning attack approach

such that we may construct a set of false model parameters that
are distinct from the honest users’ local model. Consider the
following unbiased estimator Δ. E[w] = g as the difference
between them. We define the actual vector received by the server
as being when a malicious user is present to be

w̃i =

{
wi, for honest ith user
wτ

i , for dishonest ith user.
(5)

In accordance with the SGD technique that was established
and utilized in order to update the model parameters, we are

able to get: w(t) = w(t−1) − η
∑

i∈[1,m] w̃i

m . Here, we define the
model of the honest users as {wi, i ∈ H}, where H the stands
for the set of honest users. On the other hand, we define the
models of the adversary as {wτ

i , i ∈ A}, where A represents
the malicious users. Considering δ as the difference between the
dishonest model parameters and the benign target model, we
have δ = η

∑
i∈A wτ

i

|A| − η
∑

i∈H wi

|H| . As a result, we have

∑
i∈A

wτ
i =

|A|
η

δ +

∑
i∈H wi

|H| |A|

=
|A|
η

δ +

(
|A|
|H| − 1

)∑
i∈H

wi +
∑
i∈H

wi

=
|A|
η

δ +

(
|A|
|H| − 1

)
|H|g +

∑
i∈H

wi. (6)

We have, therefore, proved that there is an error term between

malicious and benign models as Δ = |B|
η δ +

(
|A|
|H| − 1

)
|H|g.

Theorem 2: For an arbitrary proportion of malicious satel-
lites, there will be a gradual convergence between the global
model learnt by our scheme based on PoA and the optimal global
model w∗ over T iterations.

Proof: It is obvious that benign models tend to have less loss
and more precision, whereas poisonous models tend to have
the opposite characteristics. As a consequence, the following
tendencies are satisfied by both honest and malicious users:

Tendency 1: ∀Ci ∈ H, p
(t)
i → 1 and l

(t)
i → 0

Tendency 2: ∀Ci ∈ A, p
(t)
i → 0 and l

(t)
i → ∞
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In accordance with (1) and (2), when it comes to perfect local
model, we have limit equations as follows:

lim
p
(t)
i →1

S(t)
pi

= lim
p
(t)
i →1

logn

(
max

{(
p
(t)
i − 1

n

)
, 0

}
· n+ 1

)

= lim
p
(t)
i →1

logn

(
1− 1

n

)
· n+ 1

= lim
p
(t)
i →1

logn n = 1 (7)

lim
l
(t)
i →0

S(t)
li

= lim
l
(t)
i →0

2 · e−l
(t)
i

1 + e−l
(t)
i

=
2 · 1
1 + 1

= 1. (8)

On the other hand, poisonous models aim to decrease the
accuracy of the federated model. As a result, the following is
the equations at the limit of malicious local models:

lim
p
(t)
i →0

S(t)
pi

= lim
p
(t)
i →0

logn

(
max

{(
p
(t)
i − 1

n

)
, 0

}
· n+ 1

)

= lim
p
(t)
i →0

logn 0 · n+ 1

= lim
p
(t)
i →0

logn 1 = 0 (9)

lim
l
(t)
i →∞

S(t)
li

= lim
l
(t)
i →∞

2 · e−l
(t)
i

1 + e−l
(t)
i

=
2 · 0
1 + 0

= 0. (10)

The trust scoreμ(t)
i is consequently greater for healthy models

and less for hostile ones. According to Theorem 1, we can
conclude that

∑
i∈A wτ

i =
∑

i∈H wi +Δ. In this respect, the
proposed scheme is able to recognize anomalies based on dif-
ferences and lower the weight of malicious local models. If the
harmful objective has been accomplished, the valueΔwill grow
as the number of the iteration increases. However, with limitation
equations from above, the weights of poisoners are close to 0.
As a result, we have

lim
t→∞

Δ = 0. (11)

That is, the effect on honest users satisfies

lim
t→∞

∑
Ci∈H

μ
(t)
i∑

Ci∈[1,m] μ
(t)
i

= 0. (12)

2) Privacy Analysis: We provide provable guarantees on the
privacy of PoA against honest-but-curious servers. PoA can
protect the confidentiality of the users’ models, the prediction
results, and the associated loss.

For any honest-but-curious edge server, the PoA consists a
trust score and encrypted local model parameters. The homo-
morphic encryption approach is expected to prevent any privacy
of the local model from being revealed in the ciphertext of the

model parameters. In accordance with (3), the trust score is
calculated from two secret variables p(t)i and l

(t)
i . Therefore, it

is implausible for the server to determine the loss and prediction
outcome merely from the trust score.

As a result, the proposed scheme has the property of maintain-
ing users’ privacy by preventing any parties from compromising
clients’ privacy.

VII. EXPERIMENTAL ANALYSIS

In this section, we evaluate our scheme against both targeted
and untargeted attacks and show the results of our experiments.
All experiments are run in a high-performance server with
the configuration of Ubuntu 20.04, Intel Xeon Gold 6226R
3.90 GHz CPU, and 256 GB RAM.

A. Experimental Setup

1) Datasets and Settings: The dataset used is the real-world
dataset named EuroSat [43] to evaluate our scheme. Using
Sentinel-2 satellite images, the difficulty of accurately classi-
fying land use and land cover is one that EuroSAT [43] attempts
to solve. The maps represent all of Europe’s 34 nations and
are divided into ten categories that correlate to the continent’s
various land uses. There are a total of 27 000 captioned images,
with each category including between 2000 and 3000 pictures.
The dimensions of the image are 64 × 64 pixels and they
span an area that is 640 × 640 m. Included in this analysis
are all thirteen of the Sentinel-2’s spectral bands. In Fig. 4,
selected representative samples are presented to give a more
direct understanding of the dataset.

On a private blockchain infrastructure, we put our plan into
action and conduct an evaluation of it. The private blockchain
is hosted on an Intel processor that runs at 3.90 GHz and has 16
cores with 32 threads each core. In addition, we deploy CKKS
using the Pyfhel library, which is a library that serves as an
efficient Python API for the most powerful C++ HE libraries.
Pyfhel is a library for homomorphic encryption that is free to
use, and its source code can be found on GitHub (https://github.
com/ibarrond/Pyfhel).

2) Poisoning Attacks: In this particular experiment, we con-
sider both targeted and untargeted attacks. Our approach as-
sumes that the malicious clients upload arbitrary model pa-
rameters as part of untargeted attacks in order to influence the
global model. We adopt label-flipping attack in terms of targeted
attacks. As part of our simulation of the label-flipping attack, we
have relabeled the source class, which is now being possessed
by malicious users, as the target class.

3) Evaluation Metrics: Since the accuracy of the global
model is the primary focus of our scheme, we make use of
test accuracy and test loss as indicators of the models. The
FedAvg [44] approach is widely used in FL environments that
do not include poisoners. Therefore, we use the FedAvg scheme
with only benign clients owning the corresponding proportion
of data as a baseline for our evaluation, and then we present the
outcomes of the proposed scheme with varying percentages of
malicious clients.

https://github.com/ibarrond/Pyfhel
https://github.com/ibarrond/Pyfhel
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Fig. 4. Sample images of all ten classes in the dataset EuroSAT. (a) Annual crop. (b) Forest. (c) Herbaceous vegetation. (d) Highway. (e) Industrial. (f) Pasture.
(g) Permanent Crop. (h) Residential. (i) River. (j) Sea lake.

TABLE I
MODEL SUMMARY

4) FL Settings: The cross-silo configuration is the one that
we use for our evaluation. Throughout the process of the training,
we will choose all clients in each iteration, with the number of
clients being set at n = 20. For the purpose of model selection
and training using the dataset using TensorFlow as the backend.
The parameters of the model we adopted are shown in Table I.
The table contains the name and type of all layers, the output
shape, and the number of weight parameters for each layer. After
then, we split the data in an equal manner across each client; for
the EuroSat dataset, this means that each client has around 1350
data distributed equally. When it comes to the proportion of
the malicious clients, we use a number of possible situations,
ranging from 20% to 80%. We decided to use a batch size of
32 for this operation. In addition, we find that the loss function
arrives at a stable value after 40 rounds; hence, we decide to
make the total training epoch to 40.

B. Experimental Results

Experiments described here are carried out to demonstrate
that our framework is capable of meeting the design goals of
privacy, robustness, and transparency. We do each experiment
several times in order to acquire trial findings and then calculate
an average. The results of the experiments reveal that our scheme

is capable of capturing the desired aims, which is discussed
in Section IV. It is worth noting that in the case of different
proportions of attackers, the test accuracy and loss of the final
model will be different. This is because the proportion of benign
users decreases, resulting in fewer datasets for training. In order
to correctly demonstrate the correctness of our scheme, we use
the training results part excluding malicious users as a base-
line for comparison. Next, we first verify the practicability of
the scheme. In order to accomplish that, we evaluate the scheme
from two different attack perspectives, namely targeted attacks
and untargeted attacks. In addition, we analyze the additional
time overhead of the scheme and conduct an experimental
evaluation.

1) Impact of Targeted Attacks: We examine the accuracy
loss under targeted attacks from malicious users. In targeted
attacks, we flip the label of the training data for each malicious
clients so that the trained models make a wrong judgment on
the test data. The experiment demonstrates that the presented
PPFL scheme is acceptable and provides the essential robust-
ness required under targeted attack despite the proportion of
adversaries. Fig. 5 shows the testing accuracy and loss under
targeted attacks with honest majority setting. To demonstrate the
superiority and novelty of our proposed scheme, we compare the
accuracy and loss of our defense approach with the traditional
FedAvg algorithm. By doing so, we aim to provide evidence of
the effectiveness of our approach in enhancing the security and
privacy of the data in the FL process. The figure clearly shows
that the trained global model suffers from a loss of accuracy
and precision when the attacker’s percentage is at 20% and
40%. Therefore, when it comes to honest majority setting, the
attacker can only affect the global model to a limited extent
but cannot cause fatal damage. Even though there is a certain
gap between the attacked model and the regular trained global
model, it is still relatively correct. On the other hand, when it
comes to the dishonest-majority setting, shown in Fig. 6, the
global model will be damaged if malicious users’ misleading
data overwhelms the truths of honest users. It can be concluded
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Fig. 5. Comparison between FedAvg and our scheme under honest majority
setting in targeted attacks. (a) Loss curve, Att = 20%. (b) Accuracy curve, Att
= 20%. (c) Loss curve, Att = 40%. (d) Accuracy curve, Att = 40%.

Fig. 6. Comparison between FedAvg and our scheme under dishonest-
majority setting in targeted attacks. (a) Loss curve, Att = 60%. (b) Accuracy
curve, Att = 60%. (c) Loss curve, Att = 80%. (d) Accuracy curve, Att = 80%.

from the figure that in the presence of an attacker, there is a
significant gap in terms of both accuracy and loss between the
global model without a defense mechanism and the normally
trained model. The accuracy and loss curves of the model trained
using our scheme in both settings roughly coincide with the
baseline, which is the embodiment of the correctness of our
scheme. Naturally, the final global models in dishonest-majority
settings have slightly less accuracy and more loss due to the
relative scarcity of training data. Furthermore, to better evaluate
the model’s performance when adopting the PoA, we calculate

TABLE II
F-SCORE IN TRAGETED ATTACKS

Fig. 7. Comparison between FedAvg and our scheme under honest majority
setting in untargeted attacks. (a) Loss curve, Att = 20%. (b) Accuracy curve,
Att = 20%. (c) Loss curve, Att = 40%. (d) Accuracy curve, Att = 40%.

the F-scores of the model under targeted attacks, which are listed
in Table II. As we can see, under the protection of our scheme,
the F-scores can still achieve the desired effect, which indicates
that the model is performing well in terms of precision and recall.

2) Impact of Untargeted Attacks: We examine the accuracy
loss under untargeted attacks from malicious users. Similarly, to
demonstrate the superiority of our method, we also compare its
accuracy and loss to the FedAvg algorithm under untargeted
attacks. The results of both the honest majority setting and
dishonest-majority setting experiments are shown in Figs. 7 and
8, respectively. In untargeted assaults, we make the assumption
that the malicious clients try to sabotage the global model
by uploading arbitrary local models. During the experiments,
we make the observation that the arbitrary models generally
have low accuracy, but do not have exaggeratedly large losses.
Therefore, we adjust the aggregation weights by exploiting the
two parameters from loss and accuracy according to (3). A
lower value for either of both parameters will have a more
significant effect on aggregation weights. As shown in Figs. 7
and 8, different from the previous scenario, we can observe from
the experimental results that there exists larger gaps between
unprotected PPFL and the baseline in both honest and dishonest
settings. The attackers upload random parameters despite the
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Fig. 8. Comparison between FedAvg and our scheme under dishonest-
majority setting in untargeted attacks. (a) Loss curve, Att = 60%. (b) Accuracy
curve, Att = 60%. (c) Loss curve, Att = 80%. (d) Accuracy curve, Att = 80%.

TABLE III
F-SCORE IN UNTRAGETED ATTACKS

global model, making rectification from benign clients more dif-
ficult. Therefore, the global model suffers more from untargeted
attacks. Still, our approach can reduce the aggregation weight of
malicious models, which increase the weights of correct models
to improve accuracy and reduce loss. The robustness in this
article depends on its capacity to resist against poisoning attacks.
By measuring the accuracy rates and losses under the attacks, we
assess the robustness of our strategy. Thus, the proposed scheme
is robust against untargeted attacks and the impact from the data
of low quality. Similarly, we also calculated the f-scores of the
model under untargeted attacks, which are shown in Table III.
The results show that the model has a low number of false
positives (i.e., instances where it incorrectly predicts a positive
result) and a low number of false negatives.

In addition, during our experiments, the verification process
of PoA can increase confidence while guaranteeing that the
aggregation is carried out properly. Following each iteration
of the aggregation process, the results are published to the
blockchain in order to ensure that they can be tracked back to
any point in time. This helps achieve the aim of transparency
while also eliminating the problem of a single point of failure
and the server’s potential for malicious conduct.

3) Computation Overhead: Compared with standard FL
methods, the computing overhead of our proposed scheme is
mainly concentrated on homomorphic encryption and model
evaluation. We use homomorphic encryption to protect the
model’s parameters while allowing computation tasks to be
performed on the data. However, homomorphic encryption al-
gorithms usually need to consume a lot of resources and time.

Fig. 9. Homomorphic algorithm performance. (a) Time consumption.
(b) Memory usage.

Fig. 10. Overhead time of different operations.

Here, we experiment to compare the two most commonly used
homomorphic algorithms’ efficiency. Paillier [45] and CKKS are
the most popular homomorphic encryption algorithms currently
used in PPFL to protect the confidentiality of the model parame-
ters. CKKS is a homomorphic algorithm particularly well-suited
for encrypting and processing data in the context of machine
learning and other mathematical computations. Also, since the
aggregation process only requires an additive operation, a simple
cryptosystem, such as Paillier is sufficient and adopted by many
PPFL schemes. As shown in Fig. 9, we conduct an experiment
to measure the time consumption as well as the peak memory
usage of both schemes. We record the data for both schemes to
encrypt and decrypt vectors of different lengths ranging from
100 to 1000. The results show that CKKS is a more efficient
algorithm in terms of time and memory as the vector length
grows. Moreover, the time and memory consumption of the
CKKS algorithm is also acceptable. It only takes about 600 MB
memory and less than 2 s for CKKS to encrypt and decrypt a
1000-float vector. Therefore, to increase computing efficiency,
we encrypt the local parameters using CKKS.

On the other hand, to calculate the aggregated weights for
each model, each client still needs to evaluate the model on the
auxiliary data after completing the local training, which is also a
significantly resource-intensive process. Therefore, we calculate
the average elapsed time for model evaluation and compare it
to the elapsed time for other heavy calculations per epoch in
the scenario pipeline. As shown in Fig. 10, the average model
evaluation time only takes about 1 s, while the average local
training time takes about 7 s for each epoch. Model evaluation
takes roughly the same time as using the homomorphic algo-
rithm. While our proposed scheme may impact the efficiency
of the FL process, its impact is relatively minor compared to
other computing tasks involved in the process. Therefore, the
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proposed scheme does not significantly affect the overall task,
and the benefits of enhancing the security and privacy of the data
outweigh the potential decrease in efficiency.

VIII. CONCLUSION

In this article, we present a novel aggregation framework
by making use of a new approach called PoA to resist model
poisoning attacks in PPFL. Additionally, we evaluate our method
via a real-world remote sensing image dataset. We judge the
effectiveness of our method based on how evenly the customer
data is distributed. And our comprehensive trials on the dataset
have shown that our system is resistant to being poisoned by
malicious users. When the attacker is assumed to be 20%,
40%, 60%, or 80% of the time, our strategy achieves 92.5%,
90.61%, 87.48%, and 81.84% accuracy in experiments. This
coordinates with the FedAvg results when only benign clients
hold the equivalent data share. Therefore, compared with the
no-adversary baseline, our proposed aggregation scheme can
achieve equitable test accuracy. In this work, we use a private
blockchain to record the model information for research pur-
poses. However, in real life, uploading data to the blockchain
takes time and gas, requiring careful consideration for efficiency.
As for the time and gas consumption of the blockchain, we leave
them for future exploration.
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