Please cite the Published Version

Ahmed, Arshee, Rasheed, Haroon, Bashir, Ali Kashif ©© and Omar, Marwan (2023) Millimeter-
wave channel modeling in a VANETSs using coding techniques. Peerd Computer Science, 9. e1374
ISSN 2167-9843

DOI: https://doi.org/10.7717/peerj-cs.1374

Publisher: Peerd

Version: Published Version

Downloaded from: hitps://e-space.mmu.ac.uk/634331/

Usage rights: [c Creative Commons: Attribution 4.0

Additional Information: This is an open access article which originally appeared in Peerd

Data Access Statement: The code is available in the Supplemental Files.

Enquiries:

If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)



https://orcid.org/0000-0001-7595-2522
https://doi.org/10.7717/peerj-cs.1374
https://e-space.mmu.ac.uk/634331/
https://creativecommons.org/licenses/by/4.0/
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines

Submitted 10 January 2023
Accepted 10 April 2023
Published 31 May 2023

Corresponding author
Arshee Ahmed,

02-281171-001 @student.bahria.
edu.pk

Academic editor
Junaid Shuja

Additional Information and
Declarations can be found on
page 28

DOI 10.7717/peerj-cs.1374

() Copyright
2023 Ahmed et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Millimeter-wave channel modeling in a
VANETSs using coding techniques

Arshee Ahmed', Haroon Rasheed’, Ali Kashif Bashir>* and Marwan
Omar*

! Department of Electrical Engineering, Bahria University, Karachi, Sindh, Pakistan

2 School of Business, Woxsen University, India, India

3 Department of Computing and Mathematics, Manchester Metropolitan University, Manchester,
UK

* Information Technology and Management, Tllinois Institute of Technology, Chicago,
United States

ABSTRACT

The Vehicular ad-Hoc Network (VANET) is envisioned to ensure wireless
transmission with ultra-high reliability. In the presence of fading and mobility of
vehicles, error-free information between Vehicle to Vehicle (V2V) and Vehicle to
Infrastructure (V2I) requires extensive investigation. The current literature lacks in
designing an ultra-reliable comprehensive tractable model for VANET using
millimeter wave. Ultra-reliable communication is needed to support autonomous
vehicular communication. This article aims to provide a comprehensive tractable
model for VANET over millimeter waves using Space-Time-Block-Coding (STBC)
concatenated with Reed Solomon (RS) coding. The designed model provides the
fastest way of designing and analyzing VANET networks on 60 GHz. By using the
derived BER expressions and Reed Solomon coded doppler expression ultra-reliable
vehicular networks can be build meeting the demands of massive growing volume of
traffic. The performance of the model is compared with previous BER computational
techniques and existing VANET communication systems, i.e., IEEE 802.11bd and
3rd generation partnership project vehicle to everything (3GPP V2X). The findings
show that our proposed approach outperforms IEEE 802.11bd and the results are
comparable with V2X NR. Packet Error Rate (PER), Packet Reception Ratio (PRR)
and throughput are used as performance metrics. We have also evaluated the model
on higher velocities of vehicles. Further, the simulation and numerical findings show
that the proposed system surpass the existing BER results comprising of various
modulation and coding techniques. The simulation results are verified by the
numerical results there-by, showing the accuracy of our derived expressions.

Subjects Autonomous Systems, Computer Networks and Communications, Mobile and
Ubiquitous Computing

Keywords Bit error rate, Space-time block code, Reed Solomon, Wireless communication, Ultra-
reliability, PER, Beamforming, Doppler effecf, Throughput, Coding

INTRODUCTION

In recent years, there has been significant demand for communication in Vehicular
ad-Hoc Network (VANET) at high data rates. To meet the enormous communication
demand in VANET, it is necessary to utilize the scarce resources, such as power and
bandwidth, as effectively as feasible. Reliability, throughput, and accuracy are significant
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factors because of multipath fading and the rapid mobility of vehicle nodes. VANET
communication system is susceptible to a certain level of noise, shadowing and fading. The
Line of Sight (LOS) obstruction by vehicles results in an extra loss of the received power of
approximately 10 dB (Abbas et al., 2015). In Va et al. (2016) atmospheric attenuation at 60
GHz was studied for number of vehicles, which is 15 dB/km and excessive path loss of 30
dB occurs for three obstructing vehicles. Analytical research on a Markov chain model is
used in VANETS to examine the impact of channel fading on IEEE 802.11p. The
performance is evaluated on Nakagami-m, Rayleigh, and Rician fading channels using
BER (Shah et al., 2022). Highly mobile vehicular nodes and rapidly changing network
topology throws many challenges in the dissemination of critical messages in VANET
(Giripunje, Vidyarthi & Shandilya, 2022). Furthermore, the multipath propagation also
leads to signal distortion and burst errors. Therefore, transmission reliability is very
challenging in wireless channels. Forward error correction (FEC) is one of the most
commonly used techniques to provide reliable communication.

The new Task Group TGbd was recently formed with the goal of exploring the future
road map for vehicle to everything (V2X) and working towards a new standard known as
next-generation V2X (NGV). 802.11bd is an 802.11p modification that specifies changes to
the IEEE 802.11 medium access control (MAC) and physical layer (PHY) layers for V2X
communications in the 5.9 and 60 GHz frequency bands. Currently, millimeter-wave
(mmWave) massive Multi-Input Multi-Output (MIMO) is the most potential technology
for vehicular communication (Yi ¢ Zou, 2020). The mmWave signals are susceptible to
high free-space path loss caused by high atmospheric attenuation (Shen et al., 2019).

Beamforming techniques are used in mmWave systems to mitigate the effects of large
path losses by providing enough channel space (Kutty ¢ Sen, 2015). The traditional MIMO
system performance is enhanced due to multiple antennas systems at both links end. Thus
providing an effective solution for future wireless communications systems as they provide
high data rates. Beamforming signal processing techniques enable transmission and
reception in the needed directions by applying appropriate antenna port phases and
amplitudes by using what is known as the “weighting approach”. An adaptive algorithm
instantly calculates the complex weights wy to steer the null antenna pattern toward
competing signals and the maximum antenna radiation pattern toward the chosen
vehicular node.

In this research work, a VANET architecture is proposed using concatenated Space
Time Block Coding-Reed Solomon (STBC-RS) coding in which the reliability of VANET
communication is targeted. Error control coding technique using mmWave for
minimizing errors is still a topic for rigorous investigation. Currently for ITS 5G
communication, ultra-reliable networks are required meeting the demands of 1- 107> as
indicated in Zrar Ghafoor et al. (2020). Moreover autonomous vehicles require reliable
connectivity 1- 1077 (Schulz et al., 2017).

Rayleigh fading channel is used in the proposed approach to model the fading
characteristics of the channel. Because signal amplitude follow Rayleigh distribution when
the line of sight (LOS) component gradually diminishes in vehicle to vehicle (V2V)
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communication. Rayleigh fading is most suitable in congested city roads, as concluded as a
result of extensive simulations (Jameel et al., 2017).

Contributions

The main contributions of this study are as follows:

e An ultra-reliable manipulable mathematical model is presented using RS coding along
with 4 * 4 STBC. Transmit beamforming is employed by a complex weight expression of
beamforming in the model.

e Two closed-form expressions for RS coding in the AWGN channel and in Rayleigh
fading are derived. The numerical and simulation results have been obtained, which also
verify our theoretical formulations.

o The results show that AWGN BER approximation outperforms conventional 64-QAM
and M-PSK systems.

e The results also show that the proposed approach outmatched previous BER
conputation approaches i.e., (Al-Barrak et al., 2017; Mergu, 2016; Tiwari, Hirwe &
Dubey, 2013; Indoonundon & Pawan Fowdur, 2021; Saleh & Hasson, 2019; Hajiyat et al.,
2019; Hamarsheh et al., 2022) shown in results and discussion section.

e The performance of the proposed model is compared with IEEE 802.11bd and V2X NR.
The packet error probability (PEP), throughput and packet reception ratio (PRR) are
used as performance metrics. It was observed that the proposed model outperforms
IEEE 802.11bd. For designing V2X architectures RS error control coding performs
better.

e MIMO-STBC along with RS can be used as a physical layer advancement technique in
802.11bd.

e We have also evaluated our results on higher velocities, achieving the BER of 107° to
1077, Atlast the designed model is meeting the demands of ultra-reliability i.e., 1- 10~
which is 0.99999.

RELATED WORK

In Abuqamar, Hamamreh & Abewa (2021) STBC was combined with Orthogonal
Frequency Division Multiplexing with Sub carrier-Power Modulation (OFDM-SPM) to
analyze combination on a multi-path Rayleigh fading channel. BER and throughput were
used as a performance metrics. It was concluded that using STBC the performance of
original OFDM-SPM can be improved in terms of reliability. In Indoonundon ¢ Pawan
Fowdur (2021) to achieve ultra-reliable low latency communication in 5G, a detailed
analysis of coding schemes was conducted. LDPC, polar codes, turbo codes were simulated
using quadrature amplitude modulation (16QAM) and 64QAM. In this work, lower BER
is obtained on increasing modulation order M in QAM modulation. RS coding was used in
Cooperative-Intelligent Transport System (C-ITS) communications. The performance was
analyzed and compared with Wyner-Ash codes. The result showed RS code outperformed
with Wyner-Ash codes. Our designed model and derivations can be used in various C-ITS
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communications (Bocharova et al., 2019). RS performance was evaluated using STBC-
MIMO systems concatenated with M-ary Quadrature Amplitude Modulation (M-QAM)
and M-ary Phase-Shift Keying (MPSK) (Mane ¢ Belsare, 2020). The performance of
existing cooperative MIMO (C-MIMO) was improved using C-MIMO-STBC (Hai et al.,
2021). It has been proved that wireless link quality can be improved by MIMO STBC while
keeping transmitted power or frequency bandwidth constant. The performance of IEEE
802.11p was improved by implementing Multiple Input Single-Output (MISO) with
Orthogonal Frequency-Division Multiplexing (OFDM) system. The authors analyzed the
impact of time-varying channel on the performance of Alamouti STBC in OFDM systems
(Youssefi & Mouhsen, 2020). 802.11p could not offer multi antenna communication.
STBC-OFDM was used to analyze the performance of multi antennas. We have used
STBC-RS channel model for improving reliability in VANET communication. In
Triwinarko, Dayoub ¢ Cherkaoui (2021) LDPC along with MIMO-STBC was used to
improve the physical layer of 802.11p. STBC was combined with orthogonal frequency
division multiplexing with OFDM-SPM to analyze combination on a multi-path Rayleigh
fading channel. BER and throughput were used as a performance metrics. It was concluded
that using STBC the performance of original OFDM-SPM can be improved in terms of
reliability.

RS code was combined with Spatial Modulation (SM) and STBC along with cooperated
source and relay (Zhao et al., 2022). Two closed-form approximations for BER Bose-
Chaudhuri-Hocquenghem (BCH) coding and Alamouti Space Time Block Coding (BCH-
ASTBC) were proposed for millimeter-wave VANET communication. The performance of
conventional ASTBC equation was improved and the results were compared on different
code rates (Ahmed, Rasheed ¢ Liyanage, 2021).

The performance of WDM using M-ary DPPM schemes was enhanced under Amplified
Spontaneous Emission (ASE) noise effects, InterChannel Crosstalk (ICC), and
Atmospheric Turbulence (AT) (Yousif, Elsayed ¢ Alzalabani, 2019). Due to multi-path
fading and vehicle mobility, VANET communication is difficult in terms of reliability and
throughput. The high mobility of vehicular communications, randomness in channel
dynamics, and link interference are all significant challenges for vehicular networking.
Many approaches have been investigated in this context to improve the efficiency of V2V
and V2I communication. Researchers have expressed interest in using cooperative
communications within vehicular networks to mitigate the impact of these challenges and
improve reliability by allowing nodes to collaborate (Ahmed ¢ Gharavi, 2018). Spatial
multiplexing MIMO was employed by modifying the existing IEEE 802.11p standard for
high throughput. Spatial multiplexing MIMO supports real-time data transfer in a non-
line-of-sight environment (Dey, Akl ¢» Chataut, 2020).

Cochannel interference degrades the system performance of mmWave radars mounted
on vehicles. VANET-assisted interference mitigation approach was proposed that enables
vehicles to coordinate their spectrum usage via multiple access. The proposed scheme was
tested via a case study to show that the proposed scheme is useful in dense traffic with high

Ahmed et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1374 4/31


http://dx.doi.org/10.7717/peerj-cs.1374
https://peerj.com/computer-science/

PeerJ Computer Science

mobility of vehicles (Zhang et al., 2020). MIMO systems are reliable and have high
capacity. A beamformer transceiver design was proposed for the MIMO orthogonal
frequency-division multiplexing (OFDM) system. It was used for highly reliable and
spectrally efficient operation under the most damaging jamming attacks (Jagannath,
Jagannath & Drozd, 2020).

In Ali et al. (2019) an architecture using massive MIMO was proposed. In the proposed
architecture, vehicles are controlled using Global System Mobile (GSM) towers. GSM
towers are equipped with 5G technology where towers can send and receive real-time
information like the weather forecast, current temperature and city situation that comes
under tower’s control.

The diversity gain was obtained by the STBC in wireless communication. The basic idea
of exploiting transmit diversity was first developed by Tarokh, Jafarkhani ¢ Calderbank
(1999) and then a simpler structure was later introduced by Alamouti (1998). Later on,
Almouti’s work was extended and developed to originate space time block codes.

Full duplex Non-Orthogonal Multiple Access (NOMA)-MIMO was employed in V2X
systems and closed-form approximations for ergodic capacity were derived (Zhang et al.,
2019). The transmission of multiple copies of data stream via the number of antennas can
be achieved using space-time block codes MIMO. MIMO systems are used to improve
data-transfer reliability by utilizing the various received data versions. The decoding
algorithm is simple in nature and accomplishes full diversity specified by the number of
transmit antennas at a radio receiver. STBC are complex and have same key features like
Alamouti (1998). Further, their encoding and decoding schemes are also similar
(Santumon & Sujatha, 2012). The data stream is first encoded in blocks when using STBC.
These data blocks are then distributed across multiple antennas that are spaced apart. In
Ehsanfar et al. (2022), the performance of three different frame structures of IEEE 802.11p,
IEEE 802.11bd-draft, and a Unique-Word (UW)-based physical layer (PHY) were
compared for vehicle-to-everything communication. Based on simulation results, it was
determined that the UW-based PHY achieved interference-free channel estimation
performance using a low complexity technique.

IEEE 802.11p does not perform well for high mobility networks. It uses Distributed
Coordination Function (DCF) for communication between wireless nodes. In Hussain
et al. (2017), a RSU-based efficient channel access scheme was proposed for VANETS
under high traffic and mobility.

PROPOSED MODEL

A system model for VANET communication is described in Fig. 1 in which V2V and
vehicle-to- road side unit (V2RSU) communication occurs. The sensors placed on vehicles
receive information via four receiving antennas. The received information is passed to the
data fusion unit which comprises of RS and STBC, where the received information via
multiple antennas is fused. The information is sent to distributed processing unit, where
the data is processed and then it is transferred to other vehicle.
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Figure 1 System model for RS-STBC. Full-size K&l DOT: 10.7717/peerj-cs.1374/fig-1

INFORMATION
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RS ENCODER STBC ENCODER MODULATOR

RAYLEIGH
CHANNEL

Full-size K&l DOT: 10.7717/peerj-cs.1374/fig-2

RECEIVED BITS RS DECODER

Figure 2 VANET communication process.

A detailed communication process is illustrated in Fig. 2. Information bits are encoded
with RS encoder. Let i(x) denote information bits and g(x) denote generator polynomial.
RS encoded bits can be written as,
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c(x) = i(x)g(x)

where c(x) represents RS encoded message bits. Now c(x) is transmitted via four
transmitting antennas using STBC coding. These signals are modulated and transmitted
through a channel.

Figure 3 depicts the STBC encoder and STBC decoder. STBC decoder comprises of
maximal ratio combining (MRC) and maximum likelihood (ML) respectively. Since there
are four receivers in the system model, each receiver will receive either 0 or 1. The received
signals can be represented as,

r a (%) C3 Cq

r —C a1 —C4 C3

13 —C3 Cs4 G —Q hy w1
Ty —C —C3 %) a h, W2
rs aq o & G hs w3
6 -6 4 - G hy Wy
r7 - ¢ =G

sl L g & o

where w represents transmit beamforming weight vector i.e., w = [wl, w2, w3, wa4]T and
[h1, h2, h3, h4]T is channel response.
In the above matrix, signals transmitted and received by four antennas are mentioned in

Fig. 3. The output of the MRC in Fig. 3 is explained in Eq. (4). Above matrics can be

written as,
i r i i hy h, hs hy i
r —hz hl _h4 h3
r3 —hs hy hy —h; C1 w1
T4 _ —]14 —1;13 hi hi % C % %)
rs h} h; h; h} c ws3
Te —hz h}k —]’lz h; Cy Wy
7 —h§ hj h’l‘ —h;
(rs| L—hi —hy B kY
which can be represented as,
7 = Heeew (1)

In Eq. (1) He¢ is effective channel response.
Corresponding weights w; can be described below where w; represents array factor and
amplitude weight are applied by wy, (Stepanets ¢ Fokin, 2019),

N
w; = Z wbexpiN‘p (2)
b=1

Equation (2) can be further simplified to normalized Eq. (3).
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Figure 3 STBC encoder and decoder. Full-size K&l DOT: 10.7717/peerj-cs.1374/fig-3
. (Nsin
, 1 sin(=5 vy
wift = 122 0
Sin

2
where N represents the transmitting antennas, and { corresponds to the far-zone phase

difference between adjacent elements, which can be calculated using the expression below
(White & Reil, 2016).

Y = sdsingsinOsing + Ay

where 0 represents angle of arrival described in Table 1 and ¢ represents angle of
reflection. s corresponds to periodicity of complex weight which is s = 2/4 and d
represents equidistant spacing between elements N as described in Fig. 4. Ay can be
computed using beam steering formula as follows.

2ndsin0
AY =——
v A

The main lobe of an antenna array can be steered to a certain angle 0 using phase offset
Ay. ¢ is computed using expression ¢ = msin0.

Maximal ratio combining (MRC) at receiver end

In MRC, multiple receivers are used for signal reception. Equation (4) describes the
relation between the signal arrived at MRC and transmitted by the MRC to ML (Andrei,
2012).

c= ng (4)
In Eq. (4) ¢ is output of MRC (four output signals), r represents input of MRC and H.*

corresponds to Hermitian matrix of effective channel response (Andrei, 2012).
Equation (4) can be written as,
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Table 1 Beamforming simulation parameters.

Parameter Value

Frequency 60 GHz

0 —15° to 15°

N 2,3,4

d 30 mm, 40 mm, 50 mm

0
=

1 N
Figure 4 Beamforming in VANET. Full-size K&l DOT: 10.7717/peerj-cs.1374/fig-4
h
2
Ei I’lT hz h; hz hl hz h3 I’l4 r3
C‘E o h; —hT —hz ]’l; hz —hl —I’l4 h3 % T4
Gl T\ o - -k hy  hy ki —hy r
(:1 —hz —h§ hz —hT —h4 —I’l3 I’lz —hl 7’;
e
L7y ]

The probability of error in MRC Rayleigh fading is described in Eq. (5) (Goldsmith,
2005: eq. (7.18)).
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C(1-TN' & (L—141\ 14T
= (57) %)) ©

where L represents the number of the receiver. In Eq. (5), I" can be written as,

Y
[ =,/— 6
1+ (6)

Maximum likelihood (ML) estimator
After MRC, signals c(x) are sent to ML estimator as mentioned in Eq. (7). Afterward RS
decoder receives signals and processes them.

y(x) = c(x) + e(x) (7)

The signal-to-noise ratio per receive antenna can be written as,

 wi.m.P.N.R,

Y1 = (8)

o2
where P, represents transmitted power in dB, m represents modulation index, ¢

corresponds to standard deviation and R, denotes code rate. SNR per symbol can be
computed as,

STBC Y 2
= H 9
77 = S (LH D ©)

where || H ||s represents Frobenius norm of matrix H.

RS error probability in Rayleigh channel (Non line of sight model)
In this subsection, RS channel probability in Rayleigh fading is determined, i.e., non line of
sight (NLOS) model. RS can detect and correct t = n — k/2 symbol errors where n
represents the number of coded bits and k corresponds to the number of information bits.
For detection and correction of errors d,.;, should be more than n — k + 1.

Probability of symbol error Py is given as,

n

p=3>(M)pa-p (10

t+1

where p, is calculated using Eq. (4) and j = t + 1. The probability of error of RS in Rayleigh
fading is written as,

+00 1 Pe
P, = / P;—exp 7dp, (11)
0 Y

Substituting Eq. (10) into Eq. (11) gives,
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+oo n n . nej 1 e
P, = / > j (1 —pe) dpe.§exp 7 (12)
0

t+1

Using (Gradshteyn ¢» Ryzhik, 2007: eq. (1.111), p.25)

(a+x)" = z": <;l>ajx"_j (13)

t=0

Expression (12) can be modified to,

+o00

1 e
Po= | (et )" exp” dp. (14)
0
Applying integration,
. +00 +o 71 e d +00
P, = iexpf% (pe + x)"dp. — / (: expf% —) (pe + x)"dp. (15)
v 0 0 v dpe) Jo
1 e (pe + x)n+1 “+00 1 b d (pe + x)i’l+1
. = — o — — T — | ————dp. 16
Pe=gexp 77270 /0 P T a)  ar1 ? (16)
Applying limits to pe.
1 e (x)l’l+l +o0 1 e d (x)n+1
P, =—— 7 — - T — | — dp. 17
R S /0 7P ap )\ T 1) (17)
Applying differentiation,
1 e (x)n+1 +00 1 e 1 (x)n—H
= ——exp Tl Zexp i —= | —dp, 18
P 77exp n+1+/0 7)exp =3 p (18)

Applying integration finally we have,

(19)

1 _1% (x)n+1 11 (x)nJrl
y n+1 2l

P, = ——ex
¢ P yn—i—l

The Eq. (19) represents closed-form approximation of BER of RS in Rayleigh fading.

RS error probability in AWGN channel (Line of sight model)
BER of AWGN channel can be written as (Goldsmith, 2005: eq. (6.3)),

Pe

BER = ——
log M

(20)

The BER of RS in AWGN channel can be written as,
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p—/w £ i(”)ﬂ(l— )"d (21)
o oM j)re Pe Pe

t+1

Using expression (14), we have,

400 p
P, = e+xn :
0 (b ) log;M

dp, (22)

After manipulating above expression,

n+1 o0 n+1
p@ (p€+x) _A+ < 1 (p€+x) >dpe (23)

e:ZogzM n+1 lopM — n+1

After solving above expression,

e P’ /+oc 1 Pean
P, =— = _dp, 24
logzMn—i-l+ o logpMn+1 P @)

After integration, second term becomes 0.

pe xn+1
¢~ lopyM n + 1

(25)

Equation (25) represents closed-form approximation of bit error probability of RS in
AWGN channel.

Doppler effect in proposed model

Consider the proposed model in Fig. 1 in which the vehicles are traveling with velocity v
which is varying from 25 to 250 km/h. The closed-form expression of RS BER probability
in Rayleigh fading i.e., Eq. (19) is mentioned below,

b (x)n+l 1

L e
Pe:—gexp 7 i1 P (26)

where A corresponds to magnitude of signal and f; represents Doppler shift. Plugging
value of 7 in expression (26),
2.0 p2e x"TL2.g7 T

P,=——.expfa . + .
¢ 4 P n+1 fd n+1

Probability density function of fj can be written as,
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“+oo 1 7&
b, = —.exp v .Pedfd (27)
o 7
Substituting P, in above expression,
O\ (207 we2e x™TL 2.7 xT
Py = .ex, ——.exp i . + . d 28
“ /0 <V P )(fd P n+1>fd 29
Ol a2 x”“ 2.0 1 i 2.0% x"!
Pd — / —.ex 7 fa —+— 7— dd (29)
“= )y 7 Ja PR &
Manipulating above expression,
P 1 X"t /+oo a_peze 2.0% o u2.07 (30)
4 =—. exp ' Ja ——+ / ex
oyt P Ja 0 P o
Applying integration by parts,
p 1 xn+1 <2.O’2 /+oc 7&7[,2_/2_62 /+oo <2.O’2 d> /+oo 7&7”;_02
qa=—. A —- exp 7 i — —— exp 7
SRR R A A ¢ 0 fodf) o P
(31)
+ p_f_d “+00 2.0_2 /+OO p_fi d /’+OO 2 o >df
exp — — exp d
o Ja o df°
In Gradshteyn ¢ Ryzhik (2007): eq. (3.325), p.336,
+00 f Ppe.2.62 2.02 Pe
/ exp R % =y
o 1
Replacing above expression in expression (31) yields,
p L X <2 o 1 pi - [t N /+°°
d = —. —.eX
oy nt Ja ; 0
2 0_2 1 Pl _2 2.0").)7@ 32
—2> 3 .\/;exp ' (32)
d 7
+ exp ¥ 2,07 /+°° P_fi d /+°O 2.0’2>
ex, — exp v —. —
0 Ja 0 af Jo Ja
Applying integration and limits,
1 xn+l 2 0_2 1 Pl ) ZGZpe 1 +o0 |
Py=-. . —exp —exp 2.06%+2.0% - / exp (33)
Yy n+1 y Y Jo
Manipulating above expression yields to,
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n

Py =

1 +
v n+1

X" (2, 02 1 Jpi 2.y /20 f 11
. Ii exp - expf%.2.62 +-.7.2.0° (34)
; s

Applying integration and limits,

x”+1 202 1 |pi 2.4 /28
. \/IZ exp —exp 7 2.02 +2%0° (35)

Py =

1
Y n+
Equation (35) represents RS coded Doppler shift expression in Rayleigh fading.

RESULTS AND DISCUSSION

This section comprises of results and discussion of the proposed model. MatLab is used as
a simulation platform.

In this research, LOS, NLOS, number of antenna elements N, equidistant spacing d
(30 mm, 40 mm, 50 mm) and relative velocity v (25 km/h, 100 km/h, 250 km/h) are used as
use cases.

Figures 5 and 6 show the impact of the number of transmitting antennas and their
equidistant spacing on directivity.

The simulation parameters are shown in Table 1.

From Fig. 5 it can be remarked that by increasing the number of transmitting antennas
i.e., N which is varying from 2 to 4, directivity increases. When directivity increases, the
beam gain increases and thus, the probability of signal loss reduces. d = 50 mm is used in
simulation. However, the effect of increasing the number of transmitting antennas results
in a larger number of side lobes as shown in Fig. 5. In beamforming, linear arrays with
increasing equidistant element spacing will also produce grating lobes as described in
Fig. 6. These grating lobes are unwanted energy that will be radiated to or received from
undesired directions. If the equidistant spacing exceeds half a wavelength grating lobes
start to appear in the visible region. To avoid this phenomenon following condition must
be kept as,

d<%
2

In case the distance between transmitting antennas exceeds one wavelength, the grating
lobe levels start to equal the main lobe level. Since the array factor is periodic in nature,
grating lobes will start to appear in the visible region coming from the invisible region. In
this case, scan angle will be restricted. So the maximum value of scan angle must be,

A
sin|0] = s 1
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Figure 5 Signal received after Beamforming when number of elements are increasing.
Full-size K&l DOT: 10.7717/peerj-cs.1374/fig-5

For SNR calculation Eq. (8) is used. Simulation parameters are describe in Table 2. SNR
per symbol is computed in a ML detector using expression (9). Figure 7 displays the graph
of SNR per symbol vs angle of reflection theta. When increasing the angle of reflection,
SNR per symbol also rises. By increasing the number of transmitters to N = 4, SNR also
gets high. The capacity of a system is directly proportional to the number of transmitters.
The capacity of our system is 2.5 bits/s/Hz when there are four transmitters as shown in
Fig. 8.

Figure 9 shows the simulation results and Fig. 10 depicts the numerical results of closed-
form approximation of RS BER in the AWGN channel. It can be remarked from both
figures that the results verify each other. On comparing our result with the traditional 64-
QAM system it can figure out that the BER of 64-QAM is higher than our proposed
approximation. The BER of the M-PSK is compared with our expression described in Figs.
11 and 12. The BER of M-PSK system is getting low on account of decreasing modulation
order M. The BER of the 4PSK system is lower than the 8PSK system. However, the BER of
proposed approximation gets low on account of increasing modulation order M. So our
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Figure 6 Signal received after Beamforming when distance between elements is increasing.
Full-size K&l DOT: 10.7717/peerj-cs.1374/fig-6

Table 2 Simulation parameters.

Parameter Value

No. of transmitting elements N 4
Transmit power P* 10 dB
Modulation index m 1
Standard deviation ¢? 9

Code rate R° 0.9
Carrier frequency f* 60 GHz
Data rate 7.31 Mbps
Packet size 100 Bytes

result outperforms both the 64-QAM and M-PSK system. The simulation parameter
described in Table 2.

Figures 13 and 14 show the numerical results and simulation results of closed-form
approximation of RS error probability in the Rayleigh channel. On comparing results
based on n, it can be observed that error probability is getting depleted by increasing n.
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Figure 7 SNR per symbol in maximal likelihood detector.
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Figure 8 Capacity in bits/s/Hz. Full-size K&l DOT: 10.7717/peerj-cs.1374/fig-8

Table 3 illustrates the comparative analysis of proposed model with previous studies in
terms of BER. The results are analyzed using NLOS/LOS cases and modulation and coding
types from different studies.
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BER Coomparison of 64 QAM with Proposed Approximation in AWGN Channel
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Figure 9 RS BER comparison of 64QAM with proposed approximation.
Full-size K&l DOT: 10.7717/peerj-cs.1374/fig-9

RS BER Numerical Results in AWGN
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Figure 10 RS BER comparison of 64QAM with proposed approximation.
Full-size 4] DOT: 10.7717/peerj-cs.1374/fig-10

The performance of the proposed system is compared with Ahmed, Rasheed ¢ Liyanage
(2021) in which concatenated BCH-ASTBC was used for VANET communication. Results
are described in Fig. 15. The performance of BCH-ASTBC with code rate (12,736) is
similar to RS BER at n = 64. The similar curve was also obtained for BCH-ASTBC with
code rate (12,764) and RS BER at n = 128. The BER curve of ASTBC without BCH code is
in between RS BER at #n = 4 and RS BER at n = 8. Figure 16 depicts the comparative analysis
of AWGN channel and Rayleigh channel. Figure 17 displays result of doppler shift in RS
coding. The change in frequency causes frequency offset is the main source of high BER in
VANET communications.
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Figure 11 RS BER comparison of 4PSK with proposed approximation.
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Figure 12 RS BER comparison of 8PSK with proposed approximation.
Full-size K&] DOT: 10.7717/peerj-cs.1374/fig-12

Comparison analysis of proposed approach with IEEE 802.11bd and
3GPP V2X communication

In this subsection, the performance of the proposed system is compared with IEEE
802.11bd and 5G NR V2X standard. The PER of LOS model is described in Fig. 18. The
PER of NLOS model (Rayleigh fading) is shown in Fig. 19.
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RS BER Numerical Results in Rayleigh Fading
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Figure 13 RS BER proposed approximation numerical results in Rayleigh channel.
Full-size K&l DOT: 10.7717/peerj-cs.1374/fig-13

BER of RS in Rayleigh Fading

Bit Error Rate

10-7 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40
EbNo
Figure 14 BER of RS in Rayleigh fading. Full-size K&] DOT: 10.7717/peerj-cs.1374/fig-14

The performance of upcoming technologies i.e., 5G NRV2X and IEEE 802.11bd V2V
communications was analyzed in Waqar, Norman ¢ Gerhard (2019). Comparing RS
packet error rate (PER) in AWGN channel shown in Fig. 18 with 802.11bd and NR V2X
64-QAM in Wagar, Norman & Gerhard (2019) it can be observed that the performance of
our proposed RS model is optimal. Results are displayed in Table 4.

According to Anwar et al. (2020) the performance of LDPC is marginal in V2X
communication. The performance of proposed model outperforms LDPC, Turbo, Polar
and Convolutional coding. Because the reliability of the system gets better since low PER is
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Table 3 Comparative analysis of proposed model with previous studies in terms of BER.

Sr  Paper Approach BER BER Comparison with Comparison
No. (Propagation (Modulation proposed technique  with proposed
channel and coding)  using modulation and technique LOS/
NLOS/LOS) coding NLOS
1 Al-Barrak RS performance is increased using multi-path 107 X X 107, 10°°
et al. (2017)  propagation in LOS and NLOS scenario
2 Mergu (2016) RS performance is analyzed using RS codes 1072 Convolutional 107 107
concatenated with convolutional codes over codes, 107
AWGN channel
3 Tiwari, Hirwe Comparison analysis of LDPC and RS codes on  1072to 10>  BPSK, QPSK, 107° 107
& Dubey multiple antennas using AWGN channel LDPC, RS,
(2013) 1072 to 1073
4 Indoonundon To achieve ultra reliable low latency X BER lies 1077 X
& Pawan communication in 5G, a detailed analysis of between 107°
Fowdur coding schemes was conducted to 1077
(2021)
5  Saleh & Communication reliability was improved using ~ x BPSK, MRC ~ 107° X
Hasson different diversity schemes outperforms
(2019) other
techniques
6  Hajiyat et al.  The reliability of VANET was evaluated using X 1077 107° X
(2019) turbo, low density parity check code (LDPC),

polar code, systematic convolutional codes
(SCC), and non-systematic convolutional codes
(NSCC) coding types

7 Hamarsheh ~ MIMO-FFH-OFDM X 107* 107° X
et al. (2022)

received in Fig. 19. Table 5 displays the comparison between proposed method with IEEE
802.11bd and V2X using PER. Comparing RS performance under Doppler Effect shown in
Fig. 17, it can be remarked that RS performance is optimal.

In Triwinarko, Dayoub & Cherkaoui (2021) the performance of various modulations
schemes was evaluated on IEEE 802.11bd using LDPC. The packet size of 100 bytes was
used for simulation. It can be observed that the RS error control coding gives us high
reliability, as mentioned in Figs. 18 and 19.

Throughput of the proposed model is analyzed using equation below.

Throughput = R.(1 — PEP)

where R corresponds to data rate. Results are described in Fig. 20. The results outperform
with Anwar et al. (2020) and are comparable with Triwinarko, Dayoub ¢ Cherkaoui (2021)
as described in Table 6. 5G NR was integrated with Spatial Multiplexing MIMO while
keeping other DSRC specifications the same (Dey et al., 2020). Convolution coding was
used in the system. The performance of the 4 * 4 MIMO concatenated with 5G NR was
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Figure 15 Comparison of BER of STBC-RS with BCH-ASTBC.
Full-size K&l DOT: 10.7717/peerj-cs.1374/fig-15
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Figure 16 BER comparison of RS in Rayleigh fading and AWGN channel.
Full-size K&] DOT: 10.7717/peerj-cs.1374/fig-16

analyzed using MMSE and ZF equalizers (Dey et al., 2020). We have used for 4 * 4 MIMO
system. According to Obi et al. (2021), among maximum likelihood (ML) estimator zero
forcing (ZF) and minimum mean square error (MMSE), ML performance is optimal.

Ahmed et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1374 I [22/31


http://dx.doi.org/10.7717/peerj-cs.1374/fig-16
http://dx.doi.org/10.7717/peerj-cs.1374/fig-15
http://dx.doi.org/10.7717/peerj-cs.1374
https://peerj.com/computer-science/

PeerJ Computer Science

RS BER v/s EbNo under Doppler Effect in 60GHz

10" ]

Relative speed 25 km/h | 1

L 100 km/h 1

102 F 250 km/h -
103

Bit Error Rate
o
S

10° ¢

10°F

10-7 1 1 1 1 1 1 1

0 5 10 15 20 25 30 35 40
EbNo
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Figure 18 PER (Packet size = 100 Bytes) of RS in AWGN channel.
Full-size K&] DOT: 10.7717/peerj-cs.1374/fig-18

Figures 21 and 22 depict PRR of both NLOS and LOS. Our proposed approach for
channel modeling in VANET i.e., MIMO-STBC can be adopted in V2X communication
and IEEE 802.11bd. Researchers are considering inducing MIMO-STBC in current
VANET communication systems as mentioned above.

Ahmed et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1374 23/31


http://dx.doi.org/10.7717/peerj-cs.1374/fig-18
http://dx.doi.org/10.7717/peerj-cs.1374/fig-17
http://dx.doi.org/10.7717/peerj-cs.1374
https://peerj.com/computer-science/

PeerJ Computer Science

0 PER of RS in Rayleigh Fading
10 ‘ T T

1071

-
e
)

Packet Error Rate
3
w

-
S
A

10—5 1 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40

EbNo

Figure 19 PER (Packet size = 100 Bytes) of RS in Rayleigh fading.
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Table 4 PER analysis of proposed approach (Modulation) with IEEE 802.11p and NR V2X.
Comparison analysis of proposed approach with IEEE 802.11bd and V2X (Wagar, Norman ¢ Gerhard,

2019)

VANET communication standards Modulation PER
IEEE 802.11bd QPSK/64QAM 1073

NR V2X QPSK/64QAM 107%/1072
Proposed methodology BPSK/16/QAM/64QAM 107%/107°

Table 5 PER analysis of proposed approach (Coding) with TEEE 802.11p and NR V2X.
Comparison analysis of proposed approach with IEEE 802.11bd and V2X (Anwar et al., 2020)

VANET communication standards Modulation Coding PER
IEEE 802.11bd BPSK Convolutional, LDPC, Turbo, Polar 107>
NR V2X BPSK Convolutional, LDPC, Turbo, Polar 107
Proposed methodology BPSK RS 1074107
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Figure 20 Throughput of MIMO-RS (Packet size = 100 Bytes) in NLOS.
Full-size E&] DOT: 10.7717/peerj-cs.1374/fig-20

Table 6 Throughput analysis of proposed approach with IEEE 802.11p and NR V2X.

Throughput analysis of proposed approach with IEEE 802.11bd and V2X (Anwar et al., 2020;
Triwinarko, Dayoub & Cherkaoui, 2021)

VANET communication standards Coding Throughput
IEEE 802.11bd LDPC 7 Mbps
V2X Convolutional, LDPC, Turbo, Polar 4 Mbps
Proposed methodology RS 7 Mbps

CHALLENGES AND LIMITATIONS OF THE PROPOSED
MODEL

In the proposed model, multiple antennas and other hardware systems are used, so
hardware complexity is higher. Since mathematical algorithms are used in the design of the
beamforming system, a cutting-edge, highly processing DSP chip is required.
Beamforming systems cost more than non-beamforming systems because they use more
hardware resources and more sophisticated DSP chips. The use of more resources results
in a higher power requirement for beamforming systems. Consequently, the beamforming
system’s battery drains more quickly.

In some cases, perfect Channel State Information (CSI) is considered at the receiver.
Reed Solomon codes work well for M-ary modulations schemes than BPSK systems.
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Figure 21 Packet reception ratio (PRR) of MIMO-RS in LOS (Packet size = 100 Bytes).
Full-size K&] DOT: 10.7717/peerj-cs.1374/fig-21
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Figure 22 Packet reception ratio (PRR) of MIMO-RS in NLOS (Packet size = 100 Bytes).
Full-size K&] DOT: 10.7717/peerj-cs.1374/fig-22
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CONCLUSION

The future of VANET will be driven by mmWave communications. In this manuscript, a
tractable model using STBC-RS is proposed for achieving ultra-reliability of 1- 107> The
closed-form approximations of BER using RS in the AWGN channel and Rayleigh fading
are derived. The results show that the proposed model outmatches previous BER
estimation approaches of RS and STBC in 5G VANET networks. On comparing the model
with existing VANET communicating systems it can be concluded that the proposed
model performance is better than IEEE 802.11bd. We recommend that for designing V2X
architectures, MIMO-STBC along with RS coding provides more useful results, since low
PEP is received. The designed model can also be employed in 802.11p as a physical layer
enhancement technique.

This research work provides the guidelines for quantitating the BER and PER in error
control coding and a road map to design various VANET architectures. In future work, RS
error probability can be analyzed for more number of antennas. Further, a VANET
channel model for V2X communication can be developed using large antenna array sizes.

LIST OF ABBREVIATIONS

ASE Amplified Spontaneous Emission
ASTBC  Alamouti Space Time Block Coding
AT Atmospheric Turbulence

BCH Bose-Chaudhuri-Hocquenghem
C-ITS Cooperative-Intelligent Transport System communications
FEC Forward Error Correction

GSM Global System Mobile

ICC Interchannel Crosstalk

LOS Line of Sight

MAC Medium Access Control

MIMO Multi-Input Multi-Output

NGV Next-Generation V2X

NOMA Non-Orthogonal Multiple Access
OFDM Orthogonal Frequency Division Multiplexing

PHY Physical Layer

PER Packet Error Rate

PRR Packet Reception Ratio

3GPP 3rd Generation Partnership Project
16QAM  Quadrature Amplitude Modulation
RS Reed Solomon

STBC Space-Time-Block-Coding

SPM Sub carrier-Power Modulation
VANET  Vehicular ad-Hoc Network

V2I Vehicle to Infrastructure

V2X Vehicle to Everything
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A\PAY Vehicle to Vehicle

LIST OF NOTATIONS AND DEFINITIONS

H" conjugate transpose of He¢

km/h Kilo meter per hour

Y Signal-to -Noise Ratio

v far-zone phase difference between adjacent elements
0 represents angle of arrival in beamforming

¢ represents angle of reflection

s corresponds to periodicity of complex weight
N transmitting antennas

d equidistant spacing between elements

fa Doppler shift

v Relative velocity

n Coded bits
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