
Please cite the Published Version

Kavarakuntla, Tulasi, Han, Liangxiu , Lloyd, Huw , Latham, Annabel , Kleerekoper, Anthony
and Akintoye, Samson B (2024) A generic performance model for deep learning in a dis-

tributed environment. IEEE Access, 12. pp. 8207-8219. ISSN 2169-3536

DOI: https://doi.org/10.1109/ACCESS.2024.3352017

Publisher: IEEE

Version: Published Version

Downloaded from: https://e-space.mmu.ac.uk/634033/

Usage rights: Creative Commons: Attribution-Noncommercial-No Deriva-
tive Works 4.0

Additional Information: This is an open access article which originally appeared in IEEE Access

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0000-0003-2491-7473
https://orcid.org/0000-0001-6537-4036
https://orcid.org/0000-0002-8410-7950
https://orcid.org/0000-0002-3621-8568
https://orcid.org/0000-0001-5058-433X
https://doi.org/10.1109/ACCESS.2024.3352017
https://e-space.mmu.ac.uk/634033/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines

Received 17 November 2023, accepted 27 December 2023, date of publication 10 January 2024,
date of current version 19 January 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3352017

A Generic Performance Model for Deep Learning
in a Distributed Environment
TULASI KAVARAKUNTLA, LIANGXIU HAN , HUW LLOYD , (Member, IEEE),
ANNABEL LATHAM , (Senior Member, IEEE), ANTHONY KLEEREKOPER,
AND SAMSON B. AKINTOYE
Department of Computing and Mathematics, Manchester Metropolitan University, M15 6BH Manchester, U.K.

Corresponding author: Liangxiu Han (l.han@mmu.ac.uk)

This work was supported in part by the National Overseas Scholarship, India, and in part by the Royal Society-Academy of Medical
Sciences, Newton Advanced Fellowship under Grant NAF\R1\180371.

ABSTRACT Performance modelling of a deep learning application is essential to improve and quantify
the efficiency of the model framework. However, existing performance models are mostly case-specific,
with limited capability for the new deep learning frameworks/applications. In this paper, we propose a
generic performance model of an application in a distributed environment with a generic expression of the
application execution time that considers the influence of both intrinsic factors/operations (e.g. algorithmic
parameters/internal operations) and extrinsic scaling factors (e.g. the number of processors, data chunks
and batch size). We formulate it as a global optimisation problem and solve it using regularisation on a
cost function and differential evolution algorithm to find the best-fit values of the constants in the generic
expression tomatch the experimentally determined computation time.We have evaluated the proposedmodel
on three deep learning frameworks (i.e., TensorFlow, MXnet, and Pytorch). The experimental results show
that the proposed model can provide accurate performance predictions and interpretability. In addition, the
proposed work can be applied to any distributed deep neural network without instrumenting the code and
provides insight into the factors affecting performance and scalability.

INDEX TERMS Deep learning, analytical modeling, empirical modeling, optimization, differential
evolution.

I. INTRODUCTION
Deep neural networks are effective tools for unsupervised
data exploration to discover correlation structures. As a
result, they are widely used in computer vision, self-driving
cars, medical image analysis, video games, and online
self-service applications. However, deep neural network
architectures such as Googlenet [1], ResNet [2], VGG
net [3], and Deep CNN [4] necessitate the use of high
computational resources. Trainingwith a large amount of data
requires a parallelised and distributed environment, primarily
data parallelism, model parallelism, pipeline parallelism,
and hybrid parallelism. Performance modelling is essential
in quantifying the efficiency of large parallel workloads.
Performance models are used to obtain run-time estimates
by modelling various aspects of an application on a target

The associate editor coordinating the review of this manuscript and

approving it for publication was Asad Waqar Malik .

system. However, accurate performance modelling is a
challenging task. Existing performance models are broadly
categorised into twomethodologies: analytical modelling and
empirical modelling. Analytical modelling uses a transparent
approach to convert the model’s or applications’ internal
mechanisms into a mathematical model corresponding to
the system’s goals, which can significantly expedite the
creation of a performance model for the intended system.
The existing analytical modelling works investigated deep
learning performance modelling and scaling optimisation in
distributed environments [5], asynchronous GPU processing
based on mini-batch SGD [6], efficient GPU utilisation in
deep learning [7], comprehensive analysis and comparison
of the performance of deep learning frameworks running
on GPUs [8], [9]. However, the major limitation of these
works is the poor presentation of the underlying internal
operations (i.e., areas of the features’ space or specific
workload conditions) in the distributed environment.

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 8207

https://orcid.org/0000-0003-2491-7473
https://orcid.org/0000-0001-6537-4036
https://orcid.org/0000-0002-8410-7950
https://orcid.org/0000-0001-5058-433X
https://orcid.org/0000-0003-3804-997X

T. Kavarakuntla et al.: Generic Performance Model for Deep Learning in a Distributed Environment

Empirical modelling is an excellent alternative to analyti-
cal models. In this approach, modelling predicts the outcome
of an unknown set of system parameters based on obser-
vation and experimentation. It characterises an algorithm’s
performance across problem instances and parameter config-
urations based on sample data. Empirical models predict the
output of a new configuration on the target machine. Existing
works investigated deep convolutional neural networks using
asynchronous stochastic gradient descent techniques in a
distributed environment [6], Rakshith et al. [10] empiri-
cally assessed Horovod’s image classification performance,
highlighting its advantages over TensorFlow and PyTorch
frameworks, Lin et al. [11] presented a GPU cluster-based
distributed deep learning performance prediction model.
Nevertheless, empirical modelling works cannot provide an
unbiased experimental study in a distributed environment
using GPUs.

Thus, in this paper, we are inspired by the hybridisation
of the analytical and empirical approaches to developing a
novel generic performance model that provides a general
expression of intrinsic and extrinsic factors of a deep
neural network framework in a distributed environment
that gives an accurate performance. Specifically, we have
developed a generic performance model applicable to any
distributed deep neural network without instrumenting the
code, which furthermore allows for explaining intrinsic
parameters’ performance and scalability, providing added
value in the field [12]. Our contributions include the
following:

• We have developed a generic expression for a per-
formance model considering the influence of intrinsic
parameters and extrinsic scaling factors that affect
computing time in a distributed environment.

• We have formulated the generic expression as a
global optimisation problem using regularisation on
a cost function in terms of the unknown constants
in the generic expression, which we have solved
using differential evolution to find the best fitting
values to match experimentally determined computa-
tion times. Specifically, we use differential evolution
to fit a model for the computing time, which can
then be used to inform decisions about the training
process rather than optimising the computing time
directly.

• We have evaluated the proposed model in three deep
learning frameworks, i.e., TensorFlow, MXnet, and
Pytorch, to demonstrate its performance efficiency.

The remainder of the paper is organised as follows.
Section II discusses related work of the existing performance
models in a distributed environment. In section III, we discuss
research methodology, i.e., problem description, proposed
performancemodelling, experiment method and optimisation
problem. Section IV discusses an experiment-based evalua-
tion of the effectiveness of our proposals. Finally, section V
concludes the paper.

II. RELATED WORKS
This section provides an overview of the existing per-
formance models in a distributed computing environment
and differential evolution as a solution to the optimization
problem.

A. EXISTING PERFORMANCE MODELS
Performance modelling involves prediction - estimating the
performance of a new system, the impact of change on an
existing system, or the impact of a change in workload
on an existing system [13], [14]. Existing performance
modelling of Deep Learning (DL) can be broadly divided
into two categories: 1) Analytical modelling and 2) Empirical
modelling.

1) ANALYTICAL PERFORMANCE MODELLING OF DL
FRAMEWORKS
Yan et al. [5] developed performance modelling to evaluate
the impact of partitioning and resourcing decisions on the
overall performance and scalability of distributed system
architectures’ using a DL framework Adam [15]. In addition,
performance modelling was also used to develop a scalability
optimizer that quickly selects the optimal system configu-
ration to reduce DNN training time. However, the model
can only be applied to DL systems, particularly when it has
parameter servers and synchronous weights between worker
nodes dynamically.

Qi et al. [16] proposed an analytical performance model
called Paleo, predicting the deep neural network performance
by considering communication schemes, network architec-
ture and parallelization strategies. The results demonstrated
that hybrid parallelism performed much better than data
parallelism while training the Alexnet model. However, the
model did not consider other factors that can affect the overall
performance of a model, such as memory usage, data transfer,
or communication overhead in distributed environments.

Kim et al. [17] evaluated five popular deep learning
frameworks TensorFlow [18], CNTK [19], Theano [20],
Caffe-MPI [21] and Torch [22] in terms of their performance
on single and multi-GPU contexts. In this work, each
framework incorporated and compared different convolution
algorithms, such asWinograd, General Matrix Multiplication
(GEMM), Fast Fourier Transformation (FFT), and direct
convolution algorithms, in terms of layered-wise analysis
and execution time. The results have shown that FFT and
Winograd algorithms surpass the GEMM and other convolu-
tion algorithms. However, the convolution algorithms used by
the frameworks provided poor explainability regarding their
internal operations.

Shi et al. [9] developed a performance model to eval-
uate the performance of various distributed deep learning
frameworks (TensorFlow, CNTK, MXnet and Caffe) with
deep convolutional neural networks (Alexnet, ResNet and
GoogleNet models) on the multi-GPU environment. They
measured training time, memory usage, and GPU utilization

8208 VOLUME 12, 2024

T. Kavarakuntla et al.: Generic Performance Model for Deep Learning in a Distributed Environment

and compared the frameworks in terms of training time
and resource utilization. However, they did not provide a
breakdown of the time to divide the minibatch into smaller
batches or measure the load imbalance factor, which are
critical factors that can significantly affect the training
efficiency and performance in a parallel computing environ-
ment. Kavarakuntla et al. [23] extended the Shi analytical
performance model to evaluate the run-time performance of
deep learning frameworks (TensorFlow, MXnet and Chainer)
by using the convolutional neural network, multilayer per-
ceptron model and autoencoder model running in the multi-
GPU environment. The extended model considered the load
imbalance factor and made a layer-wise analysis of a neural
network, providing a more comprehensive evaluation of the
frameworks’ performance. The experimental results showed
that the factors influenced the frameworks’ performance and
considered the load imbalance factor and its importance in a
distributed environment.

However, the models mentioned above have poor explain-
ability and were not generic; they were developed for specific
architectures, which cannot be applied to a wide range of
networks.

2) EMPIRICAL MODELLING OF DL FRAMEWORKS
Empirical modelling builds models through observation
and experimentation, which is antithetical to analytical
modelling.

Oyama et al. [6] proposed a performance model for pre-
dicting the statistics of an asynchronous stochastic gradient
descent-based deep learning system, potentially improving
the model’s performance by optimising the hyperparameters,
such as Mini-batch size and gradient staleness. They did not
consider parallelisation methods and applied direct weights
synchronised among GPUs. The study results showed that the
proposed method could predict the statistics of asynchronous
SGD parameters, including sweeping dataset time, mini-
batch size, staleness, and probability distributions of these
essential parameters. However, the work did not address the
issue of communication overhead and network latency, which
can significantly affect the performance of distributed deep
learning systems.

Rakshith et al. [10] presented an empirical study of
the performance of Horovod, a distributed deep learning
framework, for image classification tasks. They evaluated
the performance of Horovod on two popular image datasets,
CIFAR-10 and ImageNet, using a cluster of machines
with varying numbers of GPUs. It also compared the
performance of Horovod to other distributed deep learning
frameworks, such as TensorFlow and PyTorch, and found that
Horovod achieved better performance in certain scenarios.
They provided recommendations for optimising Horovod’s
performance on large-scale image datasets, such as using
efficient data loading and preprocessing techniques and
optimising the communication and synchronisation between
the machines. However, the experimental configuration

utilised in the research might not accurately reflect real-world
situations in which the underlying hardware and network
setups may differ substantially.

Lin et al. [11] proposed a performance prediction model
for distributed deep learning on GPU clusters that considers
both the network topology and communication patterns of
the trained deep learning model. The model considered
the communication and computation times for each layer
in a deep neural network and used a prediction model
that is more sophisticated than a simple linear regression
approach to predict the total training time. The work
evaluated the model on several deep learning benchmarks
and showed it achieved higher accuracy in predicting training
time than existing models. The model can also be used
to optimise the performance of distributed deep learning
by finding the optimal configuration of GPU nodes and
reducing the training time. However, the assessment of the
proposed model was confined to three distinct GPU clusters,
potentially limiting its generalizability to other GPU clusters
or distributed DL architectures.

Most recently, a new approach named hybrid model has
been proposed [24] by combining the elements of analytical
modelling and empirical modelling for better performance
prediction developed in other fields. We are inspired by
this idea and proposed a model that gives insights into
the intrinsic parameters’ performance and scalability of the
extrinsic parameters. Unlike the existing works summarised
in Table 1, we developed a generic expression applicable to
any distributed deep neural network without instrumenting
the code and enabling functionality such as explaining
internal parameters’ performance and scalability.

B. DIFFERENTIAL EVOLUTION
Differential Evolution (DE) was developed by Storn et al.
[25] as an algorithm to solve various complex optimisation
problems such as motor fault diagnosis [26], structure predic-
tion of materials [27], automatic clustering techniques [28],
community detection [29], learning applications [30] and so
on. The algorithm finds the best solution by maintaining a
population of individual solutions and creating new offspring
by combining existing ones according to a specific process.
The offspring with the best objective values are kept in
the next iteration of the algorithm so that an individual’s
new objective value is improved, consequently forming
part of the population. Otherwise, the new objective value
is discarded. The process repeats itself until a specific
termination condition is satisfied [31]. It is similar to other
evolutionary algorithms such asGenetic Algorithm (GA) [32]
by applying mutation, crossover, and selection operators to
determine the population toward better solutions. In contrast
to the genetic algorithm, the differential evolution algorithm
imparts mutation to each individual while transferring them
to the next generation. In its mutation procedure, for
each solution, three more individuals are picked from the
population, and as a consequence, a mutated individual

VOLUME 12, 2024 8209

T. Kavarakuntla et al.: Generic Performance Model for Deep Learning in a Distributed Environment

TABLE 1. Analysis of the existing performance modelling methods.

is produced. It is determined based on the fitness value
whether or not the first individual selected will be replaced.
In differential evolution, the crossover is not the primary
operation, as it is in the genetic algorithm. In recent times,
several works have been proposed to use DE for neural
network optimisation [33], [34], [35].

However, none of the works mentioned above used DE
to analyse and evaluate the performance of the classification
tasks of neural networks with many processes in a distributed
environment with the goal of finding the best-fit values by
minimising the regularised cost function.

III. METHODOLOGY
A. PREDICTION MODEL
The evolution of our prediction model was a systematic
process aimed at enhancing its accuracy and performance
in estimating execution times. Initially, the model was
set up with vector constants (a, p, q, and C) assigned
random values. Subsequently, we introduced the Differential
Evolution (DE) algorithm, which iteratively refined these
constants by generating trial vectors through parameter
vector combinations and selecting the best-performing ones.
regularisation techniques, including L1 and L2 regularisation,
were incorporated to prevent overfitting. The model was
trained using a comprehensive dataset of input features
and corresponding execution times, allowing it to adapt its
constants iteratively. The evolution process continued until
convergence when the optimized constants were finalized.
A separate validation dataset was employed to validate the
model, and comparative analyses against baseline methods
were conducted to demonstrate its superior predictive accu-
racy.

B. THE GENERIC PERFORMANCE MODEL
Given an application consisting of a number of processes
in a distributed environment, the execution time of the
application can be considered from two levels: 1) Execution
time of internal processes of the application (for example,
intrinsic parameters of the application) and 2) External

scaling factors that affect the computing efficiency (such as
a number of machines/processors or data chunks or batch
size). A generic performance model for computing total
computational time(t) per iteration of an application can be
described as follows:

t(I ,E) = tI (I)fE (E) + C (1)

Here, we represent intrinsic parameters, E represents
extrinsic parameters, tI represents the time affected by
intrinsic parameters, fE represents extrinsic scaling factors
affecting computing performance, and C is a constant. Also,
we represent internal time as tI and can be represented as:

tI =

n∑
i=1

aiI
pi
i (2)

Basically, intrinsic parameters represent model parameters of
the deep neural network, as shown in figure 1. We represent
the individual processes as a polynomial in terms of the
internal parameters. In (2), the coefficients ai relate to the
relative importance of the processes, and the powers pi relate
to the computational complexity. The external factors are
related to scaling, and they will appear as multiplicative terms
with different powers in the computation of the external
scaling factor fE , which is given by:

fE =

m∏
j=1

E
qj
j (3)

Here, the powers qj give information about scalability.
By substituting the tI and fE in (1), the computational time
(t) is given as follows:

t(I ,E, x) =

(
n∑
i=1

aiI
pi
i

)
m∏
j=1

E
qj
j + C (4)

Here x =
{
a1, . . . , anI , p1, . . . pnI , q1, . . . qnE , c

}
∈ RM

is a vector formed by combining a, p, q and coefficient C.
It encodes the information necessary to describe how the
intrinsic and extrinsic parameters influence the computation
time. The functional diagram of the proposed performance

8210 VOLUME 12, 2024

T. Kavarakuntla et al.: Generic Performance Model for Deep Learning in a Distributed Environment

model is shown in figure 2. In (4), the intrinsic parameters
I and extrinsic parameters E are the known input values.
a, p, q and coefficient C are unknown constants. We compute
the optimal values of these unknown constants (total: M =

2nI + nE + 1) using the differential evolution algorithm.
Before going to the cost function formulation of differential
evolution algorithm [36], consider the representation of the
following input samples (i.e., intrinsic and extrinsic param-
eters). For every internal process and extrinsic parameter,
there are too many hyperparameters. So, we have applied
random sampling to ensure that every hyperparameter in
the population has an equal opportunity of being selected
to obtain measured time. Here, the methodology used for
measured time is the time taken for an iteration of an epoch.
We computed iteration time as the difference between an
iteration’s end and starting times.

Let, Intrinsic parameters: Ii,k , i ∈ [1, nI], k ∈ [1,N]

(5)

Extrinsic parameters: Ej,k , j ∈ [1, nE], k ∈ [1,N] (6)

measured time-per-iteration: tk , k ∈ [1,N]. (7)

Here, i, j denote the input feature indices. k ∈ [1,N] indicate
the sample index in dataset D. N is the number of input
samples in D.

C. GLOBAL OPTIMISATION USING DIFFERENTIAL
EVOLUTION
Given the generic expression as shown in (4), as mentioned
in an earlier sub-section, we find the best-fit values of a, p, q
and C by minimizing a cost function. We formulate the
cost function as the mean absolute difference between the
predicted execution time and the actual measured times as
follows:

f (x) =
1
N

N∑
k=1

∣∣tk − t̂k
∣∣ (8)

where N as number of data samples, tk=measured value,
t̂k = predicted value where t̂k=

(
tIk ,Ek ,x

)
.

To solve the above problem, we have used the differential
evolution algorithm (DE) and applied DE to the (4).
Here a, p, q and C are combined into an m-dimensional
vector. We use the implementation of differential evolution
from the scipy python package, with default values of
the hyperparameters. We enforce limits of (0 . . . 1000) for
constants and coefficients (a,C) and −5 . . . 5 for powers
(p, q).

D. REGULARISATION
A globally optimized, unconstrained model may be prone
to overfitting or producing unstable solutions with high
parameter variance. To address these issues, we introduce
a regularisation term to the cost function. regularisation
achieves the best fit by introducing a penalizing term in the
cost function, which assigns a higher penalty to complex

curves. So, we are motivated to apply regularisation to our
performance model. Generally, regularisation can be defined
as:

f reg(x) = f (x) + λ.L (9)

where λ controls the bias-variance trade-off, and L is some
measure of the complexity of the model. There are two types
of regularisation techniques: (a) Lasso regression (L1) form.
(b) Ridge regression (L2) form. Firstly, L1 regularisation,
also called a lasso regression, adds the absolute value of the
magnitude of the coefficient as a penalty term to the loss
function. The L1 regularisation solution is sparse. Secondly,
L2 regularisation, also called ridge regression, adds the
squared magnitude of the coefficient as the penalty term
to the loss function, and its solution is non-sparse. In L1
regularisation, L1 (Lasso) shrinks the less important features
coefficient to zero, thus removing some features altogether.
L1 works well for feature selection in case we have a huge
number of features. In L2 regularisation, it adds the penalty as
model complexity increases. The regularisation parameter λ

penalizes all the parameters except intercept so that the model
generalizes the data and won’t overfit. Ridge regression adds
the Squared magnitude of the coefficient as a penalty term
to the loss function. We have applied both regularisations to
the performance model. Now, the model of both L1 and L2
regularisations is as follows:

f (x) =
1
N

N∑
k=1

∣∣tk − t̂k
∣∣+ λ.

N∑
k=1

|x| (10)

f (x) =
1
N

N∑
k=1

∣∣tk − t̂k
∣∣+ λ.

N∑
k=1

x2 (11)

Thus, applying the regularisation term λ reduces the bias-
variance trade-off in the internal processes.

IV. EXPERIMENTAL EVALUATION
To evaluate the performance of the proposed model, we have
applied our approach to three deep learning frameworks
and conducted extensive experiments. The main goal is to
investigate how well the predicted execution time fits the
experimentally measured time.

A. SYSTEM CONFIGURATION
We implement the experiments on a single node containing
threeGEFORCERTX2080GPUs, eachwith 2.60GHz speed
and 16GBGPURAM, to study and compare the performance
of three popular frameworks: TensorFlow, PyTorch and
MxNet. The node also consists of a 2.81GHz speed CPU
machine, 25Gbps network bandwidth and a CUDA-10.2 with
a Linux operating system. Furthermore, the node consists
of various software configurations/installations, including
PyTorch 1.2.0, Torchvision 0.4.0, Python 3.6, TensorFlow
2.1.0 and MXnet 1.6.0.

VOLUME 12, 2024 8211

T. Kavarakuntla et al.: Generic Performance Model for Deep Learning in a Distributed Environment

FIGURE 1. Internal processes involved in a convolutional neural network.

FIGURE 2. Functional diagram of proposed performance model.

B. DATASET AND MODEL SELECTION
We evaluate the proposed performance evaluation approach
using a CNN architecture, LeNet-5, which Yann LeCun pro-
posed in 1998 as a neural network structure for handwritten
font recognition. It consists of two convolutional layers, two
fully connected layers, pooled layers for cross-combination
and an output layer that predicts values via the fully con-
nected layer. Besides, LeNet-5 works well with handwritten
datasets [37]. It also reduces the number of parameters and
can automatically learn features from raw pixels [38].

We train LeNet-5 on three popular datasets, MNIST,
fashion-MNIST and CIFAR-10, using three popular deep
learning frameworks: TensorFlow, PyTorch and MxNet, in a
distributed environment. The distributed environment in our
context refers to a multi-GPU training paradigm within a
single node rather than an inter-node distributed system.
MNIST [39], [40] is a database of handwritten digits derived
by the National Institute of Standards and Technology (NIST)
for learning techniques and pattern recognition methods
with a little effort on pre-processing and formatting. It is
a subset of the NIST Special Database 19. Each image
represents 28 × 28 pixels. The MNIST database contains
60,000 training and 10,000 testing images, divided into four
files: training set images, training set labels, testing set
images, and testing set labels. Fashion-MNIST [41] serves
as a direct drop-in replacement for the original MNIST
dataset for benchmarking machine learning algorithms. Each
example is a 28× 28 grayscale image associated with a label
from 10 classes. The CIFAR-10 dataset [42] contains 60,000

images with 32 × 32 pixels. The images are classified into
ten classes - aeroplane, automobile, bird, cat, deer, dog, frog,
horse, ship, and truck; each has 6,000 images.

C. PERFORMANCE METRICS
The scalability and mean absolute percentage error(MAPE)
are selected as performance metrics for run-time evaluation
on three different frameworks. Scalability is measured in the
powers of external parameters as shown in (3). The MAPE
can be defined as:

f (x) =
1
N

N∑
k=1

∣∣tk − t̂k
∣∣

tk
(12)

where tk = measured value, t̂k = predicted value, n = total
number of data points.

The experimental evaluation aims to evaluate the proposed
performance model and find the best-fit values using the
differential evolution algorithm; MAPE is used to evaluate
the closeness of this fit and the quality of the performance
model. The scaling parameters are used in our proposed
evaluation model to evaluate the performance of the deep
learning frameworks.

D. EXPERIMENTS
We have conducted a set of experiments to evaluate the
proposed model:

1) Performance Evaluation ofDeep Learning Frameworks
using the proposed performance model with and
without regularisation. Specifically, we have applied
the proposed performance model to three deep learning
frameworks: TensorFlow, MXnet, and PyTorch, under
two circumstances, with and without regularisation.

2) Comparison of the proposed model with the two
commonly used black box machine learning models:
random forest regressor and support vector regressor.
We have also compared our proposed model with two
widely used black-box machine learning models and
demonstrated its performance and interpretability.

We assess the proposed performance evaluation approach
by modelling distributed training of a CNN architecture
on a multi-GPU system. In our experiment, we have

8212 VOLUME 12, 2024

T. Kavarakuntla et al.: Generic Performance Model for Deep Learning in a Distributed Environment

TABLE 2. Parameters of the performance model, with ranges of values
sampled in the experiments.

performed the distributed training of LeNet-5 on MNIST,
fashion-MNIST and CIFAR-10 datasets using the three deep
learning frameworks. The values of the experimental training
parameters are created by applying random sampling on a
set of intrinsic and extrinsic parameters and its corresponding
average training time taken by a deep CNN architecture per
iteration. Table 2 shows intrinsic and extrinsic parameters
and their possible values. The intrinsic parameters are the
model’s hyperparameters, including kernel size, pooling size,
activation function, etc. The number of GPUs and the batch
size are extrinsic factors since these affect the scaling over
multiple processes.

The experiments involve several trials inwhichwemeasure
the time for a single training iteration using randomly
selected intrinsic and extrinsic parameter values. We conduct
1500 trials to prepare a dataset of 1500 data samples.
The experimental data for 900 trials are used to fit our
performancemodel or train the standard black boxmodels for
comparison. The remaining 600 are used to evaluate the test
and validation models. Finally, the experimental parameters
are used to build three performance evaluation models, such
as the Differential evolution (DE) algorithm with and without
using regularisation models and two standard black box
models. We run each fit ten times with different random
seeds to obtain the mean and standard deviation for each of
our fitted parameters. The performance of these models and
their corresponding results are explained in the subsequent
subsections.

E. RESULTS AND ANALYSIS
This section shows the results of our proposed performance
model for three popular deep neural networks, i.e., Tensor-
Flow, MXnet, and PyTorch. We evaluate the performance
model with and without regularisation and compare it with
standard black box regression models such as support vector
regressors and random forest regressor. Tables 3 and 4
compare intrinsic parameters and scalability in various
frameworks with and without using regularisation. Table 5
shows mean absolute percentage error values on predictions
of the performance models using L1 and L2 regularisation.

1) PERFORMANCE EVALUATION OF DEEP LEARNING
FRAMEWORKS USING THE PROPOSED PERFORMANCE
MODEL WITHOUT REGULARISATION
We applied a differential evolution algorithm to our proposed
model and evaluated it using the three deep learning
frameworks. The actual execution time for training the
model using the three frameworks is recorded, and predicted
execution times are also generated. Figure 3 shows the
scatter graph of the predicted execution times from the
proposed model plotted against the actual execution time.
The linear fit to the straight line determines how well
the model can predict unseen configurations. We find
best fit constant coefficients for all frameworks are shown
in Table 3.
The results show stable and consistent fits for the extrinsic

parameters and the additive constant C , indicating that the
scalability results are accurate. The higher variances in the
intrinsic parameters are reduced by using regularisation.
Table 3 shows that the model gives broadly consistent
performance for the constant coefficients, representing the
relative importance of the process controlled by categorical
parameters. For instance, Adam has a large constant for
the activation function coefficients and takes more training
time than SGD in Pytorch and TensorFlow frameworks,
while SGD has the highest training time with the MXnet
framework. The padding parameter, which is categorical
with two possible values valid and same. same shows better
performance for the valid mode.

2) PERFORMANCE EVALUATION OF DEEP LEARNING
FRAMEWORKS USING THE PROPOSED PERFORMANCE
MODEL USING REGULARISATION
We have applied the regularisation on a cost function to the
proposed performance model to optimise the vector constants
and reduce high variance in intrinsic parameters in three
deep learning frameworks. We applied both regularisations
to our model and compared the results of L1 and L2. The
MAPE, MSE, and RMSE results are less in L2, as shown
in Table 5. We also considered L2 regularisation appropriate
for our performance model and applied various regularisation
parameter values in logarithmic scale in L1 and L2 to find
better λ parameter. In Figures 7(a) and 7(b), we found that the
R2 score deteriorates when the λ value is less than 0.001. For
instance, when λ = 0.001, the model fits well, and the model
gives broadly consistent performance for the constant coef-
ficients and represents the relative importance of the process
controlled by categorical parameters. Furthermore, in Table 4,
we can see that the model gives extensively consistent
performance for the constant coefficients, representing the
relative importance of the process controlled by categorical
parameters. The results show that the performance model
using regularisation is a generalised model with optimised
good fits in all the frameworks. For example, for padding
coefficients, same parameter takes more training time than
valid parameter in all frameworks. For activation function

VOLUME 12, 2024 8213

T. Kavarakuntla et al.: Generic Performance Model for Deep Learning in a Distributed Environment

TABLE 3. Derived intrinsic and extrinsic parameters from the differential evolution-optimized performance models for the three deep learning
frameworks. Parameters are given as the mean and standard deviation over ten fits. a and p represent coefficients and powers, respectively, of a term
representing an intrinsic parameter, whereas q is power in a multiplicative term representing an extrinsic (scaling) parameter.

TABLE 4. Derived intrinsic and extrinsic parameters from the differential evolution-optimized performance models for the three deep learning
frameworks using L2 regularisation. Parameters are given as the mean and standard deviation over ten fits. a and p represent coefficients and powers,
respectively, of a term representing an intrinsic parameter, whereas q is power in a multiplicative term representing an extrinsic (scaling) parameter.

coefficients, Tanh takes more training time than Relu and
Sigmoid in MXnet and TensorFlow frameworks, while Relu
takes maximum time with Pytorch. Also, in terms of dataset
coefficients, the Fashion-MNIST dataset takes more training
time than the MNIST and CIFAR-10 datasets in all three
frameworks.

3) COMPARISON OF THE PROPOSED PERFORMANCE
MODEL WITH BLACK BOX MODELS
We compared the proposed model with two standard black
box models, i.e., random forest regressor and support
vector regressor. Generally, the random forest has better
prediction accuracy due to its ensemble learning shown

8214 VOLUME 12, 2024

T. Kavarakuntla et al.: Generic Performance Model for Deep Learning in a Distributed Environment

FIGURE 3. The proposed performance model predicted and measured times in three deep learning frameworks using differential evolution algorithm.

FIGURE 4. The proposed performance model predicted and measured times in three deep learning frameworks using differential evolution algorithm
using regularisation.

FIGURE 5. Random forest regressor predicted and measured times in three deep learning frameworks.

FIGURE 6. Support vector regressor predicted and measured times in three deep learning frameworks.

in figure 5. The result shows a good linear fit compared
to the differential evolution algorithm with and without
regularisation. However, the drawback of the random forest

regressor is that it cannot give any insights into its internal
working mechanism. support vector regressor regression is
a non-parametric technique because it depends on kernel

VOLUME 12, 2024 8215

T. Kavarakuntla et al.: Generic Performance Model for Deep Learning in a Distributed Environment

FIGURE 7. Effect of regularisation.

FIGURE 8. Effect of regularisation, with model coefficients plotted against regularisation parameter. Constant coefficients of intrinsic parameters are
plotted in (a), the power coefficients of intrinsic parameters are shown in (b), coefficients of categorical intrinsic parameters in (c), with powers of
extrinsic parameters in (d).

functionality. It is more productive in high-dimensional
spaces. Figure 6 shows the predicted and measured times
of the support vector regressor. The result shows a poor
fit for all the deep learning frameworks compared with the
random forest regressor and differential evolution algorithm

with and without regularisation.We evaluate the fits using the
mean absolute percentage error between predicted execution
time and actual times, as shown in Table 6. Note that the
performance of our proposed model is slightly inferior to
the random forest. However, the proposed model can provide

8216 VOLUME 12, 2024

T. Kavarakuntla et al.: Generic Performance Model for Deep Learning in a Distributed Environment

TABLE 5. L1 and L2 regularisation results in terms of Mean Absolute Error
(MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE).

TABLE 6. Mean Absolute Percentage Error on predictions of the
performance models on the 300 instances in the evaluation dataset in
seconds.

TABLE 7. nGPUs scaling power in various frameworks, nGPUs represent
number of GPUs.

insights into the internal behaviour and scalability, which are
impossible with a black box model such as a random forest.

F. SCALABILITY
Observing the coefficients q from table 3 and table 4,
where q is power in a multiplicative term representing an
extrinsic parameter. The extrinsic parameter coefficients are
consistent in the proposed performance model with and
without regularisation. As shown in Table 7, -1 indicates
ideal scaling, in which case the time is inversely proportional
to the number of GPUs. The coefficients in Pytorch and
MXnet frameworks show better scaling performance than
TensorFlow. In TensorFlow, the value -0.73 is less than -1,
indicating sub-optimal scaling.

The accuracy of the performance model in predicting
training times in different deep learning frameworks over
CIFAR-10 is shown in Table 8. The deep learning models’
accuracy in the classification task used in this study varies
significantly between the different deep learning frameworks.
These accuracy values indicate how well the performance
model can predict training times in each deep learning
framework. PyTorch demonstrates the highest accuracy in
predictions, while TensorFlow has a lower accuracy than
MXNet and PyTorch.

V. CONCLUSION AND FUTURE WORKS
In this work, we have developed a generic performancemodel
for deep learning applications in a distributed environment

TABLE 8. Accuracy of the performance model in different deep learning
frameworks over CIFAR-10.

with a generic expression of the application execution time
that considers the influence of both intrinsic and extrinsic
factors. We also formulated the proposed model as a global
optimisation problem and solved it using regularisation on
a cost function and differential evolution algorithm to find
the best-fit values of the constants in the generic expression.
Our proposed model has been evaluated on three widely
used deep learning frameworks: TensorFlow, MXnet, and
Pytorch. The results have shown that our model can provide
accurate performance predictions and interpretability. More-
over, the experimental results reveal that MXnet and Pytorch
demonstrate superior scalability performance compared to
TensorFlow. Furthermore, our proposed method with regu-
larisation has proven to optimise the vector constants and
reduce high variance in intrinsic parameters. This model can
be implemented in any distributed deep learning framework
without necessitating any code modifications, providing
insights into the factors influencing deep learning application
performance and scalability. In future, we plan to evaluate the
model’s performance on various deep learning frameworks to
assess its generalisation capability.

REFERENCES
[1] P. Ballester and R. M. Araujo, ‘‘On the performance of GoogLeNet and

AlexNet applied to sketches,’’ in Proc. 30th AAAI Conf. Artif. Intell., 2016,
pp. 1–5.

[2] S. Targ, D. Almeida, and K. Lyman, ‘‘ResNet in ResNet: Generalizing
residual architectures,’’ 2016, arXiv:1603.08029.

[3] L. Wang, S. Guo,W. Huang, and Y. Qiao, ‘‘Places205-VGGNet models for
scene recognition,’’ 2015, arXiv:1508.01667.

[4] N. Aloysius and M. Geetha, ‘‘A review on deep convolutional neural
networks,’’ in Proc. Int. Conf. Commun. Signal Process. (ICCSP),
Apr. 2017, pp. 588–592.

[5] F. Yan, O. Ruwase, Y. He, and T. Chilimbi, ‘‘Performance modeling and
scalability optimization of distributed deep learning systems,’’ in Proc.
21st ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2015,
pp. 1355–1364.

[6] Y. Oyama, A. Nomura, I. Sato, H. Nishimura, Y. Tamatsu, and S.Matsuoka,
‘‘Predicting statistics of asynchronous SGD parameters for a large-scale
distributed deep learning system on GPU supercomputers,’’ in Proc. IEEE
Int. Conf. Big Data (Big Data), Dec. 2016, pp. 66–75.

[7] M. Song, Y. Hu, H. Chen, and T. Li, ‘‘Towards pervasive and
user satisfactory CNN across GPU microarchitectures,’’ in Proc.
IEEE Int. Symp. High Perform. Comput. Archit. (HPCA), Feb. 2017,
pp. 1–12.

[8] S. Shi, Q. Wang, P. Xu, and X. Chu, ‘‘Benchmarking state-of-the-art deep
learning software tools,’’ in Proc. 7th Int. Conf. Cloud Comput. Big Data
(CCBD), Nov. 2016, pp. 99–104.

[9] S. Shi, Q. Wang, and X. Chu, ‘‘Performance modeling and evaluation of
distributed deep learning frameworks on GPUs,’’ in Proc. IEEE 16th Int.
Conf. Dependable, Autonomic Secure Comput., 16th Int. Conf. Pervasive
Intell. Comput., 4th Int. Conf. Big Data Intell. Comput. Cyber Sci. Technol.
Congr., Aug. 2018, pp. 949–957.

[10] R. M. Rakshith, V. Lokur, P. Hongal, V. Janamatti, and S. Chickerur,
‘‘Performance analysis of distributed deep learning using Horovod for
image classification,’’ in Proc. 6th Int. Conf. Intell. Comput. Control Syst.
(ICICCS), May 2022, pp. 1393–1398.

VOLUME 12, 2024 8217

T. Kavarakuntla et al.: Generic Performance Model for Deep Learning in a Distributed Environment

[11] Z. Lin, X. Chen, H. Zhao, Y. Luan, Z. Yang, and Y. Dai, ‘‘A topology-
aware performance prediction model for distributed deep learning on GPU
clusters,’’ in Proc. IEEE Int. Conf. Big Data (Big Data), Dec. 2020,
pp. 2795–2801.

[12] T. Kavarakuntla, ‘‘Performance modelling for scalable deep learning,’’
Ph.D. thesis, Dept. Comput. Math., Manchester Metropolitan Univ.,
Manchester, U.K., 2023.

[13] S. Pllana, S. Benkner, F. Xhafa, and L. Barolli, ‘‘Hybrid performance
modeling and prediction of large-scale computing systems,’’ in Proc. Int.
Conf. Complex, Intell. Softw. Intensive Syst., 2008, pp. 132–138.

[14] T. Fahringer, S. Pllana, and J. Testori, ‘‘Teuta: Tool support for performance
modeling of distributed and parallel applications,’’ in Proc. Int. Conf.
Comput. Sci. Cham, Switzerland: Springer, 2004, pp. 456–463.

[15] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, ‘‘Project Adam:
Building an efficient and scalable deep learning training system,’’ in
Proc. 11th USENIX Symp. Operating Syst. Design Implement., 2014,
pp. 571–582.

[16] H. Qi, E. R. Sparks, and A. Talwalkar, ‘‘Paleo: A performance model for
deep neural networks,’’ in Proc. Int. Conf. Learn. Represent., 2016.

[17] H. Kim, H. Nam, W. Jung, and J. Lee, ‘‘Performance analysis of CNN
frameworks for GPUs,’’ in Proc. IEEE Int. Symp. Perform. Anal. Syst.
Softw. (ISPASS), Apr. 2017, pp. 55–64.

[18] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, and M. Isard, ‘‘TensorFlow: A system for large-
scale machine learning,’’ in Proc. 12th USENIX Symp. Operating Syst.
Design Implement., 2016, pp. 265–283.

[19] F. Seide and A. Agarwal, ‘‘CNTK: Microsoft’s open-source deep-learning
toolkit,’’ in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, 2016, p. 2135.

[20] R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller, D. Bahdanau,
N. Ballas, F. Bastien, J. Bayer, A. Belikov, and A. Belopolsky, ‘‘Theano:
A Python framework for fast computation of mathematical expressions,’’
2016, arXiv:1605.02688.

[21] A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda, ‘‘S-
Caffe: Co-designing MPI runtimes and Caffe for scalable deep learning on
modern GPU clusters,’’ in Proc. 22nd ACM SIGPLAN Symp. Princ. Pract.
Parallel Program., 2017, pp. 193–205.

[22] R. Collobert, S. Bengio, and J. Mariéthoz, ‘‘Torch: A modular machine
learning software library,’’ Idiap, Martigny, Switzerland, Tech. Rep., 2002.

[23] T. Kavarakuntla, L. Han, H. Lloyd, A. Latham, and S. B. Akintoye,
‘‘Performance analysis of distributed deep learning frameworks in a
multi-GPU environment,’’ in Proc. 20th Int. Conf. Ubiquitous Comput.
Commun., Dec. 2021, pp. 406–413.

[24] D. Didona, F. Quaglia, P. Romano, and E. Torre, ‘‘Enhancing performance
prediction robustness by combining analytical modeling and machine
learning,’’ in Proc. 6th ACM/SPEC Int. Conf. Perform. Eng., Jan. 2015,
pp. 145–156.

[25] R. Storn and K. Price, ‘‘Differential evolution—A simple and
efficient heuristic for global optimization over continuous spaces,’’
J. Global Optim., vol. 11, no. 4, pp. 341–359, Dec. 1997, doi:
10.1023/A:1008202821328.

[26] C.-Y. Lee and C.-H. Hung, ‘‘Feature ranking and differential evo-
lution for feature selection in brushless DC motor fault diagnosis,’’
Symmetry, vol. 13, no. 7, p. 1291, Jul. 2021. [Online]. Available:
https://www.mdpi.com/2073-8994/13/7/1291

[27] W. Yang, E. M. D. Siriwardane, R. Dong, Y. Li, and J. Hu, ‘‘Crystal
structure prediction of materials with high symmetry using differential
evolution,’’ J. Phys., Condens. Matter, vol. 33, no. 45, Nov. 2021,
Art. no. 455902.

[28] S. Saha and R. Das, ‘‘Exploring differential evolution and particle
swarm optimization to develop some symmetry-based automatic clustering
techniques: Application to gene clustering,’’Neural Comput. Appl., vol. 30,
no. 3, pp. 735–757, Aug. 2018, doi: 10.1007/s00521-016-2710-0.

[29] Y.-H. Li, J.-Q. Wang, X.-J. Wang, Y.-L. Zhao, X.-H. Lu, and D.-L.
Liu, ‘‘Community detection based on differential evolution using social
spider optimization,’’ Symmetry, vol. 9, no. 9, p. 183, Sep. 2017. [Online].
Available: https://www.mdpi.com/2073-8994/9/9/183

[30] M. Baioletti, A. Milani, and V. Santucci, ‘‘Learning Bayesian networks
with algebraic differential evolution,’’ in Parallel Problem Solving From
Nature—PPSN XV. Cham, Switzerland: Springer, 2018, pp. 436–448.

[31] M. F. Ahmad, N. A. M. Isa, W. H. Lim, and K. M. Ang, ‘‘Differential
evolution: A recent review based on state-of-the-art works,’’ Alexandria
Eng. J., vol. 61, no. 5, pp. 3831–3872, May 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S111001682100613X

[32] D. Liu, D. Hong, S. Wang, and Y. Chen, ‘‘Genetic algorithm-
based optimization for color point cloud registration,’’ Frontiers Bio-
eng. Biotechnol., vol. 10, p. 923736, 2022. [Online]. Available:
https://www.frontiersin.org/articles/10.3389/fbioe.2022.923736

[33] M. Baioletti, G. Di Bari, A. Milani, and V. Poggioni, ‘‘Differential evolu-
tion for neural networks optimization,’’ Mathematics, vol. 8, no. 1, p. 69,
Jan. 2020. [Online]. Available: https://www.mdpi.com/2227-7390/8/1/69

[34] N. Ikushima, K. Ono, Y. Maeda, E. Makihara, and Y. Hanada, ‘‘Differ-
ential evolution neural network optimization with individual dependent
mechanism,’’ in Proc. IEEE Congr. Evol. Comput. (CEC), Jun. 2021,
pp. 2523–2530.

[35] R. A. Venkat, Z. Oussalem, and A. K. Bhattacharya, ‘‘Training convolu-
tional neural networks with differential evolution using concurrent task
apportioning on hybrid CPU-GPU architectures,’’ in Proc. IEEE Congr.
Evol. Comput. (CEC), Jun. 2021, pp. 2567–2576.

[36] K. Fleetwood, ‘‘An introduction to differential evolution,’’ in Proc.
MASCOS, 2004, pp. 785–791.

[37] S. Park, J. Lee, and H. Kim, ‘‘Hardware resource analysis in distributed
training with edge devices,’’ Electronics, vol. 9, no. 1, p. 28, Dec. 2019.

[38] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, ‘‘A survey of
the recent architectures of deep convolutional neural networks,’’ 2019,
arXiv:1901.06032.

[39] Y. LeCun and C. Cortes. (2020). The MNIST Database of Handwritten
Digits. [Online]. Available: http://yann.lecun.com/exdb/mnist/

[40] L. Deng, ‘‘The MNIST database of handwritten digit images for machine
learning research [best of the web],’’ IEEE Signal Process. Mag., vol. 29,
no. 6, pp. 141–142, Nov. 2012.

[41] H. Xiao, K. Rasul, and R. Vollgraf, ‘‘Fashion-MNIST: A novel
image dataset for benchmarking machine learning algorithms,’’ 2017,
arXiv:1708.07747.

[42] F. O. Giuste and J. C. Vizcarra, ‘‘CIFAR-10 image classification using
feature ensembles,’’ 2020, arXiv:2002.03846.

TULASI KAVARAKUNTLA received the master’s
degree in computer science from JNTUH, India,
in 2007. She is currently pursuing the Ph.D. degree
with the Computing Department, Manchester
Metropolitan University, with a focus on scalable
deep learning. Her research interests include
machine learning and developing performance
models for scalable deep learning in a distributed
environment.

LIANGXIU HAN received the Ph.D. degree in
computer science from Fudan University, Shang-
hai, China, in 2002. She is currently a Professor in
computer science with the Department of Comput-
ing and Mathematics, Manchester Metropolitan
University. She is also a Principal Investigator
or a Co-PI on a number of research projects in
the research areas mentioned above. Her research
interests include the development of novel big
data analytics and the development of novel

intelligent architectures that facilitates big data analytics (e.g., parallel and
distributed computing and cloud/service-oriented computing/data intensive
computing) and applications in different domains using various large datasets
(biomedical images, environmental sensor, network traffic data, and web
documents).

8218 VOLUME 12, 2024

http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1007/s00521-016-2710-0

T. Kavarakuntla et al.: Generic Performance Model for Deep Learning in a Distributed Environment

HUW LLOYD (Member, IEEE) received the
B.Sc. degree in physics from Imperial College,
London, U.K., and the Ph.D. degree in astro-
physics from The University of Manchester,
U.K. He is currently a Senior Lecturer with
the Department of Computing and Mathematics,
Manchester Metropolitan University. His research
interests include theoretical and applied topics
in machine learning, evolutionary computation,
combinatorial, and continuous optimization.

ANNABEL LATHAM (Senior Member, IEEE)
is currently a Senior Lecturer with the Depart-
ment of Computing and Mathematics, Manchester
Metropolitan University. Her research interests
under the Intelligent Systems Laboratory include
conversational agents, intelligent tutoring systems,
affective computing, the ethics of AI in education,
user profiling, and computational intelligence. She
was also the Past Chair of IEEE U.K. and Ireland
Women in Engineering (2019–2022), a Winner

of 2019 Region 8 WIE Group of the Year, and the Chair of CIS Education
Strategic Planning Subcommittee. She is a U.K. STEM Ambassador.

ANTHONY KLEEREKOPER received the M.Eng.
degree in information systems engineering from
Imperial College London, in 2009, and the
Ph.D. degree from The University of Manchester,
in 2013, for work on distributed construction of
load balanced routing trees inmany to one wireless
sensor networks. After two years as a Research
Associate with The University of Manchester,
hewas appointed as a Lecturer in computer science
with Manchester Metropolitan University, where

he has been a Senior Lecturer, since 2018. He is a fellow of the Higher
Education Academy. His research interests include varied and include data
visualization, algorithms for processing data streams, agent-based modeling,
and opinion dynamics.

SAMSON B. AKINTOYE received the Ph.D.
degree in computer science from the University of
the Western Cape, South Africa, in 2019. He is
currently a Research Associate with the Depart-
ment of Computing and Mathematics, Manchester
Metropolitan University, U.K. His current research
interests include parallel and distributed comput-
ing, deep learning, and cloud computing.

VOLUME 12, 2024 8219

