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Abstract
The improper disposal of discarded electronic and electrical equipment raises environmental and health concerns, span-
ning air pollution to water and soil contamination, underscoring the imperative for responsible management practises. This 
review explores the complex composition of discarded printed circuit boards (DPCBs), crucial components in electronic 
devices. Comprising substrates, electronic elements and solder, DPCBs showcase a heterogeneous structure with metal 
(30.0–50.0%) and non-metal (50.0–70.0%) fractions. Notably abundant in precious metals such as Au, Ag, and Pd, DPCBs 
offer a compelling avenue for recycling initiatives. The inclusion of heavy metals and flame retardants adds complexity, 
necessitating environmentally sound disposal methods. Ongoing research on smart disassembly, utilising 3D image recogni-
tion technology, underscores the importance of accurate identification and positioning of electronic components (ECs). The 
targeted approach of smart disassembly, centred on valuable components, highlights its significance, albeit with challenges 
in equipment costs and capacity limitations. In mechanical disassembly, techniques such as grinding and heat application 
are employed to extract ECs, with innovations addressing gas emissions and damage induced by overheating. Chemical 
disassembly methods, encompassing epoxy resin delamination and tin removal, present promising recovery options, whilst 
the integration of chemical and electrochemical processes shows potential. Efficient sorting, encompassing both manual and 
automated methods, is imperative post-disassembly, with smart sorting technologies augmenting accuracy in the identifica-
tion and categorisation of ECs. In addition, explorations into  NH3/NH4

+ solutions for selective metal recovery underscore 
challenges and stress the necessity for meticulous process optimisation in environmentally sustainable PCB recycling. Chal-
lenges and future perspectives have also been expounded.
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Introduction

The continuous progression of modern lifestyles, technologi-
cal advancements and global economic growth has resulted 
in a growing issue of electronic waste (e-waste), which poses 
significant concerns for the environment and public health 
[1, 2]. The e-waste industry is a significant sector that is 
expanding at an annual rate of approximately 2 million 

tonnes (Mt), with the potential to reach 74.7 Mt by the year 
2030 [3]. The global volume of e-waste has seen a sharp 
increase, reaching 53.6 million tonnes in 2019, marking a 
21% rise since 2015 [4]. Alarmingly, a substantial 83.0% of 
the total e-waste produced in 2019 remained undocumented, 
raising concerns that it might be openly burned or disposed 
of illegally, posing serious threats to human well-being and 
the environment [5]. In contrast, only 17% of the e-waste 
generated in 2019 was collected and properly recycled.

When examining e-waste generation on a continental 
scale, Asia led the way in 2019, accounting for 46.4% of the 
global total, followed by America at 24.4%, Europe at 22.4%, 
Africa at 5.4% and Oceania at 1.3% [6]. It is worth noting 
that although Asia produced the most e-waste amongst con-
tinents, it had a lower per capita waste generation at 5.6 kg 
per person, mainly due to its large population of 4.40 billion. 
In contrast, Europe (16.2 kg/inh), Oceania (16.1 kg/inh) and 
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the Americas (13.3 kg/inh) had higher per capita e-waste 
generation. Africa stood as the lowest e-waste generator, 
with just 2.5 kg per person [6]. Therefore, the adoption of 
effective waste management methods and the secure disposal 
of e-waste has emerged as a worldwide imperative to reduce 
the health risks to people and the environmental damage 
associated with the practise of landfilling [7, 8].

Metals, encompassing varying metal elements and alloys, 
metalloids and rare earth elements, collectively referred to 
as ‘metals,’ are in exceptionally high demand, playing an 
indispensable role in the development of modern cities and 
technological products [9]. Meeting the continuously grow-
ing demand for metals has become a challenging task due to 
the declining quality of ore sources [10, 11]. Certain metals 
such as rare earth elements, Li, Co, Cu, Sn Zn, Al and Fe 
amongst others are categorised as critical metals owing to 
their supply vulnerabilities and substantial economic sig-
nificance [12, 13]. In the past decade, materials containing 
metals at the end of their useful life, often referred to as 
metal-bearing wastes, have gained widespread recognition as 
secondary resources for critical raw materials. This acknowl-
edgement stems from the fact that the metal content in such 
wastes is comparable to that found in natural ores [9, 14, 
15]. For instance, e-waste can contain Cu levels up to 26.0 
times higher and Au content up to 50.0 times higher com-
pared to ores and concentrates [16]. Most of the available 
base, precious and hazardous metals in e-waste are land-
filled in the printed circuit boards (PCBs). The recycling of 
discarded PCBs (DPCBs) can indeed prove to be profitable 
serving as a means of conserving valuable resources and 
acquiring potentially hazardous yet valuable elements [17]. 
For instance, materials recovered from e-waste amounted 
to approximately $57 billion in 2019 [18]. Before material 
recovery from e-waste can be done effectively, an under-
standing of the disassembly and sorting of electronic com-
ponents (ECs) is essential.

This review stands out in the literature by not only exam-
ining the detailed composition of DPCBs and the recovery 
of precious metals but also by addressing contemporary 
knowledge gaps. Existing review papers extensively cover 
mechanical, hydrometallurgical, pyrometallurgical and bio-
metallurgical processes for metal recovery from DPCBs. 
However, recent literature on material composition, mod-
ern e-waste disassembly, sorting methodologies and metal 
recovery via ammoniacal solutions is limited [19–21]. 
Review papers on these processes have been published 
extensively [22–25]. Our review comprehensively aims to 
fill this void, concentrating on the latest advancements in 
e-waste disassembly and sorting techniques, particularly 
exploring the recovery of metals through ammoniacal solu-
tions  (NH3/NH4

+). By investigating these crucial aspects, we 
provide an invaluable resource for researchers and environ-
mentalists, offering essential insights into resource recovery 

from DPCBs and other electronic waste components. This 
holistic approach distinguishes our review, positioning it as 
an up-to-date and informative guide in the field of electronic 
waste management.

PCBs and their categories

PCBs constitute a notable portion of e-waste, comprising 
discarded items, such as televisions, MP3 players, comput-
ers, laptops and appliances [26, 27]. They contribute around 
3.0–5.0% of the total mass of e-waste [28]. PCBs play a cen-
tral role in EEE by enabling both mechanical and electrical 
connections. These connections are established using con-
ductive pathways, tracks, or signal traces that are etched onto 
a non-conductive substrate. This substrate involves layering 
Cu sheets to facilitate the functioning of various components 
[29]. The recycling of DPCBs has posed a challenge due 
to their intricate and convoluted structures alongside their 
compositions. Hence, it is vital to assess and comprehend 
the structural and compositional aspects of PCBs before 
embarking on the recycling process.

The distinct designs of PCBs in different EEE items make 
the recycling of DPCBs a highly intricate process. Outlin-
ing the types and arrangements of PCBs is vital for creat-
ing recycling methods that are both cost-effective and envi-
ronmentally conscious. PCBs can be sorted based on their 
physical attributes, chemical compositions and intended 
applications. The fundamental composition of PCBs is the 
Cu-clad laminate, which comprises organic substrates, such 
as polyimide, epoxy resin with glass fibre reinforcement, 
and polytetrafluoroethylene [30–32]. This laminate incorpo-
rates various metallic elements, including valuable metals, 
to achieve internal electrical connectivity within the board 
[33]. Categorised by their structure, arrangement, and board 
configuration, PCBs can be classified into the following cat-
egories, based on the number of layers and board forms:

 (i) Single sided: They are usually applied to televisions 
and household appliances. In addition, they feature a 
conducting layer on just one side of the laminate and 
these designs are straightforward to produce.

 (ii) Double sided: These employ conducting layers on 
both sides of the laminate to establish connectivity 
and are utilised in instrumentation, computers, and 
light-emitting diode lighting, amongst others.

 (iii) Multi-layer: They consist of three layers of printed 
wiring, interconnected by metallised holes that link 
the various layers. This kind of PCB design is found 
in medical equipment and satellite systems.

 (iv) Rigid: Through the use of a rigid substrate, the board 
is effectively safeguarded against twisting. They have 



Journal of Material Cycles and Waste Management 

similar applications to single, double, and multi-layer 
PCBs earlier highlighted.

 (v) Flex: They are easily bendable, foldable, and coil-
able. They also have the same application as single, 
double, and multi-layer PCBs. Furthermore, these 
kinds of PCBs can be used to meet specific demands, 
such as achieving intricate shapes.

 (vi) Flex-rigid PCBs: These categories of PCBs are 
ideal for creating streamlined designs, which in turn 
reduces both the overall board size and its weight 
[34–36].

Most electronic devices adopt a multi-layer structure due 
to the advantages of reduced PCB sizes and increased chip 
density. Figure 1a provides the geometry of major types of 

Fig. 1  a Geometric structure of six main types of PCBs, adapted from [37]; b four major sources of DPCBs
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PCB [37]. These PCBs consist of six substrate fibreglass 
layers, two insulating fibreglass layers, conductive tracks, 
and solder masks. Notably, there are distinctions between 
PCBs in various electronic products. For instance, desktop 
computers incorporate two copper foil layers, whilst video 
devices feature only one. These variations in metal content 
result in diverse economic benefits at the end of the life cycle 
of PCBs [34, 38, 39].

Based on the content related to Ag, DPCBs can be cat-
egorised into three grades: (a) low (< 100.0 g/t), (b) medium 
(100.0–400.0 g/t) and (c) high (> 400.0 g/t) grades [29]. The 
recycling focuses primarily centres on high- and medium-
grade DPCBs due to their substantial Au, Ag and Pd content, 
which constitute about 90.0% of their inherent value. A more 
detailed classification approach was introduced by Oguchi 
et al. by considering different metal contents and annual 
quantities to label DPCBs as high, medium or low grade 
[40]. For instance, metals such as Al and Cu from items 
such as refrigerators, washing machines and air conditioners 
fall under the high-grade category. Conversely, items such 
as personal computers, mobile phones and video games are 
considered high grade due to their Au and Ag content. The 
wider spectrum of DEEE originates from various sources, 
including household appliances, medical equipment in hos-
pitals, office machines in government and private sector 
offices [35]. This is highlighted in Fig. 1b, and it aims to 
provide a clear means of sorting these materials.

Material constituents of DPCBs

PCBs play an essential role as fundamental components 
in a diverse range of electronic and electrical devices, as 
previously mentioned. These boards are primarily com-
posed of substrates, ECs and solder. The substrate, a critical 
element, is predominantly fabricated by bonding polymer 
(resin), glass fibre cloth and metal Cu foil together [41]. A 
combination of multiple metals (constituting approximately 
30.0–50.0% by weight of DPCBs) and non-metals (compris-
ing around 50.0–70.0% by weight of DPCBs) is integrated 
within the structure of the PCBs [32]. This is needed to 
establish effective connections amongst the distinct com-
ponents within electronic devices. Within the domain of 
e-waste, the metallic makeup of PCBs displays variability 
influenced by factors such as the specific categorisation 
of discarded materials, the origin of the materials and the 
manufacturing timeframe of the PCBs. DPCBs inherently 
harbour significant quantities of precious metals, rendering 
them an exceptionally enticing segment within the electronic 
waste domain, and consequently establishing them as a par-
ticularly alluring stream for recycling initiatives [23, 33].

Typically, PCBs are composed of 30.0–35.0% by weight 
of metals, 24.0–30.0% by weight of resins and 32.0–35.0% 

by weight of refractories [23, 42]. Around 69 distinct met-
als can be found in e-waste, with most of these metals being 
extractable from PCBs, waste from subscriber identification 
modules, and discarded memory modules [43]. On average, 
the metallic components present in DPCB primarily com-
prise the following ranges: 11.0–28.0 wt% Cu, 8.0–36.0 wt% 
Fe, 3.0–20.0  wt% Al, 2.0–5.0  wt% Pb, 1.0–4.0  wt% 
Ni, 200.0–2800.0 ppm Ag, 150.0–2000.0 ppm Au, and 
30.0–350.0 ppm Pd, based on the type of electronic device 
involved [34, 44, 45]. Metal contents in DPCBs are much 
higher than those in ore, indicating its economic potential for 
the recovery of precious metals such as Au, Ag and Pd, and 
base metals, such as Cu, Fe, Al, etc. [46]. DPCBs encom-
passes also hazardous heavy metals, notably Pb, As, Hg, Cd, 
Se and Cr. Amongst these, certain heavy metals such as Cd, 
Pb and Hg exhibit non-biodegradable properties, resulting 
in their tendency to readily bioaccumulate within biological 
entities [47]. The composition of various metals and other 
substances in DPCB as reported in the literature by various 
authors is presented in Table 1. Fluctuations in metal con-
centration and type are determined by their specific appli-
cations; for instance, devices such as cell phones demand 
superior connectivity, leading to higher levels of precious 
metals within them. The heterogeneous nature of DPCBs 
and the method of detection also contribute significantly to 
the variation in the results obtained by different authors. 
Cu is predominantly found in its elemental state within the 
wiring and connections and because it is very soft, and it is 
usually laminated/alloyed with Ni in the contacts [48, 49].

Precious metals and platinum group metals (PGMs) find 
regular application in components that necessitate elevated 
conductivity, such as central processing units (CPU), random 
access memory and specific contact points [32, 63]. Nev-
ertheless, the quantities of precious metals found in DPCB 
have somehow diminished in recent times due to resource 
scarcity and advancements in technology [23]. Pb, Zn and Sn 
are employed in the creation of solder, whilst Ag and Au are 
added for specific electrical connections and sensitive mem-
brane switches [64, 65]. In addition, the primary presence of 
Au is within memory chips, as discussed previously by some 
researchers [66]. Furthermore, Ta capacitors usually contain 
a significant amount of the scare metal Ta, constituting about 
30.0–40.0 wt% of the component [67]. It is worth noting that 
approximately 34.0% of the worldwide Ta production was uti-
lised in Ta capacitors in 2016. This situation underscores the 
significance of discarded Ta capacitors as a noteworthy res-
ervoir of Ta. Recovering tantalum from these waste tantalum 
capacitors becomes a crucial avenue to address the depletion of 
tantalum resources [68, 69]. In multi-layer ceramic capacitors, 
there is a distinct concentration of Pd as noted by researchers 
[70]. In the context of DPCBs, the majority of Al, along with 
some Fe, originate from capacitors [64, 71]. Cu is the foremost 
economically crucial base metal for extraction across all types 
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of PCBs. The economic value ranking (recovery significance) 
of e-waste follows this order: CPUs > , computers PCBs with 
wire ≥ fax PCBs ≥ mobile phones PCBs ≥ copy machines 
PCBs > televisions PCBs > computers PCBs without wire [45].

The non-metallic portion of PCBs constitutes around 
65.0–70.0% and is normally discarded in landfills [72]. 
Research findings indicate that the non-metal fraction is 
composed of specific elements, with glass fibres accounting 
for approximately 65.0% of its weight, followed by epoxy 
resins making up about 32.0% by weight and a few impuri-
ties of about 3.0% Cu and less than 0.1% solder [73]. These 
materials are integrated into the PCBs to confer both robust 
thermal stability to the boards and effective insulating attrib-
utes at elevated temperatures [74]. The plastic component of 
DPCBs contains minimal levels of halogens, which serve as 
flame retardants to curb combustion. This includes brominated 
flame retardants (BFRs) that contain polybrominated diphenyl 
ethers (PBDEs) and tetrabromobisphenol A (TBBPA) [75, 76]. 
Elements such as Si, C, Cl, B, Br, S, P, F and I which are non-
metals have also been found in DPCBs, as reported by some 
authors [77–79]. In addition, there are residual metals present 
in this fraction [80, 81].

Methods for disassembly of discarded 
electronic components

The initial and pivotal stage in attaining the recycling of 
ECs involves the ecologically and economically sound disas-
sembly of ECs on DPCBs. Utilising an array of desoldering 
techniques aimed at detaching the ECs from the DPCBs, the 
primary objectives encompass the following:

 (i) To facilitate the efficient recycling of materials such 
as Cu, Al, Zn, Fe, Sn, Al, Au, Ag, Pd, phenolic resin 
and others from DPCBs, mitigating the subsequent 
intricate procedures linked with diverse ECs.

 (ii) The extraction of non-destructive ECs, such as obso-
lete chips, can subsequently be repurposed for the 
maintenance of products or in cases where demand-
ing performance criteria are not applicable.

 (iii) Identification and categorisation of non-reusable ECs 
for the extraction of valuable precious metals.

 (iv) Implementation of environmentally benign treat-
ments for ECs containing hazardous or toxic com-
ponents [33, 82].

Table 1  Composition of different kinds of DPCBs

Composition (wt%)

 Nature of DPCB Cu Al Zn Fe Sn Ni Pb Ag Au Pd Ca References

Desktop computers 14.47 1.03 0.10 0.11 0.97 0.03 0.07 0.01 – – 4.49 [50]
Desktop computers 17.84 9.55 0.23 0.20 1.19 0.06 1.00 0.01 – – – [51]
Desktop computers 52.36 1.01 11.48 3.38 10.31 0.15 5.01 1.24 ×  10−2 4.4 ×  10−3 6.5 ×  10−4 – [52]
Personal computers 19.34 – 0.11 6.89 2.16 0.26 1.01 – – – – [53]
Central processing units 30.51 9.44 0.27 9.44 1.80 3.61 0.83 0.13 – – – [45]
Digital video disc 17.80 10.10 1.99 5.51 2.57 0.36 3.33 – – – 0.88 [54]
Vacuum cleaner 7.08 3.26 5.54 4.40 2.75 0.26 3.71 – – – 0.65 [54]
Mobile phones 27.83 3.70 0.75 1.30 1.50 2.00 0.29 0.13 0.06 0.01 1.80 [55]
Mobile phones 34.38 3.00 0.05 0.39 0.02 0.61 0.42 1.50 ×  10−2 – – – [56]
Mobile phones 28.66 0.38 0.15 0.39 1.50 0.80 0.39 8.18 ×  10−2 1.76 ×  10−2 6.8 ×  10−3 – [57]
Mobile phones 47.90 – – 0.50 2.00 0.80 – 0.13 0.10 0.01 – [58]
Mobile Phones 32.62 1.52 1.70 1.46 2.37 2.93 1.55 0.47 0.14 0.04 – [59]
Mobile phones 33.50 1.41 1.92 2.32 3.16 2.50 1.20 0.36 0.14 0.03 – [60]
Printers 32.50 3.73 0.64 1.42 0.96 0.34 0.00 0.31 4.0 ×  10−3 – 1.13 [61]
Television 10.00 10.00 – 28.00 0.30 1.00 2.80 ×  10−2 2.0 ×  10−3 1.0 ×  10−3 – [62]
Televisions 14.44 4.14 2.06 5.00 3.61 0.24 2.18 4.30 ×  10−2 – – – [45]
Copy machine 21.29 5.06 0.93 4.81 2.51 0.35 1.29 0.13 – – – [45]
Fax machine 21.03 6.14 1.26 6.57 3.04 0.57 1.77 0.14 – – – [45]
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Presently, various disassembly methods, encompassing 
manual, smart, mechanical and chemical approaches, are 
employed to separate ECs from DPCBs. Manual unsoldering 
of ECs is prevalent within some domestic workshops, pri-
marily aiming to recycle high-value ECs. In general, electric 
soldering iron and manual tin absorbers are commonly uti-
lised for the direct removal of components. In addition, elec-
tric tin absorbers are employed for the extraction of directly 
inserted components, whilst hot air guns are utilised for the 
removal of surface-mount devices [33]. However, manual 
EC dismantling exhibits low disassembly efficiency. Moreo-
ver, certain risks, such as electrolytic capacitor explosions 
and the release of poisonous gases, could pose serious harm 
to the operator’s well-being [83]. Manual dismantling fails 
to meet the prerequisites of safe production and presents 
difficulties in achieving large-scale application [33, 83]. 
In contrast, alternative disassembling processes have been 
comprehensively documented and put into practise within 
the industry. Consequently, this section predominantly intro-
duces the principles and specific implementation procedures 
of smart, mechanical and chemical disassembly. The respec-
tive advantages and disadvantages of each approach are also 
analysed following each section.

Smart disassembly

Presently, there is an increasing focus on the utilisation of 
artificial intelligence in the smart disassembling of ECs. The 
pioneering development of smart dismantling equipment 
was carried out by Feldmann’s group [84]. Before initiating 
the automated disassembling process, the ECs that are suit-
able for reuse and contain toxic substances require manual 
disassembly. Following this, for components necessitating 
specific disassembly methods, their positional information 
is obtained using 3D image recognition technology based 
on the vision of the machine. These components are then 
automatically disassembled using mechanised devices. Sub-
sequently, for the left-over components, infrared radiation 
is usually employed to raise the temperature of the DPCBs. 
As the solder reaches its melting point, all the remaining 
components are detached. Finally, a visual identification 
system is deployed to perform automatic categorisation of 
these components through visual recognition. Subsequently, 
Kopacek et al. introduced a design blueprint for an intel-
ligent and adaptable disassembly cell [85, 86]. They then 
advanced this concept by creating a semi-automated disas-
sembly setup that encompasses a vision system, a laser des-
oldering system, a robot-assisted removal station, an infrared 
heating removal station, and a storage area for de-soldered 
components. They emphasised that the machine vision sys-
tem’s precision in identifying ECs within the setup should 
not fall below a 95.0% threshold. Nonetheless, their studies 
did not refer to the disassembly rate.

Marconi et al. introduced an innovative robotic system 
designed for the smart disassembly of ECs with an excep-
tional damage-free rate of 100.0% [87]. This system uti-
lises wave soldering as the initial step to remove solder 
from DPCBs. Subsequently, a suction gripper mounted on 
a mobile robot arm is employed to pick up the dislodged 
ECs. One notable feature of this robotic system is that each 
component is equipped with sensors and controllers, allow-
ing for precise regulation of the disassembly process at any 
given moment. Based on test results, it takes approximately 
2 min and 17 s to process a DPCB, and the ECs that are 
disassembled can be directly reused on a new PCB without 
requiring additional processing steps. Recently, researchers 
have developed and put into operation a disassembly system 
focussed on capacitors, both electrolytic cylindrical capaci-
tors and solid dielectric capacitors, positioned on DPCB 
[88]. This setup encompasses a versatile six-axis industrial 
robot, specialised sensors and custom tools. Employing this 
tool, the success rate achieved by the authors after the end 
of the separation process reached 75.0%.

In summary, ongoing investigations into smart disas-
sembly underscore the pivotal role of 3D image recognition 
technology, underpinned by machine vision, in the identi-
fication and precise positioning of ECs on DPCBs. Given 
the diverse array of DPCBs and ECs, coupled with varying 
dimensions within the same component class, image recog-
nition technology constitutes a primary and essential phase 
[89]. Achieving effective image recognition necessitates 
the acquisition of comprehensive information regarding the 
constituents of various ECs and PCBs—a task that entails 
substantial data processing. Moreover, the hallmark of smart 
disassembly lies in its targeted approach. Particularly, the 
retrieval of valuable ECs appears more suitable, consider-
ing the high costs associated with smart assembly systems, 
which are designed to handle one circuit board at a time [90, 
91]. The strengths of smart disassembly lie in its automation 
and the precise extraction of specific ECs. On the flip side, 
its weaknesses encompass the considerable costs of equip-
ment and its restricted capacity.

Mechanical disassembly

Disassembly of ECs at a mechanical level includes mechani-
cal desoldering, achieved through mechanical grinding, as 
well as desoldering through the application of heat. The 
popular methods for heat-based desoldering encompass hot 
air heating, infrared heating and liquid heating amongst oth-
ers [82]. Once the solder reaches a melting point exceeding 
250.0 °C, an external force becomes necessary to disengage 
ECs from the main board. Typical techniques for separa-
tion involve ultrasonic vibration, mechanical scraping, pulse 
injection and so on [92]. In addition, the inherent forces 
within the ECs, such as gravity, electromagnetic force and 
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centrifugal force, can also be harnessed to facilitate their 
detachment from the substrate [33, 93]. With this mechani-
cal disassembly method, the solder can melt and be extracted 
at around 260.0 °C. Nevertheless, there is an unavoidable 
emission of harmful gases from the organic constituents of 
the DPCBs, including flame-retardant substances [94].

To prevent gas emissions and prevent local overheating-
induced damage to ECs, Wang et al. designed a disassembly 
system paired with a gas purification system, depicted in 
Fig. 2a–e [62]. According to the authors, this device boasts 
three distinct characteristics. The first feature is the heating 
process which involves the electric heating tube working in 
tandem with the circulation of hot air, providing the neces-
sary heat for the disassembly of components. This heating 
technique ensures uniformity in the temperature distribu-
tion, conserves energy and reduces the harm to ECs. The 
elevated platform which supplies the required vibrational 
force for the component disassembly procedure is the second 
great feature of this device. Last but not least is the off-gas 
purification mechanism which is integrated into the setup. 

With disassembly parameters set at 265.0 ± 5.0 °C for tem-
perature, 10.0 rpm for rotation speed and 8 min for incuba-
tion time, the solder is effectively and completely extracted. 
Furthermore, this fabricated system produces no emissions 
of pollutants.

Chemical disassembly

Chemical disassembling has emerged as a promising 
approach to efficiently recover valuable components and 
metals from DPCBs. This part of the article delves into three 
key categories of chemical disassembly methods, DPCBs 
delamination, and tin removal technology whilst highlight-
ing the integration of chemical and electrochemical pro-
cesses for enhanced recycling.

DPCBs delamination: dissolving epoxy resin

The DPCBs delamination process focuses on dissolving 
the epoxy resin that encapsulates the ECs. Organic solvents 

Fig. 2  Structures of a electronic components (ECs) automatically disassembling machine and b off-gas purification device; photographs of c 
ECs disassembling system, d internal structure and e feed inlet. Copyright 2023, with permission from Elsevier [62]



 Journal of Material Cycles and Waste Management

such as dimethyl sulfoxide, N, N-dimethylpyrrolidone, 
dimethylacetamide, dimethylformamide cyclohexanone, 
γ-butyrolactone, tetrahydrofurfuryl alcohol and dimethyl 
malonate are employed for this purpose [39, 95, 96]. To 
expedite the dissolution process, techniques such as ultra-
sonic treatment, at low temperature (50.0 °C), and reducing 
the size of DPCBs have been employed [34]. However, chal-
lenges arise due to the potential harm these solvents can pose 
to the environment and human health.

Chemical tin removal: recovering solder

Another critical aspect of DPCBs is the solder, usually 
composed of a Sn alloy. Chemical tin removal technology 
involves transforming the solder into an ionic state through 
the use of strong acids/bases, including, but not limited to, 
HCl,  HNO3, aqua regia, NaOH, and powerful oxidation solu-
tions [33, 64, 97, 98]. A notable challenge in this process is 
the potential dissolution of other metals along with the sol-
der. To address this, an innovative approach has been devel-
oped recently, such as utilising  HBF4 with  H2O2 to achieve 
selective desoldering whilst preserving metals, such as Cu, 
Sn, etc. [99–101]. The introduction of the oxidant facilitated 
the effortless removal of ECs from the board whilst preserv-
ing their desirable external characteristics. For instance, the 
research group of Guan employed a combination of meth-
anesulfonic acid (MSA) solution and  H2O2 to effectively 
dissolve the solder present in DPCBs [100]. By utilising a 
solution consisting of 3.5 mol/L MSA with 0.5 mol/L  H2O2, 
they achieved an impressive leaching rate of nearly 100.0% 
for Sn–Pb, whilst the total dissolution rate of Cu remained 
below 5.0%. This high efficiency was achieved within a reac-
tion time of 45 min. Most recently, Soni et al. employed 
grey relational analysis and the Taguchi technique to iden-
tify the optimal conditions for solder treatment [102]. They 
found that the best results were attained by employing a 
solution containing 2.5 mol/L  HBF4, 0.40 mol/L  H2O2 and 
3.0%  HNO3. After a 40-min reaction period, the solder was 
completely dissolved, and the ECs could be easily detached. 
Importantly, this process did not adversely affect the colour, 
symbols or characters on the surface of the PCB.

Combining chemical and electrochemical processes

One compelling advancement in chemical disassembling 
is the integration of chemical and electrochemical pro-
cesses, offering a comprehensive solution for both recov-
ering ECs and reclaiming metals from DPCBs. Fogarasi 
et al. successfully implemented a leaching system con-
stituted by 0.3 mol/L  FeCl3 in 0.5 mol/L HCl that not 
only disassembles ECs from DPCBs but also facilitates 
the electrowinning of Cu from Cu-rich leaching solutions 
[103]. This approach yielded high-purity Cu deposits 

(Cu > 99.9%) with high current efficiency and low energy 
consumption. Cocchiara et al. proposed a similar strat-
egy involving  H2SO4–CuSO4–NaCl solutions, resulting in 
undamaged ECs and high-purity Cu with minor impuri-
ties [104]. Whilst chemical disassembling offers numerous 
advantages, including simplicity, cost-effectiveness, and 
versatility in handling various DPCBs, challenges persist. 
Proper disposal of waste liquids, the potential damage 
caused by strong inorganic acids to ECs, and the devel-
opment of environmentally friendly and economically 
viable desoldering chemicals are areas that require atten-
tion. Moreover, enhancing the regeneration and recycling 
of reagents is essential to reduce costs and environmental 
impact.

Sorting of electronic components

To facilitate the reuse of ECs after the disassembly process, 
it is essential to classify them based on their function and 
nature. Hence, it is imperative to develop environmentally 
friendly component sorters for ECs, including DPCBs and 
others. E-waste treatment involves a combination of man-
ual and automated sorting procedures, with manual meth-
ods predominantly employed in developing nations, whilst 
developed countries utilise automated systems [105]. In 
recent times, advanced technologies such as smart sorting 
equipment, contour vision sensors, and robotics have also 
been adopted for e-waste sorting. For instance, Katti et al. 
developed a machine vision system that can effectively sort 
and automatically separate ECs according to their functions 
[106]. The system successfully distinguishes between ECs 
such as integrated circuits, capacitors, relays, and rectifi-
ers. Its cost-effectiveness is attributed to the use of a simple 
webcam and a basic microcontroller for identification and 
sorting. Recently, Naito et al. also proposed a PCB recycling 
system based on deep learning techniques, which performed 
well in the identification and categorisation of recycled com-
ponents [107]. In this system, a mechanical gripper equipped 
with sensors utilises convolutional neural networks to pro-
cess images, enabling the identification of different types of 
ECs and their subsequent separation. One drawback of this 
system is its insufficient recognition accuracy and speed, 
coupled with a low success rate when clamping with the 
robot. Notably, a recent study by Lu et al. introduced an 
automated sorting system specifically designed for ECs sep-
arated from DPCBs [108]. This system utilised smart sort-
ing equipment driven by an emerging image detection algo-
rithm, all within an inert nitrogen environment. It is essential 
to stress that sorting constitutes the initial and indispensable 
stage in metal extraction processes for e-waste treatment.
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Recovery of metals from DPCBs mediated 
by ammonia/ammonium solutions

In the pursuit of efficiently recovering metals from DPCBs, 
researchers have explored various methods, with a particu-
lar emphasis on selectivity due to the presence of multiple 
metals and complex chemical compositions. One approach 
involves the use of solutions containing  NH3/NH4

+ mixtures. 
 NH3 is relatively inexpensive and readily available, making 
it an attractive choice for leaching processes compared to 
other reagents. In addition, it can be selective in dissolv-
ing specific minerals or metals, which can be advantageous 
when extracting valuable elements from ores or waste mate-
rials [109].

In a study conducted by Liu and Kao, ammonia-based 
solutions were found to be effective, especially when the pH 
was maintained at 10.0, and a low S/L ratio was employed, 
resulting in the highest Cu extraction from PCB sludge 
rich in Cu and Pb [110]. PCB sludge typically refers to the 
residue or waste generated during the treatment or process-
ing of PCBs. It may contain various substances, including 
metals, chemicals and other contaminants, depending on 
the methods used in PCB recycling or disposal processes. 
Oishi et al.’s investigation centred on the recovery of Cu 
from waste PCBs using ammonium sulphate and chlorine 
solutions and found that ammonium sulphate exhibited 
greater selectivity compared to the chloride system [111]. 
Furthermore, research by Yang et al. utilised an ammonia-
based system with ammonium sulphate solutions, achieving 
a notable 96.7% Cu recovery under specific conditions [112]. 
This emphasised the significance of ammonia concentration, 
liquid-to-solid ratio and temperature control. Moreover, a 
remarkable 98.0% Cu recovery was accomplished using an 
ammonium citrate solution with ammonia, highlighting the 
importance of ammonia content, S/L ratio, stirring rate and 
controlled temperature [113]. Nevertheless, the ammoniacal 
leaching system’s selectivity for Cu also results in the dis-
solution of Zn and Ni from PCB components, forming stable 
ammine complexes [109]. However, when electrowinning 
is employed for Cu extraction, impurities and organic com-
pounds from PCB dissolution pose challenges, resulting in 
reduced Cu purity and increased current voltage and energy 
consumption [114–116]. These challenges emphasise the 
need for meticulous process optimisation in PCB recycling 
to achieve efficient and environmentally sustainable recov-
ery. In addition, despite the benefits of utilising an ammonia-
cal leaching system, which includes cost-effectiveness and 
high selectivity, it is important to acknowledge the potential 
hazards associated with the decomposition and volatility of 
 NH3 during the leaching process, as it can pose risks to both 
human health and the environment.

Environmental and health effects of some 
toxic substances present in DPCBs

DEEE comprises a multitude of vital constituents, encom-
passing PBCs and assorted noxious compounds as previ-
ously described. Inadequate disposal and repurposing of 
DEEE can engender the liberation of various injurious 
substances, thereby exerting deleterious effects on atmos-
pheric, aquatic and terrestrial domains, as well as human 
well-being [117, 118]. Electronic waste harbours dangerous 
substances and deleterious additives, which, if dispersed via 
unsuitable handling and disposal methodologies, can present 
a substantial peril to the quality of the atmosphere [119]. 
Furthermore, the reclamation activities related to e-waste 
encompass conveyance, disassembly of materials, incinera-
tion, and, notably, the metallurgical extraction of constitu-
ents such as Au and Cu from DEEE. These operations are 
predominantly practised in economies with modest means, 
often within informal frameworks, giving rise to air pollu-
tion primarily due to the incineration and metallurgical pro-
cessing of e-waste, thereby discharging aerial contaminants 
into the atmosphere [120]. The disassembly of e-waste also 
serves as a source of volatile organic compounds [121]. Prior 
investigations have unveiled that a diverse array of hazard-
ous airborne pollutants can be discharged during the incin-
eration of e-waste, giving rise to polyhalogenated aromatic 
hydrocarbons, dioxins, polycyclic aromatic hydrocarbons, 
furans and substantial quantities of particulate matter.

Numerous DEEE gadgets contain hazardous metals 
that possess the capacity to contaminate water sources if 
subjected to improper disposal practises. Hg represents a 
significant constituent within e-waste, manifesting in all 
three states, and has the potential to contaminate water bod-
ies, particularly when existing in its liquid phase, and can 
persist for extensive periods [122]. Outcomes of a preced-
ing investigation elucidated that unregulated recycling of 
e-waste exerted adverse effects on aquatic life, seafood, rice 
and crops, accumulating heavy metals, as well as affecting 
livestock with enduring airborne pollutants [123]. Further-
more, e-waste is predominantly discarded and exported from 
developed nations to developing nations in Asia, Africa, the 
Middle East, etc. Reports have demonstrated that roughly 
12.5% of such waste undergoes rudimentary recycling meth-
ods, leading to the release of toxic substances into the eco-
system [119]. Beyond persistent organic pollutants, a multi-
tude of heavy metals pervade the groundwater and rivers of 
developing countries and render their water unsuitable for 
consumption and culinary use [124]. Furthermore, DPCBs 
cannot only contaminate water but also produce significant 
volumes of wastewater during the process of gathering Cu 
particles [125].
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The impact of e-waste also extends to soil and its bio-
logical constituents. The accumulation of electronic waste 
in elevated terrains and disposal sites, notably in nations 
including various African countries (Egypt, Nigeria, South 
Africa, Ghana etc.), and Asian countries (India, China, and 
Pakistan) have had repercussions on the microbial popula-
tion existing within contaminated locations. Modifications 
in the microbial community hold the potential to consid-
erably influence soil’s ecological functions. To illustrate, 
e-waste encompasses heavy metals such as Hg, Pb, Cd, Ni, 
As, Cr, and persistent organic pollutants, engendering the 
diminution of the conventional microbial biota within the 
soil [126]. An instance pertains to a study conducted in a 
southeastern Chinese region engaged in e-waste dismantle-
ment, which revealed profound Cd and Cu contamination 
of the soil due to unregulated e-waste dismantling activities 
[127]. The act of open incineration serves as another notable 
source for discharging harmful substances and heavy metals 
into soil environments [128]. Multiple nations have reported 
the deleterious consequences on soil ecosystems due to the 
disposal and recycling procedures integral to e-waste man-
agement. Recycling actions, encompassing the liquefaction 
of plastics, the incineration of circuitry, the recuperation of 
Cu from wires, and the retrieval of Au using acidic agents, 
can potentially culminate in significant metallic pollution 
[129]. Such practises may also give rise to surface soil con-
tamination due to the presence of heavy metals within the 
DPCBs [130].

There are three primary routes through which individu-
als can come into contact with the hazardous substances 
present in e-waste: consumption via contaminated food, 
inhalation of pollutants and ingestion of soil/dust combined 
with potential direct skin exposure [131]. Toxic heavy met-
als and organic contaminants leaching from DPCBs into 
water, air or landfills trigger the formation of micronuclei 
and chromosomal anomalies, leading to genetic instability 
in individuals exposed to these pollutants. These effects 
have been well-documented in previous studies [132, 133]. 
Once these hazardous substances enter the human body, 
they distribute themselves within various tissues and organs, 
undergoing intricate metabolic processes that can impact a 
range of physiological functions. Specifically, Pb has been 
associated with reproductive issues, cognitive instabil-
ity, cytotoxicity, ischaemia, trauma and damage to human 
DNA [134–136]. Moreover, preschool children residing 
in e-waste regions have been observed to be vulnerable to 
lead exposure, suffering especially from periodontitis and 
various other oral ailments [137]. In addition, exposure to 
high concentrations of Cu could result in headaches, dizzi-
ness and irritation of the eyes, nose, and mouth [47, 138]. 
Furthermore, Sn exposure has been linked to disorders of 
the central nervous system and visual impairments [139]. 
Ni exposure may lead to lung dysfunction, asthma, skin 

allergies, and carcinogenic effects [140, 141]. Exposure has 
been found to cause respiratory problems and could lead to 
a high risk of developing tumours of the lung, skin, liver, 
bladder, colon and kidney [142]. Moreover, the health effects 
associated with Hg encompass a range of outcomes, span-
ning from nuanced neurological changes affecting coordina-
tion and motor functions to more severe impacts, including 
convulsions, impaired mobility, and, in extreme cases, even 
mortality [143, 144].

BFRs stand as significant deleterious compounds within 
non-metallic powders of DPCBs. Driven by the imperative 
for fire resistance, these agents frequently serve as additives 
in resin adhesives [74]. Consequently, the resin becomes 
affixed to fibreglass surfaces, rendering the polymer less 
susceptible to combustion [145]. BFRs, or their resultant 
decomposition products, exhibit facile release during the 
disassembly, fragmentation and heating of DPCBs, thereby 
posing potential hazards [146, 147]. BFRs are known to emit 
carcinogenic and teratogenic phenolic gases during com-
bustion, thereby significantly impacting various systems, 
including the liver [148]. Due to their resistance to degrada-
tion, these flame retardants can infiltrate water, soil and air, 
perpetuating long-term environmental contamination [149]. 
Notably, TBBPA, a commonly studied BFR, has been estab-
lished to accumulate within the brain through transfer over 
the blood–brain barrier, causing neurotoxic effects, abnor-
mal behaviours, and reduced red blood cell concentrations 
[150]. More information obtained from the literature on the 
adverse effects of harmful substances in DPCBs on humans 
is illustrated in Fig. 3 [47, 151, 152].

Future perspectives

Looking ahead, there are several promising areas for future 
exploration and development:

(i) Advanced sorting technologies: Continued research 
into more efficient, cost-effective and environmentally 
friendly sorting technologies is crucial. Innovations 
such as artificial intelligence and robotics hold the 
potential to revolutionise the sorting process.

(ii) Environmental impact mitigation: As interest in 
resource recovery grows, research should focus on 
minimising the environmental footprint of disassembly 
and metal recovery techniques. This includes efforts to 
reduce energy consumption, emissions and waste.

(iii) Policy and regulation: The development of clear, 
standardised and globally harmonised regulations and 
policies for e-waste management will be vital. Govern-
ments and international bodies must play a pivotal role 
in encouraging responsible disposal and recycling prac-
tises. A thoughtful approach to policy and regulation 
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formulation should involve a deep understanding of the 
e-waste management, engagement with stakeholders, 
scientific insights, a global perspective, sustainability 
considerations, adaptability to change, robust enforce-
ment mechanisms, and efforts to raise public aware-
ness.

(iv) Circular economy models: Embracing a circular econ-
omy approach, where products are designed for recy-
cling and reuse, can further enhance the sustainability 
of e-waste management.

(v) Solvent regeneration: As we look towards the future, 
the need for solvent regeneration becomes a pivotal 
aspect of sustainable metal recovery. It not only con-
tributes to resource conservation, cost-effectiveness 
and environmental protection but also supports the 
development of more sustainable and efficient meth-
ods for extracting valuable metals from DPCBs. Future 
research and innovation in solvent regeneration hold the 
key to advancing the sustainability of metal recovery 
practises.

In the coming years, we anticipate a continued shift 
towards a more sustainable and responsible approach to 
e-waste management. With the advancements highlighted 
in this review and the dedication of researchers and envi-
ronmentalists, the vision of e-waste as a valuable resource 
rather than a burden is on the horizon. The future holds 

immense potential for turning discarded PCBs and e-waste 
into sustainable sources of base and precious metals whilst 
safeguarding our environment.

Concluding remarks

Our review of DPCBs has unveiled a hidden world of pos-
sibilities within e-waste. By categorising PCBs and dis-
secting their material constituents, we have laid the foun-
dation for a better understanding of this topic. We have 
also explored various disassembly methods, from manual 
to smart, mechanical and chemical techniques, highlight-
ing their potential in resource recovery. The discussion 
on sorting methodologies underscores the importance of 
efficient separation processes. We have also illuminated 
on environmental and health effects of toxic substances 
present in DPCBs, emphasising the urgency of address-
ing these challenges. Furthermore, this review briefly dis-
cussed metal recovery mediated by ammonia/ammonium 
which could offer solutions for a sustainable future. As we 
look forward, future perspectives in this field hold great 
promise. Advanced sorting technologies, environmental 
impact mitigation, comprehensive policy frameworks, 
public awareness campaigns, circular economy models, 
and collaborative research efforts are set to shape the 
future of electronic waste management. By embracing 

Fig. 3  Additional adverse effects of toxic metals/compounds from DPCBs on humans [47, 151, 152]
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these possibilities, we can transform the perception of dis-
carded PCBs from waste to resource and, in doing so, pave 
the way for a more sustainable and responsible approach to 
e-waste management. Whilst the  NH3/NH4

+ metal leach-
ing process offers advantages such as cost-effectiveness 
and strong selectivity, it is crucial to recognise that the 
breakdown and volatility of ammonia in the leaching pro-
cess can present dangers to both human well-being and 
the environment. Nevertheless, the future is bright for 
resource recovery and environmental preservation in the 
e-waste domain.

Furthermore, the findings of this review carry signifi-
cant implications for various stakeholders within the field 
of electronic waste management. For policymakers and 
regulators, the comprehensive exploration of contempo-
rary gaps in knowledge and the integration of smart disas-
sembly and sorting technologies underscore the urgency 
of clear, standardised and globally harmonised regulations 
for e-waste management. Establishing such regulations 
becomes imperative for encouraging responsible disposal 
practises and ensuring the efficient recovery of valuable 
resources. Industry players and manufacturers can glean 
valuable insights from the review’s emphasis on embrac-
ing a circular economy model. The recognition of the 
potential of DPCBs as rich sources of precious and base 
metals signals an opportunity for designing products with 
recycling and reuse in mind. This shift towards a circu-
lar economy not only aligns with sustainability goals but 
also enhances the viability of resource recovery practises. 
Researchers and environmentalists stand to benefit sig-
nificantly from the detailed analysis of smart disassembly, 
chemical recovery methods and emerging technologies, 
such as  NH3/NH4

+ solutions. The identification of knowl-
edge gaps and the proposal of future perspectives provide 
a roadmap for further research initiatives. The inclusion of 
environmental implications also directs attention towards 
the development of environmentally friendly processes, 
addressing concerns related to emissions, energy con-
sumption and waste in e-waste recycling. Finally, for prac-
titioners involved in the practical aspects of e-waste dis-
assembly, the review serves as a valuable guide. Insights 
into mechanical, chemical and electrochemical disassem-
bly methods, coupled with advanced sorting technologies, 
offer practical considerations for the extraction and recov-
ery of metals from DPCBs. The emphasis on meticulous 
process optimisation in environmentally sustainable PCB 
recycling reinforces the importance of balancing efficiency 
with environmental responsibility.
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