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Abstract

Text simplification is a tool that enhances the accessibility of text at both lexical

and syntactical levels. It aids individuals in comprehending complex texts more

easily, particularly children, students, and people with reading difficulties. This the-

sis aims to investigate the effects, limitations, and potential enhancements of the

current state-of-the-art method in text simplification.

The thesis consists of three main experiments and addresses the challenges in

text simplification. In the first experiment, we focused on the various needs in text

simplification, explored the impact of the control mechanism in text simplification,

re-implemented the state-of-the-art system with less computation power, and re-

designed the tokenization and quantization for the control mechanism to improve

the performance by up to 0.5 points in the metrics. In the second experiment, we

addressed the impact of text style in text simplification tasks in different domains,

constructed a genre-specific test scenario focused on coronavirus, verified the ef-

fect of the genre in text simplification tasks, and compared these models with large

language models (e.g. ChatGPT) as the generic model. In the final experiment, we

addressed the lack of adaptation ability in the system, fine-tuned models to predict

the value of four control tokens, integrated these predictors with the current sys-

tem, and thereby enhanced the practicality and popularity of controllable text sim-

plification systems.

As a result, we explored the mechanism of control tokens, verified the effective-

ness of controllable text simplification in the genre-specific corpus, and improved

the overall performance and adaptability of the controllable text simplification sys-

tem.
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Chapter 1

Introduction

1.1 Motivation and Background

The research of readability received relatively little attention until the early 20th cen-

tury (Zakaluk and Samuels 1988), primarily focusing on the identification and mea-

surement of readability at the vocabulary and sentence levels (Dolch 1928; Vogel

and Washburne 1928). Despite its long history of research, the problem remains

unsolved and continues to be a significant concern. A study by the Programme

for International Student Assessment (PISA) revealed alarming statistics regard-

ing reading literacy among 15-year-old students from 79 countries and economies,

indicating that a staggering 22.6% of students struggle with basic reading literacy

issues, while only 10.9% demonstrate mastery of complex reading tasks (OECD

2019). This situation has worsened over the years, as evidenced by the declin-

ing median scores observed between the 2000 and 2018 PISA assessment re-

sults. Unfortunately, it is probable for this situation to further deteriorate during the

COVID-19 pandemic. Various studies conducted in Europe have shown that school

closures and disruptions caused by the pandemic significantly undermined learning

outcomes and exacerbated educational inequalities (Tomasik, Helbling, and Moser

2021; Engzell, Frey, and Verhagen 2020; Maldonado and De Witte 2022).

It is crucial to note that these challenges are not limited to the younger population

alone, as adults also face similar difficulties. A report published by the OECD in

2013 examines the literacy levels of adults aged 16 to 65 in 24 countries, as de-

fined by the OECD. The report indicates that 16.7% of adults possess a literacy

1



level lower than 2, struggling with tasks such as low-level inference, information

integration, and identifying information from various parts of a document (OECD

2013). These findings emphasize the urgent need for a comprehensive approach

to address readability issues. Recognizing the severity of the problem and its im-

pact on both students and adults, it becomes increasingly imperative to develop

effective strategies, tools, and interventions to enhance literacy levels and promote

accessible and inclusive reading comprehension for all individuals.

As a subfield within natural language processing (NLP), automatic text simplifica-

tion plays a crucial role in reducing linguistic complexity at both syntactic and lex-

ical levels. The primary objective of this field is to modify the content and struc-

ture of the text while preserving its core ideas and meaning (Alva-Manchego, Scar-

ton, and Specia 2020). This process enables the creation of simplified versions

of texts, which have valuable applications in assisting various target audiences.

It is commonly employed to aid children (De Belder and Moens 2010), non-native

speakers (Petersen and Ostendorf 2007; Paetzold 2016), and individuals with dyslexia

(Rello et al. 2013) in reading and comprehending complex texts.

One of the primary beneficiary groups of automatic text simplification is children.

By using simplified texts, young readers can overcome the challenges posed by

complex language structures and vocabulary, enabling them to comprehend and

engage with a wider range of materials, thus fostering their literacy development

(De Belder and Moens 2010). In addition, non-native speakers often encounter ob-

stacles when dealing with intricate language constructs. Text simplification tech-

niques offer support to these individuals, facilitating their language acquisition and

comprehension (Petersen and Ostendorf 2007; Paetzold 2016). Another group

that benefits from automatic text simplification is individuals with dyslexia. Dyslexia

presents difficulties in reading and understanding complex texts, making the sim-

plification process helpful for enhancing accessibility and promoting inclusivity for

those with this learning difficulty (Rello et al. 2013).

By catering to these diverse target groups, automatic text simplification contributes

to fostering inclusive education, improving literacy rates, and promoting equal ac-

cess to information. Its applications extend beyond these specific contexts, offering
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potential benefits to individuals with cognitive impairments, older adults, and those

with limited reading skills, among others. The field continues to evolve, exploring

innovative approaches and technologies to further enhance the effectiveness and

applicability of automatic text simplification in facilitating information access and

comprehension for a broad range of users.

1.2 Research Questions

In the exploration of satisfying the different needs of various user groups, researchers

(Scarton and Specia 2018; Martin, Sagot, et al. 2019; Martin, Fan, et al. 2020; Sheang

and Saggion 2021) introduced the control mechanism, so that the features of a

generated simplification (e.g. the length ) can be determined during inference.

In this thesis, we focus on three major questions:

• Research Question 1: How do the control mechanism (e.g. the control tokens)

affect the text simplification outcomes and how to effectively leverage these

control mechanisms?

• Research Question 2: Can current controllable text simplification models com-

pete with large language models in scenarios related to the professional do-

main?

• Research Question 3: How can we improve the practicability of current con-

trollable text simplification systems?

1.3 Aim and Objectives

In this thesis, our main focus is to examine and respond to the following objectives:

In Chapter 3, covering the content in the first publication (Li, Shardlow, and Has-

san 2022), our goal is to address the first research question by exploring the con-

trol mechanism and highlighting the importance of controlled text simplification. We
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aim to understand the principles behind the control tokens and find a way to better

leverage the control mechanism.

In Chapter 4, covering the content in the second publication (Li, Shardlow, and

Alva-Manchego 2023), our goal is to address the second research question by com-

paring the controllable text simplification systems with large language models on

either genre-specific corpus or general corpus. We aim to verify the effectiveness

of the controllable text simplification system in certain domains. At the same time,

we also investigate the constraints of popular metrics. By objectively assessing ex-

isting metrics, we aim to uncover their limitations and explore potential areas for

improvement.

In Chapter 5, covering the content in the third publication (Li and Shardlow 2024),

our goal is to address the final research question by designing a new pattern for

leveraging the control tokens. We aim to improve the adaptability and accuracy

of controlled text simplification by proposing and investigating the control token

predictors. Our objective is to prompt the application in real-life situations and ad-

vance the development of reliable, dependable solutions for text simplification.

1.4 Contributions

In this thesis, we give a general introduction and reviews on related literature in

Chapter 1 and 2. In Chapter 3 to 5, we deliver three different experiments and made

such contributions:

In Chapter 3, we reimplemented the current state-of-the-art (SOTA) in controllable

text simplification to evaluate existing methods and conducted experiments to in-

vestigate how the control tokens affect the text simplification outcomes in Section

3.3.2 and 3.4. We also redesigned the tokenization strategy and application of con-

trol tokens in Section 3.3.1 and improved the System output Against Reference

and Input (SARI) score by 0.5 on the ASSET test set (Alva-Manchego, Martin, Bor-

des, et al. 2020).

In Chapter 4, we leveraged the Simple TICO 19 (Shardlow and Alva-Manchego
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2022) dataset and created subsets for genre-specific text simplification tasks. We

applied transfer learning on the subsets to create genre-specific models and ver-

ified the performance in Section 4.3.2. As a reference, we evaluated the perfor-

mance differences between the controllable text simplification system and large

language models on both general and genre-specific tasks at the same time in Sec-

tion 4.3.1.

In Chapter 5, we proposed a new method to improve the practicality by altering

the way of applying control tokens in the controllable text simplification system.

We trained regression and classification models to predict the value of control to-

kens, which improved the SARI score by 0.03 points on the ASSET test set (Alva-

Manchego, Martin, Bordes, et al. 2020). While in other datasets like PWKP (Zhu,

Bernhard, and Gurevych 2010a) and Turk Corpus (Xu, Napoles, et al. 2016), the

increment can change to 3.04 or -0.47 in the SARI score.
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Chapter 2

Literature Review

In this chapter, we start on a review through the timeline of NLP development, delv-

ing into the history of studies related to text simplification and controlled text sim-

plification. By tracing the evolution of NLP, our aim is to provide a comprehensive

overview of the advancements in these areas. Additionally, we explore the resources

available for text simplification, encompassing not only corpora but also essential

metrics and models used in the field. These resources serve as valuable assets in

advancing text simplification research and development. Through an examination

of the collective knowledge and tools accumulated over time, our objective is to of-

fer a comprehensive review of the various dimensions of text simplification and its

controlled variants.

2.1 Early Exploration in Readability Formulas and Text Simplifica-

tion

As part of early research in readability field, with its primary objective of aligning

reading materials with appropriate readers, the readability formulas has a long his-

tory and some of them played a vital role in NLP tasks like simplification and sum-

marisation. It traces back to the pioneering work of Sherman (1893), who employed

a statistical approach to analyze readability. His groundbreaking findings revealed

a trend of decreasing sentence lengths over time and proposed the notion that con-

cise and concrete expressions enhance readability. The early focus on readabil-

ity formulas gained momentum in the early 1920s (Zakaluk and Samuels 1988;
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DuBay 2004), with Klare et al. (1963) defining readability as ”the ease of under-

standing or comprehension due to the style of writing.” In the pursuit of predicting

readability, researchers developed plenty of readability formulas. Notably, Lively

and Pressey (1923) introduced the first-ever readability formula. Over the years,

more than 200 formulas emerged, with prominent examples including the Flesch-

Kincaid Grade Level (FKGL) (Flesch 1948), Gunning Fog Index (Robert 1952),

Coleman Liau Index (Coleman and Liau 1975), and SMOG Index (Mc Laughlin

1969). During this period, these formulas gained some acceptance as potential

tools for assessing the readability of public documents and even as criteria for pub-

lication (Bruce, Rubin, and Starr 1981).

Despite the early enthusiasm for readability formulas, several shortcomings hin-

dered their ability to fulfil their intended purpose of accurately predicting readabil-

ity. Bruce, Rubin, and Starr (1981) highlights three primary reasons for their limited

success. Firstly, many of the initial formulas lacked consideration for crucial factors

that influence readability, such as the complexity of concepts, the presence of nec-

essary background knowledge, the number of required inferences, dialect varia-

tions, and the degree of discourse coherence. By solely focusing on word difficulty

and sentence length, these formulas failed to capture the multidimensional nature

of readability. Secondly, the early formulas suffered from a lack of robust statisti-

cal grounding. They were often validated on datasets that were not specifically de-

signed for readability assessment, resulting in poor generalization across different

user groups. This lack of tailored validation hindered their ability to accurately pre-

dict readability across diverse texts and audiences. Lastly, there was a widespread

tendency to inappropriately apply readability formulas. Formulas derived from spe-

cific books or datasets were indiscriminately employed on unrelated texts or doc-

uments, disregarding whether the target audience and readership aligned or not.

This disregard for context and audience-specific considerations further undermined

the effectiveness and reliability of the formulas. These collective limitations under-

score the need for more comprehensive and context-aware approaches to measur-

ing readability, prompting subsequent research to address these shortcomings and

develop more robust readability assessment methods.

7



In addition to the development of readability formulas, there have been various

efforts in creating manual simplification guidebooks and manual text simplifica-

tion systems. Notable contributions in this area include the recommendations put

forth by Basic English (Ogden 1930) and the Plain English initiative (Crystal 1987).

These initiatives emphasized the use of a limited vocabulary and restricted gram-

mar rules to enhance comprehension. The effectiveness of text revision in improv-

ing readability has been confirmed by studies such as L’ALLIER (1981), where

readers with lower literacy levels showed higher performance when presented with

simplified texts. Similar positive outcomes have been observed in several other in-

vestigations (Noordman and Vonk 1992; McNamara et al. 1996; Linderholm et al.

2000).

2.2 Automatic Text simplification

Similar to developement in many other researches in the NLP field, automatic text

simplification systems became mainstream and went through the four different paradigms

(P. Liu et al. 2023). Text simplification benefits from the development of other NLP

tasks and deep learning theories in many different aspects, including tokenization,

model design and training paradigm. In this section, we dive into the chronological

timeline of these NLP paradigms, tracing their evolution alongside the development

of text simplification systems. By examining the historical progression, we gain a

comprehensive understanding of the interplay between NLP advancements and

the growth of text simplification techniques.

The first paradigm in the evolution of text simplification systems is feature engi-

neering, which involves the development of hand-crafted rule-based approaches.

Chandrasekar, Doran, and Bangalore (1996) first constructed a rule-based system

for syntactic text simplification, employing an initial analysis of structural represen-

tations within sentences and applying rules to identify and simplify specific units.

Addressing the issue of ambiguity, Chandrasekar and Srinivas (1997) introduced

a parser to enhance the system’s accuracy. The introduction of a Lightweight De-

pendency Analyzer (LDA) enabled the heuristic determination of constituent struc-

8



tures and dependencies between constituents in both the original and simplified

sentences. Building upon these advancements, Carroll et al. (1998) proposed the

first lexical simplification system, consisting of an analyzer and a simplifier. The

analyzer provided syntactic analysis, while the simplifier adjusted the output to im-

prove readability. Expanding on this work, Siddharthan (2006) decomposed the

task into three stages and incorporated their rules during the generation stage.

In the second paradigm, known as architectural engineering, the advancement

in computational power and the introduction of recurrent neural networks (RNN)

have facilitated the application of various neural network structures in various NLP

tasks. Simultaneously, the evolution of tokenization strategies has also played a

significant role in driving related research forward. The early tokenization strat-

egy, Bag-of-Words (BOW), was first presented by Harris (1954). However, this

approach faces challenges with large dictionaries due to the issue of sparsity. To

overcome this limitation, researchers have proposed novel word embedding tech-

niques, such as Word2vec (Mikolov et al. 2013) and GloVe (Pennington, Socher,

and Manning 2014). Leveraging these techniques, Nisioi et al. (2017) introduced

the first sequence-to-sequence Neural Text Simplification (NTS) method, utilizing a

two-layered long short-term memory (LSTM) (Hochreiter and Schmidhuber 1997)

network provided by the OpenNMT framework (Klein et al. 2017). Another notable

approach is the Deep REinforcement Sentence Simplification (DRESS) proposed

by X. Zhang and Lapata (2017a), which combines reinforcement learning architec-

ture with standard encoder-decoder LSTM models. They designed a reward func-

tion that takes into account simplicity, relevance, and fluency and employed a rein-

forcement learning algorithm (Williams 1992) to optimize the model’s performance.

Expanding on these ideas, Vu et al. (2018) replaced LSTM with Neural Semantic

Encoders (NSE) (Munkhdalai and Yu 2017) to capture more contextual informa-

tion and developed two models based on the main metric. These advancements

in architectural engineering have brought about new possibilities for improving text

simplification models and enhancing their performance.

The third paradigm, known as pre-train and fine-tuning, emerged with the intro-

duction of the transformer architecture (Vaswani et al. 2017), which revolutionized
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the field of NLP. This new architecture showed improvements in both performance

and computational efficiency, swiftly establishing itself as the dominant approach in

NLP research (Yang et al. 2019; Floridi and Chiriatti 2020; Lewis et al. 2020). Con-

sequently, numerous tasks and leaderboards witnessed the emergence of SOTA

results (Schwartz et al. 2014; Rajpurkar et al. 2016; Wang et al. 2018). As the field

of sequence-to-sequence machine translation flourished, text simplification ben-

efited from the advancements as well (Guo, Pasunuru, and Bansal 2018; Surya

et al. 2019; Omelianchuk, Raheja, and Skurzhanskyi 2021). Early on, Zhao et al.

(2018) integrated the transformer architecture (Vaswani et al. 2017) with a Para-

phrase Database for Simplification (Simple PPDB) (Pavlick and Callison-Burch

2016), achieving the SOTA performance at the time of publication. Building upon

this progress, X. Lu et al. (2021b) expanded the training materials by incorporat-

ing content from neural machine translation and conducted extensive experiments

using various models, including the Bidirectional Auto-Regressive Transformers

(BART) (Lewis et al. 2020). Their system, Trans-SS, even surpassed Multilingual

unsupervised sentence simplification (MUSS) (Martin, Fan, et al. 2020) in the French

language, showcasing the remarkable potential of this paradigm.

The fourth paradigm is the pre-train, prompt, and predict approach. Over the years,

there has been a significant increase in the number of parameters used in models

for text simplification, starting from LSTM-based models (Hochreiter and Schmid-

huber 1997) to transformer-based pre-trained models (Raffel et al. 2019; Lewis et

al. 2020). For instance, the BART model has 140 million parameters (Lewis et al.

2020), Text-to-Text Transfer Transformer (T5) has 220 million parameters (Raffel

et al. 2020), GPT-3 has a staggering 175 billion parameters (Brown et al. 2020),

and the Switch Transformer model takes it even further with an astonishing 1.6 tril-

lion parameters (Fedus, Zoph, and Shazeer 2021). The increasing size of these

large language models (LLM) has made it less feasible to follow the traditional pre-

train and fine-tune paradigm. As a result, researchers have started exploring the

potential of these LLMs with prompt-based approaches and have discovered their

zero-shot/few-shot learning capabilities (Brown et al. 2020; Lester, Al-Rfou, and

Constant 2021; Thoppilan et al. 2022; X. Liu et al. 2022). For example, J. Lu et al.
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(2023) developed the Narrative Prompting and Sentence-matching Summariza-

tion (NapSS) system, which consists of a two-stage summarization and simplifica-

tion process at the paragraph level. In the first stage, they fine-tuned BERT (De-

vlin et al. 2019) using abstracts and plain English summaries. In the second stage,

they combined the generative summary with prompts generated by Stanza (Qi et

al. 2020) and further simplified the summary using BART (Lewis et al. 2020). Ad-

ditionally, Feng et al. (2023) explored the zero-shot or few-shot learning abilities

of GPT-3.5 (Brown et al. 2020) and ChatGPT models by using manually crafted

prompts, and they achieved remarkable results. These advancements in the pre-

train, prompt, and predict paradigm has opened up new possibilities for leveraging

large language models in text simplification tasks.

In addition to advancements in the training paradigm, there have been researches

focusing on the controllability of system output in text simplification (Scarton and

Specia 2018; Martin, Sagot, et al. 2019; Martin, Fan, et al. 2020; Sheang and Sag-

gion 2021). Recognizing the diverse needs of lay users in text simplification, it is

challenging for generic outputs to fully satisfy the requirements of the main user

group (Xu, Callison-Burch, and Napoles 2015; Stajner 2021). Controlled text sim-

plification has emerged as a solution to address the varied demands of different

user groups and different scenarios, where explicit or implicit constraints are im-

posed on the output. In the targeTS system, Scarton and Specia (2018) introduced

targeted grade levels and operations to provide greater control over the output.

The AudienCe-CEntric Sentence Simplification (ACCESS) project by Martin et al.

(2019) introduced four control tokens to enhance control capabilities. Sheang and

Saggion (2021) extended the control tokens to five and replaced the BART model

(Lewis et al. 2020) with the T5 model (Raffel et al. 2020), achieving state-of-the-

art performance. The combination of performance and flexibility in controlled text

simplification opens up possibilities for competing with large pre-trained language

models. These advancements in controllability contribute to addressing specific

user needs and providing tailored text simplification solutions.
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2.3 Corpora for Text Simplification

Corpora, being the fundamental of language modelling, assume a vital role in lin-

guistics and natural language processing. Their significance extends beyond these

fields, encompassing language analysis, information retrieval, and various other

applications. In this section, we present a comprehensive overview of the preva-

lent resources employed in English text simplification, diving into their details. By

exploring these commonly utilized resources, we aim to review previous corpora

associated with text simplification.

Simple English Wikipedia: From a strict standpoint, simple English Wikipedia (SEW)

is not a typical parallel corpus for text simplification. Nonetheless, this platform is

still a valuable resource for text simplification as it encompasses a vast array of ar-

ticles crafted to satisfy the specific needs of students, children, adults facing learn-

ing challenges, and individuals seeking to enhance their proficiency in the English

language. By mirroring the content found in the conventional English Wikipedia

while employing a more accessible lexicon and employing simpler grammatical

structures, the SEW emerges as a fitting resource for constructing a corpus tai-

lored to the broader domain of general text simplification. Furthermore, the exis-

tence of the SEW has played a significant role in fostering the development and

emergence of several other corpora (Zhu, Bernhard, and Gurevych 2010a; Coster

and Kauchak 2011; Kauchak 2013; Hwang et al. 2015; Kajiwara and Komachi 2016).

These corpora have expanded the available resources and paved the way for ad-

vancements in the field of text simplification, enabling researchers to explore in-

novative approaches and refine techniques for making texts more accessible and

comprehensible.

PWKP/WikiSmall: Zhu, Bernhard, and Gurevych (2010a) compiled the Parallel Wikipedia

Simplification (PWKP) corpus by amalgamating the content from the SEW and the

English Wikipedia (EW). Leveraging the SEW as a valuable resource, PWKP em-

ployed the sentence-level term frequency–inverse document frequency (TF-IDF)

measure as the underlying mechanism for automatic alignment. With an adjusted
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threshold, they managed to reach the peak performance in the F1 score. Within

this dataset, the researchers embraced a flexible approach, accommodating both

1-to-0 and 1-to-N sentence alignments. The resulting corpus encapsulated a col-

lection of 108,016 parallel sentence pairs, elucidating the transformation from com-

plex to simplified language, extracted from 65,133 articles spanning the SEW and

EW. Subsequently, X. Zhang and Lapata (2017a) unveiled an enhanced and stan-

dardized rendition of the Wikismall corpus. In their process, they eliminated any re-

dundant sentence pairs, thus ensuring a more refined and coherent dataset. As a

result, the training set comprised a total of 89,042 sentence pairs. While the train-

ing set underwent modifications, the integrity of the test set was upheld, retaining

the original composition of 100 sentence pairs for the purposes of rigorous evalua-

tion and comparison.

Coster and Kauchack Corpus: In the study conducted by Coster and Kauchak (2011),

their approach involved aligning paragraphs through the utilization of the TF-IDF

cosine similarity metric. Subsequently, the dynamic programming algorithm, as in-

troduced by Barzilay and Elhadad (2003), was employed to determine the most op-

timal sentence alignment across the paragraphs. This method extended beyond

the scope of Wikismall by incorporating contextual information, thereby augment-

ing the comprehensiveness of the dataset. As a result, an extensive collection of

137,000 sentence pairs was generated, accommodating both 1-to-1 and 1-to-N

alignments to facilitate a comprehensive representation of sentence transforma-

tions.

EW-SEW: The research conducted by Hwang et al. (2015) introduced a novel ap-

proach for aligning sentences, employing word-level semantic similarity based on

Wikidictionary as the primary alignment method. The researchers initiated the pro-

cess by creating a graph utilizing valuable synonym information and the co-occurrence

patterns of words and their definitions extracted from Wiktionary. Subsequently,

the similarity between words was assessed by considering the number of shared

neighbors they possessed. This word-level similarity measure was then combined

with a similarity score that considered the dependency structures of the words. In
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order to determine the most appropriate alignments between the original and sim-

plified sentences, a greedy algorithm was employed, utilizing the calculated overall

similarity rate. The algorithm was designed to enforce strict 1-to-1 alignment, en-

suring a strict alignment between the original and simplified sentence pairs. The

rigorous alignment process facilitated the creation of a dataset boasting an impres-

sive collection of over 390,000 sentence pairs, all automatically aligned through

this innovative methodology.

sscorpus: In their work, Kajiwara and Komachi (2016) introduced an unsupervised

approach to autonomously construct a monolingual parallel corpus for text simpli-

fication. Their methodology revolved around leveraging sentence similarity based

on word embeddings. The researchers devised a process where they meticulously

computed the maximum similarity score for each word across different sentences

and subsequently derived the average similarity value for all words within the tar-

get sentence. This innovative technique enabled them to capture the nuanced re-

lationships between sentences. Through their diligent efforts, Kajiwara and Ko-

machi (2016) successfully compiled a collection of 492,993 sentence pairs, ob-

tained from a pool of 126,725 article pairs. It is noteworthy that their approach ex-

clusively employed 1-to-1 alignments.

Turk corpus: In their study, Xu, Napoles, et al. (2016) selected sentences from

a subset of the PWKP/WikiSmall (Zhu, Bernhard, and Gurevych 2010a). To en-

sure the highest level of accuracy and consistency in the simplification process,

the researchers engaged the expertise of eight annotators sourced from Amazon

Mechanical Turk. These annotators were tasked with manually simplifying the se-

lected sentences, resulting in a collection of 2,350 sentences, each accompanied

by eight reference simplifications. To further refine the dataset, the researchers

conducted a thorough examination, eliminating sentences with poor simplifications

through a manual review process. As a result, they built a final dataset of 2,350

sentences, partitioned into two subsets. The larger subset, consisting of 2,000 sen-

tences, was designated for tuning purposes, enabling fine-tuning and optimization

of the simplification models. The remaining 350 sentences were dedicated to the
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evaluation, facilitating a comprehensive assessment of the models’ performance.

It is important to note that the Turk corpus presents a notable deviation from pre-

vious corpora in terms of its focus on paraphrasing. Unlike its predecessors, this

corpus prioritizes the generation of paraphrase-only simplifications, contributing to

a different understanding of simplification techniques in the context of paraphras-

ing.

Newsela: Diverging from the previously discussed corpora, the Newsela corpus

stands out as a meticulously crafted text simplification resource comprising 1,911

news articles (Xu, Callison-Burch, and Napoles 2015). The authors identified limi-

tations in terms of alignment accuracy and the level of simplicity in existing resources

such as SEW-based automatically aligned corpora. To address these concerns,

they undertook the task of creating a manually annotated corpus, rewriting the arti-

cles with the expertise of professional editors. Each article within the Newsela cor-

pus is accompanied by four reference simplifications. However, it is important to

note that Newsela is primarily accessible to researchers and lacks adequate ref-

erence lines tailored to existing models. Despite this limitation, the Newsela cor-

pus serves as a valuable reference for researchers seeking to dive deeper into the

complexities of text simplification, especially within the context of news articles.

WikiLarge: In their study, X. Zhang and Lapata (2017a) compiled aligned sentence

pairs from multiple resources, including the works by Zhu, Bernhard, and Gurevych

(2010a), Kauchak (2013), and Woodsend and Lapata (2011). By aggregating these

diverse sources, they created a robust corpus known as Wikilarge, which emerged

as a prominent training resource in the field of text simplification. The Wikilarge

corpus comprises a collection of 296,402 sentence pairs for the training set. These

pairs exhibit various alignment patterns, encompassing 1-to-1, 1-to-N, and N-to-

1 alignments. This diverse alignment structure enhances the corpus’s utility for

training models with a comprehensive understanding of alignment variations. To

expand the corpus further, X. Zhang and Lapata (2017a) also integrated complex

sentences extracted from the WikiSmall corpus, along with their corresponding

simplifications generated by Amazon Mechanical Turk workers, as development
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and test sets. This integration not only enriched the diversity of the corpus but also

provided a unified evaluation benchmark for assessing the performance of simpli-

fication models. While the Wikilarge corpus may not be the largest in terms of vol-

ume, it has emerged as one of the widely used corpora for training neural sequence-

to-sequence models in the field of text simplification.

ASSET: Alva-Manchego, Martin, Bordes, et al. (2020) built the Abstractive Sen-

tence Simplification Evaluation and Tuning dataset (ASSET). To construct this dataset,

they adopted the same set of original sentences utilized in the Turk corpus (Xu,

Napoles, et al. 2016), employing a similar framework that allowed for manual sim-

plification operations along with reference sentences. The ASSET dataset com-

prises a development and test set, consisting of 2000 and 350 sentences respec-

tively. However, each sentence has ten manual reference sentences, providing a

rich pool of alternative simplifications. These references encompass both 1-to-1

and 1-to-N alignments. The ASSET dataset has been widely adopted as a stan-

dard benchmark for evaluating the performance of text simplification models.

Simple TICO-19: Shardlow and Alva-Manchego (2022) constructed simple the TICO-

19 corpus designed for text simplification purposes. This corpus was derived from

the Translation Initiative for COVID-19 (TICO-19) dataset (Anastasopoulos et al.

2020). To create the simple TICO-19 corpus, the researchers asked annotators to

manually simplify the content from TICO-19 and labelled simplification operations

and resources for each sentence. These annotators also labelled the simplification

operations undertaken for each sentence, providing insights into the simplification

process. The resulting Simple TICO-19 corpus boasts a collection of 3,173 parallel

sentences, encompassing both English and Spanish translations. The alignments

within this corpus showcase a mix of 1-to-1 and 1-to-N alignment patterns. Similar

to the Newsela corpus (Xu, Callison-Burch, and Napoles 2015), Simple TICO-19

focuses primarily on the medical domain rather than general domains, with a spe-

cific emphasis on COVID-19-related information. It serves as a valuable resource

for researchers operating within the medical field, facilitating the exploration of text

simplification techniques in this specialized domain.
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As highlighted in previous studies (Xu, Callison-Burch, and Napoles 2015; Aman-

cio and Specia 2014), there are limitations associated with automatically aligned

corpora sourced from SEW and EW. These drawbacks include inadequate align-

ment quality and a lack of diversity in the simplification operations employed. Xu,

Callison-Burch, and Napoles (2015) specifically observed that these corpora tend

to favour deletion, paraphrasing, and hybrid operations over sentence splitting,

resulting in simplifications that lean towards compression rather than expansion.

Consequently, such corpora are not suitable for learning conceptual simplification,

an essential yet frequently overlooked aspect in this field. Furthermore, none of the

aforementioned corpora incorporate 1-to-0 alignment. This absence of alignment

poses challenges when training text simplification models at the paragraph level.

Therefore, relying solely on this kind of corpora for training purposes may not pro-

vide an ideal solution in these cases.

2.4 Evaluation Methods for Text Simplification

In this section, we will focus on the popular metrics employed in the field of text

simplification, with a particular focus on evaluating the effectiveness of these met-

rics. The evaluation of text simplification outputs is of paramount importance as it

aids in determining the success and impact of various simplification techniques.

Human Evaluation: Human evaluation stands out as the most reliable and indis-

pensable approach when it comes to evaluating text simplification. By involving ex-

pert annotators or target users, we can gather subjective judgments and feedback

on crucial aspects such as grammaticality, meaning preservation, and simplicity of

the simplified texts (Alva-Manchego, Scarton, and Specia 2020).

While automated metrics serve as valuable tools for quantitative analysis, they of-

ten fail to capture the intricacies of language and the subjective experience of read-

ers. Human evaluation, on the other hand, offers a comprehensive and nuanced

assessment of text simplification outputs. By combining the strengths of both au-

tomated metrics and human evaluation, we can achieve a more accurate evalua-
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tion of text simplification, leading to improved accessibility and understanding for a

wide range of readers.

FKGL: Flesch-Kincaid Grade Level (FKGL) stands as one of the legacy metrics

that was originally developed to assess the readability of text and align it with the

appropriate grade level of readers (Flesch 1948). The FKGL formula incorporates

several factors, including the average number of syllables per word, the average

number of words per sentence, and the overall number of sentences in a text, and

is shown in Equiation 2.1.

FKGL = 0.39
Nwords

Nsentences

+ 11.8
Nsyllables

Nwords

− 15.59 (2.1)

Although initially designed to evaluate the readability of human-generated text,

FKGL has also been introduced as a metric for automatic text simplification by Zhu,

Bernhard, and Gurevych (2010b), gaining traction in subsequent studies. How-

ever, the simplicity of the FKGL formula makes it susceptible to manipulation. Tan-

prasert and Kauchak (2021) demonstrated that FKGL can be easily manipulated

by randomly replacing words with a period or employing other similar techniques,

while other metrics remain largely unaffected. This inherent vulnerability raises

concerns about the reliability and robustness of FKGL as a metric for evaluating

text simplification. Moreover, studies have revealed a low correlation between FKGL

scores and the quality of simplifications produced (Martin, Humeau, et al. 2019;

Alva-Manchego, Scarton, and Specia 2020). This discrepancy indicates that FKGL

may not adequately capture the nuances of text simplification, limiting its useful-

ness in accurately assessing the effectiveness of simplification techniques. Conse-

quently, researchers have increasingly turned to alternative metrics that provide

more comprehensive and accurate evaluations. Given these shortcomings and

limitations, the reliability and effectiveness of FKGL is questionable.

BLEU: Bilingual evaluation understudy (BLEU) emerges as one of the widely used

metrics for evaluating text-to-text generation tasks, including text simplification.

Initially designed to assess the quality of output text against multiple references,
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BLEU offers a robust framework for comparison (Papineni et al. 2002). The metric

is defined by incorporating various components: the brevity penalty (BP), modified

precision (pn), and corresponding weights (wn). The BP is calculated as in Equa-

tion 2.2, where c is the length of the candidate translation, r is the reference corpus

length, and r/c is used in a decaying exponential (in this case, c is the total length

of the candidate translation corpus).

BP =

⎧⎪⎪⎨⎪⎪⎩
1 if c > r

e(1−r/c) if c ≤ r

(2.2)

The final BLEU scores is calculated in Equation 2.3.

BLEU = BP · exp
N∑︂

n=1

wn log(pn) (2.3)

In the machine translation tasks, BLEU has demonstrated a positive correlation

with human judges, indicating its effectiveness as an evaluation metric (Papineni

et al. 2002). However, Callison-Burch, Osborne, and Koehn (2006) highlighted that

BLEU may show a poor correlation when dealing with a vast number of transla-

tions and low-quality references. In the context of text simplification, Xu, Napoles,

et al. (2016) discovered that BLEU exhibits a stronger correlation with meaning

preservation rather than simplicity. Moreover, Sulem, Abend, and Rappoport (2018)

provided further evidence that BLEU struggles to accurately reflect the effective-

ness of sentence splitting operations and sometimes even negatively correlates

with simplicity.

SARI: System output Against Reference and Input (SARI) is an operation-specific

metric for evaluating the performance on the simplicity gained through text simpli-

fication system (Xu, Napoles, et al. 2016). It offers a comprehensive evaluation by

comparing the system output to both the reference and input sentences and con-

sidering the add, keep, and delete operations. The final SARI score is calculated in

Equation 2.4
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SARI = d1Fadd + d2Fkeep + d3Fdel (2.4)

where

d1 = d2 = d3 = 1/3 (2.5)

and

Poperation =
1

k

k∑︂
n=1

poperation(n) Roperation =
1

k

k∑︂
n=1

roperation(n)

Foperation =
2× Poperation ×Roperation

Poperation +Roperation

operation ∈ {del, keep,add}
(2.6)

In Equation 2.4, the different operations have different algorithm, which take into

account of output (O), the input sentence (I), references (R), and the binary indica-

tor for the occurrence of n-grams g in a given set (#g(·)). The n-gram precision p(n)

and recall r(n) are calculated in the following equations:

padd(n) =

∑︁
g∈Omin(#g(O ∩ I),#g(R))∑︁

g∈O #g(O ∩ I)
, #g(O ∩ I) = max(#g(O)− #g(I), 0);

radd(n) =

∑︁
g∈Omin(#g(O ∩ I),#g(R))∑︁

g∈O #g(R ∩ I)
, #g(R ∩ I) = max(#g(R)− #g(I), 0),

pkeep(n) =

∑︁
g∈I min(#g(I ∩O),#g(I ∩R0))∑︁

g∈I #g(I ∩O)
, #g(I ∩O) = min(#g(I),#g(O)),

rkeep(n) =

∑︁
g∈I min(#g(I ∩O),#g(I ∩R0))∑︁

g∈I #g(I ∩R0)
, #g(I ∩R0) = min(#g(I),#g(R)/r),

pdel(n) =

∑︁
g∈I min(#g(I ∩O),#g(I ∩R0))∑︁

g∈I #g(I ∩O)
, #g(I ∩O) = max(#g(I)− #g(O), 0),

#g(I ∩R0) = max(#g(I)− #g(R)

r
, 0).

(2.7)

Compared to BLEU (Papineni et al. 2002), it compares the output against the ref-

erence and input sentences at the same time and takes the same operation in the

reference sentences into account rather than all n-gram matches. However, there

are significant limitations to the SARI score. It can only partially reflect level the

of syntactical simplification in the output, nor the fluency and grammar in the sen-

tences. In addition, it highly relies on the diversity and quality of reference sen-

tences. A recent study also showed the possible poor correlation for evaluation
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systems with SARI score only and gave a suggested pattern to automatic evalu-

ations (Alva-Manchego, Scarton, and Specia 2021).

BERTScore: The BERTScore is a metric used for evaluating the similarity between

the system output and reference sentences (T. Zhang et al. 2019). This metric em-

ploys cosine similarity to measure the distance in contextual embeddings created

by BERT (Devlin et al. 2019) in a likelihood matrix, aiming to maximize the similar-

ity between the output and reference sentences. BERTScore comprises two com-

ponents: BERTScoreprecision, which matches the system output with the reference,

and BERTScorerecall, which compares the reference against the system output.

The two parts are then combined in BERTScoreF1. The equation is shown in 2.8,

where x and x̂ are the references and candidates.

BERTScorerecall =
1

|x|
∑︂
xi∈x

max
x̂j∈x̂

x⊤
i x̂j,

BERTScoreprecision =
1

|x̂|
∑︂
x̂j∈x̂

max
xi∈x

x⊤
i x̂j,

BERTScoreF1 =
2 ·BERTScoreprecision ·BERTScorerecall
BERTScoreprecision +BERTScorerecall

(2.8)

Notably, BERTScore has been found to have a stronger correlation with human

evaluation compared to SARI (Scialom et al. 2021). It focuses on capturing the

meaning rather than just lexical paraphrasing, emphasizing the similarity in terms

of semantic content. To enhance the assessment of text quality, researchers like

Alva-Manchego, Scarton, and Specia (2021) have recommended combining BERTScore

with other automatic evaluation metrics.

2.5 Level of literacy

In this section, we aim to provide an overview of the different levels of literacy and

highlight the specific requirements and challenges associated with each level, par-

ticularly in relation to text simplification. According to the classification by OECD

(2013), literacy is categorized into five distinct levels. These levels reflect varying
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degrees of reading and comprehension abilities, and individuals at different levels

may encounter different types of difficulties when engaging with written material.

Understanding the unique needs and limitations of individuals at each literacy level

is crucial for developing effective controllable text simplification strategies. By tai-

loring simplification techniques to address the specific challenges faced by individ-

uals with lower literacy levels, we can significantly enhance their reading experi-

ence and promote better comprehension.

Furthermore, recognizing the diversity within literacy levels allows us to adapt our

approach to suit different contexts and purposes. For instance, individuals at higher

literacy levels may benefit from more nuanced simplification techniques that pre-

serve the complexity and depth of the original text, while those at lower literacy lev-

els may require more fundamental simplification methods that prioritize clarity and

accessibility. By acknowledging the range of literacy levels and the corresponding

challenges, we can better design and implement text simplification approaches that

cater to the needs of diverse readerships. This understanding enables us to foster

greater inclusivity and improve the accessibility of information for individuals across

the literacy spectrum.

Below level 1: Individuals at this level can only comprehend short texts about famil-

iar subjects and find one particular piece of information that matches the informa-

tion given in a question or instruction. They are not expected to grasp the organi-

zation of sentences or paragraphs, and only a basic understanding of vocabulary

is necessary. Activities below Level 1 do not involve utilizing any digital text-related

features.

Level 1: Individuals at this level are able to read concise digital or printed texts,

whether they are continuous, non-continuous, or a combination of both, in order

to find a specific piece of information that matches or has the same meaning as

the information provided in a question or instruction. These texts do not contain

much conflicting information. Individuals performing at this level can fill out uncom-

plicated forms, comprehend fundamental vocabulary, decipher the meaning of sen-
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tences, and read continuous texts with a certain level of ease and fluency.

Level 2: Individuals at this level are able to combine multiple pieces of information

using specific criteria, analyze and highlight similarities and differences, and en-

gage in reasoning to make basic inferences. They can proficiently navigate through

digital texts, locating and extracting information from different sections of a docu-

ment.

Level 3: Individuals at this level can comprehend and react suitably to complex or

extensive texts, encompassing continuous, non-continuous, mixed, or multiple-

page formats. They possess an understanding of text structures and rhetorical

techniques, enabling them to recognize, interpret, or assess multiple pieces of in-

formation and draw relevant inferences. Moreover, they can execute multi-step op-

erations and discern pertinent data from conflicting information in order to identify

and formulate well-considered responses.

Level 4: Individuals at this level have the capability to execute multi-step tasks that

involve integrating, interpreting, or synthesizing information from intricate or lengthy

texts of various types. These texts may be continuous, non-continuous, mixed, or

encompass different formats. The information within these texts can contain condi-

tional or conflicting details. Individuals can make sophisticated inferences and ef-

fectively utilize their background knowledge to appropriately apply it in these tasks.

They are also adept at interpreting and evaluating nuanced truth claims or argu-

ments.

Level 5: Individuals at this level have the ability to engage in various tasks that

require them to search for and combine information from multiple intricate texts.

They can create comprehensive summaries of similar and different ideas or per-

spectives, as well as assess evidence and arguments. They possess the skills to

employ and assess logical and conceptual frameworks, determine the credibility of

sources, and identify crucial information. Additionally, they possess an awareness
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of subtle rhetorical indicators and can draw advanced conclusions or utilize spe-

cialized knowledge.

Given the diverse literacy levels among users, it becomes imperative to adopt a

tailored approach to text simplification that caters to their specific needs (Stajner

2021). Depending on an individual’s literacy level, different aspects of simplifica-

tion come into focus. For individuals below level 4, emphasis should be placed on

conceptual simplification, which involves presenting information in a manner that

is easily grasped and understood. This level of simplification ensures that complex

ideas are broken down into simpler, more digestible concepts.

For users below level 3, syntactical simplification assumes greater importance.

This form of simplification involves modifying the structure and arrangement of sen-

tences to enhance clarity and comprehension. By reducing complexity in sentence

construction, individuals at this literacy level can more effectively navigate and un-

derstand written material.

In the case of individuals below level 2, the primary demand lies in lexical simplifi-

cation. This involves replacing or rephrasing complex words and expressions with

simpler alternatives that are more familiar and accessible. By employing this ap-

proach, individuals with limited vocabulary and language skills can better engage

with and comprehend the text.

Understanding the varying needs and challenges at different literacy levels allows

us to develop targeted strategies for text simplification. By addressing these spe-

cific requirements, we can enhance the accessibility and inclusivity of written con-

tent, enabling individuals across all literacy levels to engage meaningfully with in-

formation and knowledge.

2.6 Review Summary

In this chapter, we explored the development history of text simplification, sorted

out the popular corpus and evaluation methods used in text simplification task and

analysed the different needs for people with different literacy levels. With all these
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reviews and analysis, the limitation of current text simplification has been revealed

that most text simplification systems regard the task as an universal problem and

few of them can satisfy the demands of different user groups.

However, with the assistance of the controllable text simplification technique adopted

in the following chapters, the researchers can adjust the level and focus of lexical

and syntactical simplifications freely to help satisfy the various demands of differ-

ent user groups. Yet, for the conceptual simplifications, there remain few studies in

the related domains.
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Chapter 3

Investigation of Control Token

In this chapter, we focus on the first research question of how the control mecha-

nism works by exploring the principles of control tokens and evaluating how they

affect simplification. We made a thorough investigation of each control token sepa-

rately about how they affect the SARI score, BERTScore, and the output sentence

and learned the mechanism and limitations of each control token. At last, we re-

designed the tokenization strategy to apply the control tokens and improved the

SARI score.

3.1 Methodology

In this section, we demonstrate the methodology in figure 3.1 and illustrate the 4

main steps shown in the figure: preprocessing, fine-tuning, optimisation and evalu-

ation.

3.1.1 Preprocessing

The preprocessing step followed the MUSS project (Martin, Fan, et al. 2020). The

authors defined four types of prompts used as control tokens to manipulate the

features of the outputs. Each control token is designed to represent one charac-

ter of the sentence. The <DEPENDENCYTREEDEPTHRATIO_x> represents the

syntactic complexity; The <WORDRANKRATIO_x> represents the lexical complex-

ity; The <REPLACEONLYLEVENSHTEINRATIO_x> represents the inverse sim-
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Figure 3.1. The reimplementation methodology is represented as a flow chart. We
fine-tune BART base on the preprocessed WikiLarge training set so that the model
learns to simplify under the control token or control tokens. After optimisation on
the target dataset, the model can apply the optimal value of control tokens to the

input and generate desired simplifications.

ilarity of input and output at the letter level; The <LENGTHRATIO_x> represents

the length ratio of input and output. The value of each control token is calculated

based on the reference complex-simple pairs in the training set, which is Wikilarge

in this project (X. Zhang and Lapata 2017b). After the calculation, these control to-

kens will be added to the beginning of complex sentences, and the model will be

trained on this preprocessed dataset. In addition to the combined control tokens,

this project also explored the effects of a single control token; only the correspond-

ing control tokens are kept in that dataset.

3.1.2 Fine-truning

Moving on to the training phase, we adopted a methodology that aligns with the

conventional fine-tuning procedures applied to pretrained language models. The

process involved providing the model with preprocessed sentence pairs, encom-

passing complex and simplified versions of the text. Through this training process,
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the model was expected to acquire the ability to simplify text based on the guid-

ance provided by control tokens. In order to investigate the impact of different to-

kenization strategies and the individual influence of specific control tokens, a total

of 16 models were fine-tuned during the experiment. This comprised a baseline

model, three models incorporating all control tokens, and twelve models featuring

only one control token. The inclusion of models with single control tokens enabled

us to evaluate the significance of utilizing combined control tokens in achieving de-

sired simplification outcomes. This comprehensive approach aimed to shed light

on the interplay between control tokens and their cumulative effects on text simpli-

fication.

3.1.3 Optimisation

The following step is optimisation. As mentioned in previous sections, the value

of control tokens is limited to a small range. All options fall between 0.2 to 1.5 ex-

cept the Levenshtein, whose upper boundary is limited to 1 due to the calculation

method that divides the minimum replacement steps to change from the original

sentence to the target sentence by the maximum possible steps of replacement.

Only these options are provided during optimisation, and the optimisation problem

is reduced to finding the best value combination of control tokens within the range.

Even though only finite combinations can be applied to the model, the optimisa-

tion algorithm is still supported by the Nevergrad (Rapin and Teytaud 2018) API

to compare with the current SOTA. Within the budget of 64 times, which serves as

a limitation to repeat the optimisation process, the algorithm can find a relatively

optimised result in all 334,611 combinations of control token values. Although we

have half the optimisation budget compared to MUSS, the system still manages

to achieve better performance than MUSS. A sample result of SARI in the optimi-

sation procedure is shown in 3.4. In order to ensure the reliability of the score un-

der the optimised combination, a bootstrapping on the ASSET (Alva-Manchego,

Martin, Bordes, et al. 2020) test dataset will be executed by resampling the dataset

200 times and hence generate a 95% confidence interval.
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3.1.4 Evaluation

The last step is evaluation. We leveraged the Easier Automatic Sentence Simpli-

fication Evaluation(EASSE), which is a open-source code repository as an inte-

gration of popular metrics and test sets, to apply multiple evaluation metrics at the

same time easily (Alva-Manchego, Martin, Scarton, et al. 2019). The SARI score is

adopted as the primary metric to compare with the current SOTA, while the BERT

score is added as a second reference. Different from the common applications in

other projects, the BERT score in this project is the correlation between the output

and references. One coefficient array can be used to combine different evaluation

metrics and give a weighted score. However, in this project, we also follow the op-

erations in MUSS and maximise the SARI score, so only the SARI score is taken

into account, and the corresponding coefficient is set to 1. The models will be eval-

uated on the ASSET (Alva-Manchego, Martin, Bordes, et al. 2020) test dataset,

which contains 359 complex-simple pairs, and each complex sentence has ten ref-

erence simplifications.

3.1.5 Control Token Definition

Following the settings from MUSS, we set 4 control tokens in the following form:

<DEPENDENCYTREEDEPTHRATIO_x> (DTD), <WORDRANKRATIO_x> (WR),

<REPLACEONLYLEVENSHTEINRATIO_x> (LV) and <LENGTHRATIO_x> (LR)

(Martin, Fan, et al. 2020) and they are calculated based on following equations:

DTD =
SimpleDependencyTreeDepth

ComplexDependencyTreeDepth
(3.1)

The depth of the dependency tree of sentences is generated by spaCy(Honnibal et

al. 2020) and used to represent the syntactical complexity. The ratio is calculated

by dividing the highest depth of the dependency tree of the simple sentence by the

depth of the corresponding complex sentence.
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WR =
SimpleWordRank

ComplexWordRank
(3.2)

The word rank of sentences is determined by word rank of the 4th quantile word of

all words in the sentence in the ascending order. The word rank is then determined

by the word frequency in the fasttext (Grave et al. 2018) and used to represent the

lexical complexity. The ratio is calculated by dividing the word rank of the simple

sentence by the word rank of the corresponding complex sentence.

LV = 1− ReplaceonlyLevenshitineDistance

max(SimpleLength, ComplexLength)
(3.3)

The Levenshitine distance is calculated by the steps to change from the simple

sentence to the complex sentence by replacing the characters. The ratio is cal-

culated by one minus the quotient of Levenshitine distance and the max length of

simple and complex sentences and used to represent the similarity of the simple

sentence to the complex sentence.

LR =
SimpleLength

ComplexLength
(3.4)

The length is the word count of specified sentences. The ratio is calculated by di-

viding the word count of the simple sentence by the word count of the complex

sentence and used to represent the difference in length. The value of the above-

mentioned control tokens is calculated in the preprocessing step and rounded to

the nearest 0.05.

3.2 Experiment design

In this section, we will focus on the detailed settings and changes in this project

compared to the original ACCESS(Martin, Sagot, et al. 2019).
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3.2.1 Tokenization Strategies

Strategy Raw Input ’<DEPENDENCYTREEDEPTHRATIO_0.6>’

Default
IDs [0, 41552, 41372, 9309, 23451, …, 2571, 6454, 1215, 288, 4, …]

tokenization [’<s>’, ’<’, ’DEP’, ’END’, ’ENCY’, …, ’_’, ’0’, ’.’, ’6’, ’>’, …]

Joint
IDs [0, 50265, …]

tokenization [’<s>’, ’<DEPENDENCYTREEDEPTHRATIO_0.6>’, …]

Separate
IDs [0, 50265, 50266, 15698, …]

tokenization [’<s>’, ’<DEPENDENCYTREEDEPTHRATIO_’, ’0.6’, ’>’, …]

Table 3.1. Tokenization under differing strategies for the input starting with:
’<DEPENDENCYTREEDEPTHRATIO_0.6>’

The first main difference is that we introduced two new tokenization methods to

explore the effects of tokenization strategies. As shown in Table 3.1, the default

tokenization method in the MUSS project is regarding the control tokens as plain

text. In comparison, we added 2 more tokenization strategies: The Joint tokeniza-

tion strategy is to regard the whole control token as one token in the tokenizer; the

Separate tokenization strategy is to break the control token into a combination of

type and value and add them separately to the tokenizer. These 2 strategies are

achieved by manually adding all possible control tokens to the dictionary of the to-

kenizer. This will affect not only the evaluation and optimisation process but also

the training process, thus each tokenization strategy requires an independent fine-

tuned model.

3.2.2 Quantisation Strategy

The second main difference is that we changed the quantisation strategy for the

control tokens in the optimisation step and the corresponding algorithm. In the pre-

processing step, there are 4 control tokens calculated and added to the beginning

of complex sentences in the complex dataset. As mentioned in the literature re-

view, the 4 types of control tokens are <DEPENDENCYTREEDEPTHRATIO_x>

(DTD), <WORDRANKRATIO_x> (WR), <REPLACEONLYLEVENSHTEINRATIO_x>

(LV) and <LENGTHRATIO_x> (LR). As an augmentation to the control tokens, the

calculated values are rounded to the nearest 0.05. However, in the original opti-

misation process, the calculated values by the algorithm provided by the Never-
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grad (Rapin and Teytaud 2018) API are continuous and have long verbose digits,

0.249452…for example. During the reimplementation, we found that only the first

one or two digits are recognised as input values and the remaining digits didn’t pro-

vide any meaningful instruction. On the contrary, it might bring unnecessary infor-

mation to the system and even lowered the performance of the model. As a com-

parison, we replaced the continuous values with discrete ones like 0.2, 0.25, 0.3,

..., 1.0 and changed to the corresponding discrete algorithm in Nevergrad (Rapin

and Teytaud 2018). The results are shown in Table 3.3.

3.2.3 Reimplementation of ACCESS

One of the goals of this project is to reimplement and verify the effect of control to-

kens in the current SOTA. However, since the main focus of this project is on the

control tokens, instead of training on both supervised and unsupervised datasets,

it would be more practical to claim the reimplementation of ACCESS rather than

MUSS. In order to build a unified baseline, this project also applied the BART model

(Lewis et al. 2020), which is adopted in the MUSS project. The original project can

be divided into the following sections: data mining, preprocessing, training, evalua-

tion and optimisation.

Since the goal is verification, there is no need to rewrite the code for all sections.

Thus only the codes related to training and some other peripheral functions have

been altered to achieve similar results. The other functions, such as preprocessing

and optimisation, still kept most of the original code. The original core API used for

training is fairseq. This project replaced it with another open-source API — Hug-

gingface. Huggingface provides a collection of the most popular pre-trained mod-

els and datasets, including the BART (Lewis et al. 2020) and a unified, advanced

and user-friendly API to achieve the most common applications, which made it eas-

ier for future upgrading and modification. The hyper-parameters of models in the

reimplementation, including the learning rate and weight decay, are set to be iden-

tical to the original project so that the influence of irrelevant factors can be lowered.

The last difference between the reimplementation and the original project is the to-

keniser. The tokeniser in the reimplementation is the BART-base byte-pair encod-
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ing(BPE) tokeniser instead of the GPT2 BPE tokeniser (Radford et al. 2019). Both

tokenisers serve the same purpose and perform very similarly to each other. The

new one consumes fewer computer resources, which presumably causes only a

little effect on the results. Due to the variation of control tokens, the optimisation al-

gorithm has also changed. The original algorithm is the OneplusOne provided by

Nevergrad (Rapin and Teytaud 2018), and the current one is the PortfolioDiscre-

teOnePlusOne, which fits the discrete values better. As for the metrics, the SARI

score is kept as the primary evaluation method (Xu, Napoles, et al. 2016), and the

BERT score is introduced as a co-reference.

However, due to the limitation of computation resources and mass fine-tuning de-

mands of models with different tokenization strategies, this project also downgraded

the training scale and limited the epochs in both baseline and reimplementation.

Here are the changes applied to both the reimplementation and the baseline as fol-

lows:

• All results are from models trained in BART-base instead of BART-large.

• All training processes are set to 10 epochs only.

• All models are trained on Wikilarge (X. Zhang and Lapata 2017b) only.

As explained earlier, each tokenization strategies is corresponding to one model

and there is a total of 16 models that need to be fine-tuned. This is why only BART-

base is applied and the training epochs are limited. As for the reason for choosing

10 as the targeting epoch number, it is because the training loss for models with

combined control tokens has reached 0.85 and decreased very slowly between

epochs, while the validation loss started increasing. If continuing training, the over-

fitting problem may occur. The results of the baseline shown in the next section

can also partially prove the training process is long enough.

33



3.3 Results

We first report the SARI score of influential supervised text simplification models

with our reimplementations in Table 3.2. Although MUSS (with mined data) (Mar-

tin, Fan, et al. 2020) is slightly lower than our reimplementation, our reimplementa-

tion stays within the 95% confidence interval of MUSS (with mined data). To ver-

ify the significance of the difference in the SARI score, we conducted significance

studies against the official output of MUSS (without mined data) with a student’s

t-test of the SARI score of the two groups and reported the p-value for the bottom

four models. As shown in the table, our reimplementation required fewer resources

and training data, while maintaining a significant difference. In addition, we pro-

pose the prediction method rather than optimisation on control tokens and get a

higher BERTScore in section 5. The bottom two methods in Table 3.2 are described

in Section 5.

Model SARI score ↑

EditNTS (Dong et al. 2019) 34.95

Dress-LS (X. Zhang and Lapata 2017b) 36.59

DMASS-DCSS (Zhao et al. 2018) 38.67

ACCESS (Martin, Sagot, et al. 2019) 40.13

TST (Omelianchuk, Raheja, and Skurzhanskyi 2021) 43.21

MUSS (without mined data) (Martin, Fan, et al. 2020) 43.63

MUSS (with mined data) (Martin, Fan, et al. 2020) 44.15 (p=0.059)

Our Reimplementation 44.65 (p=0.033)

Our Reimplementation (with only predictors) 42.30 (p=0.133)

Hybrid Method 44.61 (p=0.056)

Table 3.2. The SARI score of supervised text simplification systems (p in the
brackets refers to the p-value of the SARI score against the MUSS (without mined

data)).

3.3.1 Combined performance

With similar BART-base and 10 epochs limitations, the baseline is derived from the

original code of the MUSS and achieved 43.83 in SARI score on the ASSET test

set(Alva-Manchego, Martin, Bordes, et al. 2020), which is consistent with the re-

ported score in the MUSS without minded paraphrasing data, which is 43.63±0.71.

The reason we compare this model is that this is the test scenario closest to our

reimplementation. There is no confidence interval and BERTScore in the base-
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Prompts SARI↑ BERT↑ DTD WR LV LR

Baseline 43.83 — 0.249452… 0.814345… 0.758764… 0.858546…

Default 44.00±0.05 (p=0.620) 0.754 0.25 0.8 0.75 0.85

Joint to-

kens

44.02±0.05 (p=0.700) 0.769 0.25 0.8 0.75 0.85

Separate

tokens

44.04±0.05 (p=0.779) 0.754 0.25 0.8 0.75 0.85

Table 3.3. Results on SARI and BERTScore under differing tokenization
strategies, with comparison to the baseline (p in the brackets refers to the p-value

of the SARI score against the baseline).

Optimisa-

tion target

Prompts SARI↑ BERT↑ DTD WR LV LR

Validation set

Default 44.31±0.05 (p=0.628) 0.759 0.4 0.6 0.8 1.1

Joint tokens 44.58±0.05 (p=0.885) 0.814 0.35 0.7 0.85 0.9

Separate tokens 44.65±0.05 (p=0.701) 0.783 0.35 0.75 0.75 0.95

Test set

Default 44.36±0.05 (p=0.931) 0.733 0.6 0.7 0.65 0.85

Joint tokens 44.67±0.05 (p=0.313) 0.786 0.35 0.75 0.75 0.9

Separate tokens 44.75±0.05 (p=0.321) 0.784 0.35 0.75 0.75 0.9

N/A

Default 43.34±0.06 0.827 0.6 0.85 0.85 0.85

Joint tokens 43.83±0.06 0.829 0.6 0.85 0.85 0.85

Separate tokens 43.99±0.06 0.828 0.6 0.85 0.85 0.85

Table 3.4. SARI and BERTScore on the ASSET test set under different
optimisation targets (p in the brackets refers to the p-value of the SARI score
against the baseline). The first three rows optimise on the validation set, the
middle three rows optimise on the test set and the bottom three rows show the

performance under average value of control tokens.

line because the baseline is generated by rerunning the code in MUSS by altering

specific settings only. The actual output lacks these 2 features. As shown in the

4 rows in Table 3.3, the SARI score with 95% confidence in the reimplementation

is slightly higher than the baseline. However, significance testing shows that the

improvement in score according to the different tokenization strategies is not sig-

nificantly different from the baseline result for any of the cases we examined. This

implies that the tokenization strategy does not affect control token performance.

Different from the optimisation target in MUSS, we tried optimising control tokens

on both the validation and test set of ASSET to find out the peak performance of

the system and the results are shown in Table 3.4. The top 3 rows show the best

SARI score with optimised options of control tokens optimised on the validation

set. With optimised control tokens on the validation set, the separate tokenization

strategy achieved the highest score within the optimisation budgets, while the joint

tokenization method has the highest BERTScore. The middle 3 rows are the re-

35



sults directly optimised on the test set, which shows the upper limit of the model.

Among the 3 methods, the separate tokenization strategy had the highest SARI

score. Interestingly, the BERTScore is not always proportional to the SARI score,

but the BERTScore of optimal value is still quite high. The optimised values of con-

trol tokens are pretty close in all situations except the DTD. Similar to the results

in Table 3.3, the p-values show no significant difference between the baseline and

the reimplementations. We continue to record the results for each of our three to-

kenization strategies, but significance testing again shows that changes in the to-

kenization strategy have not led to gains which are significantly improved from the

baseline in these cases. The bottom 3 rows show the performance difference un-

der a unified value of control tokens. The unified value is the average value of all

possible values for each control token. Under the unified condition, the separated

one outperformed the other two, and the default tokenization method still performs

worse. As for the BERTScore, the joint tokenization method still outperforms the

other two.

3.3.2 Effects of single control tokens

Control Token Value SARI_add SARI_keep SARI_del SARI↑

DTD_joint

0.2 2.71 27.03 69.32 33.02

0.6 5.24 58.50 57.51 40.41

1.0 3.30 62.64 26.68 30.87

1.5 4.41 62.66 27.82 31.63

WR_joint

0.5 5.10 37.47 68.54 37.04

0.75 6.65 54.91 62.57 41.37

1.0 3.38 62.04 29.90 31.77

1.25 4.19 54.88 58.35 39.14

LV_joint

0.2 7.15 50.83 63.83 40.60

0.7 9.14 60.15 57.60 42.30

1.0 2.25 61.62 32.17 32.01

LR_joint

0.2 1.80 19.27 69.46 30.18

0.65 5.54 56.84 59.36 40.56

1.0 2.43 62.42 15.26 26.70

1.2 5.80 61.46 26.03 31.10

Table 3.5. SARI score by operation at turning points in Figure 3.2.

In order to verify the effects of each single control token, a more detailed investi-

gation of the SARI score was done on control tokens respectively and the results

are shown in Figure 3.2. Except for Figure 3.2b, all 3 tokenization methods show a
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Figure 3.2. The effect of varying control tokens under different tokenization
strategies on SARI Score.

DTD Strategy SARI BERTScore

0.55

Default 40.82 ±0.05 0.805

Separate 40.68±0.06 0.804

Joint 40.71±0.06 0.812

0.6

Default 40.54 ±0.05 0.799

Separate 40.87±0.05 0.801

Joint 40.43±0.06 0.800

WR Strategy SARI BERTScore

0.75

Default 40.61±0.06 0.720

Separate 41.08±0.06 0.738

Joint 41.42±0.06 0.733

0.8

Default 40.80±0.06 0.776

Separate 40.32±0.05 0.797

Joint 40.43±0.06 0.782

LV Strategy SARI BERTScore

0.65

Default 42.52±0.06 0.750

Separate 42.55±0.06 0.747

Joint 42.63±0.06 0.761

0.7

Default 42.26±0.08 0.785

Separate 42.86±0.06 0.782

Joint 42.31±0.07 0.787

LR Strategy SARI BERTScore

0.6

Default 40.15±0.06 0.758

Separate 40.25±0.06 0.760

Joint 40.46±0.05 0.758

0.65

Default 39.91±0.05 0.782

Separate 40.27±0.05 0.781

Joint 40.64±0.05 0.785

Table 3.6. Results on SARI and BERTScores of peak points in different control
tokens (We choose the points with the highest SARI score in the three strategies

and corresponding points in the other two strategies).
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Figure 3.3. The effect of varying control tokens with different tokenization
strategies on BERT score.

high consistency in the curves and have a common minimum point at 1. As shown

in Table 3.5, it is mainly caused by the low score in both deletion and adding oper-

ations.

In addition to the curves, the differences in tokenization methods have marginal ef-

fects on the scores while the value of control tokens can change the performance

significantly. In Figure 3.2a and 3.2c, the separate tokenization method shows the

highest peak point, while in Figure 3.2b and Figure 3.2d, the joint tokenization method

has the best performance. The corresponding Table 3.6 also shows the scores

in pairs under a unified value. Although the advantage is not as clear as the com-

bined control tokens, the optimised SARI score of either separate or joint tokeniza-

tion methods is still slightly higher than the default tokenization method.

The Table 3.5 is designed to help readers better understand the reason for varia-
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tions in Figure 3.2. It shows some local minimum or maximum points within the do-

main and the corresponding SARI score by operations. The addition score is much

lower than the keeping and deletion. It is because there is only limited adding op-

eration in the references and much more expression options to carry a similar mean-

ing, which leads to a low hit rate of the addition operation. At the same time, the

keep and deletion are chosen from the existing input and thus have a much bigger

hit rate and score.

As for the BERT score, as shown in Figure 3.3, nearly all 3 tokenization strategies

show high similarity to each other except Figure 3.3b. The figures show that nearly

all models have the highest BERT score around 1. Since the BERT score calcu-

lates the correlation between the output and references, when the control token is

set to 1, the model processes nothing, and the output is very similar to the input.

Under this situation, as shown in Table 3.5, the SARI_keep reaches the top. How-

ever, the peak of the BERT score in 3.3c slightly deviates to the left, which shows

that the references and input are not identical.

3.3.3 Optimisation sample

No. of times

S
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R
I
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35
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45

25 50 75 100 125

Figure 3.4. SARI score during 128 times of optimisation.

Figure 3.4 shows the SARI score during the optimisation procedure in 128 times

attempts. The highest score appears at the 35th attempt and four of the top-five

scores appear within 64 times. Even though a higher SARI score can be found
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between 65 and 128, there is no performance gap between the highest and the

second-highest scores.

3.4 Case study

3.4.1 Effect and Limitation of Control Tokens

Source Reflection nebulae are usually blue because the scattering is more efficient

for blue light than red (this is the same scattering process that gives us blue

skies and red sunsets).

SARI BERTScore

LR_1.2 Reflection nebulae are usually blue because the scattering is more efficient

for blue light than red (this is the same scattering process that gives us blue

skies and red sunsets) and because the light reflects off of them.

21.70 0.825

LR_1.0 Reflection nebulae are usually blue because the scattering is more efficient

for blue light than red (this is the same scattering process that gives us blue

skies and red sunsets).

19.03 0.937

LR_0.8 Reflection nebulae are usually blue because the

scattering is more efficient for blue light than red

(this is the same scattering process that gives us blue skies).

25.73 0.879

LR_0.6 Reflection nebulae are usually blue because the scattering is more efficient

for blue light than red.

41.71 0.880

LR_0.4 Reflection nebulae are usually blue because the scattering is more efficient. 39.85 0.846

LR_0.2 Reflection nebulae are usually blue in colour. 36.11 0.594

Table 3.7. Effect of varying Length ratio with the others remaining at 1.0.

In this section, we aim to demonstrate the impact of each control token through

illustrative examples. Table 3.7 shows the outputs of a sample sentence as the

Length Ratio control token varies from 1.2 to 0.2, while keeping the other three

control tokens fixed at 1. The differences between adjacent sentences are high-

lighted with underlines. The results clearly indicate that the output with a Length

Ratio of 1.2 has the highest character length, whereas the output with a Length

Ratio of 0.2 shows the smallest length. Notably, when the Length Ratio is set to 1,

there is no noticeable variation observed. The influence of the Length Ratio control

token on the sentence length is evident, and the model effectively learns this re-

lationship. However, it is important to note that the desired meaning of the control

tokens in this context is to adjust the sentence length while maintaining the char-

acter, lexical complexity, and syntactical complexity identical to that of the source

sentence, which is inherently challenging. Despite the model being influenced by

the control tokens, their impact is not absolute, and certain limitations persist as

the control token is not the sole constraint imposed on the model.
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Source Moderate to severe damage extended up the Atlantic coastline and as far

inland as West Virginia.

SARI BERTScore

LV_1.0 Moderate to severe damage extended up the Atlantic coastline and as far

inland as West Virginia.

20.29 0.959

LV_0.8 Moderate to severe damage happened along the Atlantic coast and as far

inland as West Virginia.

44.30 0.897

LV_0.6 Moderate to severe damage happened along the Atlantic coast and as far

inland as West Virginia.

44.30 0.897

LV_0.4 In West Virginia, the storm caused moderate to severe damage along the

Atlantic coast and inland.

44.33 0.527

LV_0.2 The National Hurricane Center (NHC) said that the storm was a ”major hurri-

cane” and not a tropical storm.

26.40 0.058

Table 3.8. Effect of varying ReplaceOnlyLevenshtein ratio with the others
remaining at 1.0.

In Table 3.8, we present a set of outputs derived from the same source sentence,

each produced with different ReplaceOnlyLevenshtein ratios while maintaining the

other three control tokens at 1. Given that the ReplaceOnlyLevenshtein ratio can-

not exceed 1, we show sentences generated with ReplaceOnlyLevenshtein ratios

ranging from 1 to 0.2. The output with LV_1.0 corresponds to an identical sentence

to the source sentence. In the outputs with LV_0.8 and LV_0.6, the two sentences

are identical since the model is only able to generate meaningful sentences with

grammatical correctness that align with the control token requirements. When the

variance in values is too low (e.g., 0.05 to 0.1), it becomes very likely for the model

to produce identical outputs. On the other hand, the output for LV_0.2 exhibits the

greatest disparity, but its meaning significantly deviates from the source sentence.

This observation underscores the limitation of controllable text simplification with

control tokens, as there is no guarantee of factual accuracy or preservation of the

original meaning.

In Table 3.9, we show 2 sets of outputs with different WordRank ratios along with

some other ratios and the control tokens unmentioned remain at 1. In the second

and third rows, the model replaces the ’inadvertently’ with ’deliberately’ and ’does

not follow’. However, when WR is set to 0.4, the model generates identical out-

puts. In the fifth and sixth rows, we set the LV to 0.8, which allows more variation

in the output, and WR to 0.4 and 0.2. The model further replaces the ’initiates’ with

’starts’ and ’migration’ with ’move away’. Similarly, when WR set 0.2, the model re-

covers the ’move away’ to ’migration’. The examples in this table show the limita-

tion of the interrelationship among all control tokens.
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Source Shade sets the main plot of the novel in motion when he impetuously de-

fies that law, and inadvertently initiates a chain of events that leads to the

destruction of his colony’s home, forcing their premature migration, and his

separation from them.

SARI BERTScore

WR_0.8 Shade sets the main plot of the novel in motion when he deliberately de-

fies that law, and inadvertently initiates a chain of events that lead to the

destruction of his colony’s home, forcing their premature migration, and his

separation from them.

24.58 0.862

WR_0.6 Shade sets the main plot of the novel in motion when he does not follow that

law, and inadvertently initiates a chain of events that lead to the destruction

of his colony’s home, forcing their premature migration, and his separation

from them.

25.95 0.828

WR_0.4 Shade sets the main plot of the novel in motion when he impetuously defies

that law, and inadvertently initiates a chain of events that lead to the de-

struction of his colony’s home, forcing their premature migration, and his

separation from them.

19.54 0.850

WR_0.4

LV_0.8

Shade sets the main plot of the novel in motion when he

does not follow the law, and inadvertently starts a chain of events that lead

to the destruction of his colony’s home, forcing them to move away, and his

separation from them.

39.60 0.775

WR_0.2

LV_0.8

Shade sets the main plot of the novel in motion when he

does not follow the law, and inadvertently starts a chain of events that lead

to the destruction of his colony’s home, forcing their premature migration,

and his separation from them.

32.22 0.817

Table 3.9. Effect of varying WordRank ratio and some other ratios with the others
remaining at 1.0.

Source The four canonical texts are the Gospel of Matthew, Gospel of Mark,

Gospel of Luke and Gospel of John, probably written between AD 65

and 100 (see also the Gospel according to the Hebrews).

SARI BERTScore

DTD_1.2 The four canonical texts are the Gospel of Matthew, Gospel of Mark

and Gospel of Luke, probably written between AD 65 and AD 100

(see also the Gospel according to the Hebrews).

34.48 0.882

DTD_0.8 The four canonical texts are the Gospel of Matthew, Gospel of Mark

and Gospel of Luke. They are probably written between AD 65 and

100 (see also the Gospel according to the Hebrews).

36.04 0.946

DTD_0.6 The four canonical texts are the Gospel of Matthew, Gospel of Mark

and Gospel of Luke. The Gospel of John was probably written be-

tween AD 65 and 100 (see also the Gospel according to the He-

brews).

32.21 0.922

DTD_0.4 The four canonical texts are the Gospel of Matthew, Gospel of Mark

and Gospel of Luke. The Gospel of John was probably written be-

tween AD 65 and 100 (see also the Gospel according to the He-

brews).

32.21 0.922

Table 3.10. Effect of varying DependencyTreeDepth ratio with the others
remaining at 1.0.

In Table 3.10, we provide examples showcasing the effect of the DependencyTreeDepth

ratio. The output sentence with DTD_1.2 remains the same as the input sentence.

As we decrease the DependencyTreeDepth ratio to 0.8, the model splits the long

sentence into two shorter sentences. With a lower DTD_0.6, the model goes even

further in reducing syntactical simplicity by altering the demonstrative pronoun ’they’.

However, when we further decrease the DependencyTreeDepth ratio to 0.4, no ob-

servable effect is seen. This example highlights the inconsistency in the impact of
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control tokens and underscores the importance of selecting proper values for con-

trol tokens, as they can significantly influence the resulting sentence.

3.5 Discussion and Future Work

3.5.1 Effect of Quantisation

One phenomenon found during the optimisation section in the original project is

that the score of recommended optimisation is even lower than the default values

of control tokens at 0.8. A hypothesis emerged that continuous optimisation is not

an ideal option to maximise the score. As shown in the four rows in Table 3.3, the

score in reimplementation is higher with equivalent values in the four control to-

kens. There could be several reasons: the algorithm is not working as expected or

the optimisation budget is not large enough to find better optimisations. The default

tokenization method in the MUSS project that breaks the control tokens into pieces

brings more noise and probably lowers the performance. Apart from the verbosity

in optimal values, the long tokenization of the control token is another concern of

noisy input. Although the results above show no signs of such problems, they may

become more serious with the increasing length of control tokens, especially for

short sentences. It would be wiser to limit the unnecessary noise in the input to a

lower level.

3.5.2 The effect of tokenization Strategy

In addition to the values, as shown in Table 3.6 and Figures 3.2 and 3.3, the to-

kenization methods can also affect the points and the other points in the curves.

Given the null significant difference in SARI based on p-value, the marginal per-

formance gap among the tokenization methods may be caused by the fine-tuned

models on a lower training scale. However, in Figures 3.2b and 3.3b, the deviated

curves among the three tokenization methods may still imply performance varia-

tions between tokenization methods for the Word Rank Ratio control token under

certain values. Considering the various requirements of the target audiences, a
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mixed tokenization method based on the performance curve that maximises the

model’s performance at different points can be better than a single one. Although it

remains unclear whether there will be the same effects in the combined control to-

kens, the mixed tokenization method can still be promising with the appearance of

more different control tokens.

3.5.3 Similarities and Differences among Control Tokens

Figure 3.2 and Table 3.5 expose the reason for variation with the control token and

provide a good illustration of nature in each control token. In single control tokens,

the peak points mainly fall between 0.6 and 0.7, and the score decreases with the

value deviating from the peak point. However, there are still some differences among

the control tokens. In the DependencyTreeDepth Ratio and Length Ratio, the re-

duction is more dramatic than the other 2. In both graphs, the SARI_add decreases

with the value deviating from the peak point and increases slowly when the value is

bigger than 1. The SARI_keep and SARI_del fluctuate in the form of 2 half-phase

shifted sine functions and the maximum sum is found in between the peaks. The

graph of theWordRank Ratio shows some diversity in both Figure 3.2b and 3.3b

among the tokenization methods. Although there is no explanation for the devia-

tions, the deviations show the potential of combining different tokenization meth-

ods. When focusing on the main section from 0.5 to 1, the graph shows character-

istics similar to the graphs in the previous 2 control tokens. As for the ReplaceOn-

lyLevenshtein Ratio, the slope is milder on the left side and it seems to have less

effect on the SARI score. Unlike the other 3 control tokens, this control token can

only indicate the intensity of change but not the direction of change. Although the

combined effects are still under research, a more effective control token could be a

better solution.

As for the optimal value, they are the optimal values within the budget. When re-

running the code, it is quite common to have a different set of optimal values. This

is one limitation of the current SOTA system and we propose the predictor to im-

prove this drawback. In addition, the optimal values for one control token and for

the combined control tokens are different. The correlation among the control to-
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kens presumably causes this variation. If the four control tokens can be designed

to work independently, the graph on a single control token can be directly used to

find the optimal value. However, the graph of combined control tokens is bound to

have some distortions for now. Based on the details from Graph 3.2a to 3.3d, it is

also clear that the value of control tokens can significantly affect the performance

of the models trained in this way and should be treated carefully.

Another interesting finding between SARI and BERT in this paper is that most BERT

score for optimal value is around 0.78 to 0.8. However, as shown in Figure 3.3b

and 3.3d, there are more than 1 points that have such value, so the BERT score

alone cannot be used to evaluate the text simplification results. It may be a neces-

sary but not sufficient condition for a good simplification. Since the SARI score is

not perfect and relies on references, it is important to build non-reference-based

metrics to evaluate the model on a different genre of corpora. The BERT score

may play a role in these new metrics. Thus, this guess is worth further verification

in future work.

In addition to the values, as shown in Table 3.6, the tokenization methods can also

affect the peak score. In the curves, there are different optimised methods for each

certain point. Although the performance differences may be caused by the fine-

tuned models on a lower training scale, they may still imply performance variations

between tokenization methods. Considering the various requirements of lay users,

a mixed tokenization method based on the performance curve may maximise the

model’s performance at different points better than a fixed one. Although it remains

unclear whether there will be the same effects in the combined control tokens, the

mixed tokenization method can be still promising with the appearance of more dif-

ferent control tokens. However, a more lightweight and efficient training method

should be introduced to solve the problem of balancing cost and effect.

3.5.4 Future Work

Since the control tokens can be regarded as customised prompts to the models,

the applicability of control tokens or similar ideas in other NLP tasks is worth doing
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in the future. With the popularity of prompt tuning, similar ideas can be applied to

other tasks which need control ability to the outputs. In addition, as the tokeniza-

tion strategy shows only marginal effects on the performance in the control token

experiments, a further study on the longer prompts may be worth doing, especially

in the prompt-driven generative models with templates or formats. Another future

work is related to the SARI score. Since the SARI score highly relies on the quality

and diversity of the references and can reflect only partially on the simplicity of the

output. This could be overcome with a new reference-less metric to measure the

readability in different audiences’ perspectives or measure the similarity of the out-

puts with text genre targeting specific audience groups with large language mod-

els. As shown in Section 3.4, there is interference among the control tokens, im-

pairing the usability and practicality of control tokens. One alternative solution is to

break the system into several subsystems, build a pipeline to normalise the sen-

tence and divide and conquer the subtasks in steps.

3.6 Conclusion

In the investigation, we have shown the results and importance of control tokens

with different values and tokenization methods, which can be used to balance user

intention and performance. We proposed some improvements in quantisation, com-

pared the influences of different tokenization strategies of control tokens and pro-

posed possible further improvement means. Although the proposed suggestions

may improve text simplification tasks marginally, they may also be generalised to

prompts designing on other controllable NLP tasks.
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Chapter 4

Evaluation and Limitation of

Controllable Text Simplification

As discussed previously, there are different user groups with different demands. In

addition to the user groups, there are also different genres of texts, such as news,

novels, academic articles and so on. In order to study the performance of current

text simplification models in certain scenarios and make the expert-level informa-

tion and knowledge (i.e. Medicine) more accessible to lay users, we present genre-

specific text simplification research alongside a study on the effects of different

genres.

In this chapter, we focus on the evaluation of the controllable text simplification

methods. We compared text simplification models without control and controllable

text simplification models in both general test scenarios and genre-specific scenar-

ios. we leveraged the newly published text simplification dataset Simple-TICO19

(Shardlow and Alva-Manchego 2022), designed a test scenario for controlled text

simplification with different genres, proved the effects of transfer learning on the

genre-specific datasets, compared the performance of generic and expert models

with different scales.
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Figure 4.1. The methodology is represented in three sections. In the left section,
we fine-tune BART-base on the WikiLarge training set to give the base model. In
the middle section, we regard the task as transfer learning and further fine-tune the

base model on our Wikipedia_x and PubMed_x training sets to generate the
expert model(s). In the right section, we add 2 zero-shot generic models through
publicly available APIs. We then evaluate our base model, expert models and
generic models in the generic simplification task (The Asset test set) and the

genre-specific tasks (the Wikipedia_x and Pubmed_x test sets) and compare the
results for the models.

4.1 Methodology

In this section, we describe the experiments that were undertaken. A visual repre-

sentation of our methodology is provided in Figure 4.1, which is explained in further

detail throughout the following subsections.

4.1.1 General and genre-specific task

As illustrated in figure 4.1, there are two different tasks. For the genre-specific tasks,

we employed the Simple-TICO19 dataset (Shardlow and Alva-Manchego 2022),

which consists of translations and simplifications related to COVID-19 from various

resources representing distinct genres. This dataset encompasses a total of 3,173

parallel sentences available in both English and Spanish. In this project, we solely

utilized the English section. We split this dataset based on genre and use the sub-

sets as training and test sets for the expert models. To minimize any potential bias

introduced by specific dataset partitions, we generated 30 distinct permutations or

partitions from subsets from each genre. Consequently, we performed the same

procedure for each partition, effectively creating 60 expert models for every par-

tition. However, due to time and computational constraints, we limited our eval-
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uation to 40 expert models derived from the two genres across the 60 partitions.

This approach allowed us to provide a comprehensive analysis while managing the

practical limitations associated with time and computational resources.

4.1.2 Transfer learning

In this experiment, there are three types of models: the base model, generic mod-

els and expert models. For the base model, we adopted the reimplemented MUSS

model from Chapter 3. For general models, we leveraged the most powerful and

accessible models at the time, such as ChatGPT and GPT-3 (text-davinci-003).

As for the expert models, we further fine-tuned the base model on the training set

of 30 partitions from the Simple-TICO19 dataset (Shardlow and Alva-Manchego

2022). Since the size of subsets for each genre is relatively smaller, we regard this

process as transfer learning and verified the effect before and after transfer learn-

ing with the base model.

4.1.3 Prompt Design

Input Please simplify this sentence for me: ”Asymptomatic or only mild symptoms were

detected when bats were infected with CoVs, indicating the mutual adaptation be-

tween CoVs and bats.”

Output When bats get infected with CoVs, they do not show symptoms or only mild symp-

toms, which shows that CoVs and bats have adapted to each other.

Table 4.1. Prompt design

In the experiment, we leveraged the GPT-3 (Brown et al. 2020) model and Chat-

GPT with hand-crafted prompts. Since the main focus is not on how to achieve the

best performance of LLMs with prompts only, we didn’t apply prompt learning or

prompt engineering on the prompt. Instead, we asked the ChatGPT for the best

prompt and set it to ’Please simplify this sentence for me: ”(Target sentence)”’ and

an example is shown in Table 4.1.
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4.1.4 Evaluation and metrics

In this experiment, we applied the SARI score (Xu, Napoles, et al. 2016) and BERTScore

(T. Zhang et al. 2019) as the main automatic metrics. We also conduct the human

evaluation for the genre-specific experiments as SARI and BERTScore can only

partially reflect performance differences. Furthermore, the lack of multiple refer-

ence sentences in the test set of Simple TICO-19 (Shardlow and Alva-Manchego

2022) will lead to a less trustworthy score, compared to the 10 references in the

ASSET test set (Alva-Manchego, Martin, Bordes, et al. 2020).

4.2 Experiment design

4.2.1 Preprocessing

Following the MUSS implementation (Martin, Fan, et al. 2020), the four control to-

kens are introduced as follow:

• <DEPENDENCYTREEDEPTH_x> representing syntactic complexity

• <WORDRANK_x> representing lexical complexity

• <REPLACEONLYLEVENSHTEIN_x> representing the token difference ratio

• <LENGTHRATIO_x> representing the difference in length

Each control token is calculated by comparing the above ratios in complex-simple

sentence pairs. After the calculation of the control tokens for the training set, the

calculated value of complex sentences is added as a prompt to the beginning of

the corresponding complex sentences. The value of these control tokens is rounded

to 0.05 and limited in the range of 0.2 to 1.5, except for the LV, which is limited

from 0.2 to 1. In Simple Tico-19 (Shardlow and Alva-Manchego 2022), due to the

manual translation, there are some sentences that did not implement simplification

or are unsuited for simplification. These unsimplified pairs were removed in the fol-

lowing derivative subsets that we used in our research. We further split the dataset
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according to the genre. The number of instances after the filtering of each subset

is shown in table 4.2.

Data source Number of instances

CMU 122

PubMed 809

Wikinews 76

Wikivoyage 206

Wikipedia 1224

Wikisource 101

Table 4.2. Number of instances in each data source

Taking into account various factors such as the literary style, intended readership,

and the number of sentences, we selected the PubMed andWikipedia subsets

to serve as representative examples of two distinct genres for our genre-specific

text simplification experiments involving expert and generic models. Specifically,

the sentence pairs labelled as ’wiki’ and ’Wikipedia’ were exclusively sourced from

Wikipedia, which led us to combine these two subsets into a single comprehensive

Wikipedia dataset, comprising a total of 1224 instances.

To create training, validation, and test sets, we proceeded to perform random splits

on the PubMed andWikipedia datasets, ensuring that the data was divided in a

ratio of 8:1:1. These splits were conducted using a predetermined random seed to

maintain consistency and reproducibility. Consequently, each permutation of the

dataset, generated under a specific random seed denoted as x, was labelled as

PubMedx andWikipediax. For example, we have datasets such as PubMed0

andWikipedia0. This process resulted in the creation of three distinct sections

for each dataset, containing 978, 122, and 124 sentence pairs in eachWikipediax

subset, and 647, 81, and 81 sentence pairs in each PubMedx subset, correspond-

ing to the training, validation, and test sets, respectively. Such partitioning ensures

a balanced distribution of data and allows for comprehensive evaluation and com-

parison of the models’ performance.

4.2.2 Models for Text Simplification

In this chapter, we propose to compare the performance among three versions of a

text simplification model: the base model, the generic model and the expert model.
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The base model is based on BART-base (Lewis et al. 2020) with 6 layers in both

encoder and decoder and 140 million parameters. The base model is fine-tuned

on the training set of Wikilarge (X. Zhang and Lapata 2017a) only with the above-

mentioned 4 control tokens. The following hyper-parameters were employed: Learn-

ing rate: 2e-5, Weight Decay: 0.01, Training epochs: 10.

After fine-tuning, the training loss reaches 0.85 without overfitting. By comparing

the SARI score of our model on the ASSET test set (Alva-Manchego, Martin, Bor-

des, et al. 2020) with the original results in MUSS (Martin, Fan, et al. 2020), it is

reasonable to claim that it has reached to the designed performance level.

For generic models, we tested the GPT-3 (Brown et al. 2020) based model and

ChatGPT via the API and online platform by OpenAI. Instead of training or fine-

tuning, we leverage the 2 models by prompting. The prompt is set to ”Please sim-

plify this sentence for me: ” and will be added to the beginning of each complex

sentence, then the model will try to generate a simplified version of the input text

after the colon. The exact model prompted in the GPT-3 is called ”text-davinci-

003”, which is the latest version, the parameters are set as follows:

• temperature: 1 The sampling temperature, ranging from 0 to 2, influences the

degree of randomness in the generated output. Increasing the temperature

leads to a higher level of randomness, while decreasing it results in a more

focused and deterministic output;

• frequency_penalty: 0 The Frequency penalty, ranging from -2 to 2, controls

the variation between the output and input. Positive values penalize new to-

kens by their existing frequency in the text thus far, discouraging the model

from repeating the same line verbatim and promoting diversity in the gener-

ated output. By assigning positive values, the model is encouraged to explore

alternative phrasing or introduce fresh perspectives. On the other hand, nega-

tive values aim to preserve the original input to the greatest extent possible,

allowing the model to adhere closely to the given text and minimize devia-

tions. Striking a balance between these positive and negative values enables

the model to exhibit both creativity and faithfulness to the source material, en-
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hancing its overall performance in generating diverse and coherent text;

• presence_penalty: 0 The presence penalty, ranging from -2 to 2, controls the

presence of new tokens. Positive values penalize new tokens by their appear-

ance in the text thus far, thereby enhancing the model’s inclination to intro-

duce fresh subjects and discuss novel topics. Conversely, negative values

aim to retain the original tokens to the greatest extent possible, discouraging

excessive changes or introductions of new information. By fine-tuning these

values, the model’s behavior can be tailored to strike a balance between intro-

ducing novelty and maintaining consistency with the existing text.

• max_token: 2000 Max token controls the maximum number of tokens to gen-

erate in the completion.

As for ChatGPT, due to the fast iteration speed, the only information available is

”ChatGPT Jan 9 Version”. During our experiment, since there was no official API

released, we accessed the ChatGPT via a fake web browser with session IDs to

request responses in batches. The ChatGPT is then accessed on the online plat-

form in the conversations automatically. There is no guarantee of performance

compared to the results of API access and different versions of ChatGPT.

The expert model(s) are composed of base models after transfer learning on cor-

responding permutations of subsets. By fine-tuning the pre-trained model on the

preprocessed Wikilarge training set (X. Zhang and Lapata 2017a), the base model

learns how to generate simplifications based on the value of control tokens. To

leverage the base model as an expert text simplification model, we further fine-

tune the model on the preprocessed training set ofWikipediax and PubMedx and

then have the corresponding expert models for each permutation ofWikipediax

and PubMedx. The fine-tuning hyper-parameters are the same as fine-tuning the

base model. In the experiment, we build 30 expert models for bothWikipediax

and PubMedx and evaluate the performance for 20 permutations.
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4.2.3 optimisation

Since the values of control tokens influence the quality of the generated output and

overall model performance, it is necessary to find an optimal value of the control

tokens for the model on the test sets. This is consistent with the previous state of

the art, but it is also worth noting that the results reported are limited to specific

datasets and alternative parameters may be optimal for different datasets. The

value options of most control tokens fall between 0.2 to 1.5 (or 0 to 1 for Leven-

shtein), so there is only finite options are provided during optimisation, and the op-

timisation problem is reduced to finding the best value combination of control to-

kens within the optimisation budget. The optimisation budget limits the total num-

ber of attempts to find the set of values of control tokens to maximize the metric,

which is set to the SARI score. The optimisation budget for the general tasks on

the ASSET valid set (Alva-Manchego, Martin, Bordes, et al. 2020) is 128, while the

value for genre-specific tasks on the valid sets of permutations ofWikipediax and

PubMedx is reduced to 64 for time-saving. We used Nevergrad (Rapin and Tey-

taud 2018) to find out the local optimal value within the budgets.

4.2.4 Genre-specific Experiments

To verify the effect of transfer learning, we computed the SARI score on the test

set of PubMedxs andWikipediaxs. Since there is only one reference sentence in

the Simple TICO-19, the SARI score on these test sets is only applicable and com-

parable within the experiment. We tested the base model, generic model and ex-

pert models on the test sets from 20 permutations of PubMedxs andWikipediaxs.

For expert models from the same genre of the test set, we only evaluate the expert

model trained on the corresponding training set of the test set to avoid data leak-

age. The average of these models is reported as ‘Average corresponding �genre�

models’ in Tables 4.5 and 4.6.

As for the expert models from the other type, we tested 30 models from permuta-

tions with different random seeds. The overall results are shown in table 4.5 and
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4.6, and the details are shown in figure 4.2 and 4.3. The full results are available

as a table in the Appendix.

4.2.5 Evaluation

In the evaluation of the general task, we conducted tests on both the base model

and general models, and selectedWikipedia0 and PubMed0 as representative

expert models. To ensure the integrity of our data, we implemented measures to

prevent any potential data leakage during the evaluation of genre-specific tasks.

Specifically, for each partition of the dataset, only the corresponding expert model

was assessed and clearly marked as the ”corresponding model” in the tables. The

expert models from other genres were evaluated as a collective group, and the

mean values were recorded to provide an overview of their performance. As for

the base model and general models, they underwent the same evaluation process

as the general task.

For the human evaluation, we recruited 17 human annotators through Amazon Me-

chanical Turk, specifically selecting individuals who possessed the ”Master” quali-

fication, indicating their reliability and expertise as trusted workers on the platform.

All annotators reported having achieved an educational background at the under-

graduate level or higher, ensuring a solid foundation for their evaluation. Among

the annotators, twelve were non-native English speakers, while the remaining five

were native English speakers. Each annotator was presented with 20 instances in

the form of table 4.3, featuring an original sentence along with a pair of sentences

derived from the generic and expert model (randomly assigned to avoid bias). The

annotators were then requested to assess these provided sentences, responding

to two questions using a 5-point Likert scale, which allowed for a comprehensive

evaluation process.

55



Original Text Simplified sentences Meaning

preservation

Simplicity

It is possible that many

mammals including

domestic animals are

susceptible to

SARS-CoV-2.

Many types of animals, including

pets, may be able to get infected with

SARS-CoV-2.

Disagree Agree

Many mammals including domestic

animals may be susceptible to SARS-

CoV-2.

Agree Agree

Table 4.3. Sample of human evaluation questionnaire

4.3 Results

4.3.1 General task

Model SARI↑ BERTScore↑

Base BART-base 44.05 0.777

Generic
GPT-3 41.73 0.703

ChatGPT 46.42 0.731

Expert
Wikipedia0 43.24 0.835

PubMed0 43.67 0.812

Table 4.4. SARI and BERTScore on ASSET test

Table 4.4 presents the SARI scores and BERTScores on the ASSET test set. Among

them, ChatGPT emerges as the top performer in terms of SARI score, indicating its

proficiency in text simplification. However, when considering BERTScore, the ex-

pert modelWikipedia0 takes the lead. It is noteworthy that both generic models

demonstrate decent performance on the test set without any fine-tuning or prompt

engineering. ChatGPT surpasses the base model by a large margin, while GPT-

3 lags behind in the SARI score. Notably, the BERTScore is comparatively lower

for both generic models when compared to the base model. These metrics showed

the performance gap between GPT-3 and ChatGPT, a distinction that aligns with

the differences in model structure and scale.

4.3.2 Genre-specific task

Table 4.5 shows the average SARI and BERTScores over all 20 permutations of

test sets from different models. The first row shows the average SARI score of

the base model, which is only fine-tuned on WikiLarge and based on the BART
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Model SARI ↑ BERT↑

Base BART-base 40.78 0.741

Generic
GPT-3 29.03 0.530

ChatGPT 31.12 0.542

Expert
Average corresponding expert

Wikipedia models

44.30 0.756

Average PubMed models 42.75 0.741

Table 4.5. Average SARI and BERTScore on allWikipeidax

Model SARI↑ BERT↑

Base BART-base 40.56 0.723

Generic
GPT-3 30.72 0.547

ChatGPT 31.55 0.515

Expert
Average Corresponding expert

PubMed models

45.05 0.741

AverageWikipedia models 43.38 0.726

Table 4.6. Average SARI and BERTScore on all PubMedx

base. The following two rows show the SARI scores of two generic models on the

test sets. The last two rows show the SARI scores of all expert models. The cor-

respondingWikipedia or Pubmed models refer to the corresponding expert mod-

els after transfer learning on the training sets (e.g., modelWikipedia0 to test set

Wikipedia0 and model Pubmed19 to test set Pubmed19). The last row shows

a combined average SARI score of expert models trained on the opposite genre.

The detailed SARI score can be found in figure 4.2 and 4.3. The same rules also

apply to table 4.6.

In both table 4.5 and 4.6, the corresponding expert models, which is the expert

model transfer learnt on the corresponding training set, have the highest overall

SARI score. Although the generic models show very competitive performance in

the general task, the lack of fine-tuning led to lower performance in terms of SARI

score in the genre-specific scenario. The fine-tuned models also take advantage

of learning the text style in the training set. The overall performance gap between

the two generic models is aligned to the gap in Table 4.4. As for the expert mod-

els, they have a much higher SARI score and appear to have a much higher per-

formance, but the actual performance gap between the generic models and expert

models needs further exploration. What the SARI score can tell is how they ben-

efit from the transfer learning compared to the base model. It is surprising to see

57



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Distribution of Wikix

25

30

35

40

45

50

SA
RI

 sc
or

e

Corresponding Wiki expert model
Average on Wiki
Base Model
ChatGPT(Jan9)
GPT-3

Figure 4.2. SARI score on 20Wikipediax permutations for different models
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Figure 4.3. SARI score on 20 PubMedx permutations for different models

the improvement for both kinds of expert models, which is presumably caused by

the sharing characteristics in the two subsets (both are related to Covid-19 infor-

mation). As a result, the improvement of the overall SARI score for expert models

shows the effectiveness of transfer learning for genre-adaptive text simplification.

We also evaluated BERT-score for our generic and expert models on the expert

datasets. The BERTScore similarly shows that the simplifications produced by generic

models in the expert setting are of worse quality than those produced by the expert

models. ForWikipediax, we note that there is little improvement in BERTScore

on the expert models, with the model trained on PubMedx performing marginally
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higher than the base model, or the model trained on Wikipedia. The base model

was also fine-tuned on Wiki-large which is the same genre as theWikipediax sub-

sets coming from Simple TICO-19, which may explain why there was little perfor-

mance gain. For PubMedx, the expert models both improve when measured against

the Base model. The genre-specific PubMed expert models attain a higher BERTScore

than those fine-tuned on the Wikipedia subsets.

Generally, the detailed SARI score is aligned with the overall performance. The

corresponding expert model outperforms the other four models in the SARI score

across all permutations and the generic models have a much lower SARI score

than the base model. The SARI score also shows some similarities among mod-

els. We listed the detailed SARI and BERTScore in the appendix in figure 4.2 and

4.3 and the remaining tables.

In the SARI score of 20Wikipediax test sets, nearly all models show a performance

drop onWikipedia14 andWikipedia17. However, the two generic models show a

different phenomenon onWikipedia17 by increasing the SARI score. The fluctu-

ation of the SARI score also demonstrates the effect of permutation in the genre-

specific experiments and also shows that some of the permutations are not ideal

distribution of training and test sets. As for BERTSCore, there are more inverted

performances, which also align with the overall performance.

Unlike the detailed SARI score forWikipediax, there are several divergences on

certain permutations of PubMedx. In PubMed15 and PubMed17, the average

performance of expert models fromWikipedia outperforms the corresponding ex-

pert model. Similar incidents happen between the two generic models too. Con-

sidering the big performance gap between the GPT-3 and ChatGPT, the inconsis-

tency is probably caused by the lack of more reference sentences or the poorly de-

signed training and test sets. There is also some commonality in PubMed. In de-

tailed SARI score, the three models share a common variation in performance on

Pubmed1,Pubmed2 and Pubmed3. In addition, there are also similar situations in

BERTSCore.

Comparing the base models with the generic models, it is unclear why the generic
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models perform so poorly on the test sets in terms of SARI score. One possible

reason is that both base models and expert models are fitted with the optimal value

of control tokens to maximize the SARI score while the prompted generic models

are not. The calculation method of the SARI score prefers the sentence that keeps

the most of original content under the condition of lack of reference sentences.

Model Simplicity ↑ Meaning Preservation ↑

Generic 2.55 2.86

Expert 2.46 3.17

Table 4.7. Human evaluation score on test set ofWiki0 and PubMed0 (out of 4)

Table 4.7 presents the results of the human evaluation, with scores ranging from 0

to 4, indicating the level of agreement or disagreement with the given statements.

The evaluation primarily focused on two key aspects: the degree of sentence sim-

plification and the preservation of meaning. Regarding simplicity, the generic model

(ChatGPT) achieved a similar score to the expert models under evaluation (Wiki0

and PubMed0), while with a slight advantage. However, when it comes to mean-

ing preservation, ChatGPT received a lower evaluation compared to the expert

models. This suggests that ChatGPT may have neglected important details that

the expert models successfully retained. It is worth noting that, contrary to the SARI

scores shown in Table 4.5 and 4.6, the performance of the generic model proves

to be competitive with the expert model in terms of human evaluation.

4.4 Case Study

Table 4.8 presents a selection of examples generated by GPT-3, ChatGPT, and

the corresponding expert model. These examples allow us to reveal the strengths

and weaknesses of the tested models. In the first example, ChatGPT not only pro-

vides a definition of PoCT but also replaces specific terms and less common words

like ”specimen” and ”puncture” with more commonly understood synonyms. In con-

trast, the other model follows closely to the original text without incorporating such

simplifications. This example highlights ChatGPT’s proficiency in both lexical and

conceptual simplification. However, it is important to note that while ChatGPT demon-

60



Source: For PoCT a single specimen of blood is usually obtained by skin puncture.

Reference: For PoCT, a single specimen of blood is usually obtained by skin puncture.

GPT-3: A skin puncture usually gets one sample of blood for PoCT.

ChatGPT: For Point of Care Testing (PoCT), a small sample of blood is usually taken by pricking

the skin.

Expert: For PoCT, a single specimen of blood is usually obtained through skin puncture.

Source: It is possible that many mammals including domestic animals are susceptible to

SARS-CoV-2.

Reference: It is possible that many mammals, including domestic animals, are susceptible to

SARS-CoV-2.

GPT-3: Mammals, including domestic animals, may be vulnerable to SARS-CoV-2.

ChatGPT: Many types of animals, including pets, may be able to get infected with SARS-CoV-2.

Expert: Many mammals including domestic animals may be susceptible to SARS-CoV-2.

Source: Personal protective equipment (PPE) is considered less effective than engineering

and administrative controls, but can help prevent some exposures.

Reference: Personal protective equipment (PPE) is considered less effective than engineering

and administrative controls. However, it can help prevent some exposures.

GPT-3: PPE is not as good as engineering and admin controls but can prevent some expo-

sures.

ChatGPT: PPE is not as good as other ways to prevent exposure, but it can help some.

Expert: Personal protective equipment (PPE) is considered less effective than engineering

and administrative controls, but can help prevent some exposures.

Table 4.8. Examples of simplifications from different models

strates these simplification capabilities, its output may not always align perfectly

with the reference sentence, which may result in a lower SARI score for such sim-

plifications.

In the second example, both GPT-3 and the expert model exhibit a consensus and

produce similar simplifications. However, ChatGPT encounters a challenge as it

simplifies ”domestic animals” solely as ”pets” and overlooks the inclusion of other

mammals, which raises the concern of misunderstanding and misinformation in

lexical simplification.

In the third example, both GPT-3 and ChatGPT removed the explanation of the

abbreviation, which potentially decreased the readability of the sentence. The in-

consistency of the performance of generic models can be an obstacle to applying

such models to downstream tasks. In addition to that, the definition of simplicity for

the generic models is also vague. We found that many of the outputs of ChatGPT

are much shorter than the outputs of expert models. However, the short sentences

don’t always align with the simplicity and better readability.

In general, ChatGPT demonstrates its ability in conceptual simplification with its

enormous training data as the knowledge base. It also indicates that the expert
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models took a more conservative approach, preserving a significant portion of the

original text, while GPT-3 and ChatGPT showed more extensive paraphrasing.

However, the inconsistency in performance undermines the reliability of applying

ChatGPT in professional fields like the medical domain.

4.5 Discussion and Future Work

The performance of generic models is impressive in the general task. The generic

model can become the new SOTA in many natural language processing tasks with

proper prompts. However, the scale of the parameters in LLM like ChatGPT makes

it almost impossible to be deployed locally. In addition, it can hardly be fine-tuned

by an individual or a small group of researchers due to the high requirement for

computation power. Even though it can be leveraged by prompts, when it comes to

the specialised domain or private information, data privacy prevents it from becom-

ing a universal solution for all people, which limits the applications in real-life sce-

narios. Another issue is low BERTScore in both general and genre-specific tasks,

which indicates deviation in meaning preservation.

When it comes to genre-specific tasks, the generic model is less competitive than

it is in general tasks. Based on the human evaluation (Table 4.7), the expert model

shows similar or higher performance than the generic model. Although the generic

model trained with a much larger corpus contains more internal knowledge, it is

hard to determine where to stop the simplification without quantitive prompts. Con-

sidering the lower BERTScore from the generic models, it seems that the ChatGPT

over-paraphrased the input, compared to the expert models. Results from human

evaluation also agree that the expert models appear to preserve the meaning bet-

ter than the generic model. However, the expert models are equipped with control

tokens and inevitably will delete some content or information based on the control

token they are given as well. This result shows that human annotators may prefer

the more conservative settings of the expert models as opposed to the paraphras-

ing of the generic models in terms of meaning preservation.
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The results in Table 4.5 and 4.6 prove the effectiveness of transfer learning after

fine-tuning. As mentioned in the results, both expert models benefit from transfer

learning in the genre-specific task. One possible reason for the improvement of the

other kind of expert models may be the common ground between the two subsets

of different genres, the topic and context for example. Yet the performance gap be-

tween the two types of expert models shows that genre or text style still matters

and causes performance differences. The genre-adapted model can be a potential

solution to better fit the requirements of different groups of lay users.

Even with highly capable generic or expert models, there is still the possibility for

the introduction of factual errors in the output. With the convincing performance

of generic models like ChatGPT, the hallucination problem become more serious

than ever before. When the task is related to a crucial area such as medicine or le-

gal help, the introduction of misleading information may cause severe problems.

To improve the robustness of the simplification system, it is necessary to build a

factual evaluation system in the future (Devaraj et al. 2022; Ma, Seneviratne, and

Daskalaki 2022). Unlike other text generation tasks, simplification maintains the

essential information in the input, thus it is easier to judge whether there is mis-

leading content or hallucinations. BERTScore, which measures the meaning preser-

vation for the implications, could be extended into a tool to measure the deviation

of original meanings in future work.

Another problem is the explanation of abbreviations. For lay users unfamiliar with

the abbreviations and technical terms, it is important to explain the meaning of these

unique words or phases. ChatGPT has a huge knowledge base to understand com-

mon abbreviations. However, technical terms in certain domains may be unknown

for the generic model and the abbreviations may refer to different phrases in dif-

ferent contexts. To avoid the above problem, the model needs to have a genre-

specific knowledge base in future work, which allows the model to identify and ex-

plain the abbreviations and terms. To achieve this goal, a model competitive with

an external source of knowledge base is required. In addition, the knowledge base

should be combined with lexical complexity evaluation to decide which term needs

explanation.
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4.6 Conclusion

In this chapter, we compared the performance differences between generic mod-

els and expert models on general and genre-specific simplification datasets. We

showed the effect and practicality of transfer learning in genre-specific datasets

with less amount of samples. The performance drop on general tasks after trans-

fer learning is acceptable and may be further reduced in future studies. The per-

formance, cost-effectiveness and portability of expert models prove themselves as

one of the practical solutions for domains-specific or genres-specific tasks.
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Chapter 5

Improvement on Controllable Text

Simplification

As mentioned earlier, it is important to acknowledge the limitations of the optimi-

sation method used for the MUSS (Martin, Fan, et al. 2020). One significant lim-

itation is that the optimal value of control tokens determined at the corpus level

may not necessarily be the optimal value at the sentence level. This discrepancy

becomes more apparent as the size of the test set increases. Another constraint

is the absence of a validation set in real-world application scenarios, which hin-

ders the ability to identify the optimal values accurately. Despite the model’s abil-

ity to learn from the input data, the incremental improvement achieved through this

process may not necessarily lead to the best performance observed in the experi-

ment. Moreover, as the data size increases, there is a potential risk of performance

deterioration, adding to the challenges associated with the optimisation method.

In this chapter, we propose a different method to predict the control tokens, which

serves as a replacement for the optimisation step utilized in previous settings. To

examine the effectiveness of these predictors, we conducted tests using both re-

gression and classification methods and subsequently compared the obtained re-

sults with those achieved through the traditional optimisation approach. Moreover,

we explored various approaches to leverage the predictor models, aiming to fully

unlock their potential and exhaustively assess their capabilities.
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5.1 Methodology

In this section, we illustrate the methodology of the system. Figure 5.1 shows the

flow chart of the whole system. Compared to the system implemented in Chap-

ter 3, the major difference is the introduction of control token predictors, which are

used to predict the value of control tokens. More details will be illustrated in the fol-

lowing subsections.

Start

Fine-tuning Control token 
model

Predict the value 
of control tokens

Text simplification Output

End

Preprocessing

Wikilarge 
training set

Preprocessed 
training data

Preprocessed 
input

Predictor 
models

Raw input 
(ASSET test set)

Figure 5.1. The methodology is represented as a flow chart. With the help of
control token predictor models and controllable text simplification models, we

implement controlled text simplification on the sentence level.

5.1.1 Prediction of Optimal Control tokens

In contrast to the method of finding an optimised set of control tokens at the cor-

pus level adopted in MUSS (Martin, Fan, et al. 2020), we propose both regressive

and multi-classification methods of predicting the value of each control token at the

sentence level. As shown in the centre of Figure 5.1, there is an extra step of fine-

tuning control token predictors, which will predict the value of each control token

in each sentence. The predicted values will be combined with the raw input and

achieve control on the sentence level.

However, this method is based on 2 premises: There is a unique ideal simplifica-
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tion for every sentence; By feeding the ideal value of control tokens from the ideal

simplification, the model can generate the ideal simplification. Unlike optimising

the value of control tokens on the test set, we assume the ideal value is an intrin-

sic property and can be predicted. In addition, the problem can be regarded as a

regression problem to predict the optimal value of control tokens and how to fine-

tune autoregression models to do so for every sentence. In the experiment, we

chose the average value of multiple reference sentences as an approximation to

the ideal value and compared it with the predicted values and the optimised value.

Although the median value of reference sentences shows slightly higher SARI and

BERTScore on the ASSET test set, the predicted median values are not as good

as the calculated values. In addition, both the average and median meet the re-

quirements as an approximation of ideal values, and choosing one or the other

makes no difference in the conclusion.

5.1.2 Regression or multi-class classification

During the analysis of the preprocessed multiple reference sentences in the AS-

SET dataset, it was observed that the optional values associated with the multiple

reference sentences for a single complex sentence exhibited a discrete pattern.

Despite rounding the value of control tokens to the nearest 0.05, it was noted that

these values were not adjacent. Specifically, for a given complex sentence, the op-

tional value of LengthRatio may range from 0.5 to 1.05 but may only include values

such as 0.5, 0.85, 0.9, 1.0, and 1.05 in the reference sentences. Notably, there ex-

isted a substantial gap between 0.5 and 0.85, highlighting a distinct characteristic

of the control token’s behaviour. The discrete nature of the operations performed

on the sentences, as evident from the observed values, presents a challenge in

finding suitable options that seamlessly align with natural expression and gram-

mar while making minimal adjustments to the control token. This discrete charac-

teristic highlights the difficulty in identifying incremental changes that maintain the

coherence and fluency of the sentence while effectively altering the sentence with

control tokens.

Therefore, we approach the prediction of ideal control tokens from two different
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perspectives: as either a regressive problem or a single-label multi-classification

problem. The main distinction between these two methods lies in how we define

the value of the control tokens. As mentioned earlier, the available options for the

control token values are limited and discontinuous. However, it is important to note

that these values are interconnected and exhibit relationships with one another.

When we treat the problem as a multi-class classification task, we effectively dis-

regard the interconnections among the values and treat them as independent la-

bels. While this approach allows us to predict the value of control tokens while dis-

regarding the influence of adjacent values, it may overlook the impact of these in-

terconnections. On the other hand, the regressive method simply treats the control

token as a numerical value. However, this method carries the risk of encountering

difficulties in capturing the subtle distinctions between the possible options and po-

tentially falling into the gap between them.

5.2 Experiment Design

5.2.1 Preprocessing

Training set for control token Number of sentences

DEPENDENCYTREEDEPTHRATIO 262,429

WORDRANKRATIO 295,779

REPLACEONLYLEVENSHTEIN 294,588

LENGTHRATIO 253,436

Table 5.1. Number of sentences in the training set for each control token (The
original number of sentence pairs in Wikilarge (X. Zhang and Lapata 2017a) is

296,402)

In the preprocessing step, we applied similar procedures on Wikilarge (X. Zhang

and Lapata 2017b) as mentioned in chapters 3 and 4 to append the control tokens.

However, in this task, instead of combining all four control tokens into a single train-

ing set, we created four training set and each training set contains only one type of

control token, in which the complex sentences are the model’s input, while the cor-

responding control token values are the training targets. To increase data quality,

we implemented a filtering process that removes values below 0.2 and above 1.5

(below 0.2 and above 1.0 to replace only the Levenshtein ratio). The detailed sen-
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tence number is listed in Table 5.1. As a result, we filtered 19,844 sentences on

average for each training set.

5.2.2 Fine-turning

In the training process of predictors for each control token, we fine-tuned the BERT-

base-uncased model on the filtered Wikilarge dataset(X. Zhang and Lapata 2017b).

For comparison, we also tried two different models, distilledBERT (Sanh et al. 2019)

and Roberta-large (Y. Liu et al. 2019), the detailed results are shown in Table 5.3.

In the regressive method, we apply the regressive model, tokenize the target as

plain text and retrieve the score directly without implementing any function to the

model output. During training, we implement mean absolute error(MAE), root mean

square error(RMSE) and coefficient of determination (R2) metrics on the validation

set and choose RMSE as the loss function. After 10 epochs of training, we keep

the model with the lowest RMSE.

In contrast, when utilizing the classification approach, we employ the single-label

multi-classification model. In this method, the target was tokenized into a vector

consisting of 0s and 1s, and the softmax function was applied at the final layer of

the model. To assess the model’s performance, we choose the cross-entropy loss

as the loss function. Similar to the regressive method, we trained the model for 10

epochs and selected the model with the lowest cross-entropy loss for further analy-

sis and evaluation.

The detailed parameters applied in the training process are listed as below:

• learning rate = 2e-5,

• train batch size = 16,

• evaluation batch size 16,

• weight decay = 0.01,

• number of epoch = 5,

• fp16 = True,
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5.2.3 Evaluation

In the evaluation step, we evaluate the predictors in two different ways. One is di-

rectly comparing the predicted value with the expectation, which is the mean value

from all reference sentences. The other is applying the control tokens with pre-

dicted values to complex sentences and testing the SARI score and BERTScore

for the output.

In the direct evaluation, we report the three common metrics for regression tasks

as the indicator for both regressive and single-label multi-classification models:

• MAE: It is calculated by taking the absolute difference between each predicted

value and its corresponding actual value and then averaging these differences.

The resulting value represents the average absolute deviation of the predic-

tions from the ground truth, providing a measure of how close the predictions

are to the actual values on average. The equation is listed below:

MAE =
1

n

n∑︂
i=1

|ŷi − yi| (5.1)

where ŷi represents the predicted value, yi represents the actual value, and n

is the total number of samples.

• RMSE: It is calculated by taking the square root of the mean of the squared

differences between predicted and actual values. This helps to penalize larger

errors more heavily, as the squared term amplifies the effect of larger devia-

tions. The equation is listed below:

RMSE =

⌜⃓⃓⎷ 1

n

n∑︂
i=1

(ŷi − yi)2 (5.2)

where ŷi represents the predicted value, yi represents the actual value, and n

is the total number of samples.

• R2: It is a statistical measure that represents the proportion of the variance

in the dependent variable (target variable) that can be explained by the inde-

pendent variables (predictor variables) in a regression model. The R2 value
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can range from negative infinity to 1. When it is non-positive, it indicates that

the regression model captures none of the patterns or relationships present in

the data, and the predictions are no better than simply using the mean value.

When it is between 0 and 1, it indicates that the model explains a portion of

the variability in the dependent variable. The higher the value is, the better the

model is at explaining the variability. A value of 1 indicates that the model per-

fectly predicts the dependent variable using the independent variables. The

equation is listed below:

R2 = 1−
∑︁n

i=1(yi − ŷi)
2∑︁n

i=1(yi − ȳ)2
(5.3)

where ŷi represents the predicted value, yi represents the actual value, ȳ rep-

resents the mean value and n is the total number of samples.

In the case of regressive models, the output value is rounded to the nearest 0.05 to

provide a more concise and interpretable representation. Conversely, for classifi-

cation models, the output comprises 27 labels, each associated with a confidence

level (17 labels for the predictor of the replace-only Levenshtein ratio). To obtain

a single output value, we consider the expectation of all labels and round it to the

nearest 0.05, ensuring consistency with the representation used by the regressive

models.

For reference, in addition to the performance metrics of the control token predic-

tors, we include the average variance among all sentences. This variance is calcu-

lated based on the values of one complex sentence and ten reference sentences

and is essential for the calculation of the R2 score. Furthermore, to provide a com-

parative analysis, we present the same metrics for a sample predictor that was

trained on unfiltered training sets. This comparison allows us to assess the impact

of filtering the training data on the performance of the control token predictors. By

incorporating these additional measures and comparisons, we gain a comprehen-

sive understanding of the control token predictors’ performance and their deviation

from the reference sentences, enabling a more nuanced evaluation of their effec-

tiveness. We also dive into the distribution and box plot of the predictors in the two
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methods, mean values and all values.

In terms of evaluating the SARI score and BERTScore, we conduct tests by apply-

ing the predicted values to both the single control token models and the combined

control token model. Specifically, we selected the models that were trained using

the joint tokenization strategy in Chapter 3 as the test bench. We test the predicted

values and include the mean value as the reference point during the evaluation

process. Furthermore, we also include the results obtained from the optimisation

method as an additional reference for comparison and analysis.

5.3 Results

5.3.1 Performance of control token predictors

Control Token Predictor Strategy MAE ↓ RMSE ↓ R2 ↑ Average Variance

DTD_predictor

regressive 0.117 0.149 0.508

0.045expectation 0.108 0.140 0.565

median 0.124 0.160 0.431

WR_predictor

regressive 0.048 0.063 -0.204

0.003expectation 0.046 0.063 -0.198

median 0.046 0.063 -0.198

LV_predictor

regressive 0.086 0.115 0.213

0.017expectation 0.071 0.094 0.470

median 0.093 0.116 0.198

LR_predictor

regressive 0.098 0.125 0.527

0.033expectation 0.094 0.121 0.557

median 0.113 0.143 0.384

Table 5.2. Performance of regressive control token predictors on the average
value of ASSET test set (Average Variance means the average value of the

variances calculated from different sentence pairs in ASSET test set).

Table 5.2 shows the performance of regression and expectation and median of

multi-classification predictors along with the average variance from the reference

sentences. The expectation is the weight product of all predictions with probabil-

ity, while the median is the prediction that splits the probability distribution into half.

The value of the MAE and RMSE is low (0.063–0.149) because the unit distance

between the two adjacent control tokens is 0.05.

Upon examining the performance of the predictors for different control tokens, no-

table variations can be observed. The DTD_predictor exhibits the highest R2 score
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among all four predictors, indicating the strongest ability to capture the relationship

between the value of the control token and the corresponding input sentences.

Following closely is the LR_predictor, which also demonstrates a respectable R2

score. In contrast, the LV_predictor in the regression method performs noticeably

worse compared to its counterpart in the classification method. The R2 scores are

positive for the predictors of dependency tree depth ratio, replace-only Levenshtein

ratio, and length ratio in both methods, indicating their proficiency in capturing the

desired relationship. However, the R2 score is negative for the predictor of word

rank ratio in both regression and classification methods, suggesting the failure of

the proposed predictor to effectively capture the corresponding feature. Lastly, the

performance of all classification predictors surpasses that of the regression predic-

tors in the direct evaluation.

5.3.2 Distribution of all control tokens
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Figure 5.2. The density distribution of predictions, average and values of all
reference sentences for DTD control token.

Figure 5.2 illustrates the density histograms of the predicted values, mean values,

and all values derived from the reference sentences for the DTD. The histogram

of all values in red dots exhibits a highly centralized impulse around the value of 1,

with a noticeable gap on both sides. The remaining values predominantly occupy

the left section of the distribution, ranging from 0.2 to 0.9. In contrast, the distribu-

tion of mean values, indicated by the green dashed line, demonstrates less cen-
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tralization and a closer approximation to a normal distribution. The median value

is approximately positioned near 0.85. Furthermore, by analyzing the predicted

values, we observe that the distribution of the classification model, depicted by

the blue solid line, shows a more evenly distributed pattern compared to the distri-

bution of the regression model, illustrated by the orange dash-dot line. This may

explain the reason for the better prediction of the mean values between the two

methods.
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Figure 5.3. The density distribution of predictions, average and values of all
reference sentences for WR control token.

Figure 5.3 shows the density histograms for the control token WR. The histograms

of all values in the red dots and the mean values in the green dashed line exhibit a

similar shape, with the median values tending to centralize around 0.9. However,

both the distribution of the regression model and the classification model appear

more concentrated around the value of 0.95. These observations regarding the

distribution align with the R2 scores presented in Table 5.2, indicating that the pre-

dictors struggle to capture the relationship between input sentences and the word

rank ratio when compared to the overall means.

Figure 5.4 illustrates the density histograms for the control token LV. The histogram

of all values in red dots exhibits a characteristic long tail, while the regression model

and mean values share a similar shape. However, considering the R2 scores pro-

vided in Table 5.2, it becomes evident that the classification model aligns more

closely with the mean value. This discrepancy may be attributed to the left section
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Figure 5.4. The density distribution of predictions, average and values of all
reference sentences for LV control token.

of the regression model, which registers values lower than 0.7. The observed dif-

ferences in the histograms clarify the performance of the predictors and their rela-

tion to the LV control token.
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Figure 5.5. The density distribution of predictions, average and values of all
reference sentences for LR control token.

Figure 5.5 presents the density histograms depicting the control token LR. Analyz-

ing the histogram of all means represented by the red dots, we observe that it ex-

hibits a less centralized distribution in comparison to the other three histograms.

However, despite this relatively dispersed nature, the mean value itself displays a

more centralized shape compared to the predictors. Notably, the histogram of the

classification model aligns closely with the mean value distribution, further reinforc-

ing the consistency between these two distributions. This aligns with the distribu-
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tion characteristics and the R2 scores presented in Table 5.2.
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(c) The box plot of distributions for
LV control token.
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Figure 5.6. The box plot of distributions of predictions, average and values of all
reference sentences for the four control tokens.

In Figure 5.6, we display the box plots for different data groups of the four control

tokens, illustrating various statistics such as maximum, upper quartile, median,

lower quartile, minimum, and outliers. In Figure 5.6a, similar to Figure 5.2, all val-

ues have the most outliers and the largest range, while the predicted methods show

higher concentration. The classification model overlaps more with mean values in

the quartiles compared to the regression model.

Figure 5.6b shows box plots for control token WR, providing insights into its distri-

bution. Similar to Figure 5.3, the box plot for all values overlaps more with mean

values. However, there is a notable long tail due to outliers, as reflected in the box

plots.

In Figure 5.6c, box plots for control token LV are examined. Consistent with Figure
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5.4, the classification model has a more centralized distribution, closely overlap-

ping with mean values. The regression model resembles the mean values, but the

classification model performs better. There are numerous outliers in all values, in-

dicating extreme data points.

Figure 5.6d presents box plots for control token LR. Although it is difficult to distin-

guish differences between the classification and regression models, the gap in per-

formance compared to mean values is evident. The box plot for all values aligns

with the histogram in Figure 5.5, showcasing diversity and variance.

5.3.3 Performance difference among models

Model MAE ↓ RMSE ↓ R2 ↑
BERT-base (Devlin et al. 2019) 0.098 0.125 0.527

distilBERT (Sanh et al. 2019) 0.108 0.134 0.458

Roberta-large (Y. Liu et al. 2019) 0.108 0.135 0.447

BERT-base with unfiltered training set 0.141 0.182 -0.008

Table 5.3. The performance of different regressive models on predicting Length
Ratio on filtered or unfiltered training set.

In order to demonstrate the performance difference across various models, we

present the results of regression models trained to predict the Length Ratio as an

illustrative example. The reason for choosing the Length Ratio as the only exam-

ple is that it has the highest average R2 score and the most distinct distribution in

all four control tokens. The performance comparison can be observed in Table 5.3,

where it is evident that the BERT-base model (Devlin et al. 2019) outperforms the

other two commonly used reference models in terms of both MAE and RMSE. To

validate the efficacy of the data filtering process, we also include the performance

of BERT trained on an unfiltered training set in the last row of the table. The ob-

served performance improvement in the filtered dataset further confirms the effec-

tiveness of the data filtering approach in enhancing the model’s predictive capabili-

ties.
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DTD WR LV LR

Regression

SARI ↑ 36.10 32.75 40.64 37.19

BERTScore ↑ 0.870 0.878 0.821 0.868

Expectation

SARI ↑ 36.66 32.67 40.95 37.69

BERTScore ↑ 0.863 0.880 0.830 0.864

Median

SARI ↑ 35.73 32.31 38.92 36.48

BERTScore ↑ 0.868 0.883 0.855 0.866

Average

SARI ↑ 37.66 35.78 41.16 39.88

BERTScore ↑ 0.859 0.861 0.837 0.849

optimisation joint

SARI ↑ 40.71 41.42 42.86 40.64

BERTScore ↑ 0.812 0.733 0.782 0.785

Table 5.4. Performance of single control token models with predictors on ASSET
test (Regression and Classification methods refer to the single control models

works with the control token predictors, average method means the control token
value is the average value of reference sentences and optimisation method is the

same as shown in Chapter 3).

Models SARI ↑ BERTScore ↑

Regression 42.30 0.833

Expectation 42.76 0.828

Median (Predicted) 40.74 0.850

Median (Calculated) 44.56 0.836

Average (Calculated) 44.55 0.816

optimisation joint 44.58 0.794

Table 5.5. Performance of control token model with predictors on ASSET test. The
top three rows are predicted values, and the bottom three rows are calculated or

optimised values.

5.3.4 Performance with control token predictors

Table 5.4 shows the SARI and BERTScore of single control token models with dif-

ferent methods. It is clear that the performance gap between the classification mod-

els and regression models aligns with it in the direct evaluation. As a comparison,

the scores of the average value calculated from the reference sentences and the

optimised value found on the test set are added. Although the SARI scores of pre-

dictors and the average value are lower than the optimised ones, BERTScore re-

mains higher. Among all the control tokens, the LV has the closest gap between

the two types of methods.

Similar to Table 5.4, Table 5.5 shows the SARI and BERTScore with 4 predictors
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working cooperatively with the combined control token model. The performance

difference still aligns with the previous table. However, the SARI score difference

between the average value and optimisation method is very low, while the aver-

age value maintains a higher BERTScore, which shows the average value of multi-

reference can be a proper approximation of the ideal value for each sentence.

5.3.5 Performance of hybrid method

Static control token SARI ↑ BERTScore ↑

DTD fixed at 0.35 43.97 0.813

WR fixed at 0.7 43.62 0.809

LV fixed at 0.85 42.98 0.839

LR fixed at 0.9 41.30 0.846

Table 5.6. The performance with only one static value of the control token (The
value is referred from Table 3.4).

Dynamic control token SARI ↑ BERTScore ↑

DTD 42.75 0.837

WR 43.24 0.833

LV 44.16 0.816

LR 44.61 0.808

Table 5.7. The performance with only one dynamic value of the control token and
the static value for the remaining control tokens are DTD:0.35, WR:0.7, LV:0.85

and LR:0.9 respectively (The value is referred from Table 3.4).

Considering the poor alignment and performance of single-control token models

for some of the predictors, we conducted a hybrid method of both optimisation and

prediction methods in Table 5.6 and 5.7. In Table 5.6, we replace the one predictor

with the fixed value, referred from the optimisation results in Table 3.4, and found

the impact of different control token predictors. It is clear that the DTD control to-

ken predictor has the biggest negative impact on the SARI score among all control

token predictors, while the LR has the least. By replacing the DTD predictor with a

fixed value of 0.35, we increased the SARI score from 42.76 to 43.97.

In Table 5.7, we replace one of the optimised values with predicted values from

the classification method and found the performance differences with control to-

ken predictors. Notably, the one with the DTD predictor still shows the largest drop

in the SARI score and the one with the LR predictor outperforms the optimisation
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method in both the SARI score and BERTScore.

5.3.6 Performance with Offsets

Model SARI ↑ BERTScore ↑ Offsets

Prediction with offsets 44.82 0.784 DTD:-6 WR:-3 LV:-2 LR:0

Prediction method 42.76 0.828 N/A

optimisation method 44.58 0.794 N/A

Hybrid method with LR predictor 44.61 0.808 N/A

Table 5.8. The performance of prediction method with manual offset ( x offset
means adding 0.05 · x to every predicted values of predictor models)

Compared to the optimisation method, we also conducted a manual offset on the

predicted value to explore the potential peak performance of the prediction method.

Along with the other referencing methods, the prediction method with manual off-

set outperforms the other three in the SARI score, which indicates the potential of

this method and the limitation of some predictors as well. While the default predic-

tion method maintains the best BERTScore. Similar to the results in 5.6 and 5.7,

the DTD predictor has the highest offset value and we have to shift the value to left

by 6 unit distance, which is minus 0.3 to every predicted value unless the shifted

value is smaller than the lower limit at 0.2. As for the other three, the LR predictor

works as intended, DTD and WR predictors require a reasonable offset only. One

possible reason for the requirement of offset to reach the peak performance is that

the model can hardly catch the relationship between the desired feature and the

input sentences. However, it is also possible that these control tokens are poorly

designed to learn or capture the feature of the sentences.

5.3.7 Migration to other datasets

Model SARI ↑ BERTScore ↑ Offset

Prediction method with offset 45.77 0.624 DTD:-6 WR:-3 LV:-2 LR:0

Prediction method 47.23 0.667 N/A

optimisation method 44.19 0.664 N/A

Hybrid method with LR predictor 46.32 0.635 N/A

Table 5.9. The performance of multi-methods on PWKP test set

We tested the same setting without altering the offset values and optimised values

in Table 5.8 on PWKP, Turk Corpus and Newsela test sets and reported the SARI
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Model SARI ↑ BERTScore ↑ Offset

Prediction method with offset 41.96 0.769 DTD:-6 WR:-3 LV:-2 LR:0

Prediction method 42.43 0.832 N/A

optimisation method 42.90 0.821 N/A

Hybrid method with LR predictor 42.01 0.798 N/A

Table 5.10. The performance of multi-methods on Turk Corpus test set

Model SARI ↑ BERTScore ↑ Offset

Prediction method with offset 36.23 0.615 DTD:-6 WR:-3 LV:-2 LR:0

Prediction method 32.98 0.644 N/A

optimisation method 33.66 0.623 N/A

Hybrid method with LR predictor 36.23 0.622 N/A

Table 5.11. The performance of multi-methods on Newsela test set

and BERTScore in Table 5.9, 5.10 and 5.11. In Table 5.9, the prediction method

holds the highest SARI score and BERTScore, while in Table 5.10, the optimisa-

tion method has the highest SARI score and prediction shows the highest BERTScore.

Notably, the hybrid method performs worse than the optimisation method in the

Turk Corpus test set. As for the Newsela test set, we found the best SARI score

from both hybrid offset methods. In addition, the default prediction method holds

the best BERTScore, which indicates the limitations of directly applying the optimi-

sation method to different datasets and verifies the improvement on the practicabil-

ity.

5.4 Case Study

5.4.1 Instances

Tables 5.12–5.14 show several examples of simplifications produced by optimisa-

tion and prediction methods and the output with average value as the reference on

the test set of the ASSET. All three outputs are from the same model with different

values of control tokens listed in the second column.

In Table 5.12, the optimisation method shows a typical factual error because of

the fixed values in control tokens. There is no relationship between ’website’ and

’magazine’ related to ’taken over’ in the source sentence. However, due to the LR

and LV ratios being fixed on the whole test set, the simplification from the optimi-
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Source The name survives as a brand for a related spin-off digital television channel, digi-

tal radio station, and website which have survived the demise of the printed maga-

zine.

Method Control token Output SARI BERTScore

optimisa-

tion

DTD_0.35

WR_0.85

LV_0.8 LR_0.85

The name survives as a brand for a related digital

television channel, digital radio station, and website

which have not been taken over by the magazine.

43.49 0.781

Predic-

tion

DTD_0.6

WR_1.0 LV_0.8

LR_0.7

The name survives as a brand for a digital televi-

sion channel, digital radio station, and website which

have also survived.

43.48 0.752

Average DTD_0.65

WR_0.95

LV_0.9 LR_0.85

The name survives as a brand for a related digital

television channel, digital radio station, and website

which have survived without the magazine.

41.37 0.779

Table 5.12. Examples of limitations of the optimisation method (changed the
meaning in the third row).

Source A few animals have a chromatic response, changing color in changing environ-

ments, either seasonally (ermine, snowshoe hare) or far more rapidly with chro-

matophores in their integument (the cephalopod family).

Method Control token Output SARI BERTScore

optimisa-

tion

DTD_0.35

WR_0.85

LV_0.8 LR_0.85

A few animals have chromatic response. They

change color in changing environments, ei-

ther seasonally (ermine, snowshoe hare)

or far more rapidly (the cephalopod family).

30.19 0.724

Predic-

tion

DTD_0.85

WR_0.95

LV_0.9 LR_0.6

A few animals have chromatic response. They

change color in changing environments, either sea-

sonally (ermine, snowshoe hare).

36.61 0.621

Average DTD_0.8

WR_0.8

LV_0.75 LR_0.8

A few animals have chromatic response,

changing color in changing environments,

either seasonally (ermine, snowshoe hare)

or more rapidly (the cephalopod family).

25.36 0.680

Table 5.13. Examples with mispredicted values (missing ’or’ clause in the third
row).

Source Since the end of the 19th century Eschelbronn is well known for its furniture man-

ufacturing industry.

Method Control token Output SARI BERTScore

optimisa-

tion

DTD_0.35

WR_0.85

LV_0.8 LR_0.85

Since the end of the 19th century, Eschelbronn

has become very famous for its furniture.

43.86 0.822

Predic-

tion

DTD_0.85

WR_1.05

LV_0.9 LR_0.8

Since the end of the 19th century Eschelbronn

is famous for its furniture making.

39.85 0.920

Average DTD_0.85

WR_0.95

LV_0.9 LR_0.8

Since the end of the 19th century Eschelbronn

is famous for its furniture making.

39.85 0.920

Table 5.14. Examples with properly predicted values.

sation method has to maintain a longer and more different sequence than the pre-

diction method in this case, which makes it tend to generate extra content to fulfil

the requirements. As a result, it generates false content and changes the meaning
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of the source sentence, which will mislead readers. This could be more common

in larger and more diverse datasets. Although the output of the prediction method

also changed the original meaning, it just loses some meaning without adding false

content. The output of the average value best preserves the meaning in this exam-

ple.

In Table 5.13, we show the consequence of misprediction. The output of the opti-

misation method and the average value is quite similar except the length of the op-

timisation method is a bit longer. In the prediction method, the output sentence is

incomplete due to the lower length ratio compared to the average value. Although

there is also a gap in the DTD ratio in optimisation and prediction methods, there

seems to be no obvious change in the syntactical complexity, which is aligned with

the limitations mentioned in previous sections.

While in Table 5.14, we show an example of desired predictions. Although there

are some small variances in the value of control tokens, the output of the prediction

method is identical to the output of the average value, which is used as the refer-

ence sentence. However, the optimisation method changes the original meaning in

the source sentence.

5.4.2 Mistakes and Analysis

We manually check the system outputs between the official system output of BART

trained on the Wikilarge from MUSS and ours. In Table 5.15, we listed the findings

and limitations of both models. The major differences include the following types:

• Shorter and separate sentences: We find many examples showing that our

system prefers to split a long sentence into several shorter sentences. This

may benefit aphasia people, who find it hard to follow very long sentences.

On the other hand, it may also set obstacles to people having difficulties un-

derstanding the pronouns.

• Hallucination and false content: Both systems still generate hallucination and

false content, which are inconsistent with the inputs. These false contents will
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undermine the practicality of the simplification systems. However, some of the

false contents are caused by the control tokens themselves and can be allevi-

ated by giving proper input value or a new control mechanism.

• Omitting contents: We also found that the two systems might have different

preferences in deleted contents. For now, there lack of proper control mecha-

nisms in control tokens to decide which part is the key information in the sen-

tence and needs further improvement.

Insights System outputs (MUSS followed by the best hybrid

method)

Our system’s output tends to generate

shorter sentences with demonstrative

pronouns.

They are castrated so that the animal may be more

docile and put on weight more quickly.

They are castrated so that the animal may be more

docile. It may put on weight more quickly.

Both systems show hallucination and false

content in some way. In the example, MUSS

falsely predicted the meaning of ’It’.

Stralsund is located on the coast of the Baltic Sea,

near the city of Stralsund.

It is located on the Baltic Sea. The city of Stralsund

is nearby.

Both systems show hallucination and false

content in some way. In the example, our

system fails to simplify the ’extremely

competitive’ with ’important’.

Admission to Tsinghua is very difficult.

Admission to Tsinghua is very important.

In this example, our system shows a more

readable output by sentence splitting and

replacing ’Public Broadcasting Service’ with

’television’.

She performed for President Reagan in 1988’s

Great Performances at the White House series on

the Public Broadcasting Service.

She performed for President Ronald Reagan in

1988’s Great Performances at the White House

series. The series was shown on television.

Both system outputs omitted some

information, ’motor racing championship’ in

MUSS and ’Brecia’ in ours.

The first Italian Grand Prix took place on Septem-

ber 4, 1921 at Brescia in Italy.

The first Italian Grand Prix

motor racing championship was held on Septem-

ber 4, 1921.

Table 5.15. More insights in the two systems

5.5 Discussion and Future Work

5.5.1 Overall Performance

In Table 5.2, the prediction of WR is less applicable in the four control tokens. In

addition, in Table 5.4, both the regression model and classification model for DTD

and WR show a much lower SARI score than the optimisation method, which indi-

cates the average value may not be an ideal approximation to the ideal values or
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the models fail to generate ideal simplification with the approximated ideal values.

While both methods for the other control tokens demonstrate decent performance

in the SARI score.

In Table 5.5, we show that the SARI score of the predictor methods and average

value for control tokens are lower than the optimisation method in the SARI score.

However, the BERTScore is significantly higher, which is reasonable since the goal

set in the optimisation method is to maximise the SARI score only. However, we

would like to emphasise the limitations of the SARI score. A sentence with a higher

SARI score is not necessarily more meaningful at the sentence level, because the

SARI score focuses on the word level operations. It is possible for a sentence full

of similar add, keep and delete operations to the reference with complete unread-

able order will still have a high SARI score. If the only goal is to chase the SARI

score, the model may generate some meaningless content.

5.5.2 Hybrid Method

In Table 5.6 and 5.7, we tested the hybrid methods with either the prediction method

or optimisation method to evaluate the effect of certain control token predictors.

Both tables show poor performance with the DTD predictor and WR predictor. How-

ever, unlike the poor alignment of WR in Table 5.2, the DTD demonstrates good

performance in the R2 score. The main reason for the poor performance with the

DTD predictor may be that this control token is not well designed to reflect the at-

tribute of sentences or it is not suitable for the model to learn. In addition, the opti-

misation method with the LR predictor outperforms the original optimisation method.

In Table 5.8, we tried to manually adjust the predicted value to maximise the SARI

score. The offsets of four control tokens reflect similar results to the four control

token predictors that the DTD predictor deviates from the expectation the most.

However, with manual tweaks, the prediction method can outperform the other meth-

ods, indicating the potential of this method.
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5.5.3 Migration to other datasets

Due to the lack of multi-reference and the small size of the PWKP, the SARI score

can be more diverse and extreme. In addition, there might be an overlap between

the training data for the predictor and the test set, so that the predicted value is

closer to the ideal value. Nonetheless, the prediction method outperforms the op-

timisation method by a large margin. The lower performance of the offset method

shows the predictors can better predict the value on the Wikipedia-based test set.

However, in Turk Corpus, due to the similarity between this test set and the AS-

SET, the prediction method fails to outperform the optimisation method in the SARI

score, but it still maintains a higher BERTScore. Lastly, the Newsela test set with

its unique genre and manual simplifications shows the universality of the predic-

tion method, which outperforms the optimisation method with offset. However, it

also proves that the predictors need more diverse training materials to better adapt

to different datasets. Tables 5.9, 5.10 and 5.11 demonstrate the adaptation ability

by directly applying the several methods with control token predictors on different

datasets.

5.5.4 Future Work

As shown in previous sections, both the predictors and the average values of DTD

and WR improves the SARI score marginally, which might be because of the de-

sign of these two control token. If some of the control tokens can hardly fulfil the

design purpose, it might be worth building some new control tokens or fulfilling the

designed goal differently. Another task is to extend the application scenario and

training material of control token predictors. For now, the predictor learns only from

the Wikilarge dataset, and can hardly serve the purpose of giving precise predic-

tions based on the needs of different user groups. To better achieve the goal of

customised simplification for different user groups, further improvement in the con-

trol token predictor mechanism is needed.

86



5.6 Conclusion

In this chapter, we proposed a new method with control token predictors to improve

the generalization ability of the controllable text simplification systems. As a con-

clusion, we tested the performance of predictors of different control tokens, pointed

the limitation of current control token predictors, increased the performance of cur-

rent controllable text simplification system with control token predictors with and

without optimised values.
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Chapter 6

Final Remarks

6.1 Conclusion

In this thesis, we answered the three research questions in Chapters 3, 4 and 5. In

Chapter 3, we give a thorough analysis of the single control tokens in SARI score,

BERTScore and case study to find how they affect the results in different aspects.

We reported the limitation of single control tokens and the effectiveness of the com-

bination of all control tokens. In addition, during the reimplementation of the SOTA,

we optimised the tokenization strategy and quantisation method and hence im-

proved the SARI score by 0.5 on the ASSET test set.

In Chapter 4, we designed a genre-specific test scenario for text simplification sys-

tems from the Simple-TICO 19 dataset and conducted detailed experiments on the

two types of models. In the experiment, we verified the effect of transfer learning

of controllable text simplification systems in certain domains and compared these

expert models with LLM such as ChatGPT. As a result, we analysed the results

and thought that the genre-specific or domain-specific models still play an impor-

tant role in the corresponding tasks.

In Chapter 5, we proposed a new approach to leverage the control tokens to in-

crease the practicability of the controllable text simplification systems. We investi-

gated the performance of control token predictors and compared them with the op-

timization method. We found that the newly proposed method can generate com-

parable or even better output than the previous system without requiring further in-

formation for the new dataset, which is crucial in real-world applications.
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As a conclusion, we made the following contributions in this thesis: providing an

easy-to-use implementation of the SOTA text simplification model; investigating the

effects of control tokens in both evaluations and practice; optimising the tokeniza-

tion strategy to improve the performance; proposing a genre-specific test scenario

for text simplification system; proving the effectiveness of transfer learning on the

domain-specific task with control token mechanism; comparing the performance of

the genre-specific fine-tuned model with LLMs in different situations; proposing a

different pattern of levering the control tokens for text simplification systems; verify-

ing the generalization and adaptation ability of newly-proposed system.

6.2 Discussion and Future Work

In this section, we would like to point out the problems of current seq-2-seq text

simplification systems and discuss potential solutions for the problems. During our

experiments, we found two major issues with the current test simplification sys-

tems:

One major issue to address is the hallucination and misinformation problem, as

shown in table 3.9, the enforced controlling of the output sentence may lead to mis-

information, especially when given improper value of control tokens. Similar is-

sues happen to the LLMs as well (M. Zhang et al. 2023; Lee, Bubeck, and Petro

2023), which could cause severe problems and hinder the application and popu-

larity of NLP systems. Many of the hallucination problems are presumably caused

by the lack of knowledge base in the system, which was solely trained on a general

dataset. However, it is impractical to train an LLM in every domain, thus we think

one of the ways to alleviate the problem is by combining the external knowledge

base with current LLMs.

The other issue is the lack of conceptual simplifications in the current text simpli-

fication systems. Although it is possible to ask the model about the definition or

explanation of terms or jargon or force the model to extend the simplification with

control tokens and expect to give a proper explanation to the complex words, these
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operations can hardly be done in one run and require further identification or tag-

ging on the target word. Given the condition, we consider one solution is decom-

posing the sentences into triplets and implementing text simplification on the triplets

level to identify the target word better.

Based on the discussion mentioned above, we plan to build a controllable text sim-

plification system with a knowledge base focusing on the triplets level. In order to

achieve this goal, we plan to introduce the knowledge graph as the external knowl-

edge base and develop a decompose-recompose system to cooperate with the

knowledge graph. There are three steps in the system, the first is to break the sen-

tences into triplets, the second is to combine the triplets with an external knowl-

edge graph and implement the lexical and conceptual simplification, and the last

step is to recover the modified triplets into sentences with a syntactical simplifica-

tion. With the help of this system, the two major problems can be alleviated and

solved with further research and development.
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Chapter A

Appendix

Detailed SARI and BERTScore for system decribed in Chapter 4.
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