
Please cite the Published Version

Lindley, Joseph Galen , Coulton, Paul , Akmal, Haider Ali and Pilling, Franziska Louise
(2020) Signs of the Time: Making AI Legible. In: Design Research Society Conference 2020, 11
August 2020 - 14 August 2020, Online (originally planned for in person at Brisbane, Australia).

DOI: https://doi.org/10.21606/drs.2020.237

Publisher: Design Research Society

Version: Published Version

Downloaded from: https://e-space.mmu.ac.uk/633822/

Usage rights: Creative Commons: Attribution-Noncommercial 4.0

Additional Information: This is an open access conference paper

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0000-0002-5527-3028
https://orcid.org/0000-0001-5938-4393
https://orcid.org/0000-0001-9578-3578
https://orcid.org/0000-0001-5324-0575
https://doi.org/10.21606/drs.2020.237
https://e-space.mmu.ac.uk/633822/
https://creativecommons.org/licenses/by-nc/4.0/
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines


Design Research Society Design Research Society 

DRS Digital Library DRS Digital Library 

DRS Biennial Conference Series DRS2020 - Synergy 

Aug 11th, 12:00 AM 

Signs of the Time: Making AI Legible Signs of the Time: Making AI Legible 

Joseph Galen Lindley 
Lancaster University, United Kingdom 

Paul Coulton 
Lancaster University, United Kingdom 

Haider Ali Akmal 
Lancaster University, United Kingdom 

Franziska Louise Pilling 
Lancaster University, United Kingdom 

Follow this and additional works at: https://dl.designresearchsociety.org/drs-conference-papers 

Citation Citation 
Lindley, J., Coulton, P., Akmal, H., and Pilling, F. (2020) Signs of the Time: Making AI Legible, in Boess, S., 
Cheung, M. and Cain, R. (eds.), Synergy - DRS International Conference 2020, 11-14 August, Held online. 
https://doi.org/10.21606/drs.2020.237 

This Research Paper is brought to you for free and open access by the Conference Proceedings at DRS Digital 
Library. It has been accepted for inclusion in DRS Biennial Conference Series by an authorized administrator of DRS 
Digital Library. For more information, please contact DL@designresearchsociety.org. 

https://dl.designresearchsociety.org/
https://dl.designresearchsociety.org/drs-conference-papers
https://dl.designresearchsociety.org/drs-conference-papers/drs2020
https://dl.designresearchsociety.org/drs-conference-papers?utm_source=dl.designresearchsociety.org%2Fdrs-conference-papers%2Fdrs2020%2Fresearchpapers%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.21606/drs.2020.237
mailto:DL@designresearchsociety.org


2442

LINDLEY, COULTON, AKMAL, PILLING

This work is licensed under a 
Creative Commons Attribution-NonCommercial 4.0 International License.

1. Introduction 
Humanity’s fascination with artificial life is long-lived, appearing in ancient mythology (e.g. 
Galatea, Talos) and more modern fiction alike (e.g. The Creature in Shelley’s Frankenstein, 
HAL9000 in Arthur C. Clarke’s 2001). Arguably, however, it was Alan Turing’s seminal 
research question “Can machines think?” (Turing, 1950) that gave rise to the field and the 
technologies that we now call AI. In the 70 years since Turing posed the question, AI has 
experienced cycles of inflated expectation and troughs of disillusionment. While the ethical 
and technical complexities of Artificial General Intelligence (AGI) remain as ontologically 
challenging as ever, the AI field has developed an array of powerful computing techniques 
including Neural Networks, Expert Systems and Machine Learning. Facilitated by a growing 
abundance of data, cheap computing power, and advanced data science, these techniques—
in particular Machine Learning—have become come widespread. Whilst these AIs excel 
at pattern recognition and prediction tasks, we have not created any ‘thinking’ machines, 
however, there are plenty of reasons why we should put time and effort into thinking about 
them.
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The AGIs that appear in fiction love, live, and fight. These emotive characteristics belie how 
mundane most applications of AI actually are. AI has become key to national strategies (cf. 
Hall & Pesenti, 2017; Industrial Strategy, 2017). This is not because super intelligent AGIs 
are likely to emerge in the near future, but rather that the significant disruptive economic 
potential of AI has begun to be realised. In light of this we might cast AIs as innovation 
engines which are fuelled by data, and given this fuel is abundant and cheap it is no surprise 
the engines are running apace. Notwithstanding the prevailing rhetoric that AI is a proximate 
future, or ‘just around the corner’ (Lindley, Coulton, & Sturdee, 2017), applications of AI are 
already ubiquitous. AI features are integral to activities such as shopping, dating, banking—
even the simple act of typing using a predictive keyboard (as in a smartphone). 

These ingredients combine to make a cocktail of problematic aspects relating to AI. First, the 
disconnection between AI’s popular vision of intelligent robots, and the reality of faceless 
and non-cognisant algorithms, is rhetorically dissonant. This reduces the legibility of devices 
and services which use AI (Gill, 2016). Second, AIs reflect the data which they are trained on, 
and those datasets are often unrepresentative, inaccurate or biased (Amershi et al., 2015, 
2019)—qualities reflected in the AI’s trained on them. Third, despite a variety of efforts to 
make AIs explainable, for most of their users they remain ‘black boxes’ (Ananny & Crawford, 
2018; Ribeiro, Singh, & Guestrin, 2016). Nonetheless AI is employed all around us; AI, and 
the data which define them, are palpably altering the world in which we live (Lanier, 2013; cf. 
Morozov, 2013). 

In this work we adopt Research through Design (Frayling, 1993; Gaver, 2012)—forthwith 
‘RtD’—as a means to explore the challenge of AI’s legibility. RtD is an apt framework to 
AI legibility with for several reasons. Prior research and efforts to make AI legible are 
interdisciplinary1. Meanwhile the Design’s inherently integrative and generative character 
(Cooper et al., 2018) provides an opportunity to combine salient aspects of different 
disciplinary approaches through practice. Issues arising from the adoption of AI form a 
multifaceted challenge, but it is one that Design-led research is uniquely equipped to deal 
with by meaningfully combining  the theoretical and technical attributes of AI with human-
centred and social concerns, and transmuting these varied perspectives into accessible, 
tangible and novel insights. Integrating the design and research processes through RtD 
provides a unique opportunity to reify AI’s challenges, testing, triangulating, and integrating 
disciplinary-diverse perspectives. With this in mind it is important to consider that the 
designs presented in this paper are intended for a research audience as an instrument 
of RtD, as opposed to design proposals that we intend to be immediately ready for a lay 
audience or to be adopted in the wild. Operating in this context, RtD processes apply specific 
design constraints to what Buchannan refers to the “fundamental indeterminacy in all but 
the most trivial design problems” (Buchanan, 1992). Exploring expansive problem spaces, 
allowing conception of problem and solution to co-evolve, RtD is uniquely well equipped to 

1 For example, notable research endeavours in Human-Computer Interaction (Amershi et al., 2019), 
Communication (Ananny & Crawford, 2018), Philosophy of Technology (Kiran & Verbeek, 2010), Rhetoric 
(Gill, 2016) and Interdisciplinary Humanities research (Burrell, 2016; Lee, 2018).
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make sense out of the overwhelming scope of the problem space. In the case of this research 
the part of the problem space we explore is the legibility of AI systems and our constraint 
is to do so by developing a visual language for enhancing AI legibility. We elaborate on both 
the concept of legibility and the rationale for developing a visual language in the subsequent 
sections.

The paper proceeds as follows. In section 2, we have an introduction to different forms of 
contemporary AI, a brief overview of interdisciplinary AI research programmes, and some 
notes on what we mean by AI legibility. In section 3 we discuss existing iconography relating 
to AI and situate our project in relation to semiotics. Section 4 introduces our designs, 
explaining the design process for the icons and subsequently deploying them in the context 
of public information signage. In section 5 we conclude with a discussion of the RtD process, 
highlighting contingent findings, limitations, and future research.

2. What is AI anyway and why should it be legible? 
In order to acclimatise readers who are unfamiliar with AI in this section we situate the paper 
with a brief history and discussion of the state of contemporary AI research. By supposing 
that the process by which humans learn involves logically processing available data—
something which computers do with aplomb—Turing’s seminal work became the grand 
challenge of AI. To achieve the challenge, we’d just require the relevant data, and knowledge 
of how the learning algorithm works. The famous Turing Test (or ‘Imitation Game’) was 
posited as a means to test whether or not AI had been achieved. The game goes thus: in a 
conversation if a human cannot determine whether they are talking to another human or a 
computer then we have achieved the grand challenge of AI and proven that, yes, computers 
can ‘think’. Aspiring to pass this test has been a key driver of AI innovation, however it is also 
somewhat problematic, it suffers as a result of what we term AI’s ‘definitional dualism’. On 
one side of this dualism we note the ubiquitous use of AI techniques in narrow use cases—
these machines do not think. Meanwhile on the other is the fact that these the techniques 
were developed in an attempt to create AGI—machines which do think. Although this has 
been productive, resulting in a many very effective computing techniques which we call AI, 
at the same time the historic connotations of the term AI evokes un-realistic perceptions and 
mean that AI is judged by unrealistic criteria (Hayes & Ford, 1995), ultimately resulting in a 
dangerous rhetorical dissonance (Cave & ÓhÉigeartaigh, 2018). 

Confounding the definitional dualism of AI, further factors make a clear delineation of what 
we mean by AI even harder. The recent proliferation of smart speakers and voice agents (e.g. 
Siri, Alexa, and Google’s Assistant) which are routinely referred to as ‘AI’, thus evoking the 
image of an intelligence in one’s house (when the reality is that they are fairly rudimentary 
devices utilising AI for voice recognition) highlights this. Elsewhere Apple’s ‘bionic’ chip is 
described as dedicated AI hardware, and Huawei highlight AI as a unique selling point in their 
recent handsets, yet in each case, what is really going is a conflation of the two sides of the 
dualist equation. Notwithstanding the hyperbole of AI’s dualism, for the vast majority of the 
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paper we will be dealing with the mundane and non-fantastical form of AI which ubiquitously 
exists today.

With AI’s dualism codified and the field’s history acknowledged, we have still not proffered a 
simple explanation for what we mean by AI. This is because such a reductive account doesn’t 
make much sense; there are in fact many interrelated techniques, use cases, and applications 
which are referred to as AI. While reviewing all of these, and their relationships is beyond 
the scope of this work, here we aim to give a pragmatic sense of the space by considering its 
history. 

In the 1950s much effort was put into ‘symbolic reasoning’ an approach which encodes a 
hypothesis into logic, generating a tree which can then be searched algorithmically. This was 
thought of as a model for human reasoning. The approach, perhaps inspired by the Turing 
test, was applied to understanding and synthesising natural language. Later, in the 1970s 
AI met the physical world and researchers began to try and make robots which utilised AI. 
However, by the 1980s optimism around AI had subsided; while the various techniques were 
viable there was not enough available data, storage, or computing power to make them 
work properly. Around the same time ‘expert systems’ became popular. Rather than building 
search trees based on logics and hypotheses, these systems encoded human knowledge into 
much smaller decision trees. This negated the issues associated with storage and computing 
power, and in certain domains these systems were hugely successful. By the late 1990s and 
early 2000s, as predicted by Gordon Moore, computing power had doubled roughly every 
2 years and modern computers were fast enough to properly run AI software. At the same 
time storage became much cheaper, connectivity (e.g. broadband, WiFi, 3G, 4G, etc) faster 
and more available, many everyday services were digitised, and the Internet of Things (IoT) 
became a reality. These factors together have precipitated a rapid and widespread adoption 
of AI. While a wide range of techniques and methods make up modern AI, perhaps the 
most significant is Machine Learning (ML). The family of techniques which make up ML 
allow systems to perform particular tasks (e.g. learning to recognise cats) by learning from 
patterns in data and ML has been so significant for AI that the two terms are now often used 
interchangeably. 

It is the vagaries of ML which have given rise a raft of contemporary AI concerns relating 
to understanding bias (Rader, Cotter, & Cho, 2018), fairness (Cave & ÓhÉigeartaigh, 2018; 
Lindley et al., 2019), and transparency (Ananny & Crawford, 2018; Weld & Bansal, 2019). 
The gravity of these issues is such that they are attracting multidisciplinary research effort.
For example, Human-Computer Interaction scholars are striving to develop guidelines for 
designing AI systems (Amershi et al., 2019), computer scientists are developing technical 
methods to provably quantify bias (Ribeiro et al., 2016), and emerging design theories such 
as ‘More-Than-Human Centred Design’ update our dogmas for a world where technology is 
entwined in with society (P. Coulton & Lindley, 2019) as well as a number of other dalliances 
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between contemporary Design Research and Philosophy (Lindley, Akmal, & Coulton, 2020; 
e.g. Redström & Wiltse, 2019)2. 

The interdisciplinary ‘Human-Data Interaction’ (HDI) field (Haddadi, Mortier, McAuley, & 
Crowcroft, 2012) is particularly salient for this work as it frames the concept of legibility. 
HDI proposes three tenets for understanding our relationships with data (and by extension 
our relationship with AI); agency, negotiability, and legibility. In HDI terms legibility is 
quite distinct from transparency and instead refers a user’s ability to comprehend how a 
system works. The agency aspect of HDI is concerned with the capacity for individuals to 
act, for example being able to decide not to participate based on comprehension. The final 
attribute—negotiability—explores the broader context in which agency and legibility may 
manifest, exploring the intricacies of ‘societal contracts’ relating to data or AI systems. These 
are expansive issues, but also have significant overlaps, however, in this paper we describe 
an RtD project which explores the challenge of AI legibility. In addition to combining aspects 
of the aforementioned AI research, the work also responds to the current lack of legibility for 
iconography that is currently associated with AI.

3. Iconography and AI
From religious imagery to calligraphy, iconography is a broad term, in this paper we use 
it to describe the small graphics used in computing to represent programs, features, or 
options (cf. Ferreira, Barr, & Noble, 2002)—icons. In order to understand how AI (and related 
concepts such as ML and Neural Networks) tend to be represented we searched a variety 
of image repositories for icons representing AI. It was evident that definitional dualism is 
echoed in the image libraries; there is a wide range of brain-like structures, robots, and a 
proliferation of imagery which evokes conscious, feeling, or thinking machines (see figure 1a, 
1c, 1d). There was also a lack of imagery which explains how AI works, or what context it is 
working in—with two notable exceptions. Neural Networks are commonly depicted as layers 
or networks of nodes (see figure 1a), to an educated reader this may indicate something 
about how a particular AI works, however even this gives rise to new questions (e.g. how 
many layers does the network have, what data are processed, is it an adaptive network?). 
Similarly, some icons, provide the reader with information relating to the domain of use. In 
the case of figure 1b we can easily determine that the AI is used to enable facial recognition 
(however, we have no idea what sort of AI-enabled machine vision system is in use). 

2 We note, as one of our reviewers rightly points out, this is a fast-moving field—we would encourage 
readers to search for up to date information, both within and outwith the academic realm.
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Figure 1 Examples of AI iconography.

Research into icons is diverse; classifying the icon purpose (Ma, Matta, Cahier, Qin, & Cheng, 
2015), deconstruction of icon elements (Gittins, 1986), evaluation metrics for intuitiveness 
(Ferreira, Noble, & Biddle, 2006). Frequently research intersects with semiotic theory such 
as the Peircean triad. The triad comprises the representamen (a symbol used to represent 
an idea, e.g. a ‘folder’ icon); the object (the actual construct being represented, e.g. 
individual ‘files’ organised into a ‘folder’); and the interpretant (the sign’s implication, e.g. 
all files in the folder can be moved around together). These constructs are used together to 
deconstruct different categories of sign (Ferreira et al., 2002). Indexical signs are those where 
the ‘signifier’ is the result of the concept appearing on the sign (e.g. smoke signifies fire); 
symbolic only have meaning by convention (e.g. a ‘stop’ sign); when the signifier looks like 
the signified it is described as an iconic sign (e.g. paintbrush tool in graphics software). While 
this semiotic view of icons is a handy conceptual lens, and provides us with a language to 
describe the icons with, in reality “is very rare, and some argue impossible, to find signs that 
belong solely to one category” (Ferreira et al., 2006).

The majority of AI icons have representamen which tie into the fantastical ‘killer robot’ side 
of AI’s dualism—brains, robots, etc. Hence the interpretant is misleading. On the occasions 
when interpretant-clarity is increased the sense of the object tends to be sacrificed (e.g. 
figure 1b is clearly about facial recognition, but with no sense of how or why that system 
works). Whilst category-mixing is normal in the Peircean view of signs, in the case of AI, the 
combination of category mixing and lacking conventions or cultural understanding mean 
that the majority of AI iconography at best indicative and at a worst misleading. These 
shortcomings in the current state of AI’s iconography highlight the space that this RtD 
exploration seeks to occupy; a visual language for enhancing AI’s legibility. 

4. Sign Language for AI
Given the complexity of the issues which confound AI legibility we conceptualised our design 
challenge as developing a visual ‘language’ for AI, made up of individual modules which can 
be combined to develop meaning. The design process we describe here broadly falls into 
four phases. First, drawing upon prior AI research we identified several key concepts that 
are relevant to AI legibility. Second, we explored how those concepts may be represented 
in three different visual styles; a pictorial style, a textual style and an abstract style (see 
figure 2). Third, we focused on a single one of the styles (the abstract style) and iteratively 
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redesigning icons to develop the core concepts of the visual language. Fourth, inspired 
by ‘Design Fiction’ (cf. P. Coulton, Lindley, Sturdee, & Stead, 2017), we began to speculate 
around what regulatory and social changes would be necessary for widespread and sensible 
adoption of the icons. Figure 2 describes each of the key AI concepts which we incorporated 
into the visual language and shows how each one manifested in terms of the three visual 
styles.

Figure 2 Key concepts for visual AI language.

Whilst the AI concepts we chose to work with could never be an exhaustive account of 
salient AI issues as shown in figure 2, each concept directly relates and contributes to an 
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ongoing area of AI research; accountability (Rader et al., 2018), transparent adaptation 
(Amershi et al., 2019; Weld & Bansal, 2019), data bias and quality (Arnold et al., 2018; 
Burrell, 2016; Mortier, Haddadi, Henderson, McAuley, & Crowcroft, 2014), and broader issues 
relating to social agency and power (Morozov, 2013). 

For each concept, figure 2 shows three design approaches. The first (pictorial) design uses a 
familiar trope of AI iconography—a brain depicted as a network. While clearly problematic 
in terms of upholding the issues associated with AI’s dualism, the brain motif is a symbolic 
sign and therefore effortlessly carries some (limited) meaning. The second (textual) 
design employs typography, and whilst also symbolic (i.e. it has no intrinsic meaning), we 
deliberately combined a branding element (e.g. the ‘AI’ symbol) with a more communicative 
element (e.g. ‘cloud-based’ AI, see figure 2b). When adopted such imagery (e.g. Fairtrade, 
the Conformité Européenne—or CE—safety mark) it can become a powerful element of 
behaviour change (Blythe & Johnson, 2018). The third (abstract) style draws on a design 
language which hybridises symbolic, indexical, and iconic signs. Whilst some element of 
convention is necessary to understand these abstract signs, once the core elements of the 
language are understood this approach has the potential to be interpreted meaningfully (per 
indexical or iconic signs). For example, if the reader knows that a small dot represents the 
AI, then a small dot outside the icon represents remote, or cloud-based AI, whereas inside 
would represent local or edge-based AI (see figure 2b). 

Figure 3 Design iterations of the abstract icon style.

A further exploration of the first two styles will become part of a future co-design research 
project, but for the purposes of this RtD study we elected to iterate and further develop the 
third style as it offered the most scope to explore the boundaries of what a visual language 
for AI could offer. The abstract style offers a unique flexibility, allowing a combination of 
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indexical, iconic, and symbolic elements. The most challenging issue with this approach is 
how to construct a meaningful grammar about salient elements of AI such as the relationship 
between data sources, data types, training types, and outcomes. The final iterations of our 
designs began to address these factors by developing key aspects of a language. For example, 
‘dots’ represent AI processing (figure 4a), ‘triangles’ represent AI learning (figure 4b), and 
relationships with data are denoted by an icon inside a circle (figure 4c, 4d). 

Figure 4 Final iterations of the abstract icon style.

While a study to assess the icons intuitiveness (e.g. Ferreira et al., 2006) and evaluate 
different designs will produce useful insights and is planned for future work, in this paper we 
are interested to explore how AI icons may be utilised through practical applications. In order 
to do this, we employ Design Fiction as World Building. This approach utilises speculative 
designs as ‘entry points’ into designed imaginaries (Coulton et al., 2017). In this case we build 
upon the icons discussed thus far and incorporated them into information signs intended 
to show employees and visitors, in a workplace environment, how AI is used in several 
mundane contexts; for printing (figure 5), going to the toilet (figure 6), in a computer suite 
(figure 7), and with security cameras (figure 8). In the speculative world the signs were 
designed assuming that AI is used ubiquitously and that conventions have been established 
insisting that uses of AI are signposted in public—these attributes are alluded to in the signs 
themselves. Each sign follows the same layout. They are cast as generic ‘Data Protection 
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and AI Indemnity Notices’. Each one incorporates configurations of our icon designs, used 
modularly to describe how that service utilises and interacts with AI. Three text-based 
elements on each sign describe how the AI services use data, what sort of processing takes 
place, and how users might opt out of the AI altogether. 

Figure 5 Sign attached to a printer utilising AI for various purposes including plagiarism checking 
and copyright protection. 

This printer depicted in Figure 5 evidently sends all data that it will eventually print for 
processing by the manufacturer in order to be checked for copyright infringements. The 
notice informs us that no data is stored locally. A security check is also run before the data 
is passed, which appears to regulated by the Information Commissioners Office and a 
European standard, if content is flagged for further security or rights checks then it will be 
shared outside of the EU (and presumably would not then be protected by the EU’s data 
protection legislation). The opt-out section demonstrates how different manufacturers can 
choose to implement the ability to opt-out differently, in this case Apple has made an easy to 
use feature (but if users employ it then they can no longer print), such provisions are not so 
accessible for users of other operating systems.
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Figure 6 Sign on the entrance to toilets equipped with ‘smart toilet’ AI processing.

Figure 6 explores the highly personal concept of using AI to analyse DNA, as well as 
‘bacterial, viral, parasitical and cancerous’ markers. The sign suggests that, although opting 
out is a possibility (protected by a legal right) it is practically hard to achieve for those 
wishing to use the toilet. The icons show that the primary processing not adaptive (i.e. the 
system’s processing not adapt based on your leavings), however, it also shares data beyond 
which may be used in proprietary data and AI systems. This configuration may reassure users 
who consider the ‘headline’ icons (that the processing is linear and local) but could confuse 
others that continue to read the icons. It raises the need to explore how a ‘grammar’ may be 
used to provide the icons with more semantic nuance.
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Figure 7 Creative software packages, such as those used in the photography workshop, may be 
subject to AI processing as well.

The relationship between AI and creativity will inevitably raise dilemmas around authorship 
and ownership. If an AI aids a creator in their work, does it deserve some form of credit? 
Conversely, if creative work is used to train an AI which aids in creative work, then should 
subsequent works which utilise that AI credit the authors of the training works? In this 
example the icons show how any work done in the computing suite will be subject to 
external processing of any ‘intellectual’ data, outside of any EU protection, and with no 
guarantees that derivative works will credit the original creator. As AI becomes more central 
to creative workflows, challenges around provenance and authenticity will grow. Our 
example signs are set in a University context; the dynamic between students’ creative acts 
and intellectual property in Figure 7 raises the questions the prestige of institutions and the 
types of AI they employ. Would wealthier, higher performing, Universities have access to 
better and less intrusive AI systems?
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Figure 8 Security camera footage may be processed by AI in order to derive a range of insights.

The ubiquitous capturing and recording of our image is a fact of modern life. Mainly for 
security reasons most public spaces are under the purview of digital cameras. At the 
present time, for the most part, these images are simply archived for later perusal if 
needed. AI technology, however, would provide practicable means to utilise such images 
in more complex ways. From simply detecting how many people are in a space, through 
to understanding who is in the space, and the emotional state of those individuals—the 
array of insights that AI processing of photographic imagery can produce is immense. 
The sign in Figure 8 suggests that this kind of monitoring is not optional for employees of 
the organisation in question, or guests attending the building. The only occasion that an 
employee may apply to opt-out is if they have a doctor’s note showing that the surveillance 
is doing them harm. Whilst there is clearly potential for positive uses of this data—e.g. to 
optimise the use of space and maximise employee wellbeing—such aspirations must be 
balanced against a sovereignty of the self. Although our relationship with cameras in public 
spaces is generally one of reassurance, as AI processing becomes viable, we may need to 
reassess how we make judgements about our image being captured.

5. Discussion and Future Work
As is common with RtD-based inquiry, this work aspires to produce contingent findings  
(Gaver, 2012). The spaces that RtD is adept at studying—in this case AI legibility—tend to 
be in flux, and hence any findings, whilst aspirational, should be interpreted relative to that 
flux. That is not to say that such findings are not useful, but rather that they are subject 
to ongoing interpretations—we suggest that the work presented here should be seen on 
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those terms. Moreover, the principal weight of the research is not carried solely within the 
designed outcomes, the process, or related literature. The insights, in fact, emerge from 
considering all three of these aspects at the same time, and the remainder of the discussion 
reflects on each of them. To that end we reiterate that the target audience for the designs 
presented in the paper are the AI and Design research communities. Whilst we are confident 
that there is some merit, in some of the signs, in their current form they are not intended 
for a general audience, but rather to being the significant task of utilising Design Research to 
strive towards legible, and responsible, AI innovation.

The volume and diversity of research into AI is representative of its existing and future impact 
on the world. However, the landscape is unbalanced. Whilst applications of AI continue to 
be adopted at a pace—largely driven by the private sector—the extensive efforts to develop 
frameworks, taxonomies, and social standards for the understanding and acceptance of AI 
a foundering. The difficulties around public perception of AI, which we cast in this paper as 
it’s definitional dualism, confound this challenge. Design Research has key roles to play in 
both unifying aspects of disparate perspectives (e.g. synthesising both technical and social 
research) and also framing AI rhetoric in such a way that it reflects gravity and scope of AI 
adoption. Whilst the prevailing rhetoric places AI as a proximate future, in reality AI is here 
now. To that end, via both the desk-based and practice-based elements of this paper we 
hope that the unique and important role for design research has been highlighted.

This is early stage work, yet the process of designing and developing the icons and the 
signs has helped develop a range of insights which apply at various scales. The technologies 
depicted are all being actively developed, and as such the focal point of our enquiry was not 
so much the technologies themselves, but the reality which they exist within. In our reality, 
although the use of AI is quite intrusive (e.g. analysing faecal matter or scanning printed 
documents) the intrusion is conducted within a strict regulatory environment. The multiple 
authorities involved (e.g. information commissioners, standards organisations) and inter-
related policies (e.g. healthcare legislation, data protection law, local organisational policies) 
make the otherwise intrusive use of AI seem more innocuous, however the practicalities 
of implementing such a complex regulatory environment are not insignificant. Similarly, 
an assumption within all of the signage we created is some kind of agreement, or didactic 
ruling, about what AI actually is—what classes of AI need to be regulated, and in what 
contexts? Should AI-based processing of printed documents in a workplace be held to the 
same standard as analysing employees’ poo? In addition to the broader context that AI signs 
exist within issues relating to the minutiae of the problem also arose. While we focused 
on a modular and abstract icon design, the food industry demonstrates a huge variety of 
iconographic ways of communicating about the product; emblems and logos tell us whether 
food is organic, fair trade, vegan, all natural, high in protein, etc. Prior research suggests that 
in some circumstances the very presence of these signs reduces critical engagement with the 
issues the sign is addressing (Blythe & Johnson, 2018). Supported by our own experience of 
attempting to craft signs that were legible, we considered that even if a mandate for public 
signage existed, establishing if signs are efficacious may be a complex and ongoing task. To 
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draw upon the terminology tactfully offered by one reviewer of the paper, even if the signs 
are carriers of information how do we know if they are carriers of meaning—establishing 
this is difficult and may call upon a collaboration between design and other research 
communities.  It would, perhaps, be through such a process that iterations of a visual 
language for AI legibility would move from being purely a research instrument to a viable or 
implementable product3. 

This research does not aspire to provide definitive answers to explicitly defined research 
questions, but rather provide contingent insights relating to the ongoing impact of AI’s 
adoption. The contributions of this paper are multiple. First, by reviewing a range of AI-
related literature we highlight the cross-sectoral and multi-disciplinary challenges that AI 
poses. Next we introduce the crucial integrative role of design-led research can play by 
making aspects of other research programmes tangible and providing a sensible framework 
to reflect on them. Finally, though the reflexive process of designing icons and signage aimed 
at AI legibility we begin to frame questions and pathways for future research. Ongoing 
work in this area must be multifaceted. Clear avenues include empirical assessments and 
iterative developments of visual cues to support AI legibility. Further speculative design 
work, incorporating participatory and co-designed aspects, will develop practical means 
to integrate AI research, helping create coherent research programmes out of disparate 
research projects and in doing so, help to develop research instruments commensurate with 
the challenges posted by AI.
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