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Background: The gut microbiota potentially plays an important
role in the immunologic education of the host during early
infancy.
Objective: We sought to determine how the infant gut
microbiota evolve during infancy, particularly in relation to
hygiene-related environmental factors, atopic disorders, and a
randomized introduction of allergenic solids.
Methods: A total of 1303 exclusively breast-fed infants were
enrolled in a dietary randomized controlled trial (Enquiring
About Tolerance study) from 3 months of age. In this nested
longitudinal study, fecal samples were collected at baseline, with
additional sampling of selected cases and controls at 6 and 12
months to study the evolution of their gut microbiota, using 16S
ribosomal RNA gene-targeted amplicon sequencing.
Results: In the 288 baseline samples from exclusively breast-fed
infant at 3 months, the gut microbiota was highly
heterogeneous, forming 3 distinct clusters: Bifidobacterium-rich,
Bacteroides-rich, and Escherichia/Shigella-rich. Mode of
delivery was the major discriminating factor. Increased
Clostridium sensu stricto relative abundance at 3 months was
associated with presence of atopic dermatitis on examination at
age 3 and 12 months. From the selected cases and controls with
longitudinal samples (n 5 70), transition to Bacteroides-rich
communities and influx of adult-specific microbes were
observed during the first year of life. The introduction of
allergenic solids promoted a significant increase in Shannon
diversity and representation of specific microbes, such as genera
belonging to Prevotellaceae and Proteobacteria (eg, Escherichia/
Shigella), as compared with infants recommended to exclusively
breast-feed.
Conclusions: Specific gut microbiota characteristics of samples
from 3-month-old breast-fed infants were associated with
cesarean birth, and greater Clostridium sensu stricto abundance
was associated with atopic dermatitis. The randomized
introduction of allergenic solids from age 3 months alongside
breast-feeding was associated with differential dynamics of
maturation of the gut microbial communities. (J Allergy Clin
Immunol 2021;147:613-21.)

Key words: Atopic dermatitis, bacteria, diet, environment, food,
microbiome, colonization, tolerance

Patterns of gut microbiota acquisition during infancy,
especially during the first months, are highly dynamic and
associated with the development of various conditions in later
life, such as atopic diseases.1-4 Putativemechanisms for how early
colonization patterns may influence health and disease are
currently subjects of intense research. Studies have shown that
microbial colonization is an indispensable process for immune
maturation and organ development. Major events—such as
birth and mode of delivery, feeding patterns, and antibiotic
usage—have been shown to affect the early microbiota
acquisition.5-11 Although many studies have been conducted to
explore the effects of environmental factors on gut microbiome
development, most of them are retrospective and observational,
therefore, challenged by mixed confounders.

Mode of delivery has been identified as a key exposure
affecting successional microbiota development during the
neonatal period, because it determines colonizing microorgan-
isms that are shared from mother to newborn and may also

influence gut microbiota characteristics.5-7,12 It has been
commonly reported that cesarean-delivered infants harbor less
Bacteroides and more hospital-associated pathobionts, such as
Enterococcus spp. and Klebsiella spp. An infant’s diet may also
influence its gut microbiota. Several reports have highlighted
gut microbiota differences between breast-fed and formula-fed
infants.8,13,14 Two small uncontrolled studies have described an
increase in infants’ gut microbiota complexity when dietary
solids are introduced,15,16 and a nonrandomized study of 98
maternal-infant dyads observed that cessation of breast-feeding
was associated with maturation into an adult-like microbiota.8

Here, we investigated a nested cohort of infants undergoing
randomized introduction of allergenic solids as part of a
randomized controlled trial to prevent food allergy. This study
provided an opportunity to independently evaluate the impact of
dietary solid food introduction alongside ascertaining
associations between other factors including mode of delivery
and environmental exposures on the stability and maturation of
the gut microbiota, and in turn the risk of host infants developing
atopic disorders.17,18

METHODS

The Enquiring About Tolerance cohort
In the Enquiring About Tolerance (EAT) study, 1303 exclusively

breast-fed, healthy infants from England and Wales, aged between 12 and

17weeks, were enrolled into a randomized controlled trial to examinewhether

the regular consumption of allergenic solids reduced the prevalence of food

allergy when compared with continued exclusive breast-feeding up to 6

months of age (ISRCTN: 14254740).17 Participants were randomly assigned

to either the regular consumption of 6 allergenic foods (boiled hen’s egg,

peanut, cow’s milk [yogurt], wheat, white fish, and sesame) from 3 months

twice weekly alongside continued breast-feeding (early introduction group)

or exclusive breast-feeding until 6 months (standard introduction group).

Beyond 6 months, food consumption was at parental discretion. Food specific

IgE level to each of the 6 foods was measured at enrollment and at age 1 and 3

years in both groups using ImmunoCap (Phadia) assays (cutoff >_0.35 kU/L to

determine food sensitization). The primary outcome of the original EAT study

was the prevalence of challenge-proven food allergy to 1 ormore of the 6 study

foods between age 1 and 3 years. Parents completed online questionnaires

eliciting exposure data, such as mode of delivery, sibship size, pet ownership

and antibiotic usage.

All infants were examined for atopic dermatitis (AD) at their enrollment

visit at 3 months and 12months of age, using the UK diagnostic criteria–based

photographic protocol of the International Study of Asthma and Allergies in

Childhood Phase Two.19 AD severity was determined by the SCORing Atopic

Dermatitis index.20 Skin barrier function was assessed by measuring

transepidermal water loss using the Biox Aquaflux AF200 (Biox, London,

UK) closed condenser chamber device on the unaffected skin of the left volar

forearm. Venous blood samples were screened for the 6 commonest FLG

mutations (TaqMan allelic discrimination assays for mutations R501X,

2282del4, R2447X, and S3247X; ABI 7900 HT; Applied Biosystems, Foster

City, Calif) or by sizing of fluorescent PCR products on an Applied

Biosystems 3130 DNA sequencer (mutations 3673delC and 3702delG). These

6 mutations detect 99% of FLG mutation carriers in the UK population.

Abbreviations used

AD: Atopic dermatitis

EAT: Enquiring About Tolerance

MA: Median abundance

PCoA: Principal-coordinate analysis

TEDDY: The Environmental Determinants of Diabetes in the Young
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Ethical approval for the EAT study was provided by the St Thomas’

Hospital Research Ethics Committee (Reference 08/H0802/93), and informed

consent was obtained from the parents of all children enrolled in the study. All

sequencing data were deposited and are available at the National Center for

Biotechnology Information (NCBI) Sequence Read Archive under BioProject

number PRJNA597342.

Gut microbiota sample collection, DNA extraction

and sequencing
Beginning October 1, 2011, consecutively enrolling families (n 5 359)

were asked to provide stool samples (see Fig E1 in this article’s Online

Repository at www.jacionline.org). Stool samples were collected from 288

of enrolled participants, with follow-up samples requested at age 6 and 12

months. Stool samples were retrieved from diapers and transferred to the

King’s College London Molecular Microbiology Research Laboratory for

storage at 2808C until DNA extraction. The cell lysis and DNA extraction

protocol used both phenol-chloroform liquid-liquid phase separation and

bead-beating, followed by 2808C storage (see this article’s Methods section

in the Online Repository at www.jacionline.org). To evaluate the assembly

of gut microbial communities during infancy, a total of 428 samples were

sequenced (of the total 288 subjects providing baseline samples, 218

participants provided baseline samples only, and a subset of 70 individuals

provided samples from multiple time points of 3, 6, and 12 months). The

subsets of cases and controls (42 in the standard introduction group and 28

in the early introduction group) were selected on the basis of intervention

assignment and clinical atopic diagnoses (either challenge-proven food

allergy or AD on examination). DNA extracts were amplified using primers

targeting the hypervariable V4 (515F-806R) region of the 16S ribosomal

RNA gene and performed on the MiSeq instrument.21

Sequence analysis
The open-source software mothur22 and DADA223 were used to process

the raw sequencing data (see this article’s Online Repository at

www.jacionline.org). Reads were aligned and classified down to the genus

level with ribosomal database project naive Bayesian classifier24 or species

level with Greengenes database v13.8.25 Operational taxonomic units were

defined at 97% similarity using the opticlust algorithm.26 We also undertook

comparative analyses with 977 samples from the TwinsUK (adults from the

same UK region),27,28 which were sequenced using the same primers

(accession no. ERP006339 and ERP006342; 9 samples were removed during

preprocessing), and TEDDY (large, multicenter infant cohort)11 studies. The

Environmental Determinants of Diabetes in the Young (TEDDY) data set

samples were selected on the basis of (1) exclusive breast-feeding

before solid food introduction and (2) longitudinal data (>_ 2 samples before

age 6 months) to permit comparable analyses.

Statistical analysis
The beta-diversity and linear discriminant statistical analyses were

performed using R software, with libraries including vegan, ape, and

bios2mds. Thetayc distance (theta) metric was used to measure the distance

between communities (beta diversity),29 and principal-coordinate analysis

(PCoA) was performed on the basis of theta distance, unless otherwise

indicated. Significance of differences between groups was tested by various

methods, including Wilcoxon rank-sum, Kruskal-Wallis, and the analysis of

molecular variance.30 Covariates of community variation were evaluated by

calculating correlation between indicated PCoA ordination and metadata or

genus abundance (envfit function in vegan R package; 10,000 permutations

with Bonferroni correction).

RESULTS
Of enrolled families, 80.2% (288 of 359) contributed baseline

samples, a subset of which (n 5 70) also contributed follow-up
samples. Within the subset, cases were composed of 12

participants with allergies to egg (1 additionally allergic to
peanut), 1 milk allergy, and 1 codfish allergy, and 13 with AD
(SCORing Atopic Dermatitis index more than 15 at either 3 or 12
months).

Exclusively breast-fed infants’ gut microbial

communities form 3 distinct clusters
To understand the landscape of the gut microbiome

during breast-feeding, we analyzed baseline (3-month) samples
(n 5 288, and a mean age of 105 days and interquartile range
100-112 days). The most abundant genera established in the
microbial communities at 3 months were Bifidobacterium
(median abundance [MA], 38.75%), Bacteroides (MA, 5.43%),
and multiple genera belonging to Firmicutes and Proteobacteria
(Fig 1, A and B). The gut microbial communities of exclusively
breast-fed 3-month-old infants were diverse, in examining the
PCoA with theta distance29 and Bray-Curtis distance based on
genus-level classification (Fig 1, A; see Fig E2, A, in this article’s
Online Repository at www.jacionline.org). k-means clustering
(see Fig E2, A and B) revealed that the microbial communities
of exclusively breast-fed infants clustered into 3 groups, in which
cluster number 1 was the Bifidobacterium-rich cluster, cluster
number 2 was the Bacteroides-rich cluster, and cluster number
3 was predominated by Escherichia/Shigella and genera
belonging to Firmicutes phylum (Fig 1, A and B). Althoughminor
genera, such as Streptococcus, Dorea, and Rothia, also
contributed to the community variation, the 3 major genera
were sufficient to reproduce clustering, underscoring their
importance in community variation (Fig 1, C). Community
diversity was lower in cluster 1 than in clusters 2 and 3 (alpha
diversity; Shannon index, P < .005; Wilcoxon rank-sum test)
due to the predominance of Bifidobacterium (Fig 1, D). Of note,
the age of participants did not have a significant effect on
clustering (see Fig E2, C; P > .05). PCoA and k-means clustering
based on theta distance calculated from species-level (see Fig E2,
D) and de novo operational taxonomic unit (97% similarity)
abundance (see Fig E2, E) and on Bray-Curtis distance (see
Fig E2, A) were highly comparable to the genus-based clustering
(Fig 1, B).

Infants’ gut microbial communities mature in first

year
Data from 6- and 12-month samples (n5 70 samples per each

time point; see Methods) were superimposed onto the existing
3-month PCoA coordinates (see Fig E3, A, in this article’s Online
Repository at www.jacionline.org). Microbiota from 6-month-old
infants was similarly dispersed as 3-month communities, whereas
12-month samples were exclusively overlaid on cluster 2,
indicating that gut microbial communities mature toward
Bacteroides-rich communities at age 1 year, in keeping with the
previous literature.7,10 Interpersonal similarity increased during
aging (see Fig E3, B) due to the convergence to Bacteroides-
rich communities. We then investigated whether the infant gut
microbiomes matured toward an adult-like pattern. Because gut
microbiomes can vary in adult populations from distinct
geographic regions,31 we compared our data set to a
representative data set of fecal microbiota from adults in a
geographic region analogous to our infant cohort, revealing that
infants begin to transition toward adult gut microbiomes during
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age 6 to 12 months (see Fig E4 in this article’s Online Repository
at www.jacionline.org). Collectively, these results demonstrated
the extensive transition and maturation of gut microbiota during
the first year of life.

Early environmental exposures are associated with

the infant gut microbiota
Among the environmental exposures that were evaluated,

mode of delivery was the most significant factor contributing to
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microbiome community variation (P < .01) at 3 months of age
(Fig 2, A), with underrepresentation of Bacteroides in individuals
born by cesarean section (Fig 2, B and C) as shown in previous
reports.5,32,33 Because the mode of delivery profoundly
contributed to microbiome variation, PCoA and clustering were
re-analyzed after stratification by delivery methods. Gut
microbial communities of vaginally delivered infants also formed
3 clusters, with the same 3 key genera—Bifidobacterium,
Bacteriodes, and Escherichia/Shigella—as the major
contributing taxa (see Fig E5, A, in this article’s Online
Repository at www.jacionline.org), indicating contribution of
other exposures in defining microbiome communities.
Therefore, pair-wise associations between major bacterial genera
(MA, >1%) and environmental factors were investigated (see
Fig E5, B). Results highlighted additional bacterial genera
associated with delivery mode (eg, Bifidobacterium, Clostridium

sensu stricto, Enterobacteriaceae, and Lachnospiraceae were
enriched in cesarean-delivered infants), underscoring the
importance of delivery mode in shaping infant gut microbiomes.

Clinical outcomes are linked with specific infant gut

microbiota
We next examined potential links between clinical outcomes

and the 3-month gutmicrobiome clusters; however no statistically
significant associations were identified. Therefore, associations
between major bacterial genera (MA, >1%) and clinical
manifestations were also investigated (see Fig E6, A, in this
article’s Online Repository at www.jacionline.org). Interestingly,
SCORing Atopic Dermatitis index at age 12 months was signifi-
cantly associated with the abundance of Clostridium sensu stricto
and Haemophilus at enrollment. Equally, raised transepidermal
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water loss at 3 months showed a positive association with
Haemophilus. Raised transepidermal water loss at 12 months
was also linked to an increased abundance in Veillonella
(Fig E6, A). Linear discriminant analysis confirmed that higher
relative abundances of Clostridium sensu stricto at age 3 months
were observed in infants who had AD at age 3 months and 12
months (see Fig E6, B and C). Family history of allergic disease
and food allergy/sensitization did not significantly differ
according to the microbiome variation or clustering.

The introduction of allergenic foods alters infants’

gut microbiota
The EAT study randomized exclusively breast-fed infants to

dietary introduction of 6 allergenic foods (‘‘early introduction,’’
n 5 28) versus continued exclusive breast-feeding (‘‘standard
introduction,’’ n5 42) until age 6 months.17 Therefore, the matu-
ration in the gut microbiota was investigated relative to the timing
of introduction of allergenic solids. Participants in the interven-
tion group had a significantly increased Shannon microbial diver-
sity index at 6 months as compared with their enrollment samples
(Fig 3, A; see Fig E7, A, in this article’s Online Repository at
www.jacionline.org). PCoA revealed that the gut microbial com-
munities of the early and standard introduction groups were
largely indistinguishable (Fig 3, B, P nonsignificant; analysis of
molecular variance) at 3 and 12 months. In contrast, these micro-
bial communities significantly differed at age 6 months (Fig 3, B,
middle panel, P < .05; analysis of molecular variance), demon-
strating differing maturation trajectories of early versus standard
introduction groups at age 6 months. Interestingly, early introduc-
tion intervention group infants predominantly transitioned along
the second principal coordinate (y-axis) from age 3 to 6 months
(Fig 3, C). Abundances of Prevotella and Escherichia/Shigella
were positively correlated with the second principal coordinate
(P < .05, and r2 5 0.52 and 0.44, respectively). Similarly, linear
discriminant analysis revealed that Paraprevotella and various
genera belonging to Proteobacteria and Firmicutes phylawere en-
riched in the early intervention group (see Fig E7, B and D) at 6
months, but not evident at age 12 months (see Fig E7, C and E).
Infants in both groups moved along with the first principal coor-
dinate (x-axis) and converged toward Bacteroides-rich commu-
nities during 6 to 12 months (Fig 3, D). To validate that the
introduction of solids altered the gut microbiota in exclusively
breast-fed infants, we analyzed gut microbiome changes in
exclusively breast-fed infants after dietary solids introduction
within the TEDDY cohort (see Methods for detailed criteria)11

and superimposed their data onto the same PCoA dimensions
(see E8, A, in this article’s Online Repository at www.
jacionline.org). TEDDY study infants with early introduction of
solids (n 5 48, no formula and started solid foods before 150
days of life) also transitioned along with the second principal
coordinate from 3 months to 6 months, whereas TEDDY study
infants mimicking the standard introduction group (n 5 45, no
formula and started solid foods after 150 days of life) did not
follow the same gut microbiome transition (Fig 3, E).

DISCUSSION
This cohort provided a unique opportunity to examine

the relationship between the gut microbiome and many
factors including dietary intervention, clinical outcomes and

hygiene-related factors. Gut microbiota is widely heterogeneous
among exclusively breast-fed 3-month-old infants, and there is
lesser abundance of Bacteroides species if infants are born by
cesarean section. After 3 months, the gut microbiota underwent
major transformation in diversity and complexity, maturing
toward a predominance of ‘‘adult-like’’ bacteria. Babies’ gut
microbiota diversified when allergenic foods were introduced
and matured toward Bacteroides-rich communities at age
12 months, with significant changes observed at a younger age
in infants with earlier introduction of allergenic solids beginning
at 3 months. Although there were significant microbiota-related
associations with AD and AD severity at 3 and 12 months, none
of the observed gut microbiota changes were associated with
the development of food allergy or sensitization.

Study strengths and limitations
This study allowed strict characterization of fecal samples

according to exclusivity of breastfeeding at 3 months by virtue of
the EAT Study trial design, which only recruited exclusively
breastfed infants. It also supported population-representative sam-
pling from the general population across England and Wales, and a
randomized intervention with allergenic solid introduction between
age 3 and 6 months, rather than an observational study design with
no control of food intake.17 The nested observational study within
the EAT cohort allowed comparisons of the effects of the dietary
intervention on the gut microbiota over the first year of life. We
validated these findings in exclusively breast-fed infants with
comparable introductions of solid foods in the TEDDY cohort,
recapitulating these observations in other populations with
Westernized diets. Detailed phenotyping of this cohort enabled
assessment of alterations in infant gut microbiota in association
with exposures, such as mode of delivery, antibiotic prescribing,
communal child care, sibship size, rural versus urban residence,
and pet ownership. Validated scores were used to examine
participants for AD, and diagnosis of food allergy was challenge-
based, rather than relying on parental report. A limitation of our
study is that we were unable to evaluate the gut microbiota before
3 months of life, which would have allowed an even earlier
characterization of microbiota development.

Neonatal environmental exposures may influence

gut microbiota at age 3 months
Delivery by cesarean had the most profound effects on the

shaping of the gut microbiota during early infancy, with reduction
in Bacteroides, similar to other cohorts.5,11,32,33 Colonization
with Bacteroides in the neonatal period may have considerable
health benefits, especially immune maturation.34 Bacteroides
fragilis has polysaccharide A molecular moieties that stimulate
the development of regulatory T cells in the lamina propria,35

and samples from human fecal microbiota have found that at least
16 Bacteroides taxa contribute to this phenomenon in vivo.36

Therefore, the abundance of Bacteroides spp. may relate to the
nature of early-life immunologic priming and warrants further
investigation. In addition, if these mechanistic studies are fruitful,
intervention trials may consider targeting infants born by
cesarean to try and alter Bacteroides relative abundances and/or
Bacteroides diversity.7

Although we did not find other exposures contributing to the
heterogeneity of microbiome at 3 months of infancy, there may be
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mixed effects of multiple factors and/or hidden factors that were
not included in our metadata; therefore, an optimized model for
discovering associated factors might be necessary. With the
current data set, we trained a random forest classifier with
metadata to predict 3 clusters at 3 months. Although the classifier
did not perform well (out-of-box error rate, >40%, data not
shown), it calculated maternal age at birth as a second important
factor for classifying clusters, suggesting the importance of
maternal/household factors in microbiome development at

infancy. Similarly, studies have reported the long-term
colonization of vertically transmitted microbes.12

Diet contributes to evolution of the infant gut

microbiota
Infants’ diet also had significant effects on the shaping of the gut

microbiota during early infancy. Several reports have demonstrated
differential microbiome colonization in breast-fed versus
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FIG 3. Impact of allergenic solid introduction on infants’ gut microbiota. A, Boxplot comparing Shannon

diversity changes among participants’ longitudinal samples according to randomized allocation to

continued exclusive breast-feeding (standard introduction group) or the introduction of allergenic solids

(early introduction group) (*P < .05; Wilcoxon rank-sum test). B, PCoA plot showing longitudinal transition

of the gut microbiome from age 3 to 12months in the different dietary intervention groups. At 6 months, the

microbiota of early introduction is significantly different from standard introduction (P < .05 by analysis of

molecular variance). C, PCoA scatter plot demonstrating longitudinal transition from age 3 to 6 months.
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indicate the average shift of the microbiota in each PCoA axis. D, PCoA scatter plot demonstrating

longitudinal transition from age 6 to 12 months. Gray arrows connect samples from the same individual.
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formula-fed infants, with a higher prevalence of Bifidobacterium
spp (B longum and B breve) and Lactobacillus in breast-fed
infants.8,9,11,14 In addition, the introduction of solid foods has
been proposed as a key contributor to the maturation of the gut
microbiota. For example, a Scandinavian observational study
concluded that the gut microbiota matured after the cessation of
breast-feeding.8

Because studies randomizing dietary interventions in infants
are very unusual, this study offered a unique opportunity to
study the effects of introducing allergenic solids on the gut
microbiome. In the EAT study, early peanut and egg
introduction, if consumed in sufficient quantity, was shown
to protect against the development of peanut and egg allergies
between age 1 and 3 years.17,18 We have demonstrated that the
early introduction of allergenic foods alongside ongoing
breast-feeding between age 3 and 6 months led to an increase
in overall gut microbiota Shannon diversity, in particular
promoting an influx of various microbes including
Prevotellaceae and Escherichia/Shigella. Interestingly, the
presence of Prevotella has been shown to be associated with
high-fiber diet including remote villages with less frequent
chronic inflammatory disorders.37-40 In addition, preceding
studies have noted that the cessation of breast-feeding may
promote further diversification of infants’ gut microbiota,8

whereas our results showed that the introduction of various
allergenic foods in the setting of exclusive breast-feeding
increased diversity of the gut microbiota. Of note, 6-month
gut microbiota Shannon diversities were not statistically
significantly different between the early and standard
introduction groups, indicating that the increased microbial
community diversity between 3- to 6-months by early
introduction of allergenic foods was still comparable to
exclusively breast-fed infants (Fig E7, A). However, the
combined findings from this study demonstrate that early
introduction of solid foods elicits considerable and consistent
changes in gut microbial composition and diversity from 3 to
6 months of infancy. Therefore, controlled dietary
interventions in infancy may promote selective colonization
of desired microbes and potentially exerts health and
developmental benefit to the host. However, we found no
evidence that the observed changes in the gut microbiota
driven by the early introduction of allergenic foods have an
impact on the development of AD.

Conclusions
We confirmed that cesarean delivery is associated with

reduced gut microbiota diversity at 3 months. The early
introduction of solids into infants’ diets accelerates
maturation of microbiota diversity as well as increases the
relative abundances of Prevotella and Escherichia/Shigella.
This manipulation of the gut microbiota in early life toward
diversity and maturity, in particular in those delivered by
cesarean section or at risk of allergy and atopic diseases,
should be examined in future studies to examine potential
wider health benefits.
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Key messages

d Cesarean delivery is associated with reduced gut
microbiota diversity at 3 months.

d The infant gut microbiomes mature toward
Bacteroides-rich communities that begin to transition
during the latter half of the first year of life.

d Dietary introduction of solids into babies’ diets
accelerates microbiota diversity and promotes different
trajectory of maturation.

d Clostridium sensu stricto abundance at 3 months was
associated with AD and AD severity.
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METHODS
Chemical lysis was undertaken by adding 200 mL of guanidinium

thiocyanate-EDTA-sarkosyl and 900 mL of PBS to the samples before they

underwent bead-beating. Cell disruption was undertaken using Qiagen

stainless steel beads and tungsten carbide beads on a Fastprep-24 Instrument

(MP Biomedicals Europe, Illkirch, France) running at 6.5 m/s for 45 seconds.

Two cycles of thermolysis followed by alternating incubation at 908C and

2208C for 10 minutes each, before cell debris was pelleted by centrifugation

at 13,000g for 10 minutes. Supernatant was transferred to a fresh microfuge

tube, where it was inverted with 140 mL of 5 molar sodium chloride and

374 mL 40% polyethylene glycol and precipitated for 1 hour at 48C. DNA
was pelleted by centrifugation at 13,000g for 10 minutes and resuspended

in 500 mL of sterile distilled water. Three hundred microliter of phenol/

chloroform (1:1) was added and samples were vortexed before centrifugation

at 13,000g for 5 minutes. The upper phase was then transferred to a fresh

microfuge tube. Total DNAwas then precipitated by the addition of an equal

volume of isopropanol and 0.1 volume of 10 molar ammonium acetate and

stored at 2208C for 1 hour. DNA was pelleted by centrifugation at 13,000g

for 10 minutes. Pelleted DNA was washed in 70% ethanol, dried, and

resuspended in 30 mL of sterile distilled water.E1,E2
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DNA extracts were amplified using universal bacterial primers targeting the

16S ribosomal RNA gene at hypervariable region V4 (515F-806R), which are

tailed with sequences to incorporate Illumina (San Diego, Calif) adapters and

indexing barcodes.E3 Sequencing was performed on the MiSeq instrument

using version 2 chemistry and 250 cycles, stratifying the amplicon samples

according to 3-, 6-, and 12-month time points between each plate.
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FIG E1. Participant flow diagram. Of the potential participants (n5 359) in the nested study, 288 participants

provided a baseline (3-month) fecal sample. For the subset of case-control longitudinal sampling (n 5 70),

participants provided additional fecal samples at 6 and 12 months.
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FIG E2. Patterns of gut microbiota of baseline fecal samples. A, PCoA of the gut microbiome at 3 months.

Pair-wise distances (Bray-Curtis distance) among all samples were calculated and 2 major axes (PC1 and

PC2) from the multidimensional distance space were calculated and depicted on a scatter plot. Colors

indicate different clusters, according to k-means clustering. B, Density distribution of 3-month-old infants’

microbiome based on PCoA (same as Fig 1, A). There are 3 high-density peaks pronounced, suggesting 3

clusters of microbial community populations. C, Evaluation of optimal clustering using ‘‘within sum of

squares’’ by each k (number of clusters). Based on the graphical visualization of within sum of squares or

the ‘‘elbow method,’’ k 5 3 (3 clusters) is the optimal number of clusters. Increasing the number of clusters

beyond 3 (k > 3) results in overfitting, whereas k less than 3 is not as effective in minimizing intracluster

variation. D,Distribution of age (in days) of the infants when their 3-month samples were acquired, grouped

by each cluster (P 5 NS; Kruskal-Wallis test). E, PCoA of microbiome communities at 3 months with

species-level classification. The colors indicate clusters. F, PCoA of microbiome communities at 3 months

with 97% de novo OTU-level classification. The colors indicate clusters. NS, Nonsignificant;

OTU, operational taxonomic unit.
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Fig 1, A). The colors indicate clustering and age groups. At age 12months, the microbiota largely converges

to cluster 2 of the 3-month gut microbiota. B, Boxplot showing changes in interpersonal dissimilarity at
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FIG E4. Microbiota differences between infants and adults. A, Stacked bar charts for relative abundances of

major genera in all samples, from both EAT (3, 6, and 12 months) and TwinsUK (adults) cohorts. Each bar

indicates an individual. B, Schematic diagram describing differences in core/noncore genera between

3-month-old infants and adults. There are 5 core genera (genera exist in more than 95% of individuals,

Bifidobacterium, Bacteroides, Streptococcus, Escherichia/Shigella, and Veillonella) from 3-month-old

infants. Among them, 4 genera (except Veillonella) are also core in adults. C, Boxplot showing relative

changes in shared and adult-specific core microbes (*P < .05, **P < .01, ***P < .001; Wilcoxon rank-sum

test after Kruskal-Wallis test). At 12 months, relative abundances of adult-specific core genera are increased

and shared cores are decreased, compared with 3 months. D, PCoA plot showing relative changes in gut
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FIG E5. A, PCoA of baseline gut microbiota of vaginally born infants. Different colors indicate clusters, and

arrows indicate specific genera significantly correlated with PCoA ordination (P < .05, lengths of arrows are

proportional to R2 (calculated by EnvFit in R)). B, Heatmap showing associations between environmental

exposures and microbial composition. Darker colors indicate lower P values, and red marks indicate

associations with FDR-corrected P values lower than .05. C,Mean relative abundance differences of selected

taxa from B (vaginal vs CS). D, Mean relative abundance differences of selected taxa from B (antibiotics

before sampling). CS, Cesarean section; FDR, false-discovery rate.
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FIG E6. Association of clinical measurements with microbial compositions. A, Heatmap showing

associations between various clinical measurements and microbial composition. Darker colors indicate

lower P values, and red marks indicate associations with FDR-corrected P values lower than .05.

B, Discriminatory taxa from 3-month gut microbiota in infants with or without eczema at age 3 months

(LDA score). The LDA score is calculated by LEfSe.E4 C, Discriminatory taxa from 3-month gut microbiota

in infants with or without eczema at age 12 months. The LDA score is calculated by LEfSe. D, Mean relative

abundance differences of selected taxa from B (with or without eczema at 3 months). E, Mean relative

abundance differences of selected taxa from C (with or without eczema at 12 months). FDR,

False-discovery rate; LDA, linear discriminant analysis; SCORAD, SCORing Atopic Dermatitis; TEWL,
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FIG E7. Differential microbiota dynamics by early food introduction in the EAT cohort. A, Boxplot

comparing Shannon diversity changes among participants’ longitudinal samples according to randomized

allocation to continued exclusive breast-feeding (standard introduction group) or the introduction of

allergenic solids (early introduction group). (*P < .05; paired Wilcoxon rank-sum test). B, Discriminatory

taxa from 6-month gut microbiota of infants in standard vs early introduction (LDA score). The LDA score

is calculated by LEfSe. C, Discriminatory taxa from 12-month gut microbiota of infants in standard vs early

introduction (LDA score). The LDA score is calculated by LEfSe. D, Mean relative abundance differences of

selected taxa from B (standrard vs early introduction). E, Mean relative abundance differences of selected

taxa from C (standard vs early introduction). LDA, Linear discriminant analysis; NS, nonsignificant.
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FIG E8. Differential microbiota dynamics by early food introduction in the TEDDY cohort. PCoA scatter plot

demonstrating longitudinal transition from age 3 to 6 months of defined samples from the TEDDY cohort.

From the TEDDY data set, samples from infants who were (i) exclusively breast-fed before solid food

introduction and (ii) longitudinal data (>2 sampling before age 6 months) were selected. Gray lines connect

samples from the same individual. Yellow and purple arrows on the sides indicate the average shift of the

microbiota in the PCoA axes.
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