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Abstract: Background: Atherosclerosis is a progressive disease that results from endothelial dysfunc-
tion, inflammatory arterial wall disorder and the formation of the atheromatous plaque. This results in
carotid artery stenosis and is responsible for atherothrombotic stroke and ischemic injury. Low-grade
plaque inflammation determines biological stability and lesion progression. Methods: Sixty-seven
cases with active perilesional inflammatory cell infiltrate were selected from a larger cohort of patients
undergoing carotid endarterectomy. CD68+, iNOS2+ and Arg1+ macrophages and CD31+ endothelial
cells were quantified around the atheroma lipid core using digital morphometry, and expression
levels were correlated with determinants of instability: ulceration, thrombosis, plaque hemorrhage,
calcification patterns and neovessel formation. Results: Patients with intraplaque hemorrhage had
greater CD68+ macrophage infiltration (p = 0.003). In 12 cases where iNOS2 predominated over Arg1
positivity, the occurrence of atherothrombotic events was significantly more frequent (p = 0.046).
CD31 expression, representing neovessel formation, correlated positively with atherothrombosis
(p = 0.020). Conclusions: Intraplaque hemorrhage is often described against the background of an
intense inflammatory cell infiltrate. Atherothrombosis is associated with the presence of neovessels
and pro-inflammatory macrophages expressing iNOS2. Modulating macrophage polarization may
be a successful therapeutic approach to prevent plaque destabilization.

Keywords: carotid atherosclerosis; macrophage; intraplaque neovascularization; atherothrombosis;
intraplaque hemorrhage
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1. Introduction

Carotid atherosclerotic disease is a complex condition characterized by endothelial
dysfunction, damage and progressive inflammatory changes, which can be a precursor
to stroke, leading to irreversible neurological deficits or death. Stroke, a pathology of the
elderly, is the second leading cause of death worldwide according to the latest statistics and
may appear in the case of moderate and severe carotid atherosclerosis, usually symptomatic,
due to unstable plaques [1–3]. Severe stenosis caused by atherosclerosis of the carotid artery
is responsible for more than 15% of strokes and transient ischemic attacks (TIAs), and this
stenosis occurs at the level of the common and internal carotid arteries [4,5].

Clinical studies have demonstrated that the grade of the stenosis is poorly correlated
with the symptomatology; therefore, intricate mechanisms might determine the activity
of a carotid lesion. Histopathological analysis of fragments removed by vascular surgery
showed a close correlation between plaque morphology and neurological symptoms (tran-
sient ischemic attack, minor stroke and major stroke). Patients with “vulnerable plaques”
(with surface ulceration, intraplaque hemorrhage, thinner fibrous cap and rich neovas-
cularization) are prime candidates for stroke because of a high risk of embolization and
thrombosis [6]. These vulnerable carotid plaques are characterized by a chronic inflamma-
tory process that develops in the endothelial layer of the arterial wall, involving the influx
of the monocytes from the blood, activation and migration of macrophages, development of
lipid deposits, smooth muscle proliferation and the appearance of neovascularization [7,8].
Lymphocytes also infiltrate the plaque and contribute to low-grade local inflammation.

There is a cause–effect relationship between arterial wall inflammation and neovas-
cularization of the plaque promoted by the release of vascular endothelial growth factor
(VEGF) by smooth muscle cells. These immature vessels serve as a port of entry for other
inflammatory cells, lipids and even red blood cells that contribute to plaque growth. At the
same time, infiltrated macrophages secrete metalloproteinases such as MMP-2, MMP-9 and
other collagenases that destroy connective fibrous tissue, thereby stimulating neovascular
growth—changes that lead to a vulnerable atherosclerotic plaque [9].

According to the classical viewpoint, morphological and immunohistochemistry
analyses of the atherosclerotic plaques identified two types of macrophages in the same
plaque—M1 pro-inflammatory macrophages with a glycolytic metabolism, which are
dominant in the symptomatic tissues and specific for unstable plaques, and M2 anti-
inflammatory macrophages with an oxidative metabolism, which are dominant in the
asymptomatic tissues and specific for more stable plaques. Several years ago, based on tran-
scriptomic data, a multi-dimensional model of macrophage activation was elaborated, and
now the dichotomic division to M1 and M2 appears to be mechanistic and simplistic [10].
Many marker molecules were associated with these functions, and it has been recognized
that the M1 subtype predominantly expresses CD16/32, CD80, CD86, MHC II and iNOS2,
whereas the M2 shows more CD163, CD204 (mannose receptor) and Arg1 positivity [11].
The predominance of one of these subtypes is directly influenced by the immune system
cells, especially by the cytokines and growth factors [12–15]. iNOS transforms L-arginine
into citrulline and vasodilatory nitric oxide (NO) but also produces free radicals. Arginase
acts on the same substrate, degrading it to L-ornithine, but it has two isoforms. Both
reduce the bioavailability of arginine for iNOS, but Arg2 causes NOS uncoupling and the
production of excess superoxide anions [16]. It is also possible that the arginases diminish
the inflammatory vasodilation due to the decrease in NO. Thus, these enzymes, despite
the complex phenotypes and activation models of macrophages, may confer a simple,
functional classification of macrophages producing ROS (iNOS positivity) and counterparts
with rather more reparatory activity (Arg1 positivity).

In addition, immunohistochemistry studies of atherosclerosis identified the presence
of neovascularization in the atherosclerotic plaque and indicated that neoangiogenesis
plays a role in the progression and complications of plaques [17–20]. Inflammation and
macrophage subtypes have been shown to play an essential role in angiogenesis. Plaques
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with many neoformation vessels are more unstable and prone to rupture, leading to
atherothrombotic complications such as intraplaque hemorrhage [15,21–23].

Numerous vascular smooth muscle cells around the atherosclerotic lesion interact
with inflammatory populations, providing plaque stability and preventing fibrous cap
rupture. The loss of these smooth muscle cells through senescence or apoptosis results
in increased macrophage content and necrotic core volume, decreased matrix content,
and significant fibrous cap thinning [24,25]. While the grade of carotid artery stenosis
is considered by guidelines to be the most important criterion in disease classification
and determining the indication for endarterectomy, recent evidence suggests that the
characteristics of atherosclerotic plaque may have a more direct influence on the occurrence
of stroke than stenosis alone. Therefore, here, we have characterized the heterogeneous
inflammatory micro-environment and microvessel composition from a relatively large
cohort of endarterectomy specimens, identifying a functional and phenotypical correlation
of macrophage subpopulations with the risk of thrombosis [26,27].

2. Materials and Methods
2.1. Patients and Tissue Fragments

The carotid plaque specimens whose morphological characteristics are processed in
this study were obtained via endarterectomy from 119 patients diagnosed with symp-
tomatic carotid artery (CA) stenosis (according to the European Society for Vascular
Surgery, 2023 definitions) [26] hospitalized between 2020 and January 2022 at the Vas-
cular Surgery Clinic—County Emergency Clinical Hospital and the Cardiovascular Surgery
Clinic—Cardiovascular Disease and Transplant Emergency Institute of Târgu Mures,
(Romania). Plaque fragments obtained from the site of maximum stenosis were immedi-
ately fixed in 10% buffered formaldehyde, decalcified in ethylene–diamine–tetra-acetic
acid (EDTA) solution (pH 7), embedded in paraffin, processed using standard histological
methods, and evaluated by histopathological examination.

Based on the results of a previous study [28], 75 cases with an active perilesional in-
flammatory infiltrate were selected for further immunohistochemical studies to characterize
the monocyte–macrophage component of this mononuclear infiltrate.

Of the 75 re-examined sections stained with hematoxylin and eosin (H&E), 67 tissue
samples were of sufficient quantity and quality for immunohistochemical examination
and digital morphometry. The main morphological changes leading to plaque instability
were recorded: new vessel formation (angiogenesis), the pattern of calcification (type,
position, and extent), presence and structure of the lipid core (lipid-rich large necrotic core
or hyaline-rich core), atherothrombosis, intraplaque hemorrhage, fibrous cap damage (with
or without parietal thrombus fragments), each scored as present or absent [28]. We also
immunohistochemically characterized the infiltrating macrophages and their subtypes and
the density of neovascularization.

Since the type of calcification in fibrohialinous lesions of atheromatous plaque is
difficult to distinguish from H&E staining and can be misleading, we also used von
Kossa’s special staining to clarify the pattern of calcification, with particular attention to
the identification of microcalcification foci.

Atherothrombosis was defined as plaque disruption and consequent platelet deposi-
tion on the injured vessel wall [29]. Intraplaque hemorrhage was defined by the extravasa-
tion and accumulation of blood components and fibrin deposition within the atheromatous
plaque clearly visible on H&E stained sections [30,31]. However, for the selection of cases
with this modification, we also used CD31-immunostained sections, which visualize both
the density of neovascularization and the rupture of the neovascular wall with consec-
utive intraplaque hemorrhage. CD31 immunolabelling has also helped to characterize
atherothrombosis more accurately, indicating a lack of continuity of the intima at the site of
clot adhesion to the inner arterial wall.
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2.2. Immunohistochemistry for Macrophage Density, Subtyping, and Detection of Vessel Density
in the Atherosclerotic Plaque

Anti-CD68 mouse monoclonal antibody, clone IC70A (Agilent, Dako Santa Clara, CA,
USA) was used to identify the macrophage population, followed by iNOS2-positive M1
(clone RBT, BioSB) and Arg-1 M2 (clone EP261, BioSB) subtype specification according to
the manufacturer’s instructions.

In parallel with the macrophage study, plaque neovascularization was also assessed
using an anti-CD31 antibody (clone 1A10, BioSB) combined with an anti-SMA antibody
(clone BSB-15, BioSB). EnVision FLEX/HRP (Agilent, Dako Santa Clara, CA, USA) sec-
ondary antibody in combination with 3,3’-diaminobenzidine chromogen (DAB) substrate
visualized the reaction product as a brown color. Cell nuclei were counterstained with
hematoxylin. As a negative control, normal serum was substituted for the primary anti-
body. We interpreted all three immunomarkers against positive internal controls for these
reactions. Positive controls for CD68 and CD31 reactions were immunolabelled foam cells
of the lipid core, endothelial cells of the intima and endothelium of the vasa vasorum. SMA
expression at the level of immature vessels was reported in the immunolabeling of smooth
muscle cells of the media.

2.3. Assessment of Intraplaque Neoangiogenesis

The presence or absence of intraplaque neoangiogenesis was initially assessed on
H&E-stained sections. Plaques were considered revascularized in the presence of small to
large, thin-walled, neoformed vessels with dilated or collapsed lumen without or with poor
smooth muscle cells (Figure 1a,b). These vessels covered by CD31-positive endothelium
often coexist with CD31-positive endothelial cell buds (vascular precursors) (Figure 1c).
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Figure 1. (a) SMA-immunostained carotid artery wall fragment affected by atherothrombosis at
the level of the plaque with a proliferation of newly formed vessels ranging from microvessels (with
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reduced/collapsed lumen) to dilated branching vessels with irregular lumen (circled). (b) These
immature and dysmorphic vessels lack SMA-positive smooth muscle cells (blue arrows) or show
discontinuity of SMA-positive immunolabelled coverage (red arrows). (Immunolabel was reported
to be positive for endogenous control on media and myofibroblasts within the plaque, visualized
by 3,3’-diaminobenzidine chromogen, 10×magnification.) (c) Revascularized plaque with small to
large, thin-walled, neovascularized vessels covered by CD31-positive endothelium (blue arrows).
Immature vascular elements in the form of endothelial cell buds (red arrows) can also be observed
(CD31 immunohistochemistry in combination with 3,3’-diaminobenzidine chromogen, original
magnification × 4).

2.4. Semi-Quantitative Scoring of the CD68+ Mononuclear Inflammatory Infiltrate

Based on the density of CD68-labelled macrophages around the plaque, they were
classified as low-grade (score 1) or high-grade (score 2–3). Score 1 was considered a reduced
CD68+ infiltrate, representing less than 5% of the cellular population around the lipid core
examined with ob.4 (Figure 2a). Score 2 was characterized by immunolabelled cells between
5 and10% of the total peri-lesional cell pool (Figure 2b). If the number of positive cells
exceeded 10%, the case was classified as score 3 (Figure 2c). To accurately characterize the
abundance of macrophages, we quantified immunolabeling by determining the positive
surface area using a digital morphometry method.
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Figure 2. Scoring of the density of CD68 labeled monocytes/macrophages around the plaque. (a) Score 1:
few positive CD68 cells representing less than 5% of the cell population around the lipid core (marked
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with a red star). (b) Score 2: immunolabelled cells between 5 and 10% of the total perilesional cell
pool. Score 3: number of positive cells greater than 10%. (c) CD68/3,3’-diaminobenzidine chromogen
immunohistochemistry, original magnification × 4.

2.5. Digital Image Analysis Method to Measure Quantitative Individual Plaque Characteristics
(CD68, Arg1, iNOS2, CD31)

A total of 242 microphotographs were obtained from representative regions containing
the most cells or vascular elements detected by immunolabelling (hotspot method) at 10×
magnification using the AxioLab5 microscope connected to a Zeiss AxioCam 8 digital
camera (Figure 3).
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Figure 3. (a) Hotspot method: choice and annotation of the most representative regions containing
the most immunolabelled elements (original magnification ×2). (b) CD68-positive mononuclear
cell density in the area selected for digital image analysis (CD68/3,3’-diaminobenzidine chromogen
combination, original magnification × 10).

Quantitative analysis of all carotid plaque images was performed using ImageJ soft-
ware (ImageJ 2 for macOS, version 2.3.0, NIH, National Institute of Health, Bethesda, MD,
USA). Images were imported into ImageJ software. The percentage of CD68-, iNOS2-,
Arg1- and CD31-positive cells was calculated relative to the total area of the imaged area
(positive relative area). For the Arg1/iNOS2 composition, we defined a cut-off value of
1 and classified our cases into Arg1-dominant and iNOS2-dominant cases (Figure 4). We
considered iNOS2 characteristic for M1 and Arg1 for M2 macrophage subtypes.
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Figure 4. Detection of pro-inflammatory (M1) and anti-inflammatory (M2) monocyte/macrophage
subsets in histological regions corresponding to highly reactive cell pools. Arg1+ (a) versus
iNOS2+ (b) cells within the “inflammatory hotspot”. Visualization by immunohistochemistry (3,3′-
diaminobenzidine chromogen, original magnification × 4).

2.6. Statistical Analysis

Variables with discrete values and transformed continuous variables were assessed
for absolute and relative distribution frequencies. We performed the analysis of 2 × 2
contingency tables with Fisher’s exact test and of 3 × 2 contingency tables with the Pearson
χ2 test. Non-linear logistic regression models were set up to determine the predictors of
ulceration and atherothrombosis. In all tests, p values < 0.05 were considered statistically
significant. Procession and statistical analysis of data were performed using Microsoft Excel
2016 (Microsoft Corporation, Redmond, WA, USA) and GraphPad Prism 9.5.1 (GraphPad
Software LLC., San Diego, CA, USA).

3. Results
3.1. Study Group Characteristics

A total of 67 cases (47 men and 20 women) with a mean age of 65 years were included.
All patients had severe carotid stenosis (>70%). Bilateral carotid involvement was diag-
nosed in 23 (34.3%) patients; 60 (89.5%) had hypertension at the time of admission; 55
(82.1%) also had coronary artery disease; 11 (16.4%) had associated peripheral arterial
disease; and in 16 of them, two or three arterial beds were involved (carotid, coronary,
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limb). Sixteen patients had diabetes (type II, 23.9%), and all but one had some form of
dyslipidemia (total cholesterol >200 mg/dL, serum triglycerides >150 mg/dL). Fourteen
cases had neutrophilia (PMNs > 7.0× 109/L), three lymphocytosis (LYMPHs > 3.5× 109/L)
and nine monocytosis (MONOs > 900 × 109/L) (Table 1).

Table 1. Demographic factors, atherosclerotic plaque characteristics, immunohistochemistry parame-
ters, complete blood count parameters.

Demographic Factors

Age (years) 65.4 ± 1.1

Gender (male/female) 47 (70.1)/20 (29.9)

Plaque characteristics

Ulceration (yes/no) 40 (59.7)/27 (40.3)

Atherothrombosis (yes/no) 13 (19.4)/54 (80.6)

Intraplaque hemorrhage (yes/no) 30 (54.5)/37 (45.5)

Necrotic lipid core (yes/no) 55 (82.1)/12 (17.9)

Microcalcification (yes/no) 36 (53.7)/31 (46.3)

Superficial/deep calcification (yes/no) 25 (37.3)/42 (62.7)

Macrocalcification (yes/no) 17 (25.3)/50 (74.7)

Neovascularization (yes/no) 41 (61.2)/26 (38.8)

Immunohistochemistry parameters Positive surface area

CD68+ surface (%) 1.37 ± 0.14
iNOS2 + surface (%) 0.48 ± 0.08
Arg1 + surface (%) 1.79 ± 0.20
CD31 + surface (%) 0.69 ± 0.10

Complete blood count parameters

Neutrophils (109/L) 5.89 ± 0.28
Lymphocytes (109/L) 2.11 ± 0.09
Neutrophil/Lymphocyte ratio 3.38 ± 0.67
Monocytes (109/L) 0.76 ± 0.08

Medication

Anti-hypertensive drugs (yes/no) 65 (97)/2 (3)
Anticoagulants 63 (94)/4 (6)
Anti-aggregants 67 (100)/0 (0)
Statins 65 (97)/2 (3)

Continuous variables are presented as mean ± SE. Binomial variables are presented as absolute numbers, and
percentages are given in brackets.

3.2. Histological Signs of Complicated Plaque

Most specimens had a large, necrotic lipid core (82%), while 59% showed ulceration,
54% intraplaque hemorrhage and 19% atherothrombosis. Microcalcifications were present
in 53%, while macrocalcifications were present in 25% of the samples (Table 1).

3.3. Correlation of the CD68+ Infiltrate Grade with Signs of Plaque Complication

Macrophage density in the non-core lesion area was scored as previously described
and expressed as weak (score 1) or strong (score 2, 3) infiltrate. In a 2 × 2 contingency
analysis, these categories did not show significantly different distributions for ulceration,
thrombosis or neovascularization. However, CD68+ scores 2/3 were significantly more
associated with intraplaque hemorrhage than score 1 (p = 0.003), with 24 cases (60%) in the
first group and only 6 patients (23%) in the second group (Table 2).
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Table 2. Correlation of the CD68+ infiltrate grade with plaque complication.

CD68+ Infiltrate Density

Score 1 Score 2–3 p Value

Ulceration (yes/no) 14/12 26/14 0.318
Atherothrombosis (yes/no) 5/21 8/32 1
Intraplaque hemorrhage(yes/no) 6/20 24/16 0.003
Neovascularization (yes/no) 18/9 23/17 0.609

Incidence is shown as an absolute number. p values calculated by Fisher’s exact test.

3.4. Comparison of the Arg1-Dominant vs. the iNOS2-Dominant Groups

We used digital morphometry to assess CD68+ macrophages as the main elements of
the cellular infiltrate. We also quantified the Arg1+ and iNOS2+ surface area within the
“inflammatory hotspot” surrounding the lipid core to determine the dominance of the M2
or M1 subtype. We defined a cut-off value one and divided our cases into Arg1-dominant
(n = 55) and iNOS2-dominant (n = 12) cases. The two groups showed a significant difference
in the occurrence of atherothrombosis (p = 0.046), with the iNOS2+-dominant specimens
presenting this complication more frequently (41.7% vs. 14.5%). None of the other plaque
characteristics showed a significantly different distribution between the groups. The
CD68+ surface was almost the same in both groups (1.38% (Arg-1-dominant) vs. 1.33%
(iNOS2-dominant)). The absolute numbers of neutrophils, lymphocytes, monocytes and
the neutrophil/lymphocyte ratio were comparable between the groups (Table 3).

Table 3. Correlation of Arg1+ and iNOS2+ with demographic factors, plaque complications and
complete blood count characteristics.

Groups Arg1/iNOS2 ≥ 1 (n = 55) Arg1/iNOS2 < 1
(n = 12) p Value

Demographic factors

Age (years) 65.5 ± 1.2 64.8 ± 1.9
Gender (male/female) 36 (65.5)/19 (34.5) 11 (91.6)/1 (8.4) 0.090

Plaque characteristics

Ulceration (yes/no) 33 (60)/22 (40) 7 (58.3)/5 (41.7) 0.990
Atherothrombosis (yes/no) 8 (14.5)/47 (85.5) 5 (41.7)/7 (58.3) 0.046
Intraplaque hemorrhage (yes/no) 23 (41.8)/32 (58.2) 7 (58.3)/5 (41.7) 0.348
Necrotic lipid core (yes/no) 45 (81.8)/10 (18.2) 10 (83.3)/2 (16.6) 1.000
Microcalcification (yes/no) 29 (52.7)/26 (47.3) 7 (58.3)/5 (41.7) 0.760
Superficial/deep calcification(yes/no) 19 (34.5)/36 (65.5) 6 (50)/6 (50) 0.345
Macrocalcification (yes/no) 13 (23.6)/42 (76.4) 4 (33.3)/8 (66.6) 0.482
Neovascularization (yes/no) 31 (56.3)/24 (43.7) 10 (83.3)/2 (16.6) 0.108
CD68 + area (%) 1.38 ± 0.16 1.33 ± 0.35 0.740
CD31 + area (%) 0.68 ± 0.12 0.75 ± 0.23 0.502

Complete blood count
parameters

Neutrophils (109/L) 5.72 ± 0.29 6.65 ± 0.78 0.226
Lymphocytes (109/L) 2.08 ± 0.09 2.24 ± 0.23 0.491
Neutrophil/Lymphocyte ratio 3.27 ± 0.36 3.38 ± 0.67 0.692
Monocytes (109/L) 0.64 ± 0.03 0.76 ± 0.08 0.245

Continuous variables are presented as mean ± SE. Binomial variables are presented as absolute numbers and
percentages in brackets. Comparison of variables with discrete values was performed using Fisher’s exact test
(2 × 2 groups) and Pearson χ2 test (3 × 2 groups). For continuous variables, the Mann–Whitney U test was used
to compare groups. The level of statistical significance was set at p = 0.05.

3.5. Correlation of Neovascularization with Other Histological Signs of Plaque Instability

Perilesional inflammation was associated with plaque neovascularization in only
41 cases. In these cases, neovascularization, observed as the presence of newly formed
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intraplaque microvessels, was associated with a significantly higher CD31+ surface area
than in 26 samples without this phenomenon (1.07 ± 0.14% vs. 0.05 ± 0.05%, p < 0.001).
Ulceration (n = 40) and hemorrhage-positive plaques (n = 30) had slightly, but not signifi-
cantly, higher values of CD31+ surface area than their negative counterparts (0.72 ± 0.16%
vs. 0.61 ± 0.11%, p = 0.607 and 0.69 ± 0.20% vs. 0.66 ± 0.11%, p = 0.324). In contrast, in the
13 plaques with atherothrombosis, the CD31-positive area was significantly higher than in
the plaques without atherothrombosis (1.02 ± 0.20 vs. 0.61 ± 0.12, p = 0.020) (Figure 5).
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4. Discussion

In this cohort study of endarterectomy specimens obtained from patients with symp-
tomatic stenosis, we have provided a detailed oversight of the inflammatory composite ele-
ments that make up the ulcerated hemorrhagic and potentially unstable micro-environment
within what are essentially heterogeneous atherosclerotic plaques. It is important to note
that we included exclusively those cases from our previous work which did show a mononu-
clear cell infiltrate around the atheroma core lesion (n = 67). Our specific goal was to further
define the relationship between active macrophage infiltration, the neoangiogenic processes,
and potential thrombotic capacity within the developing intimal core.

The co-expression of immature irregular and leaky intimal microvessels has previ-
ously been linked to the development of ‘soft’ inflammatory and foam cell-loaded plaques
susceptible to rupture [7,8]. This is often associated with significant inflammatory infiltrate
concomitant with extracellular matrix breakdown and thinning of the protective fibrous
cap. Macrophages, as mobile elements sensitive to danger signals and effectors heavily
loaded with degradative enzymes and reactive oxygen species, possessing reparative ca-
pacities, are by far the most important players in the structural transformations of the
atheroma. The modified American Heart Association consensus classification clearly de-
fines the evolutional stages from cap thinning to erosion and rupture, where macrophage
accumulation and metalloproteinase secretion have a key role [32]. The whole spectrum of
macrophages comprises a variety of phenotypes, among which we find the destructive and
pro-inflammatory M1 and the opponent M2 subtype endowed with reparatory functions.
There are well-known classification markers of these macrophage subclasses, and several
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studies have previously analyzed their characteristics and distribution in carotid atheroma-
tous plaques. Stöger et al. investigated the distribution of M1- and M2-type macrophage
subpopulations in stable and unstable carotid plaques, post-mortem aortic plaques and
early lesions of mixed origin. These authors examined the expression of CD68, iNOS,
CD86, HLA-DP/Q/R, dectin-1, the scavenger receptor MARCO and CD163 in plaque
shoulders, fibrous caps and adventitial tissue. They found that both M1 and M2 markers
were overexpressed in these lesions and described a differential distribution of the two
cell subtypes in the rupture-prone regions. M1-associated patterns such as iNOS, MHC II
and CD86 were characteristic of foam cells, and the class A scavenger receptor, MARCO
(macrophage receptor with collagenous structure), showed low expression, whereas M2
type 2 markers, mannose receptor, dectin-1 and CD163 accumulated in the perivascular
adventitial tissue [33]. De Gaetano et al. described the accumulation of macrophages, pre-
dominantly of the M1 subtype, and smooth muscle cells in the vessel wall of symptomatic
plaques. Symptomatic plaques were associated with greater hemorrhagic activity and signs
of fibrosis, necrosis and calcification, whereas M2 markers (MR, CD163 and dectin-1) were
more strongly expressed in stable plaque regions [16]. Shaikh et al. studied 32 patients with
carotid endarterectomy and 25 with femoral endarterectomy and classified the intraplaque
subpopulations with CD68, iNOS, MHCII and SOCS3 (M1-type) versus CD68, dectin-1,
CD163 and SOCS-1 (M2-type). Both CD3+ T cells and CD68+ macrophages were more abun-
dant in carotid plaques. Expressions of iNOS, MHC II and SOCS 3 were higher, whereas
CD163, SOCS-1 and dectin-1 expressions were lower in carotid samples [34]. Another
study confirmed a higher vulnerability of symptomatic carotid plaques and an upregu-
lation of CD68+ and CD11c+ cells, in contrast to the CD163+ infiltrate of asymptomatic
atheromatous lesions [35].

CD68 is a type I transmembrane glycoprotein widely used for immunohistochemical
identification of macrophages. Some bias has been shown in its associated proteomic
profiles; specifically, it is associated with stronger iNOS2 and Arg1 expressions than
CD163 [36]. This was one reason why we used a simplified approach to characterize the
intra-plaque infiltrate, quantifying iNOS2 and Arg1; another important consideration was
that these enzymes define two mutually regulated steps of the same biochemical pathway,
arginine degradation.

Here, we found that in those plaques with mononuclear cell invasion, the intensity
of the CD68 infiltrate was significantly associated with intraplaque hemorrhage. We have
characterized the expression of CD68-positive macrophages within the intimal cores of
studied plaques, showing that higher macrophage presence was associated with more
evidence of plaque hemorrhage, and more specifically, in these inflammatory ‘hotspots’,
where there was evidence of atherothrombosis, M1 macrophages (designated by staining
with anti-iNOS-2) were the predominant phenotype [12–14]. We also highlighted that
increased CD31 expression, as a sign of neovascularization, was characteristic of cases
with atherothrombosis. It is important to note that we only calculated the CD31 positivity
associated with the neovessels in this comparison. Thirdly, we have shown that higher
iNOS2 expression is associated with atherothrombosis, and this result is in line with the
results mentioned above. Moreover, our protocol was more focused since we specifically
studied the infiltrate of the region surrounding the lipid core (regardless of its size and
necrotic nature), excluding the foam cells.

In our cohort, more than half of the 67 histological specimens showed microcal-
cification, which, in our previous study, proved to be a strong determinant of plaque
ulceration [28]. However, in the present cases, all with a mononuclear cell inflammatory
infiltrate, none of the calcification patterns showed significant associations with the subtype
of the macrophages (Arg1 or iNOS2 dominant).

In general, angiogenesis seen within growing plaques indicates instability and likely
hemorrhage. Evidence has shown that endothelial cells of neointimal vessels can originate
following activation and trans-migration of vasa vasorum of the adventitia. Hence, strong
pro-inflammatory signaling from macrophage-rich microenvironments could be the switch
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that instigates this [37]. In this study, microvessels from the intima showed heterogeneous
size, shape, and patency, some bearing stabilizing smooth muscle cells. The frequency was
correlated with atherothrombotic regions.

Several studies have indicated that blocking macrophage activity in vivo could help
stabilize and slow down the growth of arterial plaques. For example, Tang et al. used
nanoparticles to direct simvastatin to infiltrate regions in ApoE4 mice, successfully block-
ing macrophage proliferation and slowing plaque growth [38]. Li et al. summarized
the importance of M1 macrophages as instigators of plaque progression, suggesting the
possibility of their use as a clinical biomarker [39]. Macrophage infiltration is not the
exclusive determinant of their accumulation in the atheroma. In the past years, it has
turned out that macrophage retention is also a crucial, signal-driven process [40]. As part
of patients’ lipid-lowering strategies are inefficient, macrophage dynamic polarization
and flux evaluation will become helpful tools for assessing therapeutic efficiency to reach
regression. Methodologically, various in vivo imaging techniques have been proposed, like
Förster-resonance energy transfer with fluorescent reporters or sodium iodide symporter
coupled with 99mTc-single-photon emission computed tomography [40,41]. These results
suggest the importance of plaque inflammatory activity monitoring in at-risk patients,
and apparel functional, non-invasive, and inexpensive imaging techniques with such a
potential [42].

One limitation of this study was that we did not characterize the currently active
microvessels using antibodies such as CD105. CD105 proved to be more sensitive than
CD31 in staining microvessels in carotid arteries of diabetic patients, possessing a greater
affinity for activated endothelial cells and correlated with the grade of stenosis in advanced
carotid atherosclerosis [43,44]. Another limitation is that we studied a cohort with a
relatively reduced number of subjects. Our study was retrospective and the observations
made exclusively on severe carotid stenosis patients with recommendation for carotid
endarterectomy. Thus, the results cannot be generalized to other populations with less
severe carotid stenosis, but with vulnerable plaques. Further studies should aim to examine
in more detail the relationship between actively growing immature vessels, macrophage
phenotype and local secretion of matrix destabilizing proteins. Future targeting of arterial
‘hotspots’ encouraging fibrous proliferation might be one therapeutic mechanism to stabilize
potentially thrombotic intimal zones [45], while macrophage M1-radiolabelled tracers could
support enhanced imaging to identify vulnerable regions at risk of thrombosis [46].

5. Conclusions

In this study, we focused on the carotid atherosclerotic plaques with an active perile-
sional inflammatory infiltrate and correlation with their histological and immunochemistry
signs specific for unstable plaques: ulceration, thrombosis, intraplaque hemorrhage, lipid
core, calcification and neovascularization.

Our results release the following aspects about inflammatory atherosclerotic plaques of
patients with severe carotid stenosis: (1) most of the plaques had a large necrotic lipid core,
while ulceration, intraplaque hemorrhage and microcalcifications were present in more than
50% of the cases; (2) massive infiltrate with CD68+ macrophage in lipid-core surrounding
lesional area was associated with intraplaque hemorrhage; (3) considering the non-foam
cell macrophage population, the M2 subtype of macrophage was the dominant one in our
specimens, but the subtle representation of the iNOS2+ M1 subtype in the hotspot region
was significantly associated with atherothrombosis; (4) plaque neovascularization identified
with CD31+ high areas were correlated with atherothrombosis; (5) absolute neutrophil,
lymphocyte, monocyte counts and neutrophil/lymphocyte ratios were comparable between
M1- and M2-dominant groups.

Based on our results, we hypothesize that even if we have carotid plaques that create
high-grade artery stenosis, their complications, specific to the unstable plaques, may appear
and lead to neurological disorders like transient ischemic attack or stroke. Furthermore,
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multidisciplinary studies are needed to prevent the development of complications from
carotid atherosclerotic inflammatory plaques.
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