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A Lightweight Decentralized Learning-Based
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Abstract—Due to the computing capability and memory
limitations, it is difficult to apply the traditional deep learning
(DL) models to the edge devices (EDs) for realizing lightweight
automatic modulation classification (AMC). Recently, many
works attempt to use different ways to realize lightweight AMC
methods for edge devices (EDs). However, the lightweight seems
to be a contradiction with the classification performance in these
lightweight networks. In this paper, we propose an efficient
lightweight decentralized learning-based automatic modulation
classification (DecentAMC) method using spatio-temporal hybrid
deep neural network based on multi-channels and multi-function
blocks (MCMBNN). Specifically, the lightweight network is
designed from the perspectives of comprehensive consideration
of lightweight and classification performance, which is composed
of three parts to extract different features for realizing high
classification performance and they are parameter estimator and
transformer (PET) block, spatial information extraction block
and temporal feature extraction & Softmax block. In addition,
we use multi-channel input to extract complementary features
of different channels for a better classification performance. The
proposed DecentAMC method is an efficient training method,
which is achieved by the cooperation in which multiple EDs
update and upload the model weight to a central device (CD)
for model aggregation to avoid the data privacy disclosure
and reduce the computing power and storage pressure of CD.
Experimental results show that the proposed MCMBNN can
obtain an improved classification accuracy while reducing model
complexity with the contributions of three blocks. Moreover, the
proposed DecentAMC method can be deployed on EDs efficiently.
Thus, the method has the advantages of avoiding data leakage on
EDs and relieving the computing pressure of CD with relatively
lower communication overhead. The simulation code and datasets
are shared on GitHub.1

Index Terms—Automatic modulation classification, lightweight
neural network, decentralized learning, spatio-temporal hybrid
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I. INTRODUCTION

A. Background

The internet of things (IoT) is an information service
paradigm, which defines an interrelated dynamic environment
for the integration of terminal devices and realizes seamless
connection of devices and data transmission [1]–[3]. With the
increasing number of terminal devices, massive amounts of
data are produced in IoT devices and generally stored in un-
trusted storage [4]. In addition, IoT devices are vulnerable to
external malicious attacks [5]–[7]. Hence, they are at a risk
of data leakage when devices can not recognize the external
malicious attacks. Automatic modulation classification (AMC)
is a promising technique that can be applied at the receiver to
distinguish the different types of modulated signals [8], which
is an important way to identify malicious attacks from the
physical layer like spectrum sensing data falsification (SSDF)
attacks and jamming attacks [9]. Recently, AMC has played a
significant role in both military and civilian communications,
such as cognitive radio and link adaptation.

In the past decades, typical AMC methods included
likelihood-based AMC (LBAMC) [10]–[15] and feature-based
AMC (FBAMC) [16]–[22]. The LBAMC method models
the classification problem as a composite hypothesis and
uses the likelihood function to determine the correct type
of modulation. Generally, on the basis of different likelihood
functions, LBAMC methods mainly include average likelihood
ratio test (ALRT) [10], [11], generalized likelihood ratio
test (GLRT) [12], [13] and hybrid likelihood ratio test
(HLRT) [14], [15]. Although LBAMC can achieve the
optimal performance in a Bayesian sense, it requires a high
computational complexity and hence it is difficult to apply in
a real system without channel state information.

Different from the LBAMC method, extraction of specific
features from the received signal and completion of classifi-
cation tasks are the approaches used in the FBAMC method,
which can process signals with unknown channel statistical
characteristics and has less computational complexity than the
LBAMC method [16]. Existing FBAMC methods generally
extract statistical features, such as cyclic statistics [17],
[18], wavelet transform [20] and cumulants [19] for final
decision making. Traditional machine learning (ML) methods,
such as decision tree [21] and k-nearest neighbor (KNN)



IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XXX 2022 2

[22], were also widely used in the FBAMC methods as a
classifier. However, these traditional methods need to extract
the features manually and the classification performance is
poor in processing multiple signals classification task.

B. Motivations

In recent years, deep learning (DL) has made great
achievements in many fields, such as wireless communications
[23]–[26], IoT devices attack detection [27], [28] and IoT
malware classification [29]. The advantages of DL methods
compared with traditional machine learning methods can
be summarized as follows: first, DL methods can realize
feature learning internally without special feature extraction,
which avoids complex feature engineering based on expert
knowledge [30]. Second, more advanced features can be
extracted through the combination of different DL layers
for achieving better performance. Hence, more and more
scholars tried to apply DL methods to the FBAMC method
for improving classification accuracy [30]–[47].

1) Neural network design for AMC methods: Most of
current methods based on DL are directly borrowed from
the field of image processing or natural language processing
[30], [34]–[40], [44]. While there are few networks specially
designed for the purpose of signal modulation. Hence, to
further improve the classification accuracy of AMC, it is
necessary to design the network in accordance with the
characteristics of the modulation signals in order to facilitate
learning the signal features from multiple perspectives. For
instance, Lin et al. adopted short-time Fourier transform
(STFT) to transform the modulated signals into spectrum,
and extracted richer features of the modulated signals
from the perspective of time-frequency analysis [31]. Chang
et al. adopted the in-phase/quadrature (I/Q) format and
amplitude/phase (A/P) format in different SNR, and fused
the features of the two signals for better Classification
performance [32].

2) Lightweight neural network for DecentAMC: Existing
DL-based AMC methods generally use the algorithm of local
learning (LocalAMC) or centralized learning (CentAMC) with
convolution neural network (CNN) or deep residual network
(ResNet). The LocalAMC means that each edge device (ED)
relies on a limited local dataset for training without using
datasets from other EDs, which leads to a limited performance.
The CentAMC means that multiple EDs upload the local
datasets to a central device (CD) for training, which has a
better performance because of training the model with multiple
datasets, as is shown in Fig. 1. However, CentAMC challenges
the computing capability and storage of CD and threatens the
privacy security of data during the process of dataset sharing.

To solve the problems of LocalAMC and CentAMC, a
distributed learning-based AMC (DistAMC) method based on
CNN was proposed in [33], which can realize decentralized
training of data by the way of multiple devices uploading
the model weight rather than datasets to a CD. However,
the model size of CNN adopted in DistAMC is large and
the model weight needs to be updated frequently, which
may lead to huge communication cost. In addition, CNN
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Fig. 1. The structure of the traditional CentAMC method. Traditional edge
devices generally adopt CentAMC methods. Multiple edge devices (EDs)
upload the local datasets to a central device (CD), and then the CD trains
the model based on the aggregated datasets. When the training is finished,
the model weight W of the CD is downloaded to the EDs for testing.

has a high complexity and thus is hard to deploy to EDs.
Hence, we attempt to deploy lightweight network specifically
designed for modulated signals in the decentralized learning-
based (DecentAMC) method.

C. Related Works About DL-based AMC Methods

We present the related DL-based AMC works in two groups.
First are high-performance networks, whose contributions are
mainly about achieving a high classification performance
through combining different network layers or deepening the
network depth. Second are lightweight networks, which aims
to reduce the complexity of the network and make it easier to
deploy on EDs.

1) High-performance networks: An earlier DL-based AMC
method is convolution neural network based AMC (CNN-
AMC) [30], which can outperform the FBAMC and has a
faster computing speed with parallel computation. Zhang et
al. proposed an improved CNN-AMC network through fusing
images and handcrafted features of signals for extracting more
advanced features, which can improve classification accuracy
compared with previous works [34]. Another optimized CNN-
AMC network named SBCNN also has a high robustness
on a complex dataset by designing an optimal filter size for
improving the prediction accuracy [36]. Lin et al designed
a time-frequency attention mechanism for CNN-AMC to
learn which frequency, channel and time features are more
meaningful in networks for modulation classification [31],
which outperforms other attention mechanisms. In [37],
multiple CNN models are trained for multi-task learning
under different SNRs and each CNN model shares the model
weight with other CNN models, which can be applied in
realistic noise scenarios and achieves better generalization and
robustness. There are also numerous excellent networks in the
field of image processing that have been applied to AMC
besides CNN. P. Qi et al. addressed methods to realize deep
residual networks (ResNet)-based AMC method [40], which
can efficiently distinguish among sixteen modulated signals.
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A dual path network (DPN) consisted of multiple residual
blocks is proposed in [35], which avoids gradient extinction
while deepening the network and outperforms other signal
processing algorithms at SNRs above 14 dB.

In addition, modulated signals have not only spatial
characteristics, but also temporal characteristics. Hence, a
CNN-LSTM network is proposed in [44], which extracts
spatial features with CNN and extracts temporal features
with LSTM to complete the fusion of temporal and spatial
features. Another CNN-LSTM network based multi-channel
learning framework is proposed in [45], which obtains
better recognition accuracy especially for higher dimensional
schemes (16-QAM and 64-QAM) and has faster convergence
speed compared with other state-of-the-art DL networks,

2) Lightweight networks: Many scholars have adopted
different ways to realize lightweight networks. A group-level
sparsity based lightweight network for AMC is proposed
in [38], which can make model pruning itself to achieve
a compact network and solve the problem of recognition
confusing types with a improved two-step training method. F.
Teng et al proposed a channel compensation mechanism and
an accumulated polar feature-based DL method, which can
reduce training overhead under time-varying fading channels
[49]. A novel AMC method based on neural architecture
search (NAS) is given in [39], which can automatically
design the high-performance network structure with lower
model complexity. S. Luan et al applied shuffle unit and
Gated Recurrent Unit (GRU) to make the network more
lightweight for solving the time-consuming problem under
impulsive noise [50]. Y. Wang et al. [41] proposed a
lightweight network for AMC using the combination of
DL and compressive sensing, which made CNN become
lightweight with a slight performance loss. Y. Lin et al.
[42] proposed an improved lightweight AMC method by
considering the pruning technology to reduce the size of neural
networks for promising edge applications. A lightweight
neural network based on separable convolution (SCNN) for
AMC was proposed in [47], which mainly adopts separable
convolutions to replace parts of standard convolution of
CNN and parts of FC layers of CNN are removed. The
model complexity of SCNN was decreased by about 94%
when compared with CNN. An optimized CNN network
MCNet is proposed in [43], which is concatenated or added
by multiple convolution blocks with asymmetric convolution
kernel. MCNet can effectively capture the spatial correlation
of modulation signals with the increase of the number of
convolution blocks. Another lightweight network based on
phase parameter estimation and transformation (PET), with
CNN lay and GRU lay as the feature extraction layers of
space and time, which can reduce a third of the volume of
parameters with a slight performance loss compared with the
existing state-of-the-art networks [46].

D. Main Contributions

In this paper, an efficient lightweight neural network
named spatio-temporal hybrid deep neural network based on
multi-channels and multi-function blocks (MCMBNN) for

DecentAMC method is proposed to solve the problem of
insufficient computing power and storage limitation of EDs
when applying the traditional DL model to EDs for realizing
AMC. The main contributions of this paper include:
• A novel MCMBNN specially designed for modulated

signal classification is proposed, which adopts three
channels to extract features of the modulation signals
and finally realizes the feature fusion of different
signal channels. Meanwhile, MCMBNN can extract the
phase feature, spatial feature and temporal feature of
the modulation signals with low model complexity by
specially designed function blocks. Experimental results
show that MCMBNN has a high robustness on the
different datasets.

• An Efficient training method named DecentAMC method
is proposed, which can avoid the data privacy disclosure
and relieving the computing pressure of CD with the
cooperation in which multiple EDs update and upload
model weight to a CD for model aggregation.

• We train the MCMBNN with the DecentAMC method
and the experimental results show that the proposed
MCMBNN based DecentAMC method can be deployed
on EDs efficiently, which has the advantage of lower
communication cost.

TABLE I
THE SUMMARY OF ABBREVIATIONS IN THIS PAPER.

Abbreviations Full Name
A/P Amplitude/Phase

Adma Adaptive Moment Estimation
ALRT Average Likelihood Ratio Test
AMC Automatic Modulation Classification
CD Central Device

CentAMC Centralized Learning-Based
Automatic Modulation Classification

CNN Convolution Neural Network

DecentAMC Decentralized Learning-Based
Automatic Modulation Classification

DL Deeping Learning
DSB Double Sideband Modulation
ED Edge Devices

FBAMC Feature-Based
Automatic Modulation Classification

FSK Frequency-Shif Keying
GLRT Generalized Likelihood Ratio Test
GRU Gated Recurrent Unit
HLRT Hybrid Likelihood Ratio Test

I/Q In-phase/Quadrature
IoT Internet of Things

KNN K-Nearest Neighbor

LBAMC Likelihood-Based
Automatic Modulation Classification

LocalAMC Local Learning-Based
Automatic Modulation Classification

LSTM Long Short-Term Memory
ML Machine Learning
PET Phase Parameter Estimation and Transformation
PSK Phase Shift Keying
QAM Quadracture Amplitude Modulation

ResNet Deep Residual Network
SNR Signal to Noise Ratio
SoA State-of-the-Art
SSB Single-Sideband Modulation

MCMBNN Spatio-Temporal Hybrid Deep Neural Network
Based on Multi-channels and Multi-function Blocks

WBFM Wide Band Frequency Modulation
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This paper is organized as follows. Section II depicts
the signal model and the framework of DL-based AMC
Method. Section III describes the designing process of
lightweight neural network (MCMBNN) for AMC in detail.
The DecentAMC as a training method is introduced by
contrasting with CentAMC method in Section IV. Next,
Section V presents the analysis of experimental results.
Finally, the whole paper is concluded in Section VI. The
summary of abbreviations in the paper is shown in Table I.

II. SIGNAL MODEL AND DL-BASED AMC METHODS

A. Signal Model
We assume that the model of the unknown single-carrier

(SC) modulated signals as

u(k) =λej(2πf0k/K+θ)
L−1∑
l=0

h[l]q[k − l − τ ]modK

+ σ(k), k ∈ {0, 1, · · · ,K − 1},
(1)

where u(k) represents the unknown modulated signals at the
receiver, λ represents the channel gain, f0 the frequency offset,
θ the phase offset, τ the timing offset, h[l : l = 0, 1, · · · , L−
1] the channel impulse response (CIR) of Rayleigh fading
channel, L is the length of the CIR, q(k) is the baseband
signal sequence, σ(k) is additive white Gaussian noise, and
K is the number of sampled points from the signals.

The in-phase component (I) and quadrature component (Q)
of u(k) called IQ signals are input to neural network for
modulation classification and expressed as

I = {real[u(k)]}K−1k=0 , and Q = {imag[u(k)]}K−1k=0 . (2)

B. DL-based AMC Methods
Next we describe DL-based AMC method, which belongs to

FBAMC and can complete feature extraction and classification
simultaneously. The modulation type of the received modulat-
ed signal belongs to the set D = {dj , j = 0, 1, · · · , J − 1},
where J represents the number of modulation types. DL-based
AMC can be expressed as: dj = Fdj∈D([I;Q], P ), where F (·)
is the function of DL-based AMC classifier, and P represents
the parameter of the network. The location of DL-based AMC
method in communication system is shown in Fig. 2

Fig. 2. The location of DL-based AMC method in communication system.

We adopt cross entropy (CE) loss function with `2
regularization to compile the model, which is expressed as

LCE = − 1

R

R∑
r=1

yr log[F ([I;Q], P )] + λQ(F ([I;Q], P )),

(3)

where R represents the size of the training samples, and yr
is the true label, and Q(·) is a penalty function to avoid
overfitting, and λ is to balance the penalty function.

III. THE PROPOSED LIGHTWEIGHT NEURAL NETWORK
FOR AMC

In this section, a novel lightweight neural network named
MCMBNN is described elaborately. As shown in Fig. 3,
the lightweight network MCMBNN is composed of multiple
blocks with specific functions, i.e., a GRU layer and a dense
layer with Softmax. According to the specific functions of
different network layer, MCMBNN can be divided into three
parts: Multi-channel Parameter Estimator and Transformer
Block (Part A), Multi-channel Spatial Information Extraction
Block (Part B), Temporal Feature Extraction & Softmax Block
(Part C).

Fig. 3. The overall structures of the proposed MCMBNN.

Fig. 4. The overall structures of PET.

A. Multi-Channel Learning

Original IQ channel signals are fed to Part A and Part B in
parallel. Then, the input signals are divided into three streams:
original IQ signal, I-channel signal and Q-channel signal,
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Fig. 5. The overall structures of spatial information extraction.

(a) MC2D-Block (b) MC1D-Block

Fig. 6. Two convolution blocks: MC2D-Block and MC1D-Block.

which is inspired by the multi-channel learning framework
[45]. The reason for dividing the signal is that there exits great
differences between the I-channel signal and the Q-channel
signal and the features extracted by multiple channels can form
a complementary relationship.

B. Parameter Estimator and Transformer Block

Original IQ channel signals usually carry the phase offset
information due to the impact of channel noise and attenuation.
Hence, phase estimator and transformer (PET) block can be
applied in processing original signals for AMC to extract
the phase offset information and thus improve the overall
classification accuracy [46]. As shown in Fig. 4, phase
estimator block is composed of a Flatten layer, a Dense layer
with only one unit and a linear Activation function layer.
Original IQ channel signals achieve dimension transformation
through Flatten layer from the dimension (2,128) to a vector
with dimension (1,256) for meeting the input dimension of
Dense layer. And then, This vector can obtain rich phase
feature information through the Dense layer. Finally, we
use linear activation function to obtain an estimated phase
parameters ψ̂.

Phase estimator block is followed by phase transformer
block, which can realize parametric inverse transformation.

û[k] = u[k]e−jψ̂ =

[
I cos ψ̂ +Q sin ψ̂

I cos ψ̂ −Q sin ψ̂

]
, (4)

where û[k] is the output of the phase estimator block.
In summary, the number of learned parameters in PET is

relatively small and mainly concentrated in the Dense layer
and Flatten layer.

C. Spatial Information Extraction Block

As shown in Fig. 5, three IQ channel signals are input to
two different convolution blocks in parallel for extracting more
advanced spatial features from three channels of signals. The
first IQ mixed channel signal is input to MC2D-Block1, which
is presented in Fig. 6(a). MC2D-Block is designed with three
parallel two-dimensional standard convolution layer with two
asymmetric convolution kernels ((2, 8), (8, 2)) and one (1,1)
convolution kernel. Similar to [43], deploying asymmetric
convolution kernel is to extract the signal spatial features in
the horizontal and vertical dimensions without affecting the
quality of spatial feature extraction, which can reduce the
training parameters compared with the traditional symmetric
convolution kernel ((8, 8) convolution kernel). And then,
ReLU layer is followed by each convolution layer to enhance
the nonlinearity of the network and prevent the gradient
from disappearing, which adopts function y = max(0, x).
Considering that the output tensors of the ReLU layers
as TReLU ∈ RH×W×C , where H and W represent the
vertical and the horizontal dimension, respectively, and C
denotes channel dimension. Later, the refined tensor TMC2D ∈
RH×W×C can be generated by concatenating the three output
tensors of the ReLU layers in the channel dimension, which
can be presented as: TMC2D = [T 1

ReLU ;T
2
ReLU ;T

3
ReLU ].

The second I-channel input signal and the third Q-
channel input signal are input to MC1D-Block respectively,
as shown in Fig. 6(b). The overall structure of MC1D-Block
is similar to MC2D-Block1. The difference is that MC1D-
Block adopts one-dimensional convolution layer, because I-
channel and Q-channel input signals are two one-dimensional
sequences. Besides, three convolution layers use convolution
kernels of different sizes (2, 4 and 8 respectively) to
extract more comprehensive spatial features with less model
training parameters. Finally, the refined tensor T

I/Q
MC1D =

[T 1′

ReLU , T
2′

ReLU , T
3′

ReLU ], which means the output tensor of
MC1D-Block is concatenated by three output tensors of the
ReLU layers in the horizontal dimension.

Next, two MC1D-Block output streams are concatenated in
the vertical dimension to form a new tensor T ′MC1D , which
fuses the spatial characteristics of I-channel and Q-channel.

T ′MC1D =

[
T IMC1D

TQMC1D

]
, (5)

Then, T ′MC1D is fed into the MC2D-Block2 in parallel to
further extract more abstract features. Compared with MC2D-
Block1, the only difference with MC2D-Block2 is that MC2D-
Block2 adopts (1,8) and (8,1) asymmetric convolution kernels.
Later, two ouput tensors of MC2D-Block2 are concatenated
in the channel dimension T ′MC2D = [T 1

MC2D;T
2
MC2D].

Next, T ′MC2D continues to fuse with TMC2D in the channel
dimension and the fused new tensor is fed to Group Conv2D
layer.

From the perspective of reducing the complexity of the
model, we use group convolution layer with (3,3) convolution
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kernels and 2 group number instead of standard convolution
layer with the same convolution kernels. Group convolution
was first applied in AlexNet for training on multiple GPUs
because of the limitation of single GPU [51]. The comparison

Input feture maps
𝑀𝑀𝑙𝑙

𝐶𝐶𝑖𝑖𝑖𝑖

*(Convolution operation)

𝐾𝐾𝑆𝑆

…

Convolution kernels

Output feture maps 
𝑀𝑀𝑙𝑙

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜

(a) Standard convolution

Input feture maps
𝑀𝑀𝑙𝑙

Groups (𝐺𝐺)𝐶𝐶𝑖𝑖𝑖𝑖 / 𝐺𝐺

(Convolution operation)*
𝐾𝐾𝑆𝑆 / 𝐺𝐺

…

Output feture maps
𝑀𝑀𝑙𝑙

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 / 𝐺𝐺

Convolution kernels

(b) Group convolution

Fig. 7. Comparison of standard convolution and group convolution. Cin,
Cout, Ml and Ks respectively represent the number of input channels, and the
number of output channels, and the length of out feature maps of convolutions,
and the size of filters. G is the number of groups for group convolution. (a)
standard convolution: the convolution kernels are conducted on all of the
input channels. (b) group convolution: the input channels and the convolution
kernels are equally divided into G groups when the number of groups is not
1.

of group convolution and standard convolution is shown in Fig.
7. The parameters and out feature maps comparisons of group
convolution and standard convolution [52] can be calculated
by

Spgroup
Spsta

=
Ks · Cin · Cout · 1

G

Ks · Cin · Cout
=

1

G
, (6)

Sggroup
Sgsta

=
Ml · Cout
Ml · Cout

= 1, (7)

where Spsta and Sgsta represent parameters and out feature
maps of standard convolution respectively; Spgroup and
Sggroup represent parameters and out feature maps of group
convolution respectively.

It is obvious that the parameters of standard convolution are
G times than that of group convolution, and the out feature
maps are the same with group convolution by observing Eqs.
(6)∼(7). It means that group convolution can generate the same
size out feature maps with a smaller number of parameters.
This is the theoretical basis for designing lightweight network
using group convolution to take place of standard convolution.

D. Temporal Feature Extraction & Softmax Block
We use one Add layer for achieving the fusion of phase

offset features and signal spatial features. Then, one GRU layer
with 128 units is used to extract temporal features. Compared
with the LSTM layer, GRU layer has a simpler network
structure and can also extract temporal features efficiently.
Finally, one Dense layer with C units (C is the number of
classes of modulated signals) realizes the classification of the
final modulated signal and the activation function is softmax.

As described above, the final MCMBNN has three parts,
that adopt three different strategies to design the lightweight
neural network. Firstly, PET block is applied in processing
original signals to extract the phase offset features. Secondly,
multiple groups of asymmetric convolution blocks and group
convolution are used to extract spatial features. Thirdly, one
GRU layer is used to extract temporal features. Meanwhile, in
order to ensure the classification performance of the network,
we adopt multi-channel input to extract the complementary
features between different channels.

IV. THE PROPOSED TRAINING METHOD FOR AMC
In this Section, we first introduce the traditional CentAMC

method in detail. On this basis, we propose the DecentAMC
method.

A. The Traditional CentAMC Method
As shown in Fig. 1, each edge device (ED) has a local

dataset Mn = {(X1, Y1), (X2, Y2), · · · , (XSn
, YSn

)}, where
n represents the n-th ED and Sn represents the dataset size
of the n-th ED. Hence, the global dataset can be denoted as
Mg = M1 ∪M2 ∪ · · · ∪MN , and the global dataset size
can be denoted as Sglobal =

∑N
n=1 Sn. We assume that

Mi ∩Mj = 0 for i 6= j.
In the CentAMC Method, the training process is performed

on single edge device (ED) and is based on the global dataset
collected from EDs. The global model is trained with the
criterion of minimizing the empirical loss function, namely

F =
1

Sn

Sn∑
r=1

LCE , (8)

Adaptive moment estimation (Adma) optimization is adopted
to update the model weight ω for minimizing the empirical
loss function

ωt = ωt−1 − ηt
m̂t√
v̂t + ε

, (9)

where ωt is the updated model weight of the t-th training
epoch, m̂t is the updated biased-corrected first moment
estimate, v̂t is the updated biased-corrected second row
moment estimate, and ηt is the learning rate.
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B. The Proposed DecentAMC Method

As shown in Fig. 8, compared with CentAMC method, each
ED uploads the model weight instead of the dataset to the
CD in DecentAMC method. It needs to be pointed out that
the DecentAMC method falls within Federated Learning (FL)
[55], which applies the idea of FL to model training process
for AMC. The DecentAMC method consists of the following
4 steps, shown in Algorithm 1.

ED-1

ED-2 ED-N

ED-3
𝑊𝑡+1 

 
𝑊𝑡+1 

 
𝑊𝑡+1 

 

𝑊𝑡+1 
 ...

Train Train

CD

 / 

 / 

 / 

 / 

  

ED datasetUploading

Downloading

The global model weight𝑊𝑡+1 
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The  -th epoch model weight of the  -th ED 

Dataset Dataset

②𝜔𝑡
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②𝜔𝑡
𝑁 

 

②𝜔𝑡
3 

 

②𝜔𝑡
1 

 

Train

 

Dataset

Dataset

Train

Dataset

 

 

Fig. 8. The structure of the proposed DecentAMC method.

1) Model initialization and parameter broadcasting: The
CD builds a model and initialization parameters, such as the
initial model weight ω0, the initial learning rate η0, the number
of EDs N , IQ samples and corresponding labels in the n-th
ED dataset, the training epochs of global model T , and the
batch size of a training epoch B. Then, the CD broadcasts the
built model and initialized parameters to the EDs.

2) The model weight of the EDs updating and uploading:
Each ED downloads the built model and initialized parameters
from the CD, and then updates the local model weight based
on the local datasets by Adam

ω̃nt = ω̃nt−1 − ηt
m̂t√
v̂t + ε

, (10)

When the updating is finished, each ED uploads its model
weight to the CD. Here, we assume that the EDs upload the
model weight ω̃nt once every training epoch, where the t-th
epoch model weight of the n-th ED as ω̃nt .

3) The EDs model weight aggregation by CD: The trained
model weight is uploaded from each ED to the CD and the CD
averages the received model weights. Model weight averaging
is used as

Wt+1 =

∑N
n=1 Snω̃

n
t

Sglobal
, (11)

where Wt+1 is the t-th epoch global model weight.
4) The global model weight updating: After the CD gets

the global model weight, each ED downloads the global model
weight from the CD and replaces the original weight with the
global model weight, i.e., ω̃nt+1 = Wt+1, n = [1, N ] and then
repeat 2) ∼ 4) until the loss convergence.

Algorithm 1: The proposed DecentAMC method.
Input: The number of EDs N ; IQ samples and

corresponding labels in the n-th ED dataset; the
initial model weight ω0; the initial learning rate
η0; the training epochs of global model T ; the
batch size of a training epoch B.

Output: WT

1 CD initializes a model and broadcasts the model and
initial global model weight ω0 to EDs.

2 foreach ED in parallel do
3 ED downloads the built model and ω0.
4 ED initializes parameter T , B, η0.
5 end
6 for t = 0, · · · , T do
7 ω̃nt ← Wt

8 MN ← Datasets of N EDs
9 for each ED M ∈ Mn in parallel do

10 Each ED updates the local model weight.
11 ω̃nt ← ω̃nt−1 − ηt m̂t√

v̂t+ε

12 Each ED uploads their updated model weight.
13 end
14 CD updates global model weight

15 Wt+1 ←
∑N

n=1 Snω̃
n
t

Sglobal
.

16 end
17 return WT

V. EXPERIMENTAL RESULTS

In this section, we conduct two experiments to evaluate
the proposed lightweight neural network (MCMBNN) and the
proposed training method (the DecentAMC method) based
on three datasets. Firstly, we compare the MCMBNN with
six SoA networks based on CentAMC, which include three
high-performance networks CNN [30], [33], MCLDNN [45],
CNN-LSTM [44] and three lightweight networks SCNN [47],
MCNet [43] and PET-CGDNN [46]. MCLDNN and PET-
CGDNN use the multi-channel learning framework while other
networks choose to input IQ signals directly. MCLDNN,
CNN-LSTM and PET-CGDNN contain temporal feature
extraction units like LSTM or GRU, while CNN, MCNet and
SCNN only consist of spatial feature extraction units. On this
basis, we conduct ablation study experiment to explore the
impact of each block of the proposed MCMBNN in terms
of model complexity and classification performance. In the
second experiment, we combine different networks with the
DecentAMC method to achieve decentralized learning based
on three datasets.

A. Dataset and Simulation Setting

1) Dataset: Three datasets are adopted to test the
generalization performance of the model: RadioML.2016.10A,
RadioML.2016.10B [48], and Dataset generated by Matlab
[47]. RadioML.2016.10A and RadioML.2016.10B are stan-
dard open datasets, which are based on GNURadio. The
difference of the data generated by GNURadio and MATLAB
is that the IQ signals generated by GNURadio are constrained
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to follow an analog baseband, while the MATLAB IQ
points make discrete jumps [56]. Hence, simulations based
on these two types of datasets can show the performance
comprehensively. The signal length of each sample is 128,
and the size of the input signal sample is (2, 128) because
the signal is input to the neural network in the form of IQ
samples. The type of modulated signal of above three datasets
as follows.
• RadioML.2016.10A: {BPSK, 8PSK, CPFSK, GFSK,

PAM4, 16QAM, 64QAM, QPSK,AM-DSB, AM-SSB,
WBFM}, the SNR of ranging from −20 dB to 18 dB
with 2 dB as interval is used. The number of samples is
220,000.

• RadioML.2016.10B: {BPSK, 8PSK, CPFSK, GFSK,
PAM4, 16QAM, 64QAM, QPSK,AM-DSB, WBFM}, the
dataset of RadioML.2016.10B is a larger version Ra-
dioML.2016.10B of RadioML.2016.10A, which contains
1,200,000 samples.

• Dataset generated by Matlab: {BPSK, QPSK, 8PSK,
2FSK, 4FSK, 8FSK, 16QAM, 128QAM, 256QAM}, the
signal to noise ratio (SNR) ranging from −10 dB to 20
dB with 2 dB interval is used. The number of samples is
720,000. In addition, frequency, phase, and timing offset
are introduced as f0 = 0.1, θ = π/16, and τ = 7.

2) Simulation setting: We assume that there are 10 EDs and
1 CD. Hence, each dataset is divided into 10 equal parts to
simulate 10 different EDs. The number of the training epochs
is set as 500. The parameters {α, β1, β2} for Adam are pre-
set values of Keras, i.e., {0.001, 0.9, 0.999}. We use learning
rate decay to train the model, where the learning rate will
decline by 80% after the 10 training epochs model is not
improved. The experiment platform is GTX 2080Ti and the
DL framework is Tensorflow 1.10.0 with Keras 2.2.4.

TABLE II
THE PARAMETERS, MODEL WEIGHT, PCC OF MCMBNN ON

RML2016.10A UNDER DIFFERENT U.

Metric
U

32 64 128 256

Parameter 48,934 63,494 111,046 279,878
Model weight 316 kB 375 kB 565 kB 1.2 MB

Pcc 57.08% 55.82% 62.84% 62.66%

TABLE III
THE PARAMETERS, MODEL WEIGHT, PCC OF MCMBNN ON

RML2016.10A UNDER DIFFERENT Kgroup
s .

Metric
Kgroup

s 1 × 1 3 × 3 5 × 5 7 × 7

Parameter 91,046 111,046 151,046 211,046
Model weight 485 kB 565 kB 725 kB 965 kB

Pcc 57.46% 62.84% 62.27% 62.77%

B. The Setting of Key Hyper-parameters

The units of GRU U and the size of group convolution
kernel Kgroup

s are two key hyper-parameters, which influence
the model complexity and classification performance of

MCMBNN. As is shown in TABLE II, we set different
U to make a balance between model complexity and
classification performance. With the increasing the number of
U , the classification performance of MCMBNN is improved
obviously. Meanwhile, the model complexity of MCMBNN
becomes higher. Therefore, we adopted a compromise between
classification performance and model lightweight and set U as
128. Similarly, as is shown in TABLE III, it is appropriate to
set Kgroup

s as 3× 3.

C. Performance Comparison Between Different Networks with
CentAMC

1) Classification performance: The correct classification
probability (PCC) is generally adopted to describe the
recognition and classification performance, which can be
written as

P icc =
N i
correct

Ntest
× 100%, (12)

where P icc is the correct classification probability at SNR =
i dB, and N i

correct is the number of corrected classification
samples at SNR = i dB, and Ntest is the number of the testing
samples. The average value of P icc is denoted as Pcc.

Fig. 9 shows the comparison of classification performance
between the proposed MCMBNN and five SoA networks
based on three datasets. Fig. 9(a) and Fig. 9(b) show that the
proposed MCMBNN has an obvious advantage over the other
networks when −6 dB 6 SNR 6 0 dB. Fig. 9(c) shows that the
proposed MCMBNN also has a best classification accuracy,
which proves MCMBNN can also distinguish the signal with
time-varying frequency offset. In addition, compared with
MCNet and SCNN, the other networks perform better in the
classification accuracy because they can make full use of the
temporal features of the signals.

To analyze the classification accuracy of different modula-
tion signals, classification performance of various modulation
signals in different networks at 0 dB is given in TABLE
IV. The MCMBNN performs better in recognizing BPSK,
CPFSK and 64-QAM compared with other SoA Networks.
For a further analysis, six confusion matrix evaluations with
SNR = 0 dB based on different networks are presented in
Fig. 10. The rows of the confusion matrix represent the real
modulation types, while the columns represent the predicted.
We can observe that 16-QAM and 64-QAM are confused, and
similar confusion also occurs between WBFM and AM-DSB.
The reason for the confusion between 16-QAM and 64-QAM
is that as the order of QAM becomes higher, the constellation
points also become denser. For WBFM and AM-DSB, both of
them belong to continuous analog modulation signals and the
features that can distinguish them are very weak. Although
these confusion problems still exist in each network, it has
been greatly improved in the networks that include temporal
feature extraction units, especially for MCMBNN.

2) Model complexity: The complexity of the neural network
is described by parameters and model weight in this paper.
As is shown in TABLE V, compared with three high-
performance networks, MCMBNN shows better classification
performance with a lower model complexity. Compared with
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(a) (b) (c)

Fig. 9. Classification performance evaluation of the CentAMC method based on three typical datasets: (a) RadioML.2016.10A. (b) RadioML.2016.10B. (c)
Dataset generated by Matlab.

TABLE IV
CLASSIFICATION PERFORMANCE OF DIFFERENT NETWORKS BASED ON RADIOML.2016.10A WHEN SNR = 0 DB BASED ON RML2016.10A.

8PSK AM-DSB AM-SSB BPSK CPFSK GFSK PAM4 16-QAM 64-QAM QPSK WBFM

MCMBNN 93.5 95.0 94.0 99.5 100.0 97.5 98.5 90.0 92.5 96.5 37.0
MCMBNN-A 77.5 85.0 85.0 98.5 99.5 91.0 75.0 40.0 44.0 79.0 27.0
MCMBNN-B 93.0 96.0 97.0 99.5 100.0 98.0 98.5 84.0 78.5 94.5 35.5
MCMBNN-C 92.5 88.5 96.0 99.0 100.0 93.5 98.5 89.0 92.5 94.0 40.0
MCMBNN-D 88.0 90.5 93.5 99.0 100.0 99.5 98.5 87.5 85.5 98.5 39.0
MCMBNN-E 96.5 94.5 95.0 98.0 100.0 97.0 99.0 92.0 92.0 99.5 48.5

CNN 89.5 98.0 97.0 98.5 98.5 93.5 97.0 25.0 70.0 44.5 12.0
MCLDNN 91.5 93.0 95.5 99.5 100.0 96.5 98.5 86.0 88.0 97.0 32.5
CNNLSTM 84.0 87.5 93.5 99.0 99.5 98.0 98.5 96.0 82.0 97.0 41.0

SCNN 44.0 83.5 89.5 92.5 98.0 98.0 77.5 30.0 56.0 41.0 26.5
MCNET 71.0 75.5 85.5 99.0 99.5 97.5 98.5 40.5 61.5 82.5 51.0

PET-CGDNN 95.5 83.5 94.5 98.0 100.0 98.5 99.5 86.0 82.0 98.0 57.9

(a) Proposed (b) CNN (c) MCLDNN

(d) CNNLSTM (e) SCNN (f) MCNET (g) PET-CGDNN

Fig. 10. Confusion matrix evaluation of different neural networks based on RadioML.2016.10A when SNR = 0 dB.
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TABLE V
THE PARAMETERS, MODEL WEIGHT AND PCC OF THE DIFFERENT NETWORKS BASED ON THREE TYPICAL DATASETS.

Neural Network Parameters Model weight Pcc1/Pcc2/Pcc3

MCLDNN 406,199 1.669 MB 61.82% 64.44% 71.97%
CNN 2,190,283 8.793 MB 52.17% 56.18% 70.93%

CNN-LSTM 332,875 1.396 MB 61.93% 65.22% 72.58%
SCNN 104,395 445 kB 49.87% 48.23% 63.63%
MCNet 90,763 463 kB 56.08% 62.59% 71.46%

PET-CGDNN 71,871 324 kB 60.45% 63.91% 71.45%
Proposed 111,046 565 kB 62.84% 65.14% 72.65%

Note: Pcc1, Pcc2 and Pcc3 are PCC respectively based on RadioML.2016.10A, RadioML.2016.10B and Dataset generated by Matlab with CentAMC.

(a) (b) (c)

Fig. 11. Validation loss evaluation of of the CentAMC method based on three typical datasets: (a) RadioML.2016.10A. (b) RadioML.2016.10B. (c) Dataset
generated by Matlab.

three lightweight networks, MCMBNN sacrifices a little model
complexity in exchange for greater classification performance
improvement, which is acceptable for the computing capability
and memory of EDs (such as Raspberry Pi 3B used in [54]). In
addition, the model weight of MCMBNN takes up less storage
compared with two high-performance networks, which means
that it is appropriate to deploy MCMBNN to EDs.

3) Loss evaluation: The validation loss within 100 epochs
based on three datasets are given in Fig. 11. The validation
loss of the MCMBNN keep a relatively stable convergence
speed, which is consistent with that of other high-performance
networks. It indicates that the network is perfectly trained
and can adapt to different datasets. For further explanation,
high-performance networks have a deeper or wider network
structure compared with lightweight networks, which is
helpful to fully extract features. However, high-performance
networks are also easy to overfitting due to a large amount of
parameters, which rarely occurs in lightweight networks.

TABLE VI
THE PARAMETERS, MODEL WEIGHT, PCC OF ABLATION STUDY BASED

ON RML2016.10A.

Neural Network Parameters Model weight Pcc

MCMBNN-A 181,318 843 kB 51.23%
MCMBNN-B 134,086 657 kB 62.33%
MCMBNN-C 133,596 647 kB 62.54%
MCMBNN-D 110,789 527 kB 62.12%
MCMBNN-E 94,119 440 kB 62.27%

Proposed 111,046 565 kB 62.84%

4) Ablation study: Ablation study is to observe how the
different parts of the network affect the overall performance
through deleting or replacing parts of the network. We
conducted four groups of ablation experiments respectively,
namely as: MCMBNN-A (GRU layer is replaced by one
Flatten layer), MCMBNN-B (GRU layer is replaced by
one LSTM layer), MCMBNN-C (group convolution layer
is replaced by standard convolution layer), MCMBNN-D
(PET is removed) and MCMBNN-E (multi-channel learning
framework is replaced by inputting IQ signals directly).

As is shown in TABLE VI, the proposed MCMBNN has the
best classification performance compared with other ablation
experiments, which means that the advantages of different
parts of MCMBNN are complementary and their combination
results in superior performance. Specifically, MCMBNN
and MCMBNN-B outperform MCMBNN-A in classification
performance, which means that the temporal feature extraction
layers (GRU layer or LSTM layer) can extract rich temporal
features for modulation recognition. Moreover, it proves to
be meaningful to design lightweight networks with one
GRU layer instead of LSTM layer from the insight of
reducing the model complexity by comparing MCMBNN with
MCMBNN-B. Through the comparison of MCMBNN and
MCMBNN-C, we can observe that group convolution not only
reduces the complexity of network, but also has a similar
classification performance with standard convolution, which
proves that it is feasible to design lightweight networks with
group convolution. Next, MCMBNN-D has a disadvantage
in classification performance compared with MCMBNN. In
particular, MCMBNN-D is inferior in recognizing 8PSK,
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(a) (b) (c)

Fig. 12. Classification performance evaluation of the DecentAMC method using three typical datasets: (a) RadioML.2016.10A. (b) RadioML.2016.10B. (c)
Dataset generated by Matlab.

(a) (b) (c)

Fig. 13. Validation loss evaluation of the DecentAMC method using three typical datasets: (a) RadioML.2016.10A. (b) RadioML.2016.10B. (c) Dataset
generated by Matlab.

AM-DSB and 64-QAM shown in TABLE IV compared
with MCMBNN, which indicates that PET is working for
extracting phase offset information for a better classification
performance. Finally, multi-channel learning framework is
adopted in MCMBNN, which is helpful to extract the
complementary features compared with MCMBNN-E. Hence,
we can conclude that GRU layer, PET and multi-channel
learning framework play a significant role in the performance
improvement and group convolution can be adopted to
decrease the model complexity.

D. Performance Comparison between Different Networks with
DecentAMC

1) Classification performance: Here, the classification
performance of DecentAMC based on the different Networks
are compared, which is shown in Fig .12. Similar to CentAMC,
MCMBNN also shows superior classification performance
across the three datasets, which proves the high robustness
of MCMBNN. In addition, there is a maximum performance
gap of 4% between DecentAMC and CentAMC because model
weight is shared rather than dataset for avoiding data privacy
leaking from EDs and reducing the computing pressure of CD
in DecentAMC.

2) Loss evaluation: Fig .13 presents the validation loss of
the DecentAMC, where we can observe that different networks

have a similar convergence speed, and hence the convergence
global epoch is similar. The communication overhead of
DecentAMC is defined as

CDecent = 2NWmT, (13)

where N demotes the number of EDs, Wm represents the
size of global model weight, and T represents the number
of convergence global epoch. It is easy to prove that there
exists a positive correlation between communication overhead
and model weight when the number of convergence global
epochs is the same. This is the reason why deploying
lightweight network to EDs with DecentAMC method can
decrease communication overhead. Besides, the loss curve of
MCMBNN is more stable and keeps a downward trend until
convergence compared with other networks, which indicates
that MCMBNN has a good fitting performance (MCLDNN
has not decreased but increased because overfitting occurs).

VI. CONCLUSIONS

In this paper, we proposed a lightweight neural network
named MCMBNN and a decentralized training method named
the DcentAMC method. The MCMBNN is designed through
a combination of three lightweight blocks (PET block, spatial
information extraction block and temporal feature extraction &
Softmax block), which respectively adopt different lightweight
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ideas for further achieving a overall lightweight network. The
DecentAMC method adopts FL to train the model for AMC
in order to acieve decentralized learning. Experimental results
show that the MCMBNN can achieve a superior classification
performance with a low model complexity based on the
advantages of multiple blocks. In addition, the MCMBNN
based DcentAMC method can be deployed on EDs with
a relatively better classification performance and a lower
communication overhead. This will address the problem of
EDs’ insufficient computing power and data leakage associated
with traditional DL model and CentAMC method. Future
work will attempt to quantify the model weight to further
reduce the communication overhead. We also conduct several
experiments based on datasets that is more representative of
realistic scenario.
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