
Please cite the Published Version

Jabbar, S , Abideen, ZU, Khalid, S , Ahmad, A , Raza, U and Akram, S (2023) Enhancing
computational scalability in Blockchain by leveraging improvement in consensus algorithm. Fron-
tiers in Computer Science, 5. 1304590

DOI: https://doi.org/10.3389/fcomp.2023.1304590

Publisher: Frontiers Media SA

Version: Published Version

Downloaded from: https://e-space.mmu.ac.uk/633841/

Usage rights: Creative Commons: Attribution 4.0

Additional Information: This is an Open Access article published in Frontiers in Computer Sci-
ence, by Frontiers Media SA.

Data Access Statement: The raw data supporting the conclusions of this article will be made
available by the authors, without undue reservation.

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0000-0002-2127-1235
https://orcid.org/0000-0003-0899-7354
https://orcid.org/0000-0001-5483-2732
https://orcid.org/0000-0002-9810-1285
https://doi.org/10.3389/fcomp.2023.1304590
https://e-space.mmu.ac.uk/633841/
https://creativecommons.org/licenses/by/4.0/
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines


TYPE Original Research

PUBLISHED 07 December 2023

DOI 10.3389/fcomp.2023.1304590

OPEN ACCESS

EDITED BY

Muhammad Usman Tariq,

Abu Dhabi University, United Arab Emirates

REVIEWED BY

Babar Khan,

Princeton University, United States

Miteen Ali,

North Dakota State University, United States

*CORRESPONDENCE

Sohail Jabbar

sjjabar@imamu.edu.sa

Zain Ul Abideen

bscs-fa15-154@tuf.edu.pk

RECEIVED 29 September 2023

ACCEPTED 10 November 2023

PUBLISHED 07 December 2023

CITATION

Jabbar S, Abideen ZU, Khalid S, Ahmad A,

Raza U and Akram S (2023) Enhancing

computational scalability in Blockchain by

leveraging improvement in consensus

algorithm. Front. Comput. Sci. 5:1304590.

doi: 10.3389/fcomp.2023.1304590

COPYRIGHT

© 2023 Jabbar, Abideen, Khalid, Ahmad, Raza

and Akram. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Enhancing computational
scalability in Blockchain by
leveraging improvement in
consensus algorithm

Sohail Jabbar 1*, Zain Ul Abideen2*, Shehzad Khalid 3,

Awais Ahmad 1, Umar Raza 4 and Sheeraz Akram1

1College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU),

Riyadh, Saudi Arabia, 2Department of Computer Science, The University of Faisalabad, Faisalabad,

Pakistan, 3Department of Computer Engineering, Bahria Univesity, Islamabad, Pakistan, 4Department of

Engineering, Manchester Metropolitan University, Manchester, United Kingdom

Accommodating an increasing number of users in the Blockchain network has

moved to the forefront of discussion. It is also evident that without jeopardizing

the data security in Blockchain, it is of indispensable need to devise an appropriate

method for improving the scalability trait of Blockchain. In this article, we

have proposed a consensus method that is having the potential to improve

the scalability of the Private Blockchain. The system, at first, mitigates latency

arising from kernel schedulers, ensuring that the application consistently has

access to an available core for transaction processing. Secondly, the committee

system alleviates the network’s workload, preventing spurious transactions

from monopolizing network resources and impeding its e�ciency. Extensive

experimentation is made by considering various scenarios of transaction with

CPU isolation and application sticking to core 2 with varied priority. Based on

the number of transactions performed per second, the proposed system is

compared with di�erent existing consensus mechanisms working in various types

of Blockchains. Also, a detailed discussion is presented on the critical analysis of

the adopted research mechanism. Overall, the proposed systems outperforms to

other systems in various parameters of blockchain network scalability.

KEYWORDS

distributed ledger, transaction, algorithm, scalability, consensus protocol, Blockchain,

Linux based distribution, supply chain

1 Introduction

In today’s digital era, characterized by the rapid integration of new technologies

into global networks, optimizing user management in financial transactions has become

a paramount challenge for organizations. Blockchain technology has emerged as a

transformative solution, functioning as a distributed database for data sharing among

computer network nodes. This digital database, akin to its traditional counterparts,

efficiently stores electronic data. Blockchain-based system is an amalgamation of

cryptography, public key infrastructure, and economic modeling applied to peer-to-peer

networking and decentralized consensus to achieve distributed database synchronization.

Since the Blockchain is at its infant stage in comparison to the well-established systems of

Visa, and PayPal. So is its transaction rate (Xu et al., 2022). This research gap makes this

different. But the fact is that, by shifting an architecture, relying on centralized data servers

to a trustless, and distributed peer-to-peer network, massive overhead costs, and concerns

over centralized data control and single points of failure will be reduced significantly.

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2023.1304590
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2023.1304590&domain=pdf&date_stamp=2023-12-07
mailto:sjjabar@imamu.edu.sa
mailto:bscs-fa15-154@tuf.edu.pk
https://doi.org/10.3389/fcomp.2023.1304590
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2023.1304590/full
https://orcid.org/0000-0002-2127-1235
https://orcid.org/0000-0003-0899-7354
https://orcid.org/0000-0001-5483-2732
https://orcid.org/0000-0002-9810-1285
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Jabbar et al. 10.3389/fcomp.2023.1304590

Blockchain with its salient features of decentralization,

immutability, auditability, and fault-tolerant represents one

of the most suitable candidate technologies able to support a

better ecosystem (Jabbar et al., 2021). Extending it to the next

step, although the technology itself is revolutionary, yet there are

many limitations and challenges in its adoption in applications.

From the long list of challenges, the mass adoption of Blockchain

is largely limited by the issues of scalability, since it largely limits

to cover the larger scale of any type of application. Understanding

scalability requires a grasp of the underlying mechanisms: a

distributed ledger system disseminates user records across multiple

participants, triggering updates across all ledger instances upon

any entry, fostering trust. Although, this is almost the same as the

scalability issue is defined in general, yet, in common scenario,

scalability is the ability of a system to continue to respond and

function after increasing the size of the input in order to fulfill

user demand. Further importance of scalability issue in Blockchain

with respect to the confronting challenges and the available

solutions is well discussed in recent publication Harshini Poojaa

and Ganesh Kumar (2022) and Alshahrani et al. (2023).

Among many other factors that affect the scalability like

block size, computation, communications, hardware and software

limitations pose formidable challenges. In this context, each node

continually adds transaction data, risking system stability from

an ever-growing transaction history. Hardware upgrades become

necessary as the network expands. Escalating transaction fees,

a notable concern, stem from complex validation processes and

varying user willingness to pay higher fees for faster verification,

resulting in transaction backlogs. Block size also plays a critical

role, with increasing transaction volumes elongating processing

times (Yu et al., 2020). For instance, the Bitcoin Blockchain

initially featured 1MB block sizes accommodating around 2020

transactions, but the surge in transactions necessitated larger

block sizes, exacerbating scalability issues (Philippopoulos et al.,

2019). Transaction validation, through the consensus process,

encounters delays during peak hours, leading to higher fees and

scalability challenges. Optimizing the network communication is

also important not only for decreasing energy consumption but also

for reducing the propagation delay. In the traditional Blockchain,

each node is a relay node which broadcasts all transactions at

least twice. When a transaction is generated, it first broadcasts

to all nodes, and when a block containing the transaction is

mined, it broadcasts to all nodes for the second time. This results

in block propagation delay. Keeping in view this mechanism,

the data transmission mode can not be scaled up to handle a

large number of transactions due to the requirement for network

bandwidth resources (Wang et al., 2022). Therefore, it is necessary

to design more efficient data transmission mechanisms. More-over,

the security concerns are not considered in the proposed system,

since the system and the communication are assumed to be safe and

may be considered in the Future work. So far as, the research work

in the underlying article is concerned, Scalability issue confines the

scope of the proposed system that is achieved by improving the

computational aspect in Blockchain. The depiction of the core and

usual process in blockchain transaction verification is given step by

step in Figures 1–3 i.e., transaction initiation and its approval from

leader node and hence by every other member node.

This paper provides a road map to improve the scalability of

Blockchain using techniques and algorithms. Following enlisted are

the key contributions of our research work.

• A real implementation of the proposed mechanism is made

that gives a broader understanding of the Blockchain. This

is unique in its kind. Since, It achieves the research thesis by

mitigating the latency arising from kernel schedulers, ensuring

that the application consistently has access to an available

core for transaction processing. Moreover, the committee

system alleviates the network’s workload, preventing spurious

transactions from monopolizing network resources and

impeding its efficiency.

• A custom Linux-based distribution is performed to isolate

the application to prevent hardware latency and to isolate the

application’s core.

• A comprehensive analysis of the current scaling solutions and

the consensus algorithms with regard to their performance

characteristics (such as latency and throughput) is made.

The subsequent sections of this paper are meticulously

structured to facilitate comprehensive exploration of the research

framework. Section 2 assesses existing supply chain traceability

methodologies, highlighting limitations and providing insights into

pharmaceutical supply chain organization. Section 3 outlines the

research methodology, presenting algorithmic overviews. Section

4 reports empirical findings from rigorous experimentation,

accompanied by in-depth discussions. Section 5 succinctly

summarizes the study’s insights and implications.

2 Literature review

Blockchain scalability has long been a prominent concern,

prompting various algorithmic solutions and implementations.

This paper examines existing solutions, revealing that the path to

resolution lies not in a single algorithm or isolated approach but

rather in the amalgamation of multiple solutions, particularly at

the hardware level (Ali et al., 2022). While many solutions have

scrutinized high-level programming aspects of Blockchain, there

has been a conspicuous absence of exploration into lower-level

approaches for addressing this issue.

One proposed solution is the Practical Byzantine Fault

Tolerant (PBFT) algorithm (Feng et al., 2018), designed to resolve

the Byzantine Generals Problem. This problem exemplifies the

challenge faced by decentralized parties striving for consensus

without a central trusted entity. In essence, it explores how

decentralized parties can reach agreement when they lack the

means to independently confirm each other’s identities (Liu et al.,

2022). This predicament is illustrated by generals surrounding

Byzantium, needing to coordinate their attacks in unison rather

than individually. The crux of the issue lies in their lack

of communication channels to synchronize their efforts, along

with the absence of trust in any delivered or deciphered

communications. Importantly, decentralized systems are uniquely

susceptible to the Byzantine Generals Problem due to their lack of

a trustworthy information source and the inability to verify data

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1304590
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Jabbar et al. 10.3389/fcomp.2023.1304590

FIGURE 1

It shows that a committee member initiates a transaction, and the committee’s leader has received it.

from other members, relying solely on a central authority (Bentov

et al., 2014). Another pivotal contribution was the introduction of

the Proof-of-Work (PoW) consensus algorithm, inspired by Adam

Back’s Hash Cash proposal from 2002, aimed initially at mitigating

email spam and denial-of-service attacks (Seo et al., 2020). PoW

served as the foundational mechanism for Bitcoin, predicated

on solving computationally intensive hash problems, rendering

block modifications practically infeasible without rehashing all

subsequent blocks. PoWwas envisioned as a peer-to-peer electronic

currency, promising expedience, affordability, and accessibility

while tackling the issue of double spending. Nevertheless, the

solutions to double spending at the time demanded substantial

hardware resources, outweighed by the advantages of enhanced

security. The architecture entailed the creation of a complex and

extensive peer-to-peer network, time stamping transactions using

network timestamps and forming a Blockchain that rendered

data modification highly improbable (Gucluturk, 2018). The

decentralized nature of Blockchain, explored in this study, allows

nodes to join and leave the network without constraints.

The Proof of Stake (PoS) consensus algorithm offers an

alternative solution, where validators mine the next block

based on their economic stake in the network and the

duration of their possession of network currency (Yang et al.,

2019). Unlike PoW, PoS does not generate new coins or

offer block rewards, relying solely on transaction fees. PoS, a

permissioned public distributed ledger, minimizes the risk of a

51% attack, as attackers would undermine their own assets. This

protocol is energy-efficient, requiring no specialized hardware

and boasting good scalability due to minimal overhead. PoS

draws inspiration from the concept of “coinage," a factor also

influencing Bitcoin’s transaction prioritization to some extent

(Schedlbauer and Wagner, 2018). The concept of coinage is

defined as “currency amount times holding period," essentially

rewarding trust based on the age of the currency within the

system. To protect against block-bloating attacks, transaction

fees are enforced at the protocol level. Additionally, a third

protocol, “proof-of-excellence," is briefly discussed, suggesting

a tournament-based approach with intermittent rewards based

on miner performance. However, power consumption concerns

have tempered further exploration of this concept (Lone et al.,

2019). The structure of Proof-of-Stake transaction is shown in

Figure 4.

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1304590
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Jabbar et al. 10.3389/fcomp.2023.1304590

FIGURE 2

It reflects that a committee member initiates a transaction but is later approved by the leader by checking its ledger. Then the leader is forwarding

that transaction to other members to check and report back.

A program known as “RAFT" was developed to achieve

consensus, as described in Ongaro and Ousterhout (2014).

The RAFT consensus algorithm functions by selecting a leader

responsible for overseeing log replication. This leader’s duties

encompass receiving log entries from nodes, replicating them

across other servers, and notifying the servers when it’s safe

to update their log entries to reflect the new data. If a leader

experiences failure or disconnection, a replacement is promptly

selected. This concept drew inspiration from Paxos, an effective

but complex consensus algorithm. To better comprehend

the differences between Paxos and Raft, a brief comparison

has been included (Erdin et al., 2021). Raft streamlines the

essential elements of network consensus, simplifying leader

election, facilitating easy implementation of log replication

protocols, and enhancing safety measures. This simplicity

has been demonstrated through a study involving students,

highlighting Raft’s superior ease of comprehension compared to

Paxos. Raft was initially designed to aid newcomers, especially

students, in grasping the fundamental challenge of achieving

consensus in peer-to-peer networks. Moreover, Raft incorporates

a mechanism to prevent the alteration of cluster ownership,

requiring majority agreement for enhanced security, as illustrated

in Figure 5.

The introduction of a “technology-based democracy," referred

to as Delegated Proof of Stake (DPoS), has had a significant

impact on Blockchain technology. DPoS safeguards Blockchain

through a voting and election process, where active users cast

their votes for “witnesses" and “delegates." Witnesses play a crucial

role in creating and validating blocks within the Blockchain.

Notably, transaction fees are awarded to the top-tier witnesses. In

the event that a witness misses a block due to node downtime

or other reasons, the transaction is automatically redirected to

the most recently active witness. Importantly, witnesses cannot

manipulate transaction data in a DPoS-based Blockchain. To

participate in a DPoS Blockchain, witnesses must maintain a

reliable server with a 100% availability rate, as the system generates

substantial network communication (Xie et al., 2019). The study

also introduces an efficient consensus method known as DDPoS,

designed to reduce resource consumption, enhance operational

efficiency, and bolster security. Thismethod addresses the challenge

of “witness malevolent behavior" by merging the strengths of

Proof of Work (PoW) with DPoS, improving the original DPoS

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1304590
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Jabbar et al. 10.3389/fcomp.2023.1304590

FIGURE 3

It presents that a transaction is approved by all the other committee members and sent back to the leader. Now, the transaction will be amended on

the members’ ledger.

algorithm. Rather than relying on stakes, DDPoS employs the

Proof of Work algorithm to determine nodes’ processing capacity

for participation in the election. Each node is limited to one

vote, promoting fairness and decentralization in block production

to prevent collusion attacks. Additionally, DDPoS implements a

rapid node-downgrading mechanism to maintain system integrity

and security. Performance evaluations indicate improvements

in efficiency and security compared to conventional consensus

methods (Philippopoulos et al., 2019).

Despite these advancements, certain constraints must be

considered. The experimental environment does not replicate

real-world scenarios, making immediate integration into existing

business environments like Hyperledger or Ethereum challenging.

For optimal results, the proposed consensus method necessitates

validation within a production-like Blockchain setting, bridging

the gap between experimentation and real-world applicability.

These considerations are vital as we delve further into the

study’s details, comparing three protocols in Table 1. Similar

ideas are extensively used in various research work focused on

Pharmaceutical Supply Chain. Bandhu et al. (2023) worked on

Blockchain and smart contract based implementation for making

FIGURE 4

Structure of Proof-of-Stake transaction.

drug supply chain secure, traceable and efficient. Rai et al. (2023)

proposed Blockchain-Based traceability of counterfeited drugs and

gave appreciable results on various parameters. Similar effort by

Abdallah et al. on Blockchain-based solution for pharmaceutical

supply chain industry. Their proposed solution is based on utilizing

Ethereum smart contracts. This is to monitor the interaction

between participants, trigger events that are logged to help the

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1304590
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Jabbar et al. 10.3389/fcomp.2023.1304590

participants to keep track and be informed about sale transactions,

and ensure payment dispersal securely.

3 Materials and methods

3.1 Proposed solution—Overview

In our pursuit of addressing the Blockchain scalability

challenge, we have explored various solutions during our literature

review. While the solutions discussed here are among the best

known, it’s important to note that our proposed solutions may

differ. One promising avenue of research has focused on enhancing

consensus protocols, which play a pivotal role in the operation

of Blockchain networks. Bitcoin, a renowned Blockchain network,

currently employs the Proof-of-Work (PoW) consensus protocol

(Yang et al., 2019). While PoW is recognized for its robust

security, it is criticized for its sluggish transaction processing

speed. Consequently, many Blockchain networks are exploring

the adoption of the Proof-of-Stake (PoS) consensus mechanism

as a potential solution to the scalability issue. PoS eliminates

the need for miners to solve resource-intensive cryptographic

algorithms, thereby conserving computational power. Instead, it

ensures consensus reliability by selecting validators based on

their stakes in the network. PoS holds the promise of delivering

improved security, decentralization, and scalability (Yu et al., 2020).

Sharding, another compelling option, addresses the Blockchain

scalability challenge by breaking down transactions into smaller

data sets known as “shards" (Cai et al., 2022). These shards

can be processed simultaneously by the network, allowing for

FIGURE 5

Server states in RAFT.

parallel transaction handling. Sharding facilitates data distribution

among different nodes while maintaining data integrity. Shards

serve as proofs of the main chain and interact with each

other to share addresses, general state information, and common

communication protocols (Ali et al., 2022). The concept of a nested

Blockchain offers yet another innovative approach to scalability.

This decentralized network infrastructure leverages the main

Blockchain to establish a more extensive network of secondary

chains, enabling transaction execution across interconnected

chains. Nested Blockchains are considered a promising solution,

particularly among layer-2 solutions (Philippopoulos et al., 2019).

Currently, all Blockchain networks operate on a peer-to-peer

basis with a flat, egalitarian topology where nodes are considered

equal and no central authority exists. This design promotes

trustlessness, meaning participants need not trust one another

but rely on the system. However, this structure can lead to slow

transaction processing, especially as the number of nodes increases.

Transaction fees further complicate matters, as some users can

expedite their transactions by offering higher fees, while others

experience significant delays (Liu et al., 2020). As we delve into

our research, we aim to build upon these existing insights to

contribute to the ongoing efforts to address Blockchain scalability

effectively. When we discuss permissionless Blockchains, we’re

referring to open Blockchains where anyone can participate as

a node and maintain anonymity if desired. In such Blockchains,

nodes can modify previous transaction data before incorporating

them into a new block, potentially leading to a “fork" in the chain. A

fundamental goal of consensus algorithms is to prevent these forks,

ensuring users reach a unanimous version of truth and maintain

trust in the Blockchain. Even in permissioned Blockchains, where

known and trusted nodes participate, consensus remains crucial.

These Blockchains operate on a “trust but verify" principle,

implying that transactions must be valid and trusted by all nodes

to avoid the cascade of errors triggered by a single fraudulent

transaction. This issue is akin to the Byzantine Generals’ Problem

when a node becomes unreliable or corrupted and the Two

Army Problemwhen communication breaks down. Therefore, fault

tolerance is a critical aspect of consensus methods.

Bitcoin, the most renowned application of Blockchain, employs

the Proof of Work (PoW) consensus algorithm. In PoW, nodes

must perform resource-intensive calculations to determine if a

newly generated block has a valid hash before adding it to

the chain. This block is then verified by all other nodes. PoW

ensures that the winning node, often the one exerting the most

TABLE 1 Performance comparison of POW, POS, and DPOS (Yang et al., 2019).

PoW PoS DPoS

The basis for assigning accounting rights Computing power Stakes Stake votes

Threat to security Concentration of power Lack of active nodes Destruction of the witnesses

Resource consumption The highest Lower than PoW, higher than DPoS The lowest

Average time to generate blocks 10 min 64 s 3 s

Typical application Bitcoin, Ethereum Peercoin Bitshare

Fairness Relatively fair Relatively unfair Relatively unfair

Scalability Good Good Good

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1304590
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Jabbar et al. 10.3389/fcomp.2023.1304590

effort, is awarded bitcoins as a prize, thus achieving consensus.

If two blocks are mined simultaneously, a fork may occur, but

PoW intentionally slows down the mining process to prevent

excessive forks. Blockchain security faces various threats, including

DoS attacks that flood the network with transactions, potentially

disrupting legitimate transactions. More severe forms include

distributed denial of service attacks. In a 51% attack, if an adversary

controls over half of the network nodes, they can manipulate

consensus decisions, insert transactions with altered hashes, and

create the longest fork. Even with<51% control, certain attacks can

succeed approximately half of the time. Double-Spend attacks are

relevant in cryptocurrency contexts, involving the simultaneous use

of the same currency for multiple transactions. Sybil Attacks occur

when a node pretends to be multiple identities to deceive other

nodes. Finally, Cryptographic Attacks with immense processing

power can disrupt the balance of power among nodes with regular

computing capabilities.

3.2 How proposed solution works?

The proposed system will operate as follows:

Firstly, users will be grouped into committees, each led by a

committee leader. Transaction validation will involve all committee

members, who will notify their leader once validation is complete.

The leader will then conduct a final validation before forwarding

the transaction.

Secondly, a new Linux distribution, inspired by Ubuntu, will be

created. This distribution will embed the algorithm and program to

run continuously in the background. The kernel scheduler within

this distribution will be customized to prevent any process or tasks

from running on a separate core. The recommended algorithm will

run as the sole task in this core, and parallel processing will be

employed to prevent conflicts.

Thirdly, the algorithm will be implemented using real-time

programming, assigning priorities to all program tasks. When

choosing a leader, the system will prioritize this task before

permitting new transactions within the committee.

Finally, the system will utilize a device’s real-time location or

information from an ISP to establish a committee communication

tree. Once one committee validates a transaction, it will transmit

the transaction data to geographically neighboring committees.

This system will address two key issues:

• Kernel scheduler latency: By ensuring a dedicated core for

transactions and implementing multi-threading with core

isolation, latency will be reduced.

• Workload reduction: The committee system will prevent fake

transactions from overwhelming the network and consuming

resources.

Figure 6 depicts isolating the linux kernel and CPU cores for

the application that is the core aspect of our proposed mechanism

for enhanced computational scalability in Blockchain. As per the

availability of the committee leader, the transaction processing

will be started. The committee leader validates or invalidates the

incoming transaction and forward it to other nodes for the further

decisions accordingly. Once the transaction valid flag is popped up

from the other nodes, the ledger is updated at the ends of committee

leader and others as well. After updating, the transaction is finally

make available to the network for further processing. This cycle

continues for every incoming transaction. Same is presented in

Algorithm 1.

1 Check if committee leader == available

2 if committee leader == available then start

processing transactions

3 if incoming transaction == valid, send to other

nodes for validation

4 if incoming transaction =! valid, send to others

for rejection

5 if all nodes == transaction valid flag,

committee leader amend its ledger and tell

others to amend theirs too.

6 if transaction == valid from all nodes, the

leader sends the transaction on the network.

7 if a transaction arrives on the network, the

leader receives it, and validates it; if the

received transaction == valid, repeat steps 2 to

6.

Algorithm 1. Algorithm to improve scalability.

3.2.1 Leader selection algorithm
The initial application step involves leader availability

verification for the node. If the leader is unavailable, the application

proceeds to leader selection. The sole criterion for leader selection

is superior hardware specifications. For instance, in a comparison

between two computers with processors clocked at 3.0 and 3.1

GHz, the 3.1 GHz computer is designated as the new leader. This

criterion is based on the additional responsibilities of a leader,

necessitating slightly superior hardware capabilities compared to

other nodes. If all nodes possess equivalent hardware specifications,

the selection may be based on factors such as memory, storage, and

Ethernet speed. Client application is only being started, if there is

the committee leader available. In other case, the node with the

highest specification in the network is selected as the committee

leader. Algorithm 2 brief it in step by step process.

3.2.2 Client transaction algorithm
The client transaction initiates a continuous input loop from

the client side. Upon the occurrence of a transaction at the

client, it autonomously validates the transaction by applying

predefined rules and regulations, as well as conducting format

checks. Subsequently, the client cross-references the transaction

with its internal transaction ledger to determine its validity. If the

transaction is deemed valid, either through internal validation or

the client’s logical assessment, it is then transmitted to the leader of

the respective committee. In cases where the internal ledger cannot

validate the transaction, the node itself rejects the transaction and

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1304590
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Jabbar et al. 10.3389/fcomp.2023.1304590

FIGURE 6

Linux Kernel and core isolation of the CPU for the application.

1 Check if committee leader == available, start

the client application

2 if committee leader != available, then choose

the leader.

3 check all the specifications of all the network

in the system

4 compare all the specifications of all the

system.

5 select the system with higher specifications as

a leader and start the client.

6 In case, multiple nodes have equivalent high-end

specifications, randomly select the leader among

them. check if leader == available.

Algorithm 2. Leader selection algorithm.

notifies the user of the reason. In both scenarios, the client reenters

the transaction input loop, continuously searching for input data

or transactions. In short, Client has the role to finally validate the

transaction and to share the decision with the leader. Once it is

validated with internal ledger, its confirmation and the transaction

ID is sent to the leader. Same is elaborated in Algorithm 3.

3.2.3 Algorithm for leader verification and
updating

The leader verification and update algorithm exclusively

operate in conjunction with the appointed committee leader. Upon

the selection of a leader, the leader assumes the responsibility

of processing each transaction received by nodes within the

1 starts the client and loop for incoming

transaction

2 check the transaction with the internal ledger

3 if incoming transaction == valid, store the

valid transaction in the ledger.

4 if incoming transaction != valid, discard the

transaction

5 send the updated decision along with the

transaction ID to the leader.

Algorithm 3. Client transaction algorithm.

committee. Subsequently, the leader meticulously assesses each

transaction within its ledger, meticulously validating adherence to

rules and regulations governing transaction formatting. Validated

transactions are disseminated to all other nodes for ledger

updates, thereby ensuring a synchronized record. Transactions

undergo a two-tier verification process. Initially, the node

client conducts an internal self-assessment. Subsequently, the

leader conducts an independent verification. To further bolster

transaction integrity, a redundant verification step is in place–

receiving nodes autonomously cross-verify transactions against

their record ledgers. If discrepancies arise during this cross-

verification, the receiving node promptly notifies the leader.

This comprehensive validation mechanism optimizes transaction

security while conserving network bandwidth resources. Crux of

its working is given in Algorithm 4.

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1304590
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Jabbar et al. 10.3389/fcomp.2023.1304590

1 If received transaction from the node clients ==

validated from all nodes then amend the leader

ledger

2 if ledger == amended, send transaction

information on the network.

3 if received transaction from node clients !=

valid, reject the transaction, note the sender.

Algorithm 4. Algorithm for leader verification and updating.

3.3 Implementation

A system comprising five Raspberry Pi 4 computers will

be established, each running a customized Linux distribution.

Modifications to the Linux Kernel have been applied through

patches, guaranteeing the dedicated core’s exclusivity for the

application, while preventing the scheduling of other processes or

applications on the same core. These five system-on-chip (SOC)

units are interconnected via a Gigabit Ethernet switch to facilitate

rapid communication. The primary objective of this setup is to

assess latency, encompassing both the Linux Kernel scheduler

and network latency during transaction processing. Additionally,

the algorithm incorporates a leader-finding program, allowing

subcommittees to change or select their leaders in accordance with

the algorithm’s criteria.

3.3.1 Hardware setup
Creating a Linux distribution from the ground up constitutes

a resource-intensive endeavor. It necessitates a robust hardware

configuration, encompassing a high-performance CPU with a

maximal number of cores. Additionally, a minimum of 8 GB of

RAM, 50 GB of disk space, and high-speed internet connectivity for

package downloads are imperative prerequisites. The development

system employed for designing and constructing the distribution

is the Lenovo Legion 5 AMD, characterized by the specifications

outlined in the following paragraph. AMD Ryzen 7 4800 Processor

(2.90 GHz, Max Boost up to 4.20GHz, 8 Cores, 16 Threads, 8 MB

Cache). NVIDIA GeForce RTX TM2060 6 GB graphics card. 16GB

DDR4 3,200MHz RAM. 2TB Samsung SSD. 50MBPS internet with

Giga Ethernet. The distribution has been tailored for compatibility

with the Raspberry Pi 4Model B, necessitating the utilization of five

such devices for evaluating the distribution and the application’s

performance. Among these devices, one assumes the role of the

committee head, while the others operate as followers or nodes.

To interconnect all the devices, a D-Link gigabit Ethernet switch

has been deployed, with all network devices equipped with gigabit

Ethernet ports, ensuring equitable networking conditions. The

established configuration is centered around five Raspberry Pi 4

Model B (2GB) units, each running a specialized Linux distribution

with core isolation. Specifically, Core 2 is dedicated to executing

the real-time Blockchain application, with stringent restrictions in

place to prevent the scheduling of any other tasks on this core.

3.3.2 Software setup
The initial steps involving the design and creation of the

distribution were carried out within the Windows 10 environment,

leveraging the capabilities of WSL 2 (Windows Subsystem for

Linux) integration. Within this setup, Ubuntu 18.04 was selected

and installed onWSL, utilizing the Hypervisor and enabling Virtual

Memory support within the CPU. WSL stands as a dedicated

subsystem capable of facilitating the operation of a GNU/Linux

environment, encompassing a wide array of command-line

tools, utilities, and applications. This subsystem operates as an

autonomous realm, isolated from the host operating system.

Once WSL 2 is successfully installed on a Windows PC, the

utilization of software known as “Mobaxterm" becomes imperative

to access WSL 2 and enable SSH and FTP data transfer capabilities.

This software furnishes the essential command-line interface for

interacting with the Linux environment. The client/leader setup is

shown in Figure 7.

3.3.3 The Yocto Build framework
The Yocto Initiative represents a remarkable open-source

community effort designed to simplify the construction of

customizable Linux systems from the ground up and their

deployment on embedded hardware, making the utilization

of embedded Linux highly accessible. This initiative lends

invaluable assistance to developers who aim to fashion tailored

systems rooted in the Linux kernel. It provides a wealth of

templates, tools, procedures, and extensive support for various

hardware architectures, including ARM, PPC, MIPS, and x86,

catering to both 32 and 64-bit systems. The Yocto Project is

engineered with cross-platform tools and metadata, facilitating

the expeditious creation of customized Linux distributions from

source code. These custom systems, compared to conventional

Linux installations, are tailored precisely to meet specific

requirements. By harnessing the power of the Yocto Project,

developers gain the capacity to construct and manage intricate

systems and applications. Factors such as system speed, memory

footprint, and memory consumption can all be fine-tuned to suit

precise needs. This versatility extends across diverse hardware

platforms, accommodating a vast software stack and enabling

seamless software customization and construction interchange. For

corporations, the Yocto Project offers the opportunity to leverage

embedded engineers’ expertise to craft bespoke Linux distributions,

drawing upon the foundation of exceptional Linux systems.

Implementing Yocto in operating system development simplifies

cross-Linux Distro upgrades and cross-architecture migrations,

reducing the complexities associated with these processes. The

Components of the Yocto Linux Distribution Build Engine is

shown in Figure 8.

4 Results and discussion

The experimental setup consisted of a cluster of five system-

on-chip (SOCs) devices, specifically Raspberry Pi 4B models

equipped with 2 GB of RAM. These devices ran a tailored

Linux distribution with an integrated Blockchain application that

operated in the background, utilizing dedicated core isolation.

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1304590
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Jabbar et al. 10.3389/fcomp.2023.1304590

FIGURE 7

The client/leader setup.

FIGURE 8

Yocto Linux distribution build engine components.

Interconnection between the five devices was established through

a gigabit Ethernet switch. The application had already been

seamlessly incorporated into the Linux distribution and was

configured to initiate automatically at the startup of the Linux

system. As depicted in Figure 9, it is evident that CPU 2

bore no computational load or scheduling, while CPUs 0,

1, and 3 were operating at full capacity. This test was

conducted to apply stress to CPUs 0, 1, and 3, and assess

whether it had any discernible impact on the performance of

CPU 2.

A Linux Kernel scheduler, situated in the kernel space, is

responsible for managing task and process scheduling across

available CPU cores. This scheduling mechanism, however, often

introduces delays as applications wait in a queue for their

turn to be scheduled. To mitigate this performance bottleneck,

modifications were made to the Kernel using the Yocto Build

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1304590
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Jabbar et al. 10.3389/fcomp.2023.1304590

FIGURE 9

CPU isolation on core 2, no load is observed.

system. These adjustments extended beyond the Kernel itself

and also encompassed the bootloader, necessitating the editing

of specific environment variables. These variables are necessary

parts of the solution because these are isolating a core and only

then we can be able to stick our application to the specific

core, which cannot be missed. These are needed to be set only

once, but they should be saved in the non-volatile memory of

the computer.

• Transaction with CPU isolation and application sticking to

core 2 with priority 80

A transaction is taking place on a CPU isolation (Table 2),

a core, specifically, core 2 has been isolated from the Linux

Kernel Scheduler. The Kernel is not going to schedule any

task on the selected core. Our application will be the only

application that will be running on the core. Transaction 0

is happening on Core 0, with a priority of 80, count number

69,810, with a minimum time of 2,750 ns, an actual time of

5,875 ns, an average of 4,953 ns, maximum of 48,375. This test

shows that on Core 0, 69,810 transactions happened, while the

minimum time that any transaction took was 2,750 ns. The

actual time that a transaction took was 5,875 ns. The average

time that a transaction took was 4,953 ns. The maximum time

a transaction took was 48,375 ns.

• Transaction with CPU isolation and application sticking to

core 2 with priority 90

Transaction 0 is happening on Core 0, with a priority of 90,

count number 28,690 (Table 3), with a minimum time of 2,560

TABLE 2 Transaction with CPU isolation and application sticking to core 2

with priority 80.

T P C Min Act Avg Max

T0 80 69,810 2,750 5,875 4,953 48,375

T1 80 56,395 3,500 5,500 4,965 43,375

T2 80 32,524 3,625 5,125 5,277 50,750

T3 80 37,896 3,750 5,250 5,143 45,125

TABLE 3 Transaction with CPU isolation and application sticking to core 2

with priority 90.

T P C Min Act Avg Max

T0 90 28,690 2,560 5,474 4,563 47,365

T1 90 106,143 3,356 5,100 4,565 42,365

T2 90 31,935 3,610 5,176 4,977 49,740

T3 90 64,241 3,301 5,012 4,843 44,115

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1304590
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Jabbar et al. 10.3389/fcomp.2023.1304590

ns, an actual time of 5,474 ns, an average of 4,563 ns, maximum

of 47,365. This test shows that on Core 0, 28,690 transactions

happened, while the minimum time that any transaction took

was 2,560 ns. The actual time that a transaction took was 5,474

ns. The average time that a transaction took was 4,563 ns. The

maximum time a transaction took was 47,365 ns.

• Transaction with CPU isolation and application sticking to

core 2 with priority 99

Transaction 0 is happening on Core 0, with a priority

of 99, count number 102,123 (Table 4), with a minimum

time of 2,240 ns, an actual time of 5,173 ns, an average

of 4,462 ns, maximum of 43,355. This test shows that on

Core 0, 102,123 transactions happened, while the minimum

time that any transaction took was 2,240 ns. The actual

time that a transaction took was 5,173 ns. The average time

that a transaction took was 4,462 ns. The maximum time a

transaction took was 43,355 ns. Due to the scheduler policy

in Linux, no process of task can be set at priority more than 99

because some CPU power is needed for scheduler functioning.

• Transaction with CPU isolation and application sticking to

core 2 with priority 99 and Kernel performance mode

Transaction 0 is happening on Core 0, with a priority of

99 and Kernel Performance Mode (Table 5), count number

TABLE 4 Transaction with CPU isolation and application sticking to core 2

with priority 99.

T P C Min Act Avg Max

T0 99 102,123 2,240 5,173 4,462 43,355

T1 99 100,724 3,136 5,000 4,464 40,355

T2 99 127,147 3,270 5,075 4,776 46,730

T3 99 147,587 3,101 5,011 4,745 42,105

TABLE 5 Transaction with CPU isolation and application sticking to core 2

with priority 99 and Kernel performance mode.

T P C Min Act Avg Max

T0 99 17,642 1,841 4,873 4,064 40,335

T1 99 115,568 2,734 4,804 4,068 37,335

T2 99 41,471 3,050 4,899 4,379 43,700

T3 99 128,898 2,801 4,791 4,349 39,175

TABLE 6 Comparison of TPS of di�erent Blockchains (Yang et al., 2019).

Blockchain TPS Consensus mechanism

Ethereum 15–30 TPS Proof of work

Cardano 250 TPS Ouroboros proof of stake

Polkadox 1,000 TPS Nominated proof of stake

Algorand 1,100 TPS Pure proof of stake

Solana 50,000–85,000 TPS Proof of stake

Bitcoin 7–10 Proof of work

Our application 200,000 Sharding method inspired by

proof of stake and RAFT

17,642, with a minimum time of 1,841 ns, an actual time of

4,873 ns, and an average of 4,064 ns, maximum of 40,335.

This test shows that on Core 0, 17,642 transactions happened,

while the minimum time that any transaction took was 1,841

ns. The actual time that a transaction took was 4,873 ns.

The average time that a transaction took was 4,064 ns. The

maximum time a transaction took was 40,335 ns. Due to the

scheduler policy in Linux, no process of task can be set at

priority more than 99 because some CPU power is needed

for scheduler functioning. The problem with Linux Kernel

Performance mode is that it increases the power consumption

of a device. It will continuously increase the frequency of that

core. As seen from the result of four different scenarios, there

is a difference in how much time a transaction takes.

4.1 Real time calculation

We will take the worst-case scenario here, meaning the Max

value from results, which are between 50,000 ns to 39,000 ns. If we

take 50,000 ns of worst case scenario for one transaction. There are

1,000 ms in one second, and 5,000 ns are equal to 0.05 ms. Meaning

this system is capable of making 200,000 transactions per second.

Keep in mind these are worst-case scenario calculations. The

random results (inms) from the application are shown in Figure 10.

4.2 Transaction comparison with other
protocols

The worst-case scenario for the application is 200,000

transactions per second. Modern and latest Blockchain

protocols are available in the market right now. Several key

considerations come into play when analyzing our results

in the context of modern Blockchains and their scalability.

Despite the utilization of established Consensus methods,

these Blockchains continue to make strides in enhancing

their scalability. It is crucial to recognize that each method

possesses its own set of advantages and disadvantages. Should

we opt to retain these prior methods, we must be prepared

to implement adjustments and refinements across various

hardware layers. Our approach to addressing application and

consensus challenges involved revisiting the fundamental

elements of program execution and Blockchain operations. A

comprehensive examination of Blockchain applications can

be found in Abdallah et al. (2020), Jabbar et al. (2021), and

Latif et al. (2021). It becomes evident that regardless of the

algorithm’s quality and the program’s efficiency, their performance

hinges on factors such as scheduling and latency within the

system. In our case, testing was conducted on limited hardware

resources, making it infeasible to execute a real-life program

scenario, which would necessitate intricate hardware and network

configurations. Consequently, numerous unanswered questions

persist, particularly regarding real-time network behavior and user

interactions. Comparison of TPS of different Blockchains is shown

in Table 6.

Frontiers inComputer Science 12 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1304590
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Jabbar et al. 10.3389/fcomp.2023.1304590

FIGURE 10

Random result from the application, results in microseconds.

The development of a new Linux distribution is a complex

undertaking, bearing in mind the distinct nature of Linux

users compared to their Windows counterparts. Linux users

typically possess a deeper understanding of hardware nuances

and architectural limitations. A multitude of Linux distributions

cater to specific user requirements; for instance, Ubuntu suits

general users owing to its comprehensive software offerings,

while Kali Linux caters to security professionals due to its

extensive security tools. While integrating our application into

the Linux distribution, various methods can be employed. It is

worth noting that creating a distinct distribution was chosen

because the process of user-managed Kernel integration is intricate

and potentially risky, capable of destabilizing the operating

system if executed incorrectly. Alternatively, developing a Kernel

module poses challenges related to varying Kernel versions

and user technical proficiency. Thus, our decision to create a

dedicated Linux distribution with all requisite modifications and

background applications was driven by practical considerations.

Our approach, reminiscent of the political science strategy “divide

and rule," adapts this principle to the realm of Blockchain,

where there is no ruling authority. Instead, we partition processes

and establish committees for decision-making and consensus

formation. Drawing inspiration from a variety of sources, this

method showcases substantial potential for further latency-driven

enhancements. Latency attributable to the operating system was

a recurring impediment encountered in numerous methods

implemented thus far, manifesting as delays in consensus and

application processes. In addressing Blockchain scalability, it is

imperative to scrutinize the foundational aspects of computation

rather than exclusively addressing higher-level issues.

5 Critical analysis of research
mechanism

The proposed system follows a structured sequence of

operations, outlined as follows:

1. User organization into multiple committees, each led by

an appointed committee leader. Within these committees,

every member assumes the responsibility of validating a

transaction before transmitting the information to their

respective committee head. Subsequently, the committee leader

performs a final validation of the transaction’s legitimacy before

allowing further transmission.

2. Development of a novel Linux distribution, taking inspiration

from Ubuntu, incorporating both the algorithm and program,

ensuring they continuously operate in the background. The

kernel scheduler configuration prevents any task or process

allocation on a separate core within the distribution, with the

designated algorithm being the sole task executing on that core.

This parallel execution minimizes potential conflicts.

3. Implementation of the algorithm using real-time programming

principles, assigning priorities to all tasks within the program.

When selecting a leader, the system prioritizes this task, allowing

new transactions within that committee to proceed only after

leader designation.

4. Establishment of a committee communication tree, facilitated

by utilizing real-time location data from devices or information

provided by Internet service providers (ISPs). When one

committee validates a transaction, it promptly communicates its

decision regarding the transaction’s legitimacy to neighboring

geographically affiliated committees.

The two step validation process makes a clear impact on the

computation and the delay caused therefrom. Since, high load on

one node minimizes the stability time of leader node and increases

the switching frequency. This not only leads tomore delay, and high

computation but also decrease the throughput and consequently

has its impact on the scalability. Similar approaches are adapted

by Goyal et al. (2022), and Aslam et al. (2023) as well. But what

makes the difference is that a custom Linux-based distribution is

performed to isolate the application to prevent hardware latency

and to isolate the application’s core. In addition, this system

addresses two distinct challenges. First, it mitigates latency arising

from kernel schedulers, ensuring that the application consistently

has access to an available core for transaction processing. Even

with core separation, multi-threading is necessary to further reduce

latency. Second, the committee system alleviates the network’s

workload, preventing spurious transactions from monopolizing

network resources and impeding its efficiency. The system’s

operation commences with an initial step: assessing the leader’s

availability for the node. In cases where the leader is unavailable,

the system promptly selects a new leader. The sole criterion for

leader selection hinges on hardware specifications, specifically,

the highest available hardware performance. For example, if two

computers possess processors operating at different clock speeds,

such as 3.0 and 3.1 GHz, the computer with the 3.1 GHz

processor assumes the role of the new leader. This criterion stems

from the leader’s augmented responsibilities, necessitating superior

Frontiers inComputer Science 13 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1304590
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Jabbar et al. 10.3389/fcomp.2023.1304590

processing power compared to other network nodes. In cases

where hardware capabilities are equal, factors such as memory,

storage capacity, and internet Ethernet speed may be considered as

tiebreakers.

Client transactions are initiated by iteratively processing client

inputs. Upon detecting a transaction, the system promptly subjects

it to internal validation, verifying compliance with legal regulations

and proper formatting. Subsequently, the transaction is cross-

referenced with the system’s internal transaction ledger to ascertain

its legitimacy. If a transaction is deemed legitimate, either through

internal validation or the client’s reasoning, it is transmitted to

the committee’s leader. Transactions unverifiable by the internal

ledger are rejected by the node, with the user being promptly

notified of the reason for rejection. Regardless of the outcome,

the client continuously cycles through the transaction input mode,

actively searching for input data or additional transactions to

process. The leader verification and update algorithm is exclusive

to the selected committee leader, tasked with processing incoming

transactions from committee nodes. Upon receiving a transaction,

the leader conducts an internal ledger-based validation to ensure

compliance with regulations and formatting standards. Validated

transactions are broadcast to all nodes within the committee

for ledger synchronization. Transactions unverified by the leader

are not disseminated across the network, conserving network

bandwidth. Transactions undergo dual verification processes: first

by the node client and subsequently by the leader. The receiving

node additionally cross-references the transaction with its internal

record ledger, promptly alerting the leader if any issues arise. This

secondary verification augments the primary check. The system’s

robustness is further demonstrated by its ability to thwart malicious

transactions that lack validation from all committee members. Such

transactions are prevented from entering the network, averting

potential network congestion and delays. Despite its effectiveness,

some limitations persist within the system. Addressing these

limitations necessitates modifications at both the hardware and

application levels. Additionally, the consensus algorithm must

account for lower-level hardware intricacies, as these factors

significantly influence system performance.

6 Conclusion, limitations, and future
work

The scalability of the private Blockchain is enhanced by

leveraging the improvement in consensus algorithm. The latency

that is caused by the kernel scheduler is mitigated by confirming the

access of application to an available core the transaction processing.

The network workload is further alleviated by the committee

system. This helped in avoiding from entering to the situation of

spurious transactions from monopolizing network resources and

impeding its efficiency. The two step validation process also made

a clear impact on the computation and the delay caused therefrom.

Since, high load on one node minimized the stability time of leader

node and increased the switching frequency. This not only led

more delay, and high computation but also decrease the throughput

and consequently has its impact on the scalability. Conforming to

the aforementioned scenarios ensured the Blockchain scalability

that is further confirmed from the experimentation and the results

therefrom. At present, this system has certain limitations, primarily

related to its compatibility. The Linux distribution developed

for this system is tailored specifically for the Raspberry Pi 4

model, which is conducive to experimentation. However, it is

important to note that not all Linux users possess Raspberry

Pi devices. Fortunately, the Yocto Build system exhibits robust

capabilities, enabling the creation of Linux distributions for a

variety of systems, including those based on x86 and ARM

architectures. To comprehensively evaluate the system’s potential,

further studies involving higher device counts and diverse hardware

configurations are warranted. In particular, the inclusion of x86-

based devices in the network would facilitate an assessment of their

latency characteristics. The application’s codebase, constructed in

C with real-time POSIX libraries, constitutes a vast repository of

functionalities. There exists untapped potential for optimizing its

performance further. Multi-threading, while a complex subject,

falls beyond the scope of our current research. Therefore, a deeper

exploration and investigation into multi-threading techniques is

necessary to unlock its benefits. It’s important to acknowledge

that not all users possess the capability or inclination to modify

their operating systems. Moreover, the capacity to make Kernel-

level changes is a privilege exclusive to Linux environments,

precluding users of Windows operating systems from similar

alterations. Consequently, the application remains limited to Linux

distributions, given the impracticality of Kernel modifications in

Windows.

Future prospects for this system are promising. The empirical

performance comparison of this underlying work with the existing

solutions is put forth in future work especially by considering the

other factors affecting the scalability of Blockchain i.e. storage,

communication and etc. The development of a standardized build

system catering to PC, Embedded, and ARM-based devices could

significantly expand its user base. Extending compatibility to PC

and Windows platforms represents a viable avenue for further

development. Moreover, the system can be adapted to operate

without Kernel modifications, with the potential implementation

of Linux Kernel modules as an alternative approach. Although

Kernel options were modified in our research, such adjustments

were not obligatory. Nonetheless, they served to underscore the

performance and versatility of the Linux environment. Subsequent

studies should explore scenarios with more devices, incorporating

external network traffic into the network dynamics. By examining

worst-case scenarios and quantifying maximum TPS latency, we

arrived at a figure of 200,000 transactions per second. While

external factors may cause TPS to fluctuate, this figure still

surpasses existing market solutions. Delving deeper into hardware

management at lower levels holds the promise of enhancing

scalability. A comprehensive system-wide test involving a thousand

or more devices could provide invaluable insights into network

limitations. In lieu of creating new distributions, a Linux Kernel

module could be developed, allowing for runtime insertion into the

Kernel. Committee member selection could be refined based on

geographical proximity and latency considerations. Furthermore,

implementing a transaction validation reward system has the

potential to expand the user base and increase the number of

leaders available to verify transactions. These future endeavors hold

the key to further enhancing the system’s capabilities. The same idea

could be customized to work in enhancing the scalability of Public

Frontiers inComputer Science 14 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1304590
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Jabbar et al. 10.3389/fcomp.2023.1304590

Blockchain environment. But the highly considerate factors in this

particular scenario would be trust and security aspects.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Author contributions

SJ: Conceptualization, Funding acquisition, Methodology,

Supervision, Writing – original draft. ZA: Conceptualization, Data

curation, Methodology, Writing – original draft. SK: Investigation,

Project administration, Software, Writing – review & editing. AA:

Writing – review & editing. UR: Resources, Visualization, Writing

– original draft. SA: Project administration, Software, Validation,

Writing – review & editing.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported and funded by the Deanship of Scientific Research

at Imam Mohammad Ibn Saud Islamic University (IMSIU) grant

number IMSIU-RG23157.

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no impact

on the peer review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

References

Abdallah, M., Dobre, O. A., Ho, P.-H., Jabbar, S., Khabbaz, M. J., Rodrigues, J. J., et
al. (2020). Blockchain-enabled industrial internet of things: advances, applications, and
challenges. IEEE Internet Things Mag. 3, 16–18. doi: 10.1109/MIOT.2020.9125425

Ali, A., Iqbal, M. M., Jabbar, S., Asghar, M. N., Raza, U., Al-Turjman,
F., et al. (2022). Vablock: a blockchain-based secure communication in v2v
network using icn network support technology. Microprocess. Microsyst. 93, 104569.
doi: 10.1016/j.micpro.2022.104569

Alshahrani, H., Islam, N., Syed, D., Sulaiman, A., Al Reshan, M. S., Rajab, K., et al.
(2023). Sustainability in blockchain: a systematic literature review on scalability and
power consumption issues. Energies 16, 1510. doi: 10.3390/en16031510

Aslam, M., Jabbar, S., Abbas, Q., Albathan, M., Hussain, A., Raza, U., et
al. (2023). Leveraging ethereum platform for development of efficient tractability
system in pharmaceutical supply chain. Systems 11, 202. doi: 10.3390/systems110
40202

Bandhu, K. C., Litoriya, R., Lowanshi, P., Jindal, M., Chouhan, L., Jain, S., et
al. (2023). Making drug supply chain secure traceable and efficient: a blockchain
and smart contract based implementation. Multimed. Tools. Appl. 82, 23541–23568.
doi: 10.1007/s11042-022-14238-4

Bentov, I., Lee, C., Mizrahi, A., and Rosenfeld,M. (2014). Proof of activity: extending
bitcoin’s proof of work via proof of stake [extended abstract] y. ACM SIGMETRICS
Perform. Eval. Rev. 42, 34–37. doi: 10.1145/2695533.2695545

Cai, Z., Liang, J., Chen, W., Hong, Z., Dai, H.-N., Zhang, J., et al. (2022). Benzene:
scaling blockchain with cooperation-based sharding. IEEE Trans. Parallel Distrib. Syst.
34, 639–654. doi: 10.1109/TPDS.2022.3227198

Erdin, E., Cebe, M., Akkaya, K., Bulut, E., and Uluagac, S. (2021). A scalable private
bitcoin payment channel network with privacy guarantees. J. Netw. Comput. Appl. 180,
103021. doi: 10.1016/j.jnca.2021.103021

Feng, L., Zhang, H., Chen, Y., and Lou, L. (2018). Scalable dynamic multi-agent
practical byzantine fault-tolerant consensus in permissioned blockchain. Appl. Sci. 8,
1919. doi: 10.3390/app8101919

Goyal, J., Ahmed, M., and Gopalani, D. (2022). A privacy preserving e-
voting system with two-phase verification based on Ethereum blockchain. Res. Sq.
doi: 10.21203/rs.3.rs-1729918/v1

Gucluturk, O. (2018). Blockchain: A Trustless Network or a Technologically Disguised
Shift of Trust? Available at SSRN 3440044. doi: 10.2139/ssrn.3440044

Harshini Poojaa, K., and Ganesh Kumar, S. (2022). “Scalability challenges and
solutions in blockchain technology," in Inventive Computation and Information

Technologies: Proceedings of ICICIT 2021, eds S. Smys, V. E. Balas, and R. Palanisamy
(Cham: Springer), 595–606. doi: 10.1007/978-981-16-6723-7_44

Jabbar, S., Lloyd, H., Hammoudeh, M., Adebisi, B., and Raza, U.
(2021). Blockchain-enabled supply chain: analysis, challenges, and future
directions. Multimed. Syst. 27, 787–806. doi: 10.1007/s00530-020-0
0687-0

Latif, R. M. A., Farhan, M., Rizwan, O., Hussain, M., Jabbar, S., Khalid, S., et al.
(2021). Retail level blockchain transformation for product supply chain using truffle
development platform. Clust. Comput. 24, 1–16. doi: 10.1007/s10586-020-03165-4

Liu, Y., Liu, J., Salles, M. A. V., Zhang, Z., Li, T., Hu, B., et
al. (2022). Building blocks of sharding blockchain systems: concepts,
approaches, and open problems. Comput. Sci. Rev. 46, 100513.
doi: 10.1016/j.cosrev.2022.100513

Liu, Y., Liu, J., Wu, Q., Yu, H., Hei, Y., Zhou, Z., et al. (2020). Sshc: a
secure and scalable hybrid consensus protocol for sharding blockchains with a
formal security framework. IEEE Trans. Dependable Secure Comput. 19, 2070–2088.
doi: 10.1109/TDSC.2020.3047487

Lone, A., Auqib, H., and Roohie, N. M. (2019). Consensus protocols as a
model of trust in blockchains. Int. J. Blockchains Cryptocurrencies 1.1, 7–21.
doi: 10.1504/IJBC.2019.101845

Ongaro, D., and Ousterhout, J. (2014). “In search of an understandable consensus
algorithm," in 2014 USENIX Annual Technical Conference (USENIX ATC 14), 305–319.

Philippopoulos, P., Ricottone, A., and Oliver, C. G. (2019). Difficulty
scaling in proof of work for decentralized problem solving. arXiv [Preprint].
doi: 10.48550/arXiv.1911.00435

Rai, B. K., Srivastava, S., and Arora, S. (2023). Blockchain-based
traceability of counterfeited drugs. Int. J. Reliab. Qual. E-Healthc. 12, 1–12.
doi: 10.4018/IJRQEH.318129

Schedlbauer, M., and Wagner, K. (2018). Blockchain Beyond Digital Currencies-A
Structured Literature Review on Blockchain Applications. Available at SSRN 3298435.
doi: 10.2139/ssrn.3298435

Seo, J., Ko, D., Kim, S., and Park, S. (2020). A coordination technique for
improving scalability of byzantine fault-tolerant consensus. Appl. Sci. 10, 7609.
doi: 10.3390/app10217609

Wang, X., Jiang, X., Liu, Y., Wang, J., and Sun, Y. (2022). Data propagation
for low latency blockchain systems. IEEE J. Sel. Areas Commun. 40, 3631–3644.
doi: 10.1109/JSAC.2022.3213330

Frontiers inComputer Science 15 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1304590
https://doi.org/10.1109/MIOT.2020.9125425
https://doi.org/10.1016/j.micpro.2022.104569
https://doi.org/10.3390/en16031510
https://doi.org/10.3390/systems11040202
https://doi.org/10.1007/s11042-022-14238-4
https://doi.org/10.1145/2695533.2695545
https://doi.org/10.1109/TPDS.2022.3227198
https://doi.org/10.1016/j.jnca.2021.103021
https://doi.org/10.3390/app8101919
https://doi.org/10.21203/rs.3.rs-1729918/v1
https://doi.org/10.2139/ssrn.3440044
https://doi.org/10.1007/978-981-16-6723-7_44
https://doi.org/10.1007/s00530-020-00687-0
https://doi.org/10.1007/s10586-020-03165-4
https://doi.org/10.1016/j.cosrev.2022.100513
https://doi.org/10.1109/TDSC.2020.3047487
https://doi.org/10.1504/IJBC.2019.101845
https://doi.org/10.48550/arXiv.1911.00435
https://doi.org/10.4018/IJRQEH.318129
https://doi.org/10.2139/ssrn.3298435
https://doi.org/10.3390/app10217609
https://doi.org/10.1109/JSAC.2022.3213330
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Jabbar et al. 10.3389/fcomp.2023.1304590

Xie, J., Yu, F. R., Huang, T., Xie, R., Liu, J., Liu, Y., et al. (2019).
A survey on the scalability of blockchain systems. IEEE Netw. 33, 166–173.
doi: 10.1109/MNET.001.1800290

Xu, F., Bouri, E., and Cepni, O. (2022). Blockchain and crypto-
exposed us companies and major cryptocurrencies: the role of jumps
and co-jumps. Fin. Res. Lett. 50, 103201. doi: 10.1016/j.frl.2022.1
03201

Yang, F., Zhou, W., Wu, Q., Long, R., Xiong, N. N., Zhou, M., et al. (2019).
Delegated proof of stake with downgrade: a secure and efficient blockchain
consensus algorithm with downgrade mechanism. IEEE Access 7, 118541–118555.
doi: 10.1109/ACCESS.2019.2935149

Yu, G., Wang, X., Yu, K., Ni, W., Zhang, J. A., Liu, R. P., et al. (2020). Survey:
sharding in blockchains. IEEE Access 8, 14155–14181. doi: 10.1109/ACCESS.2020.29
65147

Frontiers inComputer Science 16 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1304590
https://doi.org/10.1109/MNET.001.1800290
https://doi.org/10.1016/j.frl.2022.103201
https://doi.org/10.1109/ACCESS.2019.2935149
https://doi.org/10.1109/ACCESS.2020.2965147
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Enhancing computational scalability in Blockchain by leveraging improvement in consensus algorithm
	1 Introduction
	2 Literature review
	3 Materials and methods
	3.1 Proposed solution—Overview
	3.2 How proposed solution works?
	3.2.1 Leader selection algorithm
	3.2.2 Client transaction algorithm
	3.2.3 Algorithm for leader verification and updating

	3.3 Implementation
	3.3.1 Hardware setup
	3.3.2 Software setup
	3.3.3 The Yocto Build framework


	4 Results and discussion
	4.1 Real time calculation
	4.2 Transaction comparison with other protocols

	5 Critical analysis of research mechanism
	6 Conclusion, limitations, and future work
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


