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Key Points: 14 

• Longitudinal patterns of emergent fluvial rocks in six streams in Scotland and 15 
Australia exhibited fractal behaviour (self-similarity). 16 

• Fractal dimensions were related to development of bedform topography and the 17 
density and size of available bed materials in the streams. 18 

• Fractal dimensions are a promising measure of physical complexity that enable 19 
comparisons across ecosystems, scales and linked disciplines like ecology and 20 
geomorphology. 21 
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Abstract:  26 

Measuring the physical complexity of habitats or ecological resources is often achieved using 27 

system-specific methods that make comparisons across ecosystems difficult. One measure 28 

that is applicable across multiple ecosystems and scales is the fractal dimension, which has 29 

the benefit of generality as well as potential scale independence. This study evaluated the use 30 

of box-counting and entropy fractal dimensions for characterising the complexity of emergent 31 

rock distributions in six streams across Scotland and Australia. Emergent rocks (ER) are 32 

important hydraulic features and ecological resources, including as oviposition sites for 33 

aquatic insects and cover for fish. We complete fractal analysis on counts of ER in 5-m 34 

segments along longitudinal stretches of the six streams. All six streams exhibited fractal 35 

behaviour (self-similarity), suggesting that fractals can be used to measure the complexity of 36 

longitudinal ER distributions in a way that is scale independent. Entropy was a superior 37 

measure due to its ability to differentiate among the six streams whereas box-counting could 38 

not. Together, field results and numerical simulations showed that fractal dimensions of 39 

emergent rock distributions were related to stream geomorphology. Well-developed 40 

bedforms, like alternating pools and riffles had better organised emergent rocks because large 41 

bed materials were more likely to be emergent in topographic highs. Streams with coarser 42 

bed materials had more chaotic arrangements of emergent rocks because this increased the 43 

general abundance of emergent rocks, making differentiation between topographic highs and 44 

lows less distinctive. Fractal dimensions, therefore, can measure the complexity of river 45 

systems in a way that is relevant to geomorphological and ecological processes. 46 

Plain language summary: 47 

Fractal dimensions are used to characterise the complexity of a wide range of patterns in 48 

nature, from single objects (e.g. branched twigs) to whole environments (rainforests), and 49 

learn where consistent patterns may occur. We measured the complexity of rock patterns 50 

(specifically rocks that emerge above the water’s surface) in six rivers from Scotland and 51 

Australia using fractal dimensions. These rocks provide important habitat for plants, insects, 52 

and fish in rivers, and so are important to overall stream condition and functioning. Less 53 

complex, more highly structured rock patterns (lower fractal dimensions) occurred in streams 54 

with smaller rocks, which had areas where emergent rocks were concentrated (riffles) and 55 

many long pools without emergent rocks. These results suggest that fractal dimensions may 56 

be a promising measure of complexity that can help us understand relationships between 57 
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physical characteristics of streams and their ecology. Fractal dimensions also allow 58 

comparison of rock patterns in rivers with other habitats, such as shrubs in grasslands for 59 

example. This may allow future research to explain patterns that are consistent across these 60 

different ecosystems and so advance general ecological theory.  61 

Index terms:  62 

1. 1825 Geomorphology: fluvial (1625) 63 
2. 0458 Limnology (1845, 4239, 4942)  64 
3. 1856 River channels (0483, 0744)  65 
4. 0439 Ecosystems, structure and dynamics (4815) 66 
5. 0430 Computational methods and data processing 67 

Keywords:  68 

1. Ecological resources  69 
2. Fluvial geomorphology 70 
3. Large roughness elements 71 
4. Habitat complexity 72 
5. Spatial heterogeneity 73 
6. Information dimension 74 

 75 

Abbreviations:  76 

ER - Emergent rocks 77 
DX - Fractal dimension, unspecified method 78 
DB - Box-counting fractal dimension 79 
DE - Entropy fractal dimension 80 
δ - Box size 81 
LZS - synthetic low-zero streams 82 
HZS - synthetic high-zero streams 83 
  84 
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1. Introduction 85 

The physical structure of environments affects every aspect of ecosystem structure and 86 

function [e.g. Cuthbert et al., 2019; Ossola et al., 2016]. Physical structure here refers to the 87 

three-dimensional configuration of living space: rocky coasts are more physically complex 88 

than sandy beaches, forests are more physically complex than grassy plains, and so forth [Bell 89 

et al., 2012]. Increasing physical complexity creates a greater diversity of resources (e.g. 90 

living spaces and food) and results in higher species diversity; this association holds true in 91 

every ecosystem that has been tested [Barnes et al., 2013] and requires an explanation, but 92 

quantifying physical complexity is difficult. Most researchers address this difficulty by 93 

developing measures that are intrinsic to particular ecosystems, such as counts of cracks and 94 

crevices in rocks [Downes et al., 1998], wood loading in streams [Lester et al., 2007], or 95 

tributaries across networks [Rice, 2017]. Such eclectic measures, while useful within a 96 

system, cannot be applied across multiple ecosystems at different scales, thereby precluding 97 

general tests of hypotheses and meta-analyses. 98 

General methods for capturing physical complexity exist and one such measure, the fractal 99 

dimension [Mandelbrot, 1967], is applicable across multiple ecosystems and scales. Fractal 100 

dimensions lie between the well-understood dimensions of 1, 2 and 3 for a line, surface and 101 

volume, respectively, and express the extent to which the space is filled. For example, a 102 

complex, wiggly line on a 2-dimensional plane (fractal dimension close to 2) would have a 103 

larger fractal dimension than a straight line (fractal dimension would be 1 for a perfectly 104 

straight line). While natural systems commonly require more than a single exponent to 105 

describe their dynamics (multiple scaling; multifractal), one compelling aspect of fractal 106 

dimensions is that many environments have the same fractal dimension over a range of 107 

spatial scales, in which case they are termed self-similar over those scales [Mandelbrot, 108 

1967]. Coastlines [Mandelbrot, 1967] and river networks [Mantilla et al., 2010] are two well-109 

known examples, i.e. their maps look the same regardless of the scale at which they are 110 

mapped (self-similarity). Where environments are self-similar (fractal-like), fractal 111 

dimensions can be used to measure complexity in a way that is scale independent and 112 

transferable across ecosystem types. 113 

Fractal dimensions and related functions have proven useful for describing characteristics of 114 

river systems, from channel networks [Rinaldo et al., 1992; Rodríguez-Iturbe and Rinaldo, 115 

2001; Tarboton, 1989; Yang and Shi, 2017], through riverbed topography [Sapozhnikov and 116 
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Foufoula‐Georgiou, 1996; Zhong et al., 2012] and planform sinuosity [e.g. Nikora, 1991] to 117 

grain-scale topography [e.g. Butler et al., 2001] in one, two and three dimensions. Fractal 118 

descriptions have, in turn, offered new insights into fluvial processes, including the 119 

generation of bed material fabrics and bedforms, sediment transport, hydraulic resistance and 120 

hyporheic exchange [Aubeneau et al., 2015; Lee et al., 2020; Singh et al., 2011; Singh et al., 121 

2009; Stewart et al., 2019]. Work using fractals to describe fluvial processes has extended 122 

into descriptions of the areal arrangement of large clasts as pebble clusters [Wu et al., 2018], 123 

but has not been applied to regional (comparisons among streams) or local (comparisons 124 

among habitat types within a stream) scales at which most theoretical ecological models 125 

apply [Wiens, 1989]. Most applications of fractals by ecologists have been over small spatial 126 

scales [e.g. Jeffries, 1993; Warfe et al., 2008], which are less suited to understanding 127 

populations.  128 

An outstanding question is whether physical resources for insect populations, namely rocks 129 

that protrude above the surface of the water (emergent rocks, ER) exhibit fractal 130 

arrangements. Emergent rocks are an important resource for many ovipositing insects, which 131 

rely on them for successful recruitment [Lancaster et al., 2010]. They also serve as sites for 132 

insect emergence [Petersen and Hildrew, 2003] and as substrates for bryophytes [Downes et 133 

al., 2003]. They create flow structures that provide resting, cover and feeding opportunities 134 

for fish [Hayes and Jowett, 1994], trap drifting organic foodstuffs [Hoover et al., 2006], and 135 

create microscale habitat heterogeneity that affects the distribution of macroinvertebrates 136 

[Bouckaert and Davis, 1998]. The spatial arrangement of ER has ecological implications. For 137 

example, some caddisflies (Ulmerochorema spp.) lay eggs on ER surrounded by fast flow; 138 

such ER are typically clumped in areas of high velocity (e.g. riffles) and this can lead to very 139 

high local densities of caddisfly eggs and potentially of newly hatched larvae [Lancaster et 140 

al., 2003; Lancaster et al., 2020].  141 

ER also have important roles in stream geomorphology and hydraulics, including affecting 142 

drag and shear stress [e.g. Cooper et al., 2013], generating turbulent structures [e.g. Lacey 143 

and Roy, 2008], and influencing sediment entrainment, deposition and transport processes 144 

[e.g. Monsalve et al., 2017; Papanicolaou et al., 2018]. The spatial distribution of ER reflects 145 

patterns of sediment supply, dispersal, and sorting across multiple scales. The location of 146 

sediment supply points, the volume and size of sediments delivered to the channel, and 147 

subsequent sorting by particle size and shape are affected by factors including geology, 148 
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geomorphological history and hydrometeorology. At local scales, large rocks are arranged 149 

into structures via process-form feedbacks with the flow. The resulting bedforms are key 150 

components in the definition of channel morphology, e.g., cascades, step-pools, plane beds 151 

and pool-riffle sequences [Montgomery and Buffington, 1997]. It is reasonable to expect ER 152 

to be more prevalent in riffles and similar bedforms (steps, cascades) that preferentially store 153 

coarse sediments, and where the bed surface is elevated closer to the water surface, making 154 

emergence more likely. Particle characteristics may also affect the likelihood of emergence; 155 

larger rocks should have a greater propensity to emerge, and rock shape (platy versus equant) 156 

may influence emergence and sorting processes. At larger spatial scales, ER may be more 157 

likely in zones of coarse sediment aggradation, for example at the upstream end of 158 

sedimentary links, downstream of significant tributaries [Rice and Church, 1998].  159 

Beyond such simple expectations, there is limited understanding of how numbers of ER vary 160 

in space or what controls their spatial arrangement. An ability to better describe and explain 161 

the spatial organisation of ER is therefore key to improve our understanding of 162 

geomorphological and ecological processes, such as flow resistance and species diversity. In 163 

this work, we investigated the controls driving differences in fractal dimensions of ER using 164 

numerical simulations of synthetic streams designed to manipulate key characteristics 165 

independently. Specifically, we addressed three research questions: 166 

(Q1) Are longitudinal ER distributions, at scales of up to a kilometre, self-similar 167 

(fractal)? 168 

(Q2) Do fractal dimensions capture differences in ER distributions between rivers 169 

associated with differences in channel morphology and sediment characteristics? 170 

(Q3) Using synthetic streams, which aspects of stream morphology are responsible for 171 

driving differences in fractal properties?   172 

As fractal dimensions are influenced by the density of points (here ER) and their 173 

arrangement, see Figure 1, we hypothesised that channel morphology and sediment 174 

characteristics that increase the propensity for rocks to emerge (and hence increase the 175 

number of ER) or which describe the organisation of large rocks (into pool-riffle structure for 176 

example) would be related to fractal dimension. Larger rocks, particularly in steep, shallow 177 

streams, should be more likely to be emergent. In contrast, characteristics associated with 178 

bedform development, and hence the spatial organisation of ER, are hypothesised to be 179 
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negatively correlated with fractal dimension. Bedform development should be associated 180 

with pool-riffle structure, long pools without ER or with low ER densities, riffles with high 181 

ER densities, and lower stream slopes (see Supporting Information Table S1 for detailed 182 

rationale of hypotheses). 183 

 184 

 185 

Figure 1. How channel morphology and bed sediment characteristics are expected to influence fractal 186 
dimensions. Fractal dimension is affected by the number of points and the arrangement of those points 187 
in space. The fractal dimension of a single point is 0 and a line has the well-understood dimension of 188 
1. ER in streams are analogous to points arranged along a line. Continuing to increase the number of 189 
points or ER along the line will fill in the space until the points resemble a solid line, and hence this 190 
will increase fractal dimension (top vs. bottom panels). If ER become spatially organized (i.e. into 191 
clumps due to stream bedform topography), as opposed to a random distribution, then larger empty 192 
spaces (i.e. pools) will occur along the line and fractal dimension will decrease (left vs. right panels). 193 
How fractal dimension changes with the interaction between ER number, sediment characteristics, 194 
and spatial organization is less clear.  195 
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2. Methods  196 

We used field data from three streams each in Scotland and Australia to determine whether 197 

patterns in ER counts in 5-m segments along ~1-km stream lengths were fractal-like. We then 198 

tested the above hypotheses proposing how variables related to channel morphology and bed 199 

sediment characteristics are correlated with fractal dimensions. The Scottish and Australian 200 

sites have contrasting geomorphological histories and lithologies, and the streams vary in size 201 

and slope, so the data set captures variations in channel morphology and particle 202 

characteristics. Co-variance amongst variables used in hypothesis tests means that the 203 

empirical work is necessarily constrained. 204 

2.1. Study systems  205 

We investigated ER distributions from two sets of streams in SE Scotland and SE Australia 206 

(Fig. 2; Fig. 3), which have been the focus of work on insect oviposition [Lancaster et al., 207 

2010; Reich, 2004]. These regions have distinct bedrock geology, hydrometeorology and 208 

geomorphological histories and vary in their reach-scale channel morphology sufficient to 209 

provide a range of ER arrangements. These systems include three streams in SE Scotland 210 

(Dye Water [Dye], Faseny Water [Faseny], and Kelphope Burn [Kelphope]) and three in SE 211 

Australia (Little River [Little], Snobs Creek [Snobs], and Steavenson River [Steavenson]). 212 

The Scottish lithology is predominantly marine sedimentary (Silurian greywacke) [Davies et 213 

al., 1986], whereas the Australian streams are underlain by volcanic complexes and marine 214 

sediments [Marsden, 1973].  The hydrology of the Scottish system is quite flashy with short-215 

lived floods [Lancaster, 2000], whereas the Australian system is less so. Mean annual rainfall 216 

is ~830 mm in the area encompassing the Scottish streams (Scottish Environmental 217 

Protection Agency, https://apps.sepa.org.uk/rainfall) and exceeds 1000 mm in the Australian 218 

catchment (Australian Government Bureau of Meteorology, 219 

http://www.bom.gov.au/climate/data/). The Scottish streams in the Lammermuir Hills have a 220 

history of Pleistocene glaciation and post-glacial landscape adjustment. Each of the study 221 

reaches are located on floodplains of restricted width, set within convex hills with steep lower 222 

slopes. Intermittent coupling to hillslopes, occasional bedrock outcrops and floodplain 223 

erosion introduce some sediment to the streams but sediment supply is primarily from 224 

upstream, headwater tributaries. The Australian streams, in the Goulburn River catchment of 225 

Central Victoria, have not experienced glaciation and are set within a steeper, more 226 

mountainous landscape. The reach settings are similar to the Scottish streams, with limited 227 
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floodplains, some points of hillslope coupling and occasional bedrock outcrops that affect 228 

channel orientation and recruit sediment. Woody debris is present in the Australian streams 229 

but not in the Scottish streams. Using the Montgomery and Buffington [1997] classification, 230 

channel morphology differs among the streams (Table S2). Dye, Faseny, and Snobs are 231 

dominated by plane bed morphology that tends toward cascades in places (steeper, smaller 232 

depth to grain size ratio) with limited true riffles. Pools between plane bed sections are 233 

common on Faseny, less common on Snobs and limited on Dye. Steavenson, Little and 234 

Kelphope comprise mostly pool-riffle morphology, most prominent in Steavenson but with 235 

increasing presence of plane bed sections in Little and Kelphope. Both regions have large 236 

variations in the proportion of pools in the study reaches (Australia: 19, 34 and 38 % of the 237 

stream length; Scotland: 14, 27 and 40 % of stream length bed (Fig. 3; Table S2). Channel 238 

width varies among the streams, from Kelphope (2.5 ± 0.5 m; mean ± SD), to Snobs (5.8 ± 239 

1.4), Faseny (5.8 ± 1.7), Little (6.1 ± 1.7), Dye (6.6 ± 1.3), and Steavenson (9.5 ± 2.6). 240 

 241 

Figure 2. Scottish (circles) and Australian (triangles) study sites. 242 
 243 



Water Resources Research 

10 

 

2.2. (Q1) Are longitudinal ER distributions, at scales of up to a kilometre, self-similar 244 

(fractal)? 245 

Longitudinal profiles of ER counts were acquired to test whether patterns in ER are fractal-246 

like and consequently whether fractal dimensions reflect geomorphological features, 247 

including measures of rock shape and channel morphology. ER of the Scottish streams were 248 

originally surveyed by Lancaster et al. [2010]  and the Australian streams were surveyed 249 

during the Austral summer (December - February) of 2016/17. Over the study length (685 - 250 

1000 m) of each stream, ER were counted within contiguous 5-m segments to describe the 251 

spatial distribution of patterns along the stream lengths. 5-m corresponds roughly to the 252 

average channel width of the streams. ER were defined as any rock protruding above the 253 

water surface, with a maximum b-dimension (width, perpendicular to longest axis) [Gordon 254 

et al., 2004] of at least 5 cm and in at least 5 cm of water based on those typically used for 255 

oviposition by many aquatic insects. These surveys were carried out at or near summer base 256 

flow. 257 
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 258 

Figure 3. Longitudinal emergent rock (ER) distributions with examples of ER density in riffles and 259 
pools. (a) Coloured bars illustrate 5-m segments denoted as pools (blue) and riffles-like segments 260 
(black; inclusive of true riffles, step-pool, and plane bed; see section 2.3) for each of the six streams. 261 
Unclassified segments (grey bars) were not surveyed for channel morphology. These were included in 262 
the calculation of fractal dimensions but were excluded from simulations of the synthetic streams. 263 
Photographs illustrate ER abundance in (b) pools and (c) riffle-like sections. Arrows indicate the 264 
location of each photo.  265 
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Several methods are available for calculating fractal dimensions. Box counting is the default 266 

method, which has been used to measure complexity of forest understory and canopies 267 

[Denny and Nielsen, 2017], rocky shores [Meager and Schlacher, 2013], and aquatic plant 268 

habitat [Ferreiro et al., 2011], for example. Although wide use of the box-counting method 269 

makes it well placed for comparisons among physical environments, it is a binary method 270 

calculated by counting the number of occupied boxes (NB) and thus the underlying data are 271 

simplified to presence/absence, which results in a loss of information [Halley et al., 2004]. 272 

An alternative method, the information dimension, is based on the information science 273 

parameter, entropy, and involves determining the sum of the proportion of total ER (NE) 274 

within each box, with weighting and correction for bias [Basharin, 1959; Miller, 1955]. This 275 

method retains an estimate of the relative proportion of the variable of interest in the 276 

calculation (here ER density), thus retaining more of the underlying data and potentially 277 

providing better explanatory power for systems where relative amounts of a resource are 278 

important [Halley et al., 2004]. Because entropy is not commonly used for calculating fractal 279 

dimensions, we apply both to allow comparison with other studies. 280 

Box-counting (DB) and entropy (DE) fractal dimensions were calculated using methods 281 

prescribed by Seuront [2009]. Both methods involve dividing the stream into a set of nested 282 

equal-sized boxes, of size δ. All possible values of δ were used, i.e. 5, 10, 15, …, 1000 m, 283 

however, the data set was reduced to include only unique values of NX (i.e. values of δ which 284 

did not result in a change in the values of NX were excluded for either method, NB or NE). 285 

Loge(δ) versus loge(NX) plots provide an estimate of the fractal dimensions from the absolute 286 

slope, and linearity of these plots indicates the possible presence of self-similarity (i.e. fractal 287 

structure) (Fig. 4). For our datasets, DB will span a range of 0 (a single point) to 1 (a solid 288 

line); however, DE retains a measure of relativity and so we might expect values greater than 289 

1. 290 

To avoid making assumptions of linearity in the log-log plots, we followed Seuront’s [2009] 291 

three-step procedure to detect fractal-like properties in natural patterns.  This ensures that 292 

only patterns that are fractal are described as such. These steps included the: 1) R² – SSR 293 

[sum of squared residuals] Procedure, 2) the Zero-Slope Procedure and 3) the Compensated-294 

Slope Procedure. Seuront [2009] specified that data sets could be considered fractal-like if 295 

they satisfied any two criteria of the three-step procedure. Reported estimates of the fractal 296 

dimensions (DX; unspecified method) in the results were taken from the Compensated-Slope 297 
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Procedure because this estimate is more robust to random non-fractal structure (i.e. artefacts 298 

of the data). All computations were undertaken using packages ggpmisc, stats, lmodel2 and 299 

plyr in the open-source software R [R Core Team, 2019]. A more detailed description of 300 

calculating fractal dimensions using Seuront’s [2009] three-step procedure (Text S1; Fig. S1) 301 

and the corresponding R script (Script S1) can be found in Supporting Information. 302 

 303 
 304 
Figure 4. Calculating fractal dimensions of emergent rock (ER) distributions. To calculate fractal 305 
dimensions, longitudinal counts of ER in 5-m segments along a 1-km stream stretch are observed at 306 
different box sizes (δ). The minimum box size in fractal dimensions calculations corresponds to the 5-307 
m segments (δ = 5). The box-counting fractal dimension (DB) and the entropy fractal dimension (DE) 308 
methods use the presence (a) or proportion (b) of ER in each box, respectively. For all possible box 309 
sizes (only six values of δ are illustrated), the box-counting method calculates NB from the sum of 310 
boxes containing ER, whereas the entropy method calculates NE from the sum of the proportions of 311 
ER within each box. Significant linearity in log(NB) (c) and log(NE) (d) plots with changing log(δ) 312 
indicates the possible presence of a fractal structure. The absolute slope of this line can be used as an 313 
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estimate of fractal dimension (here, DB and DE are 0.917 and 0.934, respectively). Equations are 314 
expressed in log-transformed units. 315 

2.3.  (Q2) Do fractal dimensions capture differences in ER distributions between rivers 316 

associated with differences in channel morphology and sediment characteristics? 317 

As we confirm below, all six rivers are self-similar, which means their fractal dimensions 318 

capture scale-independent aspects of how ER are distributed in these streams. Next, we tested 319 

how fractal dimensions of ER vary with geomorphological variables related to bed 320 

topography, because this affects the propensity of ER to be emergent and structured in space 321 

(e.g. the strength of alternating pool-riffle development), and with the size and shape of bed 322 

materials, because these affect the abundance of ER (Fig. 1). We conducted surveys to 323 

provide measures of these characteristics. 324 

Channel morphology surveys were carried out in Sept. 2018 in Scotland and Feb. 2018 in 325 

Australia when discharge was at or near summer base flow. Surveys of morphology and ER 326 

were aligned to ensure spatial compatibility. Morphological surveys were carried out on a 327 

reduced section of the ER survey length (525 – 940 m; Fig. 3), which was visually classified 328 

for morphology at 2-3 m intervals using Montgomery and Buffington [1997] typology, as 329 

described above and in Table S2. The primary purpose was to characterise the distribution 330 

and arrangement of morphological units that are more or less likely to contain ER. We 331 

therefore used a simplified binary morphological classification of pools and ‘riffle-like’, 332 

lumping together true riffles, plane beds and step-pools as sections where the flow is 333 

relatively shallow and bed materials are more likely to be exposed. For simplicity, we refer to 334 

these sections as riffles and pools hereafter.  335 

To document bed and water surface topography, a longitudinal survey was completed using a 336 

dumpy level, with measurements at each interval along the thalweg. Channel width was 337 

measured during the ER surveys at intervals of every 10 m for Scottish streams and every 338 

20 m for Australian streams. The latter were measured at a coarser scale due to an observed 339 

lack in variance. The shape and size of ER and submerged rocks were also surveyed. 340 

Dimensions of ER and submerged rocks were measured at the top, middle and bottom of the 341 

survey length using Wolman counts of 100 rocks at each location [Wolman, 1954]. We 342 

measured a (length), b (width), and c-axes (thickness) of each rock to the nearest 5 mm 343 

[Gordon et al., 2004; Rice and Church, 1996]. We characterised both ER and a random 344 
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sample of submerged rocks to determine whether the attributes of the ER themselves (which 345 

were used to calculate the fractal dimensions) or the characteristics of the available bed 346 

materials, which are better represented by the submerged rocks, are related to fractal 347 

dimensions.  348 

Given the exploratory nature of the work, we calculated a suite of relevant variables from 349 

these field data (Table S1; Table S3) and tested for correlation with fractal dimensions. For 350 

morphology, variables included stream slope, mean riffle and pool lengths (calculated 351 

relative to the study length) and the number of pool-riffle transitions. For grain size we used 352 

the mean of b and c axis and for shape we calculated mean values of equancy (c-axis/a-axis) 353 

and flatness (c-axis/b-axis) ratios [Blott and Pye, 2008]. Some of these measures were 354 

correlated with each other, particularly measures of sediment size and shape (Table S4). 355 

Moreover, the expectation of finding more ER in riffles than pools simplifies what is often a 356 

complex pattern and is probably unrealistic in some streams. Our field observations 357 

confirmed that, on average, riffles contained more ER than pools but also that most pools also 358 

contained some ER in varying amounts. We therefore included several additional metrics 359 

(Table S3) in the correlation tests that were intended to accommodate some of this 360 

uncertainty.  First, we calculated the mean ER density in each study reach to capture 361 

differences in the relative abundance of ER between the streams. Second, we removed stream 362 

morphology altogether by dividing the reaches into sections with and without ER and 363 

calculating metrics for those units, including the number of segments without ER (Table S3). 364 

These allow us to ask the fundamental question of whether fractal dimensions are related to 365 

patterns of ER presence and absence, irrespective of whether that presence or absence is 366 

related to the pools and riffles identified in the field surveys. 367 

Correlation tests (Pearson's product moment coefficient) were used to determine whether 368 

fractal dimension is able to capture between-stream differences in ER associated with 369 

differences in channel morphology and sediment characteristics, differences in the density of 370 

ER in pools and riffles, and differences in the pattern of reaches with and without ER. These 371 

were one-tailed correlation tests because, as explained in the Introduction, fractal dimension 372 

can only increase with numbers of ER, and can only decrease with an increase in the spatial 373 

structure of ER. Relationships in the opposite directions are either mathematically 374 

impossible, or at least improbable for the range of variable values likely to be encountered for 375 

ER in rivers. 376 
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2.4.  (Q3) Using synthetic streams, which aspects of stream morphology are responsible for 377 

driving differences in fractal properties?   378 

Multiple variables affecting fractal dimension were correlated with each other, hence we 379 

created synthetic streams in a numerical model. These synthetic streams allowed some stream 380 

characteristics to be manipulated individually and with greater replication, to test how the 381 

characteristics influence fractal dimensions. Simulations were carried out in R based on 382 

empirical measurements of morphological characteristics and ER numbers (for example see 383 

Supporting Information Fig. S3), although some empirical data could not be simulated (e.g. 384 

rock shape and size). Synthetic stream stretches were created by first randomly drawing riffle 385 

and pool lengths from log-normal distributions. Riffle and pool lengths were alternated for 386 

the length of the synthetic stream (1000 m). ER counts were then randomly drawn from the 387 

negative-binomial distributions and assigned to each 5-m segment of the riffle and pool 388 

lengths. Log-normal distributions of riffle and pool lengths were produced from the observed 389 

lengths of pools and riffles, which were fit to separate log-normal distributions. Log-normal 390 

distributions were chosen because riffle and pool lengths are continuous, positive (> 0) and 391 

skewed with few high values. ER counts in riffle and pool segments were fit to separate 392 

negative-binomial distributions. Negative-binomial distributions were chosen because these 393 

data are discrete, nonnegative (≥ 0), and skewed (i.e. suitable for few high ER counts). As the 394 

ER distributions of the study streams fell into two distinct groups (those with few vs. many 395 

segments without ER), separate negative-binomial distributions were produced from these 396 

two groups to capture these differences (see Supporting Information Text S2 and Fig. S2 for 397 

illustration). Low-zero streams (few segments containing zero ER) were simulated from the 398 

ER count distributions of Dye, Little, Snobs, and Steavenson. High-zero streams (many 399 

segments containing zero ER) were simulated from the ER count distributions of Faseny and 400 

Kelphope.   401 

To determine the effect of stream characteristics on fractal dimension, pool length, riffle 402 

length, and ER density were varied either individually or in combination and replicated 20 403 

times. To disentangle the pattern of segments without ER from the total number of segments 404 

without ER, an additional set of synthetic streams was produced by alternating riffles with 405 

ER (randomly drawn from the negative-binomial distributions) and pools without ER of the 406 

same lengths. The lengths of the riffles and pools were not drawn using random processes but 407 

were systematically set to 14 different lengths, including: 5 (every second 5-m segment has 408 
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no ER), 10 (two 5-m segments with ER, two 5-m segments without ER), 25, 50, 75, 100, 150, 409 

200, 250, 300, 350, 400, 450, and 500 m. For lengths that are factors of 1000 (the length of 410 

the stream), the pattern of segments without ER will change, but the number of segments 411 

without ER remains constant at 100 [500 m]. Twenty replicate synthetic streams were 412 

produced for each of the 14 riffles and pool lengths. A total of 1360 synthetic streams were 413 

simulated using both the random and systematic processes. For a more detailed description of 414 

these simulations and the R script, see Supporting Information Text S2 and Script S2, 415 

respectively. As a first test to see whether the ER distributions of low and high zero synthetic 416 

streams produced systematically different values of DE, t-tests were used. To test for 417 

differences in the variation of DE and variation in the number of ER between the two 418 

distributions, modified signed-likelihood ratio (M-SLR) tests were used [Krishnamoorthy and 419 

Lee, 2014]. M-SLR tests were implemented using the R package CVEQUALITY [Marwick 420 

and Krishnamoorthy, 2018]. Two-tailed linear regression analyses were performed to test for 421 

relations between fractal dimensions and channel morphology characteristics. The slopes of 422 

lines show not only the direction of relationship with fractal dimension but also the relative 423 

effect of each independent variable; steep slopes signal greater change in fractal dimension 424 

than shallow slopes.   425 
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3. Results 426 

3.1.  (Q1) Are longitudinal ER distributions, at scales of up to a kilometre, self-similar 427 

(fractal)? 428 

The ER distributions of all six streams were fractal-like using both the box-counting and 429 

entropy methods. All streams satisfied at least two of the three tests developed by Seuront 430 

[2009]; this is sufficient to illustrate fractal behaviour (Table S5). Further, coefficients of 431 

determination for all streams ranged from 0.99 to 1.0 for both the box counting and entropy 432 

fractal dimensions (Fig S4). Fractal dimensions varied among the six streams and with the 433 

method of calculation (Fig. 5). There was very little discrimination among the streams using 434 

the box-counting method (Table S5; Fig. 5a): four streams (Steavenson, Dye, Snobs and 435 

Little) had the same value for DB and this value did not differ from the fractal dimension of a 436 

straight line (1.00), because very few segments (≤ 2; equivalent to ≤ 10 m) in these streams 437 

contained zero ER. Of the remaining streams, DB was 0.97 for Faseny (although statistically 438 

the log-log slope was not significantly different from 1; Fig. S4) and 0.90 for Kelphope. 439 

Significant breaks in the box-counting log-log slopes were found for all streams except Snobs 440 

and Steavenson (Fig. S5).  441 

The entropy fractal dimension (DE) largely matched the rank order of streams using the box-442 

counting method, but it discriminated numerically between all six streams. Values of DE 443 

ranged from 0.91 to 1.05 and the rank order of streams from lowest to highest DE was 444 

Kelphope (0.91), Faseny (0.93), Steavenson (0.98), Dye (1.00), Little (1.02), and Snobs 445 

(1.05) (Fig. 4b). This produced two groups, whereby log-log slopes for Kelphope and Faseny 446 

were significantly different from that of Steavenson, Little and Snobs (Fig. S4). Dye was only 447 

significantly different to Kelphope. The log-log slopes for all streams except Dye were 448 

significantly different from 1 (Fig. S4). Significant breaks in log-log slopes were found for all 449 

streams, the position of these varied among the streams and was significantly correlated with 450 

pool length and pool-riffle ER density ratio (Fig. S5). Due to its superior ability to 451 

differentiate among streams, we consider DE the better method of measuring the complexity 452 

of ER distributions in our six streams. Therefore, analysis for questions Q2 and Q3 used only 453 

the entropy fractal dimension (box-counting results can be found in Supporting Information 454 

Table S6, Table S7 and Table S8).  455 
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3.2.  (Q2) Do fractal dimensions capture differences in ER distributions between rivers 456 

associated with differences in channel morphology and sediment characteristics? 457 

Entropy fractal dimensions correlated well with some stream characteristics. DE was 458 

negatively correlated with three stream characteristics that relate to the spatial arrangement of 459 

ER: mean proportional pool length, the number of segments without ER and the maximum 460 

length without ER (Table 1).  DE was positively correlated with slope and ER density, which 461 

relate to the number of ER. DE was also positively related to sediment characteristics of 462 

submerged rocks: the c-axis length, and equancy ratio. Given the small sample size (n = 6), 463 

these results should be interpreted with caution given prospective lack of statistical power for 464 

some tests. More critically, some of the independent measures of stream characteristics are 465 

correlated with each other, as well as with fractal dimension, which creates uncertainty about 466 

cause and effect (Supporting Information Table S4).  467 

 468 

Figure 5. Fractal dimensions of emergent rock (ER) distributions. ER distributions along stretches of 469 
three Australian streams (Little; Snobs; and Steavenson) and three Scottish streams (Dye; Faseny; and 470 
Kelphope). Bars represent the presence (a) or proportion (b) of ER in each 5-m segment (the 471 
minimum box size used in fractal dimensions calculations) and fill colour and the order of the streams 472 
reflects the box counting fractal dimensions (DB for a) or the entropy fractal dimensions (DE for b) of 473 
the ER distributions.  474 
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Table 1. Study streams: Correlation tests (one-tailed) of associations between various stream 475 
characteristics and entropy fractal dimensions.  476 
Characteristic Expected 

direction 
r p 

Stream morphology    
Median depth Negative 0.791 0.969 
Stream slope Positive 0.737 0.047 
Mean proportional pool length Negative -0.870 0.012 
Mean proportional riffle length Positive 0.054 0.460 
Number of pool-riffle transitions Negative 0.241 0.677 
    
Bed sediment    
SR (submerged rock) axis B Positive 0.653 0.080 
SR axis C Positive 0.950 0.002 
SR equancy ratio (C/A) Positive 0.765 0.038 
SR flatness ratio (C/B) Negative 0.755 0.958 
    
ER density measures    
Mean ER density over entire site Positive 0.917 0.005 
Pool-riffle ER density ratio Negative 0.541  0.866 
    
Segments without ER    
Number of segments without ER Negative -0.832 0.020 
Maximum length without ER Negative -0.895 0.008 

Note. Bold text indicates p < 0.05 in the direction expected for the one-tailed correlation tests; DF = 4 477 
for all tests. Tests involving sediment size and shape of ER were all non-significant and are reported 478 
in Table S6.  479 
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Table 2. Synthetic streams: Linear regression tests (two-tailed) for relationships between various 480 
stream characteristics and entropy fractal dimensions, for low-zero streams (LZS) and high-zero 481 
streams (HZS) in different simulations. For each simulation pool and riffle lengths, and the number of 482 
ER in pools and riffle segments were held constant except for the manipulated variables.  483 
Independent variable Manipulated 

variable(s) 
ER 
dist. 

DF Slope t p R2 Fig. 

Stream morphology         
Mean proportional pool 
length  Pool lengths LZS 78 –8.9×10-5 3.48 <0.001 0.13 7b HZS 78 –7.8×10-4 4.84 <0.001 0.23 
Mean proportional pool 
length  

Pool lengths, 
riffle ER 

LZS 77 –3.8×10-3 15.5 <0.001 0.76 7d HZS 77 –4.6×10-3 8.46 <0.001 0.48 
Mean proportional riffle 
length Riffle lengths LZS 77 8.2×10-6 0.88 0.38 <0.01 NA HZS 77 1.3×10-6 1.88 0.06 0.04 
         
ER density measures         

ER density Riffle ER, 
pool ER 

LZS 78 –1.3×10-6 0.70 0.49 <0.01 NA HZS 78 7.1×10-5 0.83 0.41 <0.01 

Mean density of riffle ER Riffle ER LZS 78 –1.1×10-4 12.3 <0.001 0.66 7a HZS 78 –4.2×10-4 5.02 <0.001 0.24 

Mean density of riffle ER Pool lengths, 
riffle ER 

LZS 77 –3.2×10-4 22.4 <0.001 0.87 7c HZS 77 –1.9×10-3 17.1 <0.001 0.79 
Pool-riffle ER density 
ratio Riffle ER LZS 78 0.075 11.9 <0.001 0.64 NA HZS 78 0.093 4.97 <0.001 0.24 
Pool-riffle ER density 
ratio 

Pool lengths, 
riffle ER 

LZS 77 0.19 13.3 <0.001 0.69 NA HZS 77 0.38 9.71 <0.001 0.55 
         

Segments without ER         
Number of segments 
without ER  

Pool lengths HZS 78 –1.2×10-3 6.18 <0.001 0.33 6a 

Maximum length without 
ER  

Pool lengths HZS 78 –1.8×10-3 1.29 0.20 0.02 6b 

Number of segments 
without ER  All* LZS 278 –3.1×10-3 7.91 <0.001 0.18 6c HZS 278 –3.9×10-3 9.12 <0.001 0.23  

Note. t-tests indicate whether slopes differ from zero, significant tests are shown in bold text. See 484 
supporting material for full description of simulations. *Alternating riffles with ER (randomly drawn 485 
from the negative-binomial distributions) and pools without ER of the same lengths.   486 
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3.3. (Q3) Using synthetic streams, which aspects of stream morphology are responsible for 487 

driving differences in fractal properties?   488 

Consistent with the study streams, DE of synthetic stream stretches was associated with 489 

stream characteristics that relate to the spatial arrangement of ER, namely the number of 490 

segments without ER, the maximum length without ER, and pool length. Without 491 

manipulating stream characteristics (pool length, riffle length, or ER density), DE was 492 

significantly different for simulations using the two ER distributions, i.e. low vs. high zero 493 

streams (t = 34.2, p < 0.001). This suggests that the number of segments without ER 494 

influence DE, however the number of ER in pools and riffles could also contribute to this 495 

result. Variation in DE was significantly larger for the high-zero streams (Mean DE ± SD; 496 

0.93 ± 0.012) compared with the low-zero streams (1.02 ± 0.002; M-SLR = 39.03, p < 497 

0.001). By definition the number of segments without ER and the maximum length without 498 

ER differed between the two ER distributions. However, as these simulations mimic the 499 

natural systems, they also differed significantly in ER density (t = 69.8, p < 0.001) and 500 

variance (M-SLR = 9.13, p = 0.003). Interestingly, the difference in ER variance was in the 501 

reverse direction to the variation in DE, with the low-zero streams having higher ER variance 502 

(Mean ER/m ± SD; 10.90 ± 0.51) than the high-zero streams (1.94 ± 0.26). DE of simulated 503 

stream stretches was also negatively associated with the number of segments without ER for 504 

high-zero streams with pool lengths manipulated to influence the number of segments 505 

without ER (Table 2, Fig. 6a). The maximum length of segments without ER was not related 506 

to DE for these simulations (Table 2, Fig. 6b), which contradicts the results from the study 507 

streams. However, systematic introduction of pools without ER resulted in a clear non-linear 508 

pattern of DE with the maximum length of segments without ER (Fig. 6d).  For these 509 

simulations, minimum DE resulted from pools (and riffles) of 50 – 75 m (10-15 segments) in 510 

length and maximum DE was observed with pools of 350 m (70 segments) in length. DE was 511 

also negatively associated with the length of pools, even when almost all segments contained 512 

ER, as seen by manipulating pool length of low-zero streams (Table 2). The same trend was 513 

seen for high-zero streams however, this increased pool length and the number of segments 514 

without ER concurrently.  515 

Relating to the number of ER, only ER density could be manipulated in simulations to create 516 

certainty about cause and effect, whereas depth, slope and sediment characteristics could not 517 

be simulated. Unlike the study streams, DE was not correlated to overall ER density of 518 
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simulated stream stretches, as tested by manipulating the number of ER in pools and riffles in 519 

combination (Table 2; Fig. 7). DE decreased with ER density when only the number of ER in 520 

riffles was manipulated (Table 2; Fig. 7a), however this negative relationship conflicts with 521 

our expectations and the results from the study streams. This manipulation concurrently 522 

created a gradient in the pool-riffle ER density ratio, which may have produced the 523 

unexpected relationship. This is supported as further exaggeration of pool-riffle structure by 524 

manipulations of ER density and pool length together, such that the highest ER densities were 525 

paired with the longest pools creating the strongest relative difference (Fig 5c, d), increased 526 

the magnitude of the slopes of DE for both high-zero streams and low-zero streams. Taken 527 

together, these results demonstrate that the spatial arrangement of ER (pool/riffle structure) 528 

has a stronger effect on DE than ER density.  529 
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 530 

Figure 6. Using synthetic stream stretches to determine the influence of segments without ER on DE. 531 
(a-b) The number of segments without ER was altered by manipulating pool lengths of high-zero 532 
streams (HZS: red triangles). DE was associated with the number of segments without ER (a) but not 533 
the maximum length of segments without ER (b). Low-zero streams (LZS) were not included in this 534 
analysis as increasing pool lengths did not largely influence the number of segments without ER. (c-535 
d) Further simulations whereby segments without ER were included by alternating pools without ER 536 
and riffles with ER (using LZS (grey crosses) and HZS riffle distributions) for the length of the site 537 
(1000 m). Pools and riffles were of length 5 (every second 5-m segment has no ER), 10 (two 5-m 538 
segments with ER, two 5-m segments without ER), 25, 50, 75, 100, 150, 200, 250, 300, 350, 400, 450, 539 
and 500 m. In accord with the first set of simulations, increasing the number of segments without ER 540 
resulted in a linear decline in DE (c), however, the length of segments without ER resulted in a clear 541 
non-linear relationship with DE (d). Loess curves are fit to non-linear relationships to illustrate 542 
patterns. See Table 2 for summary of statistical tests.   543 
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 544 

Figure 7. Using synthetic stream stretches to determine the influence of pool-riffle structure on 545 
entropy (DE).  DE is influenced by pool-riffle structure when described by the relative difference in ER 546 
density between pools and riffles and the relative length of pools and riffles. Simulations used the two 547 
ER distributions: low-zero streams, LZS (grey crosses) and high-zero streams, HZS (red triangles) 548 
with manipulations of (a) ER density in riffles or (b) pool length, independently of each other, or (c-549 
d) both ER density in riffles and pool length in combination (i.e. panels c and d are drawn from a 550 
single set of simulations). ER density in riffles and pool length independently influenced LZS and 551 
HZS simulations, however a greater effect (steeper slope) occurred when both stream characteristics 552 
were manipulated. See Table 2 for summary of statistical tests.   553 
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4. Discussion 554 

4.1. (Q1) Are longitudinal ER distributions, at scales of up to a kilometre, self-similar 555 

(fractal)? 556 

Fractal dimensions can be used to measure the complexity of ER distributions in streams in a 557 

way that is scale independent. Six streams exhibited fractal behaviour (self-similarity) 558 

according to the criteria developed by Seuront [2009] for both the box-counting and entropy 559 

methods. It seems likely that fractal dimensions may also measure complexity at scales 560 

smaller than the reach (e.g. single riffles) and beyond our reach lengths (regional scales). 561 

However, we provide some evidence that our study streams exhibit multiple scaling 562 

behaviour as discerned by breaks in the slope of the log-log plots, which may indicate that 563 

different scaling regions (ranges of δ) are described by different fractal dimensions. The 564 

position of the breaks varied among the streams and could be associated with the scale of 565 

bedform spacing (Figure S5). This could also be an artifact of reaching the limits of the data 566 

sets, and so further exploration is needed to determine whether a single or multiple 567 

relationship is better linked to channel geomorphology. Because at least three orders of 568 

magnitude are recommended for fractal analysis [Falconer, 1993] and our datasets confirm 569 

fractal behaviour, even when these breakpoints are crossed, we will continue the discussion 570 

with the box-counting and entropy fractal dimensions calculated using the entire dataset to 571 

ensure the relevance of the fractal analysis.  572 

Fractal dimensions varied among the six streams and with the method of calculation. The 573 

box-counting method only differentiated between streams with many (1 stream), few (1 574 

stream) and no (4 streams) segments without ER. This is problematic for comparison of 575 

upland streams where the vast majority of segments in streams have at least one ER, which 576 

results in DB ~ 1 (the value for a straight line). With a higher resolution, the entropy method 577 

separated all six streams, indicating that the arrangement of ER varies among the streams. DE 578 

ranged from 0.91 to 1.05, and while this is likely a narrow distribution out of a greater range 579 

of fractal dimensions that are possible for real rivers, this range provides some opportunity to 580 

relate ER arrangement to channel morphology and sediment characteristics using the study 581 

streams. However, multicollinearity in the natural systems necessitates the use of synthetic 582 

streams to isolate the causes of variation in DE among streams. 583 
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4.2. (Q2) Do fractal dimensions capture differences in ER distributions between rivers 584 

associated with differences in channel morphology and sediment characteristics? 585 

Our field data showed that entropy fractal dimensions correlated well with stream 586 

characteristics that relate to the number and spatial arrangement of ER. Concerning the 587 

number of ER, DE was related to ER density and channel morphology and sediment 588 

characteristics that influence the propensity for large rocks to emerge. As expected, DE was 589 

positively correlated with the c-axis and particle equancy (c/a) of the bed materials, as 590 

characterised by random sampling of submerged sediments. Submerged rocks likely provide 591 

a better characterization of the bed materials than ER (which were not correlated with DE), 592 

which capture only a subset of the sediment distribution. At a given water depth, grains that 593 

have a large c-axis and are more equant are more likely to be emergent because most grains 594 

rest on their a-b plane, so that the c-axis then determines the elevation of the upper surface of 595 

the particle. Notwithstanding differences in water depth between streams, larger mean c-axis 596 

and equancy are therefore likely to increase the abundance of ER. Indeed, our data showed a 597 

significant positive correlation of both c-axis and particle equancy with ER density.  This 598 

suggests that rock shape may influence the likelihood of emergence more than size (b-axis 599 

was not correlated with DE). However, there is also an expectation that c-axis varies with 600 

channel slope, such that larger bed materials are more common in steeper channels (because 601 

slope is generally adjusted to generate shear sufficient to transport the coarsest materials) and 602 

that as channel length (or drainage area) increases, so the maximum particle size declines due 603 

to sorting and abrasion processes. As slope also influences bedform development causation 604 

may be linked more closely to the spatial arrangement of ER.  605 

Our expectation that the fractal dimension would be related to the spatial arrangement of ER 606 

was supported by stream characteristics that identify the presence of pool and riffle structure. 607 

These included negative correlations of DE with the number and maximum length of 608 

segments without ER, mean proportional pool length, and slope. Segments without ER 609 

provide the first evidence of pool-riffle structure however, at this coarse scale, pools are 610 

simplified to segments without ER, which rarely occurs. At a finer scale, all streams showed 611 

some degree of pool-riffle structure, with riffles in each stream having higher ER density 612 

compared to pools. This structure was greater for three streams (Kelphope, Faseny, and 613 

Steavenson) where pools had fewer than half as many ER as riffles (<0.5:1; pool:riffle ER 614 

ratio); this resulted in the lowest values for DE. Accordingly, these streams have well-615 
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developed macro-scale bedforms like alternating pools and true riffles (e.g. Steavenson) or 616 

alternating pools and plane bed sections (e.g. Faseny). For the remaining streams (Snobs, 617 

Little and Dye), the ratio of ER in pools and riffles was less pronounced (>0.7:1) and led to 618 

the highest values of DE. Topographic bedform development is weak in these streams (e.g. 619 

Dye and Snobs), and hence there is more chaotic, limited organisation of ER. In reaches 620 

dominated by plane bed or with weak riffle-pool development, an absence of long pools 621 

suggests that sediment storage dominates throughout, with little longitudinal topography. 622 

This storage of sediment uniformly elevates the bed closer to the water surface and there is a 623 

greater chance of rocks emerging. In contrast, where storage is organised into distinctive 624 

topographic highs and lows, the propensity for large rocks to emerge is alternately higher and 625 

lower. It is also notable that the steepest streams in each region (Dye, Snobs) are those with 626 

the more irregular ER distributions whereas those on lower slopes (Faseny, Little, 627 

Steavenson) have better developed bedforms and ER organisation. This reflects the well-628 

known association between channel steepness and bedform type, with the development of 629 

true riffle and pool sequences on slopes typically below 1 % [e.g. Buffington and 630 

Montgomery, 2013].   631 

The study streams provide evidence that larger, more-equant grain sizes are associated with 632 

greater abundance but weaker longitudinal organisation of ER. This reinforces the suggestion 633 

that steeper, and also smaller catchments, are more likely to be associated with high DE. This 634 

study is the first to investigate the fractal behaviour of ER in streams and so comparisons 635 

with previous studies are limited; however, relationships with catchment characteristics align 636 

with previous work on fractal dimensions of river networks, which are related to runoff and 637 

sediment yield [Yang and Shi, 2017], flood frequency [Zhang et al., 2015], climate [Wang et 638 

al., 2009], and tectonic forces [Shen et al., 2011]. Ultimately, the number of emergent rocks 639 

and the presence of well-developed topographic bedforms reflects the interplay of many 640 

underlying geomorphological processes. This creates difficulties when attempting to identify 641 

relationships between those variables and other constructs, such as fractal dimension, because 642 

variables are not independent and mechanisms are difficult to disentangle. Simulating streams 643 

provides an elegant way to address these issues. 644 
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4.3.  (Q3) Using synthetic streams, which aspects of stream morphology are responsible for 645 

driving differences in fractal properties?   646 

The simulated synthetic streams provided a clear basis upon which to hypothesise 647 

mechanisms that underpin the relationship between any individual measure of stream 648 

morphology and fractal dimension. They revealed a clear relationship of decreasing fractal 649 

dimensions, and therefore stronger longitudinal organisation of ER, with increased pool-riffle 650 

structure (Fig. 7). To illustrate this clearly, pool-riffle structure was exaggerated by 651 

increasing pool lengths, the number of segments without ER in pools, and ER density in 652 

riffles relative to pools (each manipulated independently from each other and in 653 

combination). The strongest effects were seen when these characteristics were manipulated in 654 

combination, and changes were greater than the sum of the individual effects. This shows that 655 

fractal dimensions capture the dynamics of multiple characteristics making them more useful 656 

than measuring any single characteristic. The use of simulations to investigate these 657 

dynamics allows unhindered interpretation of results and have provided clear complementary 658 

support for the arguments made using the empirical analysis for a relationship between pool-659 

riffle structure and fractal dimension in the study streams. 660 

Taken together, the field and simulated components of this study have helped to disentangle 661 

the geomorphological processes that may generate variation in physical complexity. Fractal 662 

dimensions captured well-known patterns that arise from sediment sorting, abrasion, and 663 

storage processes and are associated with longitudinal fluvial gradients. Upstream, steeper 664 

slopes, less well-developed bedform topography, and greater abundances of large rocks lead 665 

to an irregular organisation of ER and high fractal dimension. Downstream, the development 666 

of true riffle and pool sequences on low slopes and lower abundances of large rocks result in 667 

stronger longitudinal organisation of ER and low fractal dimension. Variation in DE values 668 

between streams relates to aspects of stream morphology and sediment character. As such, 669 

the entropy fractal dimension is a promising measure of physical complexity that captures 670 

differences in ER distributions and organisation driven by geomorphological processes. DE is, 671 

therefore, a useful metric in both geomorphological and ecological studies, which frequently 672 

rely on measurements of geomorphological characteristics to explain ecological patterns.  673 

4.4. Fractal dimensions across ecosystems 674 

Landscape complexity generates patchiness in environmental conditions (e.g. flow resistance, 675 

turbulence, etc.) and resources (e.g. living spaces and food) that drive ecological processes 676 
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[Huffaker, 1958]. This patchiness can facilitate or impede dispersal of organisms, abundance 677 

and persistence of species, and interactions among species. Entropy, describing the 678 

complexity of the physical landscape, is likely to be related to these ecological processes with 679 

the added benefit of being comparable across disciplines and potentially across subject 680 

matter. The entropy fractal dimension may therefore be useful for bridging the gap between 681 

ecology and geomorphology, enabling general questions of assembly to be tested across 682 

ecosystem types.  683 

Self-similarity allows fractal dimension metrics to be transferred across ecosystem types even 684 

when they are measured at different scales. While we have shown that the entropy fractal 685 

dimension may be a useful method to describe the landscape complexity of streams, the box-686 

counting method is still more commonly used across many disciplines. Using a common 687 

method allows integration of ecosystem patterns and broad-scale hypotheses tests across 688 

landscapes scales, and so corresponding results using box counting are presented in the 689 

Supporting information (Table S6, Table S7 and Table S8). While integrating patterns among 690 

ecosystems was not the purpose of this study, it is interesting to note that the complexity and 691 

lack of structure of ER habitats (DB = 0.92 - 1.00) seen here is generally greater than that 692 

reported for other systems where D has been measured in one dimension, including evergreen 693 

forest canopy (0.78 - 0.95), deciduous forest canopy (0.69 - 0.95), understory shrubs (0.70 - 694 

0.81), grassland shrubs (0.61) and grassland grasses (0.80) [Denny and Nielsen, 2017; 695 

Ritchie, 2009] (slopes of log-log plots are reported here to provide consistency with other 696 

papers). How this relates to ecological response variables in these habitats (i.e. species 697 

diversity, dispersal) is an interesting avenue for further research. Ultimately, determining 698 

whether fractal dimensions provide a meaningful description of physical landscapes across 699 

scales and locations will be contingent on the overarching goals in any attempt to integrate 700 

ecosystem patterns more broadly.  701 

Despite its promise, calculating fractal dimensions to measure landscape complexity has its 702 

challenges [Halley et al., 2004]. These start with identifying an appropriate measure of fractal 703 

dimension but also include choosing the range of scales over which to calculate fractal 704 

dimensions, i.e. the smallest and largest scales of observation (in this study, 5 m segments 705 

and 685 – 1000 m river lengths, respectively). We identified the largest scale for each stream 706 

individually, recognising that these would then vary across streams, and used the associated 707 

fractal dimension for each for comparative purposes. Alternative choices included applying a 708 
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single set of delta values (δ) for comparison across all streams, using the scale at which the 709 

maximum (or minimum) entropy value was calculated, among others. These different choices 710 

have a material effect on the resultant fractal dimensions and the ranking of streams and, 711 

therefore, are likely to affect the outcome of comparative studies. Very little published 712 

literature assists with these choices, despite their impact on the final fractal dimensions 713 

calculated. Thus, fractal dimensions should be applied thoughtfully, and additional guidance 714 

is needed to ensure that ecologists and geomorphologists apply the techniques in a 715 

mathematically robust manner.  716 

4.5. Conclusions: 717 

Here, the entropy fractal dimension was a meaningful measure of the complexity of ER 718 

distributions, whereas the box-counting method was less useful for comparisons among 719 

upland streams where most segments had at least one ER. The entropy fractal dimension was 720 

principally driven by the development of well-defined bed topography, for example in the 721 

form of pool-riffle sequences, as this affected longitudinal patterns of ER distribution and, to 722 

some degree, by rock size as this affected the propensity for ER to be abundant irrespective 723 

of bedform topography. Due to this ability to reflect the physical characteristics of the 724 

environment, the entropy fractal dimension shows great potential to measure the complexity 725 

of river systems in a way that is relevant to ecological processes, provided it is calculated 726 

consistently across the systems of interest.   727 
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Text S1. 

Calculating fractal dimensions 
The calculation of the fractal dimensions involved the following five steps: 

1) Calculate NX for all possible values of δ;  
2) Log-transform linear regression of δ and NX;  
3) R² – SSR Procedure;  
4) Zero-slope Procedure;  
5) Compensated-Slope Procedure 

Step 1: Calculation of NX for all possible values of δ 
All possible values of δ were identified. This is simply a sequence of values from the smallest scale of 
observation (here, 5 m segments) to the largest scale of observation (here, the study sites ranged from 
685 – 1000 m) increasing in increments of the smallest scale. For example, the box sizes used for Dye 
are as follows: 

δ:  5, 10, 15, …, 990, 995, 1000. 

For each value of δ, the dataset was divided into boxes of size δ to calculate NX. As the data collected 
for each stream is 1-dimensional, the stream section is divided in only that one direction, along the 
length of the site. For the box-counting method, NB is calculated as the number of occupied boxes. 
Irregularities in the ER distributions of a size smaller than δ are disregarded in box sizes greater than δ 
(Seuront, 2009). For example, sections without rocks that were 10 m in length (2 segments) would be 
ignored at values of delta greater than 15 m (3 segments). As a result, the values of NB using the box-
counting method on the Dye dataset, which does not contain any segments without ER, are as follows: 

Dye values of NB:  200, 100, 67, …, 2, 2, 1. 

For the entropy method, NE is calculated using the proportions of the total ER, following weighting and 
correction for bias in the estimate of entropy as per Miller (1955) and Basharin (1959). The weighted 
estimate (H; theoretical Shannon entropy) was calculated as: 

𝐻𝐻 = −�𝑝𝑝 × log𝑒𝑒 𝑝𝑝 

where p is the proportion of total ER in each box. The correction for bias in the estimate of entropy as 
per Miller (1955) and Basharin (1959) was achieved according to the following equation: 

log𝑁𝑁𝐸𝐸 =∝ 𝐻𝐻 +
(𝑠𝑠 − 1)

2𝑁𝑁
× log2 𝑒𝑒 

where s is sample size (number of boxes) and N is the total number of ER. The constant log2(e) has a 

value of 1.442695. ∝ indicates that we neglect terms of the order of 𝑂𝑂 � 1
𝑁𝑁2�; this correction provides a 

decent approximation of the true entropy value, but only for sufficiently large sample sizes (Strobl, 
2005). Further, the correction is negligible for N to infinity (Strobl, 2005). For example, the values of NE 
using the entropy method on the Dye dataset are as follows: 

Log NE:  4.97, 4.31, 3.92, …, 0.00, 0.00, 0.00. 
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The list of δ and associated NX was condensed to remove duplicate and inconsequential values of NX. 
Using the Dye dataset for instance, δ values of 100, 105, and 110 all result in NB of 10 and δ values 
between 500 and 995 all result in an NB of 2. Further using the entropy method, δ values were removed 
where the resulting value for log NE equalled 0, as this indicates that the entire data set fit into fewer 
than two boxes. The final condensed list (of δ and NX) is used in the remaining four steps to provide an 
estimate of fractal dimensions (DX) including Seuront’s (2009) three-step procedure to confirm the 
presence of fractal-like properties in the ER distributions.  

Step 2: Log-transformed linear regression 
Simple linear regression of log(δ) and log(NX) provides a first estimate of the fractal dimension. The 
slope of the linear regression estimated over the values of δ provides an estimate of the scaling 
exponent (DX) (Fig. S1A)  

Step 3: R² – SSR Procedure  
The R² – SSR Procedure estimates DX by using the values of δ which simultaneously maximised the 
coefficient of determination (R²) and minimized the total sum of the squared residuals (SSR) (Seuront & 
Lagadeuc, 1997) (Fig. S1B). This was achieved by looping over the list of δ and NX with a ‘regression 
window’. Similar to the ‘boxes’ used to loop over the ER counts to calculate NX, the regression window 
looped over the list of δ and NX to allow calculation of the R2 and SSR for each window. The range of 
window sizes used here ranged from a minimum of six data points to a maximum that contained the 
entire list. The R² – SSR criterion was only satisfied if the largest R² value and smallest SSR value were 
produced from the same regression window (Seuront & Lagadeuc, 1997). An estimate of Dx was then 
calculated from the slope of the points contained in the regression window that satisfied the R² – SSR 
criterion. This process ensures that artefacts of linearity in the log-log plot (e.g. due to power-law 
relationships) are avoided. 

Step 4: Zero-slope Procedure 
The Zero-slope Procedure provides an estimate of DX from the intersection of a fitted line of zero-slope 
with the axis describing the derivative of log(NX) with respect to log(δ) (Fig. 1C). Again a sliding 
regression window is used to determine whether the slope of the derivative of log(NX) with respect to 
log(δ) for any regression window is significantly different from zero.  To satisfy the criterion of the Zero-
Slope Procedure, the slope of all windows must not be significantly different from zero. An estimate of 
DX is calculated from the intercept, using the largest window where the slope was not significantly 
different to zero. This procedure has a disadvantage in that enhanced noise is generated by taking the 
first derivative of any linear trend which causes problems for standard statistical procedures; however 
this is overcome in the following compensated-slope procedure.  
 
Step 5: Compensated-Slope Procedure 
The Compensated-Slope Procedure estimates DX from a range of compensated exponents. The 
compensated exponent which best estimates DX is determined by the plot of log [ 𝛿𝛿𝐶𝐶 × 𝛿𝛿−𝐷𝐷𝑋𝑋] versus 
log (δ), where the slope is closest to zero (Fig. 1D). The estimate of DX used for this procedure is 
produced from the linear regression of log(δ) and log(NX) in step 2. We used 101 values of C that ranged 
from 0 to DX+1, to allow an excess of values extending into the next dimension. The value of C whereby 
the slope was closest to zero was used as the DX estimate in the in the current paper, as plateau 
behaviour in this relationship is a manifestation of scaling and therefore should not be the result of 
random non-fractal structure (i.e. an artefact of the data). The Compensated-Slope criterion was only 
satisfied if the slope was not significantly different from zero.   
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As stated by Seuront (2009), fractal-like behaviour is only confirmed if the criteria of two of the three 
test procedures described above are satisfied. R scripts for the calculation of the fractal dimensions are 
found in Supporting Information Script S1.  
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Text S2. 

Simulating emergent rocks in streams 
Synthetic stream stretches were simulated using base R (R Foundation for Statistical Computing, 
Vienna, Austria) using the characteristics observed in the six study streams. These characteristics 
included: 1) site length, 2) feature (riffle and pool) lengths and 3) the number of ER in the 5-m segments.  
 
To produce the synthetic stream stretches: First, a sequence of feature lengths was produced by 
alternately selecting riffle and pools lengths (XrL and XpL) from log-normal distributions, calculated 
based on the study stream data, until the cumulative length exceeded stream length (e.g. a sequence 
may include 3pL, 7rL, 10pL, 21rL, 4pL, 22rL, 3pL, 7rL, 6pL, 7rL…, indicating that the first feature was a pool of 
length 3m and the next feature was a riffle of length 7 m, and so on). The parameters of these 
distributions were µ = 1.372 and 2.049, and σ = 0.571 and 0.829 for pools and riffles, respectively. Next, 
the sequence of riffle and pool lengths was translated into a binary sequence, with each digit (r or p) 
representing a single 5-m segment (e.g. for the above example, the binary sequence would begin with 
p, p, p, r, r, r, r, r, r, r, and so on). Finally, digits (r and p) of the binary sequence were replaced with 
values selected from negative binomial distributions based on the ER numbers in either riffles or pools 
of the study streams. These values represent the number of ER in each 5-m segment (e.g. 36pER, 11pER, 
2pER, 71rER, 48rER, 10rER, 99rER, 74rER, 16rER, 30rER…., indicates that the first 5-m segment in the example 
sequence above was a pool with 36 ER, the next segment was also part of the same pool but with 11 ER, 
given that the first pool extended for three segments in the stream length sequence, and so on). Two 
riffle/pool sets of ER distributions were used for the simulations, one fitted from the low-zero streams 
(low-zero streams; including Kelphope and Faseny) and one from the high-zero streams (high-zero 
streams; including Dye, Steavenson, Snobs, and Little) (Fig. S2). The parameters of the ER distributions 
for the low-zero streams were: size = 1.28 and 1.64, and µ = 43.2 and 60.1 for riffles and pools, and for 
the high-zero streams: size = 0.266 and 0.638 and µ = 5.46 and 14.8 for riffles and pools. 
 
To determine the effect of each stream characteristic on fractal dimension, each characteristic was 
manipulated individually, leading to a total of 640 synthetic streams (see Fig. S3 for an example). A 
default of 1000 m was used for the length of synthetic stream stretches. However, to test for any 
influence of site length on fractal dimensions (Dx) site length ‘variants’ of 685, 765, 845, 920, and 1000 m 
were used, which spans the observed range. Variants of feature lengths were produced using 
multipliers (1, 2, 4, and 8) on riffle and pool lengths separately. Variants of ER density were produced 
using multipliers (1, 2, 4, and 8) on riffle ER counts separately, and pool and riffle ER counts 
simultaneously. Pool length and riffle ER density were also manipulated simultaneously (using 
multipliers 1, 2, 4, and 8 on both; Fig. S3). Further simulations were produce by adding systematic 
features with segments containing zero ER (including features of length 1 [every second segment has 
zero ER], 2 [two segments with ER, two segments with zero ER], 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90 
and 100), Each set of simulations included 10-20 replicates of each variant; i.e. for the set of simulations 
for which site length was manipulated, 5 variants (685, 765, 845, 920, and 1000 m) were produced, with 
10 replicates of each, equating to a total of 50 synthetic stream stretches. 
 
R scripts for simulating synthetic stream stretches are found in Supporting Information (Script S2).   
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Figure S1. Four methods of calculating fractal dimensions using the box-counting method with the Dye 
dataset for example. (a) Log-transformed linear regression of δ and NB. (b) The R² – SSR Procedure. 
Each point shows R² and the SSR for each regression window. Here, the R² – SSR criterion were not met 
as the regression window with the highest R2 (red shaded point) and the regression window with the 
lowest SSR (blue shaded point) were not one and the same. (c) The Zero-slope Procedure. Here the 
derivative of log(NB) is plotted against log(δ). The red solid line gives the best estimate of Dx and the 
blue dashed line provide confidence intervals based on the largest and smallest plausible values of Dx 
for these data (d) The Compensated-Slope Procedure. Here 𝐥𝐥𝐥𝐥𝐥𝐥 [𝜹𝜹𝑪𝑪 × 𝜹𝜹−𝑫𝑫𝑿𝑿] is plotted against log(δ). 
The compensated exponent which best estimates DX is where the slope is closest to zero (blue filled 
points). Methods b – d are required for Seuront’s (2009) three-step procedure to confirm the presence 
of fractal-like properties.  
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Figure S2. Frequency distributions of ER in riffles (dark grey) and pools (light grey) of (a) each stream 
individually, (b) grouped low-zero streams (low-zero streams) including Dye, Little, Snobs, and 
Steavenson and grouped high-zero streams, including Faseny and Kelphope, and (c) simulated data 
using negative binomial distributions fitted to the low-zero streams and high-zero streams data. 

  



 
 

8 
 

 

Figure S3. Example of four synthetic stream stretches where pool lengths and riffle ER density have 
been manipulated simultaneously using multipliers (M) of 1, 2, 4, or 8. Segments of pools (blue) and 
riffles (black) are 5 m in length and span a 1000 m stream stretch.   
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Figure S4. (a) Log-log plots and (b) a comparison of the corresponding absolute slopes for the box 
counting dimension (left columns) and the entropy dimension (right columns) for ER counts in the six 
study streams.  Significant differences among streams are signified with lower-case letters (e.g. for the 
box-counting method Kelphope was significantly different to all other streams) and were determined 
using post hoc analysis tests using the ‘lstrends’ r package. Asterisks signify a significant difference 



 
 

10 
 

from a slope of one, tests of which were executed using two-tailed linear regression analyses with an 
offset term fixed at -1. Equations are presented in log-transformed units. 
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Figure S5. Exploring multiple scaling. (a) Log-log plots for the box counting dimension (left columns) 
and the entropy dimension (right columns) for ER counts in the six study streams. Data were divided at 
breakpoints that were identified using the r package ‘segmented’ that identifies where the linear 
relation changes using bootstrap restarting. Significant differences between the small- (blue lines and 
equations) and large-scale (red lines and equations) slopes for each stream were determined using post 
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hoc analysis tests using the ‘lstrends’ r package. Equations are presented in log-transformed units. 
Breakpoints were significantly related to pool-riffle structure as seen with the relation between (b) pool 
lengths and (c) pool-riffle ER density ratio. Breakpoints were not related to  channel width or stream 
length.
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Table S1. Rationale for directional hypotheses. 
Characteristic 
(Expected direction) 

Propensity for rocks to emerge and 
thence the number of ER 

Bedform development and thence the 
spatial organisation of ER  

Stream morphology   
Median depth 
(Negative) 

Rocks are less likely to be emergent in 
deeper topography (fewer ER) 

Depth increases downstream and is 
associated with better bedform development 

Stream slope 
(Positive) 

Greater slopes are associated with larger 
bed materials (more ER) 

Slope decreases downstream and is 
associated with better bedform development 

Mean proportional 
pool length 
(Negative) 

Longer pool length implies greater 
occurrence of deeper topography (fewer 
ER) 

Longer pool lengths imply stronger 
organisation of bed topography 
 

Mean proportional 
riffle length 
(Positive) 

Longer riffle-like length implies greater 
occurrence of shallow topography (more 
ER) 

NA 

Number of pool-riffle 
transitions 
(Negative) 

NA The number of pool-riffle transitions implies 
greater bed form development and structure 

Bed sediment   
Axis B 
(Positive) 

For a given water depth, larger bed 
materials are more likely to be emergent 
(more ER) 

Larger bed materials are more common in 
steeper channels. Slope decreases 
downstream and is associated with reduced 
bedform development 

Axis C 
(Positive) 

Larger c-axis increases elevation above 
the average bed surface because most 
grains rest on their a-b plane (more ER) 

Larger bed materials are more common in 
steeper channels. Slope decreases 
downstream and is associated with reduced 
bedform development 

Equancy ratio (C/A) 
(Positive) 

Greater equancy increases elevation 
above the average bed surface (more ER) 

NA 

Flatness ratio (C/B) 
(Negative) 

Greater flatness decreases elevation 
above the average bed surface (fewer ER) 

NA 

ER density measures   
Mean ER density 
(Positive) 

ER density is directly related to the 
number of ER 

NA 

Pool-riffle ER density 
ratio (Negative) 

NA Pool-riffle ER density ratio is directly related 
to spatial organisation of ER 

Segments without ER   
Number of segments 
without ER 
(Negative) 

Number of segments without ER is 
directly related to the number of 
segments with ER 

Coarse measure of the number of pools, 
implies strong organisation of bed 
topography 

Maximum length 
without ER 
(Negative) 

Maximum length without ER is directly 
related to the number of segments with 
ER  

Coarse measure of longest pool, implies 
strong organisation of bed topography 
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Table S2. Proportions of channel morphologies in the six study streams.  

 
   Scotland   Australia 

  Dye Faseny Kelphope  Little Snobs Steavenson 
Pools 0.14 0.40 0.27  0.34 0.19 0.38 
Riffle-like 0.86 0.60 0.73  0.66 0.81 0.62 
True riffle 0.00 0.04 0.40  0.41 0.07 0.50 
Plane Bed 0.86 0.56 0.33  0.25 0.65 0.12 
Step Pool 0.00 0.00 0.00  0.00 0.09 0.00 
  
Note. Simplified morphology into pools and ‘riffle-like’, provide a high-level distinction 
between deeper pools and those sections where the flow is relatively shallow and bed 
materials are more likely to be exposed. The ‘riffle-like’ category is the sum of true riffles, 
plane beds, step-pools. See Methods, section 2.3. 
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 Table S3. Geographical and physical features of the study streams along the survey lengths. Where relevant, values are reported as mean ± SD. 
SR indicates submerged rocks. 
 Scotland  Australia 
 Kelphope Faseny Dye  Snobs Little Steavenson 
Latitude N 55.78639 N 55.85111 N 55.81528  S 37.27382 S 37.34908 S 37.48389 
Longitude W 2.78389 W 2.59194 W 2.57222  E 145.87713 E 145.75202 E 145.75242 
Altitude (m) 230 300 270  283 308 379 
Survey length (m) 1000 1000 1000  785 685 885 

Stream morphology        

Mean channel width (m)  2.5 ± 0.5 5.8 ± 1.7 6.6 ± 1.3  5.8 ± 1.4 6.1 ± 1.7 9.5 ± 2.6 
Median depth (m) 0.13  0.22  0.23   0.36  0.30  0.37 
Slope (%) 0.94 1.04 1.09  3.08 1.47 1.01 
Mean proportional riffle lengths 0.10 ± 0.06 0.05 ± 0.03 0.11 ± 0.13  0.09 ± 0.09 0.06 ± 0.03 0.05 ± 0.05 
Mean proportional pool lengths  0.04 ± 0.02 0.04 ± 0.02 0.02 ± 0.01  0.02 ± 0.01 0.03 ± 0.02 0.03 ± 0.02 
Pool-riffle transitions 25 2 14  19 26 24 

Bed sediment 
ER axis A (mm) 191.5 ± 52.2 375.3 ± 153.9 371.6 ± 117.2  290.7 ± 152.7 256.4 ± 110.8 202.9 ± 106.3 
ER axis B (mm) 126.3 ± 33.6 241.2 ± 89.9 253.9 ± 74.7  203 ± 102.9 185.7 ± 74.4 147.8 ± 72.2 
ER axis C (mm) 76.9 ± 31.9 134.1 ± 73.3 122.1 ± 54.3  147.2 ± 83.5 121.2 ± 59.1 95.2 ± 57.1 
ER elongation ratio  0.68 ± 0.15 0.67 ± 0.17 0.71 ± 0.17  0.71 ± 0.13 0.74 ± 0.13 0.75 ± 0.13 
ER flatness ratio  0.61 ± 0.20 0.57 ± 0.24 0.50 ± 0.22  0.73 ± 0.16 0.66 ± 0.19 0.65 ± 0.19 
ER equancy ratio  0.41 ± 0.14 0.37 ± 0.16 0.34 ± 0.14  0.52 ± 0.14 0.48 ± 0.14 0.48 ± 0.15 
SR axis A (mm) 136.1 ± 43.8 202.2 ± 97.9 220.6 ± 103.8  187.1 ± 82.5 178.2 ± 79.1 160.4 ± 87.4 
SR axis B (mm) 93.7 ± 31.5 134.7 ± 67.4 152.3 ± 69.6  139.6 ± 62.6 133.8 ± 59.6 115.4 ± 63.5 
SR axis C (mm) 42.6 ± 19.1 58.6 ± 37.1 65 ± 32.3  94.6 ± 47.9 87.2 ± 40.3 73.7 ± 43.3 
SR elongation ratio 0.70 ± 0.15 0.68 ± 0.15 0.71 ± 0.15  0.76 ± 0.12 0.76 ± 0.12 0.73 ± 0.14 
SR flatness ratio 0.47 ± 0.19 0.44 ± 0.19 0.46 ± 0.19  0.68 ± 0.15 0.66 ± 0.16 0.65 ± 0.18 
SR equancy ratio 0.32 ± 0.12 0.30 ± 0.13 0.31 ± 0.12  0.51 ± 0.13 0.50 ± 0.13 0.47 ± 0.14 

ER density measures        
Density of ER (no. m-2) 0.31  0.57 1.01  2.31 2.44 1.27 
Pool-riffle ER density ratio 0.63 0.34 0.79  0.68 0.73 0.49 
Segments without ER        

Number of segments without ER 109 34 0  0 2 1 
Maximum length without ER (m) 50 25 <5  <5 5 5 
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Table S4. Correlation tests among variables describing physical features of the study streams. All tests are two-tailed with DF = 4. r-values 
significant at α < 0.05 are shown in bold. Sets of cells in shaded grey describe similar aspects of the stream: stream bed morphology, sediment 
size and shape, and ER density. Cells shaded yellow indicate significant correlations among different aspects. SR indicates submerged rocks. 
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Median depth                
 

Slope 0.549               
 

Mean proportional riffle length  -0.426 0.184              
 

Mean proportional pool length  -0.581 -0.593 -0.421             
 

Pool-riffle transitions 0.215 0.095 0.145 -0.146            
 

ER axis B 0.028 0.136 0.097 -0.397 -0.779           
 

ER axis C 0.437 0.662 -0.09 -0.505 -0.541 0.780          
 

ER flatness 0.621 0.718 -0.274 -0.141 0.499 -0.48 0.173         
 

ER equancy 0.734 0.66 -0.301 -0.252 0.603 -0.491 0.128 0.972        
 

SR axis B 0.362 0.358 0.082 -0.687 -0.487 0.909 0.849 -0.216 -0.164       
 

SR axis C 0.875 0.753 -0.221 -0.684 0.222 0.193 0.656 0.653 0.73 0.547      
 

SR flatness 0.862 0.614 -0.31 -0.451 0.602 -0.33 0.213 0.856 0.948 0.059 0.859     
 

SR equancy 0.847 0.632 -0.316 -0.441 0.585 -0.304 0.249 0.863 0.947 0.082 0.874 0.997    
 

ER density 0.753 0.687 -0.166 -0.608 0.396 0.071 0.53 0.662 0.744 0.444 0.958 0.867 0.892   
 

ER density ratio 0.018 0.297 0.712 -0.67 0.528 0.044 0.034 0.009 0.100 0.284 0.312 0.233 0.242 0.457  
 

Segments without ER -0.823 -0.379 0.272 0.734 0.096 -0.519 -0.654 -0.155 -0.295 -0.788 -0.813 -0.548 -0.547 -0.694 -0.189  

Max length without ER -0.813 -0.450 0.107 0.845 -0.009 -0.478 -0.621 -0.177 -0.324 -0.781 -0.831 -0.579 -0.575 -0.727 -0.347 0.982 

  



 
 

1 
 

Table S5. Fractal Dimension Results using the Box-Counting and Entropy Methods.  
  
  

Scotland Australia 
Dye Faseny Kelphope Little Snobs Steavenson 

Box-Counting  

 

Log(δ)-log(NB) slope 1.00 0.98 0.92 1.00 1.00 1.00 
R² – SSR 0.99 0.95 1.01 0.99 0.99 0.99 
Zero-Slope 1.03 1.02 0.97 1.03 1.02 1.02 
Compensated-Slope (DB) 1.00 0.97 0.90 1.00 1.00 1.00 

Entropy 

 

Log(δ)-log(NE) slope 1.00 0.94 0.93 1.04 1.06 1.01 
R² – SSR 0.94 0.91 1.03 0.96 0.98 0.96 
Zero-Slope 0.98 0.98 1.19 1.11 1.10 0.99 
Compensated-Slope (DE) 1.00 0.93 0.91 1.02 1.05 0.98 

Note. One estimate of fractal dimension can be produced from the absolute slope of log(δ)-log(NX) linear 
regression, where significant linearity (here indicated with bold text) indicates the likely presence of a 
fractal structure. A more robust method of confirming the presence of fractal-like properties follows 
Seuront’s [2009] three-step procedure, including the 1) R² – SSR, 2) Zero-Slope, and 3) Compensated-
Slope procedures. Using this method, any stream must satisfy any two of the three criteria to be 
considered fractal [Seuront, 2009] (see Supporting Text S1). Bold text indicates that the data satisfy the 
criterion for the test in question. Plain text indicates that the data did not satisfy the criterion. As 
described in the methods above, DX was selected using the Compensated-Slope Procedure, as indicated 
by the parentheses.  
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Table S6. One-tailed correlation tests of the study stream characteristics with the box-counting 
and entropy fractal dimensions. DF = 4. Bold text indicates p < 0.05. 

    Expected 
direction 

Box-counting  Entropy  
    r p  r p 

Stream morphology       

 Median depth Negative 0.817 0.977  0.791 0.969 

 Stream slope Positive 0.365 0.238  0.737 0.047 
 Mean proportional pool length  Negative -0.709 0.057  -0.870 0.012 
 Mean proportional riffle length  Positive -0.301 0.719  0.054 0.460 
 Number of pool-riffle transitions Negative -0.124 0.408  0.241 0.677 

Bed sediment       

 ER axis B Positive 0.791 0.030  0.653 0.080 
 ER axis C Positive 0.804 0.027  0.950 0.002 
 ER equancy ratio (C/A) Positive 0.534 0.137  0.765 0.038 
 ER flatness ratio (C/B) Negative 0.534 0.862  0.755 0.958 
 SR axis B Positive 0.532 0.139  0.291 0.288 
 SR axis C Positive 0.663 0.076  0.636 0.087 
 SR equancy ratio (C/A) Positive 0.283 0.294  0.582 0.113 
 SR flatness ratio (C/B) Negative 0.146 0.609  0.482 0.833 

ER density measures       
 ER density over entire site Positive 0.679 0.069  0.917 0.005 
 Pool-riffle ER density ratio Negative 0.157 0.617  0.541  0.866 

Segments without ER       
 Number of segments without ER Negative -0.999 <0.001  -0.832 0.020 
 Maximum length without ER Negative -0.974 0.001  -0.895 0.008 
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Table S7. Linear regression tests of the log(δ) versus log(NX) for the box-counting (NB) and 
entropy (NE) methods. Linearity indicates the likely presence of fractal structure. 

 Box-counting  Entropy 
River F-statistic DF p-value R2  F-statistic DF p-value R2 
Dye 84177 25 <0.01 1.00  6263 24 <0.01 1.00 
Faseny 34778 25 <0.01 1.00  6208 25 <0.01 1.00 
Kelphope 3498 25 <0.01 0.99  2604 24 <0.01 0.99 
Little 47493 20 <0.01 1.00  2901 18 <0.01 0.99 
Snobs 63688 21 <0.01 1.00  4434 20 <0.01 1.00 
Steavenson 151983 23 <0.01 1.00  5399 22 <0.01 1.00 
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Table S8. Linear regression tests of the stream characteristics using synthetic stream stretches with the box-counting and entropy fractal 
dimensions. Entropy results are repeated for ease of comparison. 

Independent variable 
Manipulated 
variable(s) 

ER 
dist. 

DF 
Box counting Entropy 

Slope t-value p-value R2^ Slope t p R2 
Stream morphology           
Mean proportional pool 
length  

Pool lengths 
LZS 78 –2.6×10-8 0.08 0.94 <0.01 –8.9×10-5 3.48 <0.001 0.13 
HZS 78 –4.4×10-4 5.60 <0.001 0.29 –7.8×10-4 4.84 <0.001 0.23 

Mean proportional pool 
length  

Pool lengths, 
riffle ER 

LZS 77 4.3×10-8 0.11 0.91 <0.01 –3.8×10-3 15.5 <0.001 0.76 
HZS 77 –3.5×10-4 4.29 <0.001 0.19 –4.6×10-3 8.46 <0.001 0.48 

Mean proportional riffle 
length 

Riffle lengths 
LZS 77 –7.3×10-8 0.78 0.44 0.01 8.2×10-6 0.88 0.38 <0.01 
HZS 77 1.4×10-4 3.73 <0.001 0.15 1.3×10-6 1.88 0.06 0.04 

            
ER density measures           

ER density 
Riffle ER, 
pool ER 

LZS 78 –3.3×10-9 0.19 0.85 <0.01 –1.3×10-6 0.70 0.49 <0.01 
HZS 78 –1.3×10-5 0.49 0.63 <0.01 7.1×10-5 0.83 0.41 <0.01 

Mean density of riffle ER Riffle ER 
LZS 78 –4.1×10-8 1.37 0.18 0.02 –1.1×10-4 12.3 <0.001 0.66 
HZS 78 –5.1×10-5 1.26 0.21 0.02 –4.2×10-4 5.02 <0.001 0.24 

Mean density of riffle ER 
Pool lengths, 
riffle ER 

LZS 77 –9.1×10-9 0.30 0.77 <0.01 –3.2×10-4 22.4 <0.001 0.87 
HZS 77 –8.9×10-5 3.28 0.002 0.12 –1.9×10-3 17.1 <0.001 0.79 

Pool-riffle ER density 
ratio 

Riffle ER 
LZS 78 –2.0×10-5 1.00 0.32 0.01 0.075 11.9 <0.001 0.64 
HZS 78 –8.1×10-3 0.90 0.37 0.01 0.093 4.97 <0.001 0.24 

Pool-riffle ER density 
ratio 

Pool lengths, 
riffle ER 

LZS 77 –7.6×10-7 0.04 0.97 <0.01 0.19 13.3 <0.001 0.69 
HZS 77 3.1×10-2 5.11 <0.001 0.25 0.38 9.71 <0.001 0.55 

            
Segments without ER           
Number of segments 
without ER  

Pool lengths HZS 78 
–7.8×10-4 9.93 <0.001 0.03 –1.2×10-3 6.18 <0.001 0.33 

Maximum length 
without ER  

Pool lengths HZS 78 
–3.4×10-3 5.70 <0.001 0.29 –1.8×10-3 1.29 0.20 0.02 

Note. t-tests indicate whether slopes differ from zero, significant tests are shown in bold text.  
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Script S1. 

R scripts for calculating fractal dimensions 
# Functions for calculating 1D fractal dimensions 
############################### 
 
#References: 
######### 
# fractaldim:::IsInBox function from fractaldim library 
library(ggpmisc) 
library(stats) 
library(lmodel2)   
library(plyr) 
 
##Box Counting Functions 
################# 
 
## IsInBox 
IsInBoxBC <- function (IsInBoxdata, boxx, boxy)  
{ 
  IsInBoxdata <- subset(IsInBoxdata, IsInBoxdata[,1]>= boxx[1]) 
  IsInBoxdata <- subset(IsInBoxdata, IsInBoxdata[,1]<= boxx[2]) 
  if (nrow(IsInBoxdata)>0){ 
    for (i in 1:nrow(IsInBoxdata)) 
    { if(any((IsInBoxdata[i,2] >= boxy[1]) & (IsInBoxdata[i,2] <= boxy[2]))) 
    {return(TRUE)}} } 
  return(FALSE) 
} 
 
## CrossingBox 
CrossingBoxyBC <- function (Crossdata, boxx, boxy)  
{ 
  Crossdata <- subset(Crossdata, Crossdata[,1]>= boxx[1]) 
  Crossdata <- subset(Crossdata, Crossdata[,1]<= boxx[2]) 
  Add <- 0 
  nrow(Crossdata) 
  if (nrow(Crossdata)>0){ 
    for (j in 1:nrow(Crossdata))   
    { if(Crossdata[j,2] >= boxy[2]) {Add <- 1}}  
  }  
  return(Add) 
} 
 
CrossingBoxxBC <- function (Crossdata, boxx, boxy)  
{ 
  Crossdata <- subset(Crossdata, Crossdata[,2]>= boxy[1]) 
  Crossdata <- subset(Crossdata, Crossdata[,2]<= boxy[2]) 
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  Add <- 0 
 
  if (nrow(Crossdata)>0){ 
    for (k in 1:nrow(Crossdata))   
    { if(Crossdata[k,1] >= boxx[2]) {Add <- 1}}  
 
  } 
  return(Add) 
} 
 
CrossingBoxxyBC <- function (Crossdata, boxx, boxy)  
{ 
  Crossdata <- subset(Crossdata, Crossdata[,1]>= boxx[2]) 
  Crossdata <- subset(Crossdata, Crossdata[,2]>= boxy[2]) 
  Add <- 0 
  if(nrow(Crossdata) < 0) {Add <- 1}  
  return(Add)     
} 
 
## BoxCount 
BoxCount_Fun <- function (data, numcases, boxsize, data.range.x, data.range.y)  
{ 
  Ninternal <- 0 
  width <- boxsize  
  height <- boxsize     
   
  minboxx <- data.range.x[1]   
  minboxy <- data.range.y[1]   
  maxboxx <- data.range.x[2]  
  maxboxy <- data.range.y[2]   
   
  qh <- trunc(maxboxx/width)           
  qv <- max(trunc(maxboxy/height),1)   
   
  for (hor in 1:qh) {    
    boxxlimits <- c((min(data[,1]) + (hor-1) * width),(min(data[,1]) + (hor) * width)) 
     
    for (ver in 1:qv) {   
      boxylimits <- c((min(data[,2]) + (ver-1) * height), (min(data[,2]) + ver * height)) 
       
      if(IsInBoxBC(data, boxxlimits, boxylimits))   
      {Ninternal <- Ninternal + 1}  
       
      if(hor == qh) { 
        Addx <- CrossingBoxxBC(data, boxxlimits, boxylimits) 
        Ninternal <- Ninternal + Addx } 
       
      if(ver == qv){ 
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        Addy <- CrossingBoxyBC(data, boxxlimits, boxylimits) 
        Ninternal <- Ninternal + Addy } 
    } 
     
    Addxy <- CrossingBoxxyBC(data, boxxlimits, boxylimits) 
    Ninternal <- Ninternal + Addxy 
  } 
  return(Ninternal) 
} 
 
## Run Box-counting functions 
Function_Run_Box_Counting <- function(Delta = TRUE) { 
  library(plyr) 
  if("Rocks" %in% colnames(data1D)){  
    # 1D data: 
    data <- subset(data1D, Rocks > 0)                       
    data <- uncount(data = data, weights = data$Rocks)     
    data$Y..m. <- 1                                        
    data$X..m. <- data$X_coord              
    min_box_size <- 5     
    decimal_places <- 0 
     
  }else{ 
    # 2D data: 
    data <- data1D 
    min_box_size <- 0.2  
    decimal_places <- 2 
  } 
   
  Rivers <-as.character(unique(data$River)) 
   
  boxcount_results_lm1 <- array(0, dim = c(length(Rivers), 4)) 
  boxcount_results_lm2 <- array(0, dim = c(length(Rivers), 4)) 
  Delta2onwards_LIST <- list() 
  DELTAS <- data.frame(River = Rivers, new_delta = vector("numeric",length(Rivers)))  
  Snipping_values <- data.frame(River = Rivers, pointsremove = 
vector("numeric",length(Rivers))) 
   
  for (g in 1:length(Rivers)) { 
    data2D_format <- data[data$River==Rivers[g],]  
    data2D_format <- subset(data2D_format, select = c(X..m.,Y..m.)) 
     
    n <- nrow(data2D_format) 
    data.range.x <- range(data2D_format[1:n,1]) 
    data.range.y <- range(data2D_format[1:n,2]) 
    sizes <- round(seq(from = data.range.x[1], to = data.range.x[2], by = min_box_size), digits = 
decimal_places)  
    sizes <- sizes[sizes != 0]  



 
 

4 
 

    delta <- length(sizes) 
    neff <- trunc((n - 1)/((delta - 1)*5)) * ((delta - 1)*5) + 1 
    Box <- array(0,c(delta,3)) 
     
    for (a in (1:delta)) {  
      Box[a,1] <- sizes[a] 
      Box[a,2] <- log(BoxCount_Fun(data = data2D_format, numcases = neff, boxsize = sizes[a], 
data.range.x, data.range.y)) 
      Box[a,3] <- a 
    } 
    colnames(Box) <- c("delta", "log_boxcount", "old_delta") 
     
    Box <- as.data.frame(Box[!duplicated(Box[,2]), ])   
    Box <- as.data.frame(Box[1:nrow(Box)-1, ])      
 
    Delta2onwards_LIST[[g]]<- Box 
    DELTAS$new_delta[g] <- nrow(Box) 
    Snipping_values$pointsremove[g] <- nrow(Box) 
     
    Delta2onwardsdf <- as.data.frame(Box) 
    lm <- lm(log_boxcount~log(delta), data=Delta2onwardsdf) 
    boxcount_results_lm1[g,1:4] <- rbind(as.character(Rivers[g]), 
as.numeric(summary(lm)$coefficients[2]), summary(lm)$coefficients[1], 
summary(lm)$r.squared) 
 
    lm2 <- lmodel2(Delta2onwardsdf$log_boxcount~log(Delta2onwardsdf$delta), 
data=Delta2onwardsdf) 
    lm2_intercept <- lm2$regression.results[3,2] # print intercept 
    lm2_slope <- lm2$regression.results[3,3] # print slope 
    lm2_rsquare <- lm2$rsquare # print R2 
     
    boxcount_results_lm2[g,1:4] <- rbind(as.character(Rivers[g]), lm2_slope, lm2_intercept, 
lm2_rsquare) 
    rm(delta, g, data2D_format) 
     
  } 
   
  names(Delta2onwards_LIST) <- Rivers 
  colnames(boxcount_results_lm1) <- c("River", "lm1_slope", "lm1_Intercept", "R_squared") 
  colnames(boxcount_results_lm2) <- c("River", "lm2_slope", "lm2_Intercept", "R_squared") 
  boxcount_LM_results <- cbind(as.data.frame(boxcount_results_lm1), 
as.data.frame(boxcount_results_lm2[,2:4])) 
   
  # Output: 
  List_boxcount <- list() 
  List_boxcount$boxcount_LM_results <- boxcount_LM_results  
  List_boxcount$Delta2onwards_LIST <- Delta2onwards_LIST 
  List_boxcount$DELTAS <- DELTAS 
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  List_boxcount$Snipping_values <- Snipping_values 
   
  return(List_boxcount) 
   
} 
 
##Entropy Functions 
############## 
 
## IsInBox 
IsInBoxE <- function (IsInBoxdata, boxx, boxy)  
{ 
  IsInBoxdata <- subset(IsInBoxdata, IsInBoxdata[,1]>= boxx[1]) 
  IsInBoxdata <- subset(IsInBoxdata, IsInBoxdata[,1]<= boxx[2]) 
   
  Add <- 0 
  if (nrow(IsInBoxdata)>0){ 
    for (i in 1:nrow(IsInBoxdata)) 
    { if(any((IsInBoxdata[i,2] >= boxy[1]) & (IsInBoxdata[i,2] <= boxy[2]))) 
    {Add <- Add + 1}} } 
  Add 
  return(Add) 
} 
 
## CrossingBox 
CrossingBoxyE <- function (Crossdata, boxx, boxy)  
{ 
 
  Crossdata <- subset(Crossdata, Crossdata[,1]>= boxx[1]) 
  Crossdata <- subset(Crossdata, Crossdata[,1]<= boxx[2]) 
  Add <- 0 
  nrow(Crossdata) 
 
  if (nrow(Crossdata)>0){ 
    for (j in 1:nrow(Crossdata))   
    { if(Crossdata[j,2] >= boxy[2]) {Add <- Add + 1}} 
 
  }  
  Add 
  return(Add) 
} 
 
CrossingBoxxE<- function (Crossdata, boxx, boxy)  
{ 
  Crossdata <- subset(Crossdata, Crossdata[,2]>= boxy[1]) 
  Crossdata <- subset(Crossdata, Crossdata[,2]<= boxy[2]) 
  Add <- 0 
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  if (nrow(Crossdata)>0){ 
    for (k in 1:nrow(Crossdata))   
    { if(Crossdata[k,1] >= boxx[2]) {Add <- Add + 1}}  
  
  } 
  return(Add) 
} 
 
CrossingBoxxyE <- function (Crossdata, boxx, boxy)  
{ 
  Crossdata <- subset(Crossdata, Crossdata[,1]>= boxx[2]) 
  Crossdata <- subset(Crossdata, Crossdata[,2]>= boxy[2]) 
  Add <- 0 
  if(nrow(Crossdata) < 0) {Add <- Add + 1}  
  return(Add)     
} 
 
## Entropy 
Entropy_Fun <- function (data, numcases, boxsize, data.range.x, data.range.y) 
{ 
 
  width <- boxsize 
  height <- boxsize     
  minboxx <- data.range.x[1] 
  minboxy <- data.range.y[1] 
  maxboxx <- data.range.x[2] 
  maxboxy <- data.range.y[2] 
   
  qh <- trunc(maxboxx/width)  
  qv <- trunc(maxboxy/height) 
  if(qv < 1) {qv <- 1} 
   
  # Calculate the total number of rocks   
  CountRocks <- array(0, dim = c(max(1,qh),  max(1,qv))) 
   
  for (hor in 1:qh) { 
    boxxlimits <- c((min(data[,1]) + (hor-1) * width),(min(data[,1]) + (hor) * width)) 
    boxxlimits 
     
    for (ver in 1:qv) { 
      boxylimits <- c((min(data[,2]) + (ver-1) * height), (min(data[,2]) + ver * height)) 
      boxylimits 
       
      Addbase <- IsInBoxE(data, boxxlimits, boxylimits) 
      CountRocks[hor,ver] <- Addbase 
    } 
  } 
  CountRocks 
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  sum(CountRocks) 
   
  # Calculate weighted pi  
  pivalues <- array(0, dim = c(nrow(CountRocks),ncol(CountRocks))) 
  pilogpivalues <- array(0, dim = c(nrow(CountRocks),ncol(CountRocks))) 
   
  TotalRocks <- sum(CountRocks) 
   
  for (m in 1:nrow(CountRocks)) 
  {  
    for (l in 1:ncol(CountRocks))  
    { 
      if(CountRocks[m,l] > 0) 
      { 
        pivalues[m,l] <- CountRocks[m,l] / TotalRocks 
        pilogpivalues[m,l] <- pivalues[m,l] * log(pivalues[m,l]) 
      } 
    }   
  }     
 
  Hdelta <- -sum(pilogpivalues) 
   
  # Correct for bias in the estimate of entropy as per Basharin (1959) 
  Samplesize <- length(CountRocks) 
  Hdeltaunbiased <- Hdelta + ((Samplesize - 1)/(2 * TotalRocks)*(log2(exp(1)))) 
  return(Hdeltaunbiased) 
} 
 
## Run Entropy functions 
Function_Run_Entropy <- function (Delta = TRUE) { 
  library(plyr) 
  if("Rocks" %in% colnames(data1D)){  
    #1D data: 
    data <- subset(data1D, Rocks > 0)                       
    data <- uncount(data = data, weights = data$Rocks)       
    data$Y..m. <- 1                                            
    data$X..m. <- data$X_coord                               
    min_box_size <- 5      
    decimal_places <- 0 
     
  }else{ 
    #2D data: 
    data <- data1D 
    min_box_size <- 0.2  
    decimal_places <- 2 
  } 
   
  Rivers <-as.character(unique(data$River)) 
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  Delta2onwards_LIST <- list() 
  DELTAS <- data.frame(River = Rivers, new_delta = vector("numeric",length(Rivers)))  
  Snipping_values <- data.frame(River = Rivers, pointsremove = 
vector("numeric",length(Rivers))) 
   
  for (g in 1:length(Rivers)) { 
    data2D_format <- data[data$River==Rivers[g],] 
    data2D_format <- subset(data2D_format, select = c(X..m.,Y..m.)) 
     
    n <- nrow(data2D_format) 
    data.range.x <- range(data2D_format[1:n,1]) 
    data.range.y <- range(data2D_format[1:n,2]) 
    sizes <- round(seq(from = data.range.x[1], to = data.range.x[2], by = min_box_size), digits = 
decimal_places)  
    sizes <- sizes[sizes != 0] 
    delta <- length(sizes) 
    neff <- trunc((n - 1)/((delta - 1)*5)) * ((delta - 1)*5) + 1 
     
    Entropy <- array(0,c(delta,5)) 
    for (a in (1:delta)) {  #a<-1 
      Entropy[a,1] <- sizes[a] 
      Entropy[a,5] <- Entropy_Fun(data = data2D_format, numcases = neff, boxsize = sizes[a], 
data.range.x, data.range.y) 
      Entropy[a,2] <- log(Entropy[a,5]) 
      Entropy[a,3] <- a 
      Entropy[a,4] <- round(Entropy[a,5], digits = 1) 
    } 
    colnames(Entropy) <- c("delta", "log_Entropy", "old_delta", "Round_Entropy", 
"Entropy_Unlogged") 
     
    Entropy <- as.data.frame(Entropy[!duplicated(Entropy[,4]), ]) 
    Entropy <- as.data.frame(Entropy[1:nrow(Entropy)-1, ]) 
     
    Delta2onwards_LIST[[g]]<- Entropy 
    DELTAS$new_delta[g] <- nrow(Entropy) 
    Snipping_values$pointsremove[g] <- nrow(Entropy) 
     
    rm(delta, g, data2D_format) 
     
  } 
 
  names(Delta2onwards_LIST) <- Rivers 
   
  # Ouputs: 
  List_Entropy <- list() 
  List_Entropy$Delta2onwards_LIST <- Delta2onwards_LIST 
  List_Entropy$DELTAS <- DELTAS 
  List_Entropy$Snipping_values <- Snipping_values 



 
 

9 
 

   
  return(List_Entropy) 
   
} 
 
# Function for Log-transformed linear regression of delta vs NX 
######################################## 
 
## Log-Log regression 
Function_FDSlope <- function() { 
   
  Rivers <- unique(data1D$River) 
  FDSlope_results <- data.frame(River = Rivers, Intercept= vector("numeric",length(Rivers)), 
Slope = vector("numeric",length(Rivers)), R2 = vector("numeric",length(Rivers))) #NULL 
   
  for (g in 1:length(Rivers)) { 
    Delta2onwards <- as.data.frame(Delta2onwards_LIST[[g]]) 
     
   # Log-Log Plot  
    Plot <- ggplot(Delta2onwards, aes(x= log(Delta2onwards$delta), y = Delta2onwards[,2])) + 
      geom_point(size = 3) +  
      xlab(expression(log(delta))) + ylab(expression(log(N["X"]))) +  
      ggtitle(as.character(Rivers[g]))+ 
      theme_bw()+ theme(text = element_text(size=15), axis.text = element_text(size=15), 
legend.position = "none", panel.grid = element_blank()) +  
      stat_smooth(method="lm", se=FALSE)+ 
      stat_poly_eq(formula = y ~ x, aes(label = paste(..eq.label.., ..rr.label.., sep = "~~~")), parse = 
TRUE, label.y = "top", label.x = "right") 
     
    print(Plot) 
     
    #Extract intercept, slope, and R-squared from lm() 
    river_lm <- lm(Delta2onwards[,2] ~ log(Delta2onwards$delta)) 
    FDSlope_results$Intercept[g] <- summary(river_lm)$coefficients[1] 
    FDSlope_results$Slope[g] <- summary(river_lm)$coefficients[2] 
    FDSlope_results$R2[g] <- summary(river_lm)$r.squared 
  } 
  return(FDSlope_results)   
} 
 
# Function for the R² - SSR Procedure  
######################## 
 
## R2SSR 
Function_R2SSR <- function() { 
  Rivers <- unique(data1D$River) 
  R2SSR_results <- data.frame(River = Rivers, R2SSR_FD = vector("numeric",length(Rivers)), 
R2SSR_test_result = vector("logical",length(Rivers))) #NULL 
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  for (g in 1:length(Rivers)) { 
    delta <- DELTAS[g,2] 
    Plotdataframe <- as.data.frame(Delta2onwards_LIST[[g]]) 
    windowsize <- 6 #smallest window size 
    iterations <- 0 
    for (j in windowsize:(delta-1))    
    { 
      iterations <- iterations + (delta - (j)) 
    } 
     
    R2SSR <- array(0, dim = c((iterations), 4))   
    colnames(R2SSR) <- c("Rsquared", "SSR", "Slope", "Iterations")  
    startlocation <- 1 
     
    for (k in 1:iterations)                              
    { 
      Residualcalc <- array(0, dim = c(windowsize,6))     
       
      # Standard major axis regression 
      R2SSRlm <- lmodel2(Plotdataframe[startlocation:(windowsize+startlocation-1),2] ~ 
log(Plotdataframe[startlocation:(windowsize+startlocation-1),1]), data = Plotdataframe) 
       
      # Calculate sum of squared residuals and R2 
      SMAslope <- R2SSRlm$regression.results[3,3]      
      SMAintercept <- R2SSRlm$regression.results[3,2] 
       
      for (i in 1:nrow(Residualcalc)) 
      { 
        Residualcalc[i,1] <- log(Plotdataframe[(startlocation+i-1),1])  
        Residualcalc[i,2] <- Plotdataframe[(startlocation+i-1),2]   
        Residualcalc[i,3] <- SMAslope * Residualcalc[i,1] + SMAintercept    
        Residualcalc[i,4] <- Residualcalc[i,3] - Residualcalc[i,2]   
        Residualcalc[i,5] <- Residualcalc[i,4]^2   
        Residualcalc[i,6] <- Residualcalc[i,1]*Residualcalc[i,2] 
      }   
       
      SSRSMA <- sum(Residualcalc[,5])    
      TotalSS <- sum(Residualcalc[,2]^2) - ((sum(Residualcalc[,2])^2)/nrow(Residualcalc))  
      RegressionSS <- (((sum(Residualcalc[,6]))-
((sum(Residualcalc[,1])*sum(Residualcalc[,2]))/nrow(Residualcalc)))^2)/(sum(Residualcalc[,1]^2
)-((sum(Residualcalc[,1])^2/nrow(Residualcalc)))) 
      R2SMA <- RegressionSS / TotalSS 
      R2SSR[k,2] <- SSRSMA                                                   
      R2SSR[k,1] <- R2SMA 
      R2SSR[k,3] <- SMAslope 
      R2SSR[k,4] <- k+1  
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      if (startlocation < ((delta)-(windowsize)))  
      { 
        (startlocation <- startlocation + 1) 
      } else 
      { 
        startlocation <- 1 
        windowsize <- windowsize + 1 
      } 
    }  
     
    # Output: 
    R2SSR <- as.data.frame(R2SSR) 
    R2SSR_test_result <- which.min(R2SSR[,2]) == which.max(R2SSR[,1]) 
    R2SSR_FD <- as.numeric(abs(R2SSR[which.min(R2SSR[,2]),3]))   
     
    R2SSR_results[g,2] <- R2SSR_FD 
    R2SSR_results[g,3] <- R2SSR_test_result 
     
    ggplot(R2SSR, aes(x= SSR, y= Rsquared))+ 
      geom_point(size = 3, shape = 21) +  
      geom_point(data = R2SSR[R2SSR$Rsquared == max(R2SSR$Rsquared),], alpha = 0.5, colour 
= "red", size = 3) +  
      geom_point(data = R2SSR[R2SSR$SSR == min(R2SSR$SSR),], alpha = 0.5, colour = "blue", 
size = 3) +  
      ggtitle(as.character(Rivers[g]))+ 
      ylab(expression(R^2)) + xlab("SSR") + 
      theme_bw()+ theme(text = element_text(size=15), axis.text = element_text(size=15), 
legend.position = "none", panel.grid = element_blank()) 
   
  } 
  return(R2SSR_results) 
} 
 
 
# Function for the Zero Slope Procedure  
########################## 
 
## Zero Slope 
Function_Zero_Slope <- function() { 
  Rivers <- unique(data1D$River) 
  Zero_Slope_results <- data.frame(River = Rivers, Optintercept = 
vector("numeric",length(Rivers)), ZeroSlope_test_result = vector("logical",length(Rivers)), 
ZeroSlope_Lower = vector("logical",length(Rivers)), ZeroSlope_Upper = 
vector("logical",length(Rivers))) #NULL 
 
  for (g in 1:length(Rivers)) { 
    delta <- DELTAS$new_delta[g] 
    Plotdataframe <- as.data.frame(Delta2onwards_LIST[[g]][1:delta,]) 
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    Independentz <- log(Plotdataframe[,1]) 
    Dependentz <- Plotdataframe[,2] 
     
    deriv <- function(x, y) diff(y) / diff(x) 
    middle_pts <- function(x) x[-1] - diff(x) / 2 
    first_d <- deriv(Independentz, Dependentz) 
    Independentza <- middle_pts(Independentz) 
 
    iterationz <- 0 
    minwindowsize <- 6 
     
    for (j in minwindowsize:(delta-1))   # 6 is the minimum window size 
    { 
      iterationz <- iterationz + (delta - (j+1)) 
    } 
     
    Zeroslopez <- array(0, dim = c((iterationz),4)) 
    colnames(Zeroslopez) <- c("F", "p", "windowsize", "startinglocation") 
    startlocationz <- 1 
    windowsizez <- minwindowsize 
     
    for (k in 1:iterationz)                             
    { 
      Residualcalcz <- array(0, dim = c(windowsizez,6))          
       
      NewDependentz <- first_d[startlocationz:(windowsizez+startlocationz-1)] 
      NewIndependentz <- Independentza[startlocationz:(windowsizez+startlocationz-1)] 
       
      # Standard major axis regression  
      R2SSRlmz <- lmodel2(NewDependentz ~ NewIndependentz) 
      Zslopez <- R2SSRlmz$regression.results[3,3] 
      Zerointerceptz <- R2SSRlmz$regression.results[3,2] 
       
      for (i in 1:nrow(Residualcalcz)) 
      { 
        Residualcalcz[i,1] <- NewIndependentz[i]   
        Residualcalcz[i,2] <- NewDependentz[i]   
        Residualcalcz[i,3] <- Zslopez * Residualcalcz[i,1] + Zerointerceptz    
        Residualcalcz[i,4] <- Residualcalcz[i,3] - Residualcalcz[i,2]     
        Residualcalcz[i,5] <- Residualcalcz[i,4]^2   
        Residualcalcz[i,6] <- Residualcalcz[i,1]*Residualcalcz[i,2]   
      }   
       
      SSRSMAz <- sum(Residualcalcz[,5])      
      TotalSSz <- sum(Residualcalcz[,2]^2) - ((sum(Residualcalcz[,2])^2)/nrow(Residualcalcz))   
      RegressionSSz <- (((sum(Residualcalcz[,6]))-
((sum(Residualcalcz[,1])*sum(Residualcalcz[,2]))/nrow(Residualcalcz)))^2)/(sum(Residualcalcz[,
1]^2)-((sum(Residualcalcz[,1])^2/nrow(Residualcalcz)))) 
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      R2SMAz <- RegressionSSz / TotalSSz 
       
      RegressionMSz <- RegressionSSz / 1    
      ResidualMSz <- (TotalSSz - RegressionSSz)/(nrow(Residualcalcz)-2)   
      Zeroslopez[k,1] <- RegressionMSz/ResidualMSz 
      Zeroslopez[k,2] <- pf(Zeroslopez[k,1], df1=1, df2=(nrow(Residualcalcz)-2), lower.tail=FALSE) 
      Zeroslopez[k,3] <- windowsizez 
      Zeroslopez[k,4] <- startlocationz 
       
      if (startlocationz < ((delta-1)-(windowsizez)))   
      { 
        (startlocationz <- startlocationz + 1) 
      } else 
      { 
        startlocationz <- 1 
        windowsizez <- windowsizez + 1 
      } 
    }  
     
    # calculate the number of regression windows that have a slope significantly different from 
zero 
    length(Zeroslopez[,2]) 
    sum(Zeroslopez[,2] < 0.05) 
    z_insig_results <- as.data.frame(subset(Zeroslopez, Zeroslopez[,2] > 0.05)) 
    ZeroSlope_pass <- nrow(z_insig_results)>0 
    zeroslopez_largest <- z_insig_results[length(z_insig_results$windowsize),] 
 
    # Finding the confidence intervals for the ZERO slope lines for the window of interest by 
bootstrapping the entropy values 
    nruns <- 100 
    Critwindowsize <- 6  
    Critstartlocation <- 1   
     
    critdelta<- Critstartlocation + Critwindowsize -1 
    BootFDZ <-  array(0,dim = c(nruns,1)) 
     
    for (m in 1:nruns) 
    {  
      PlotdataCIz <- array(0, dim = c(delta, 2))  
      colnames(PlotdataCIz) <- c("delta", "entropy") 
 
      SelectedEntropy <- sample(1:nrow(Plotdataframe), delta, replace = TRUE)     
 
      for (j in 1:delta)  
      { 
        PlotdataCIz[j,2] <- Plotdataframe[SelectedEntropy[j],2] 
      }   
       



 
 

14 
 

      PlotdataCIz[,1] <- Plotdataframe[,1] 
      PlotdataCIz[,2] <- sort(PlotdataCIz[,2], decreasing = TRUE) 
       
      # calculate the zero slope  
      IndependentCIz <- log(PlotdataCIz[,1]) 
      DependentCIz <- PlotdataCIz[,2] 
       
      first_dCI <- deriv(IndependentCIz, DependentCIz) 
      IndependentzCIa <- middle_pts(IndependentCIz) 
      NewDependentCIz <- first_dCI 
      NewIndependentCIz <- IndependentzCIa 
       
      R2SSRlmbootz <- lm(NewDependentCIz ~ 1 + offset(0 * NewIndependentCIz)) 
      BootFDZ[m] <- summary(R2SSRlmbootz)$coefficients[1,1] 
    }   
     
    # find the 2.5th and 97.5th percentiles (95% confidence intervals) 
    BootFDZ <- sort(BootFDZ) 
    LowerScatterZ <- BootFDZ[nruns/40] 
    UpperScatterZ <- BootFDZ[39*nruns/40] 
     
    # Find the optimal intercept 
    OptDependentz <- first_d 
    OptIndependentz <- Independentza 
     
    R2SSRlmoptz <- lm(OptDependentz ~ 1 + offset(0 * OptIndependentz)) 
    Optintercept <- summary(R2SSRlmoptz)$coefficients[1,1] 
    OptSig <- summary(R2SSRlmoptz)$coefficients[1,4]<0.05 
     
    zero_slope_data <- as.data.frame(OptIndependentz) 
    zero_slope_data$OptDependentz <- OptDependentz 
     
    # Outputs: 
    ggplot(zero_slope_data, aes(x= OptIndependentz, y= OptDependentz))+ 
      geom_point(size = 3, shape = 21) +  
      geom_hline(yintercept = Optintercept, colour = "red") +  
      geom_hline(yintercept = LowerScatterZ, colour = "blue", linetype="dashed") + 
      geom_hline(yintercept = UpperScatterZ, colour = "blue", linetype="dashed") + 
      ylim(-10,2) + 
      ggtitle(as.character(Rivers[g]))+ 
      xlab(expression(log(delta))) + ylab(expression(~italic(d)~log(N[B]))) +  
      theme_bw()+ theme(text = element_text(size=15), axis.text = element_text(size=15), 
legend.position = "none", panel.grid = element_blank()) 
     
    z_insig_results <- as.data.frame(subset(Zeroslopez, Zeroslopez[,2] > 0.05)) 
    ZeroSlope_pass <- nrow(z_insig_results)>0 
    Zero_Slope_results[g,2] <- Optintercept 
    Zero_Slope_results[g,3] <- OptSig 
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    Zero_Slope_results[g,4] <- LowerScatterZ 
    Zero_Slope_results[g,5] <- UpperScatterZ 
  } 
  return(Zero_Slope_results) 
} 
 
# Function for the Compensated-slope Procedure  
############################### 
## Compensated-slope 
Function_Compensated_Slope <- function() { 
  nCvalues <- 101  
  Rivers <- unique(data1D$River) 
  Compensated_Slope_results <- data.frame(River = Rivers, Cvalue = 
vector("numeric",length(Rivers)), C_slope_MIn = vector("logical",length(Rivers)), C_slope_Max 
= vector("logical",length(Rivers)), C_slope_MIn2 = vector("logical",length(Rivers)), 
C_slope_Max2 = vector("logical",length(Rivers))) 
   
  for (g in 1:length(Rivers)) { 
    delta         <- DELTAS$new_delta[g]          # delta <- 20 
    Plotdataframe <- as.data.frame(Delta2onwards_LIST[[g]][1:delta,])    
    FDvalue       <- abs(FDSlope_results$Slope[g]) 
     
    Cvalues <- seq(0, FDvalue+1, length= nCvalues) 
     
    # calculate constant k based on M(delta) = log k x DF log delta 
    CalcFD <- array(0, dim = c(nrow(Plotdataframe), 3)) 
    CalcFD[,1] <- Plotdataframe[,1]  
    CalcFD[,2] <- Plotdataframe[,2]  
    kconstant <- mean(exp(CalcFD[,2] + FDvalue * log(CalcFD[,1]))) 
    CalcFD[,3] <- (log(kconstant)- CalcFD[,2])/ log(CalcFD[,1])  
    colnames(CalcFD) <-(c("delta", "entropy", "FD value")) 
     
    iterationc <- 0 
    for (j in 6:(delta))   # 6 is the minimum window size  
    { 
      iterationc <- iterationc + (delta - (j)) 
    } 
     
    Compslopec <- array(0, dim = c((iterationc),3, length(Cvalues))) 
    colnames(Compslopec) <- c("F", "p", "cvalue") 
     
    startlocationc <- 1 
    windowsizec <- 6 
     
    for (k in 1:iterationc)                              
    { 
      Residualcalcc <- array(0, dim = c(windowsizec, 6, length(Cvalues)))          
      for (b in 1:length(Cvalues)) 



 
 

16 
 

      { 
        Independentc <- log(CalcFD[startlocationc:(windowsizec+startlocationc-1),1])  
        Dependentc <- log((CalcFD[startlocationc:(windowsizec+startlocationc-1),1] ^ Cvalues[b]) * 
(CalcFD[startlocationc:(windowsizec+startlocationc-1),1] ^ -
CalcFD[startlocationc:(windowsizec+startlocationc-1),3])) 
         
        R2SSRlmc <- lmodel2(Dependentc ~ Independentc)    
        Cslopec <- R2SSRlmc$regression.results[3,3]  
        Compinterceptc <- R2SSRlmc$regression.results[3,2] 
         
        for (i in 1:nrow(Residualcalcc))  
        { 
          Residualcalcc[i,1,b] <- Independentc[i] 
          Residualcalcc[i,2,b] <- Dependentc[i] 
          Residualcalcc[i,3,b] <- Cslopec * Residualcalcc[i,1,b] + Compinterceptc 
          Residualcalcc[i,4,b] <- Residualcalcc[i,3,b] - Residualcalcc[i,2,b] 
          Residualcalcc[i,5,b] <- Residualcalcc[i,4,b]^2 
          Residualcalcc[i,6,b] <- Residualcalcc[i,1,b]*Residualcalcc[i,2,b] 
        }   
 
        SSRSMAc <- sum(Residualcalcc[,5,b]) 
        TotalSSc <- sum(Residualcalcc[,2,b]^2) - ((sum(Residualcalcc[,2,b])^2)/nrow(Residualcalcc)) 
        RegressionSSc <- (((sum(Residualcalcc[,6,b]))-
((sum(Residualcalcc[,1,b])*sum(Residualcalcc[,2,b]))/nrow(Residualcalcc)))^2)/(sum(Residualca
lcc[,1,b]^2)-((sum(Residualcalcc[,1,b])^2/nrow(Residualcalcc)))) 
        R2SMAc <- RegressionSSc / TotalSSc 
        R2SMAc                                                 
         
        RegressionMSc <- RegressionSSc / 1                                  
        ResidualMSc <- (TotalSSc - RegressionSSc)/(nrow(Residualcalcc)-2)   
        Compslopec[k,1,b] <- RegressionMSc/ResidualMSc         
        Compslopec[k,2,b] <- pf(Compslopec[k,1,b], df1=1, df2=(nrow(Residualcalcc)-2), 
lower.tail=FALSE) 
        Compslopec[k,3,b] <- Cvalues[b] 
      } 
  
      if (startlocationc < (delta-(windowsizec)))  
      { 
        (startlocationc <- startlocationc + 1) 
      } else 
      { 
        startlocationc <- 1 
        windowsizec <- windowsizec + 1 
      } 
    }  
     
    RevisedCompslopec <- array(0, dim = c(length(Cvalues),3)) 
    colnames(RevisedCompslopec) <- c("F", "p", "cslope") 
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    Compslopec[,,b] 
    for (xx in 1:length(Cvalues)) 
    { 
      RevisedCompslopec[xx,1] <- Compslopec[iterationc,1,xx] 
      RevisedCompslopec[xx,2] <- Compslopec[iterationc,2,xx] 
      RevisedCompslopec[xx,3] <- Compslopec[iterationc,3,xx] 
    } 
    FD_iteration <- which(RevisedCompslopec[,2] == max(RevisedCompslopec[,2])) 
     
    # Plot  
    par(mar = c(5.1, 4.5, 4.1, 1))  
    plot(log(CalcFD[,1]), log((CalcFD[,1] ^ Cvalues[1]) * (CalcFD[,1] ^ -CalcFD[,3])), ylim = c(-8,10),  
         xlab = expression(log(delta)),  
         ylab = expression(paste("log(", delta^C, " ",x, " ",delta^-D[X],")")),  
         main = as.character(Rivers[g])) 
    for (i in 2:nCvalues)        
    {  points(log(CalcFD[,1]), log((CalcFD[,1] ^ Cvalues[(i)]) * (CalcFD[,1] ^ -CalcFD[,3])), col = 
(i+1)) 
    } 
    points(log(CalcFD[,1]), log((CalcFD[,1] ^ Cvalues[(FD_iteration)]) * (CalcFD[,1] ^ -CalcFD[,3])), 
col = "black", pch = 19) 
    Compensated_Slope_results[g,2] <- Cvalues[FD_iteration] 
     
    Comp_slope_CI_results <- data.frame() 
    for (i in 1:nCvalues)       
    {   
      Comp_slope_CI_results[i,1] <-Cvalues[i]  
      Comp_slope_CI_results[i,2] <-Compslopec[iterationc,2,i] 
      Comp_slope_CI_results[i,3] <-Compslopec[1,2,i] <0.05 
      Comp_slope_CI_results[i,4] <-length(which(Compslopec[,2,i] >= 0.05)) 
      Comp_slope_CI_results[i,5] <-length(which(Compslopec[,2,i] >= 
0.05))/length(Compslopec[,2,i]) 
      Comp_slope_CI_results[i,6] <-Compslopec[iterationc,2,i] 
    } 
    colnames(Comp_slope_CI_results) <- c("Cvalues", "p", "Significant", "N_Significant", 
"PER_Significant", "LAST_VALUE_SIG") 
     
    CI_Range<- Comp_slope_CI_results[Comp_slope_CI_results$PER_Significant > 0,] 
    CI_Range2<- Comp_slope_CI_results[Comp_slope_CI_results$LAST_VALUE_SIG > 0.05,] 
    Compensated_Slope_results[g,3] <- min(CI_Range[,1]) 
    Compensated_Slope_results[g,4] <- max(CI_Range[,1]) 
    Compensated_Slope_results[g,5] <- min(CI_Range2[,1]) 
    Compensated_Slope_results[g,6] <- max(CI_Range2[,1]) 
  } 
   
  return(Compensated_Slope_results) 
}  
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Script S2. 

R scripts for simulating synthetic stream stretches 

 
#Simulate 1D synthetic stream stretches  
########################## 
 
#Packages required: 
############# 
library(dplyr) 
library(ggplot2) 
 
# Function to generate Pool-Riffle sequence: 
############################ 
# Generates Riffle and Pool lengths using distrubutions of riffle and pool lengths from  
# Australian and Scottish study streams. 
# With ability to manipulate either riffle or pool lengths. 
RP_sequence <- function(River_length = 1000,  
                        PL_meanlog = 1.3715, PL_sdlog = 0.5711,  
                        RL_meanlog = 2.0488, RL_sdlog = 0.8286,  
                        PL_multiplier = 1, RL_multiplier = 1 
){ 
  n <- River_length/5 
  P_lengths <- round(rlnorm(n = n, meanlog = PL_meanlog, sdlog = PL_sdlog)*PL_multiplier) 
#POOLS    #0 
  R_lengths <- round(rlnorm(n = n, meanlog = RL_meanlog, sdlog = RL_sdlog)*RL_multiplier) 
#Riffles  #1 
   
  #Translate these lengths in to sequences of 1s and 0s for riffle and pool segments: 
  PR0 <- as.numeric() 
  for (j in 1:n) { 
    PR1 <- c(rep(0, P_lengths[j]), rep(1,R_lengths[j]))  #Pools = 0, Riffles = 1 
    PR0 <- c(PR0,PR1) 
  } 
   
  PR0 <- PR0[1:(River_length/5)] 
   
  #Prepare output: 
  RP_10_sequence_data <- list() 
  RP_10_sequence_data$Sequence <- PR0 
  RP_10_sequence_data$P_lengths <- P_lengths 
  RP_10_sequence_data$R_lengths <- R_lengths 
   
  RP_10_sequence_data 
}  
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# Function to simulate ER counts: 
#######################   
#Simulate ER values for the riffle and pool sequence using distributions from high-zero study 
rivers: 
# With ability to maipulate either riffle or pool values 
RP_ER <- function(River_length = 1000, 
                  PR_size = 1.2773,   PR_mu = 43.2381,  
                  RR_size = 1.6393,   RR_mu = 60.1088,   
                  PR_multiplier = 1, RR_multiplier = 1  
){ 
   
  n <- River_length/5 
   
  #Prepare output:   
  T0<- as.data.frame(matrix(0, ncol = 0, nrow = n)) 
  T0$X_coord <-     seq(5, River_length, by = 5) 
  T0$Pool_ER <-  round(rnbinom(n = n, size = PR_size, mu = PR_mu)*PR_multiplier) #Pools = 0  
  T0$Riff_ER <-  round(rnbinom(n = n, size = RR_size, mu = RR_mu)*RR_multiplier) #Riffles = 1 
   
  T0 
}  
 
#Simulate the synthetic stream stretch: 
######################### 
Temp_RP_sequence <- RP_sequence() 
Temp_RP_ER <- RP_ER() 
 
data1D  <- cbind(Temp_RP_sequence, Temp_RP_ER[1], Temp_RP_ER[2], Temp_RP_ER[3]) 
data1D  <- mutate(data1D, ER = ifelse(Sequence == 0, Pool_ER, Riff_ER), RP = ifelse(Sequence 
== 0, "P", "R")) 
data1D  <- data1D[, c(4,7,8)] # neat dataset 
data1D$River <- "Synthetic_stream_01"  
 
#Plot simulation: 
ggplot(data1D, aes(x = X_coord, y = ER, fill = RP))+ 
 geom_bar(stat="identity", width = 5) 
 


