Please cite the Published Version

Zhao, Ruijie ©, Gui, Guan @, Xue, Zhi, Yin, Jie, Ohtsuki, Tomoaki ©, Adebisi, Bamidele © and
Gacanin, Haris © (2022) A novel intrusion detection method based on lightweight neural network
for Internet of Things. IEEE Internet of Things Journal, 9 (12). pp. 9960-9972. ISSN 2327-4662

DOI: https://doi.org/10.1109/JI0T.2021.3119055

Publisher: Institute of Electrical and Electronics Engineers (IEEE)
Version: Accepted Version

Downloaded from: https://e-space.mmu.ac.uk/633747/

Usage rights: © In Copyright

Additional Information: © 2021 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future media, including reprint-
ing/republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Enquiries:

If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)



https://orcid.org/0000-0001-6168-8687
https://orcid.org/0000-0003-3888-2881
https://orcid.org/0000-0003-3961-1426
https://orcid.org/0000-0001-9071-9120
https://orcid.org/0000-0003-3168-8883
https://doi.org/10.1109/JIOT.2021.3119055
https://e-space.mmu.ac.uk/633747/
https://rightsstatements.org/page/InC/1.0/?language=en
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, MONTH YEAR

A Novel Intrusion Detection Method Based on
Lightweight Neural Network for Internet of Things

Ruijie Zhao, Graduate Student Member, IEEE, Guan Gui, Senior Member, IEEE, Zhi Xue, Jie Yin, Tomoaki
Ohtsuki, Senior Member, IEEE, Bamidele Adebisi, Senior Member, IEEE, and Haris Gacanin, Fellow, IEEE

Abstract—The purpose of a network intrusion detection (NID)
is to detect intrusions in the network, which plays a critical role
in ensuring the security of the Internet of Things (IoT). Recently,
deep learning (DL) has achieved a great success in the field of
intrusion detection. However, the limited computing capabilities
and storage of IoT devices hinder the actual deployment of DL-
based high-complexity models. In this paper, we propose a novel
NID method for IoT based on lightweight deep neural network
(LNN). In the data preprocessing stage, to avoid high-dimensional
raw traffic features leading to high model complexity, we use
the PCA algorithm to achieve feature dimensionality reduction.
Besides, our classifier uses the expansion and compression
structure, the inverse residual structure, and the channel
shuffle operation to achieve effective feature extraction with
low computational cost. For the multi-classification task, we
adopt NID Loss that acts as a better loss function to replace
standard cross-entropy loss for dealing with the problem of
uneven distribution of samples. The results of experiments on
two real-world NID datasets demonstrate that our method has
excellent classification performance with low model complexity
and small model size, and it is suitable for classifying the IoT
traffic of normal and attack scenarios.

Index Terms—Internet of things, intrusion detection, deep
learning, lightweight neural network.

I. INTRODUCTION

This work was supported in part by the Cyber Security from the National
Key Research and Development Program of Shanghai Jiao Tong University
under Grant 2019QY0703, the JSPS KAKENHI under Grant JP19H02142,
the Summit of the Six Top Talents Program of Jiangsu under Grant XYDXX-
010, the Program for High-Level Entrepreneurial and Innovative Team under
Grant CZ002SC19001, Science and Technology Commission of Shanghai
Municipality Research Program under Grant 20511102002, the project of the
Key Laboratory of Universal Wireless Communications (BUPT) of Ministry
of Education of China under Grant KFKT-2020106. (Corresponding authors:
Zhi Xue, Guan Gui)

R. Zhao and Z. Xue are with the School of Electronic Information and
Electrical Engineering, Shanghai Jiaotong University, Shanghai, China (e-
mail: ruijiezhao@sjtu.edu.cn, zxue @sjtu.edu.cn).

G. Gui is with the College of Telecommunications and Information
Engineering, Nanjing University of Posts and Telecommunications, Nanjing
210003, China (e-mail: guiguan@njupt.edu.cn).

J. Yin is with Department of Network Security Corps, Jiangsu Electronic
Data Forensics and Analysis Engineering Research Center, Jiangsu Provincial
Public Security Department Key Lab of Digital Forensics, Jiangsu Police
Institute, Nanjing 210031, China. He is also with State Key Laboratory for
Novel Software Technology, Nanjing University, Nanjing 210023, China (e-
mail: yinjie@jspi.cn).

T. Ohtsuki is with the Department of Information and Computer Science,
Keio University, Yokohama, Japan (e-mail: ohtsuki@keio.jp)

B. Adebisi is with the Department of Engineering, Faculty of Science
and Engineering, Manchester Metropolitan University, Manchester M1 5GD,
United Kingdom (e-mail: b.adebisi@mmu.ac.uk).

H. Gacanin is with the Institute for Communication Technologies and
Embedded Systems, RWTH Aachen University, Aachen, Germany (e-mail:
harisg@ice.rwth-aachen.de).

ITH the era of intelligent things, the Internet of Things

(IoT) has been widely developed. The application of
the IoT involves many fields such as industry, agriculture,
and transportation, and effectively promotes the intelligent
development of these fields [1]-[6]. The IoT makes the
limited resources more reasonable and convenient to use,
and improves the efficiency and profit of the industry.
However, because IoT devices exchange massive data with
external resources, intruders may invade IoT devices that lack
appropriate security protection measures. Once the invasion is
successful, it may bring huge property losses to the invaded.
Hence, designing an appropriate intrusion detection system
(IDS) to ensure the security of IoT has become the focus of
our attention.

As an essential countermeasure, IDS is commonly utilized
to monitor network traffic and gives a prompt alarming
message. In general, intrusion detection can be classified into
two main categories, namely: host intrusion detection (HID)
and network intrusion detection (NID) [7]. Both of them
have advantages and their respective limitations. HID uses the
internal log of the operating system for audit and judgment.
This detection method is not sensitive to network traffic. The
system can accurately locate and define the specific operations
of intrusions. However, it occupies a lot of resources on
the host itself and depends on the reliability of the host.
NID analyzes network traffic data, finds suspicious intrusions
hidden in the traffic data, and performs corresponding alarms
and intercepts on the detected intrusions. Network traffic data
has high dimensionality and complex features. In fact, NID
is a classification problem. Specifically, it can automatically
identify possible attacks and threats hidden in network traffic
in time and determine their specific types.

In recent years, numerous research have been conducted
on the detection performance of deep learning (DL) in in-
trusion detection systems [8]-[12]. However, implementation
challenges are rarely discussed. Specifically, the challenges of
DL-based methods usually include high model complexity and
large model size. Due to the limited storage and computing
capabilities of IoT devices [13]-[15], it is impractical to deploy
highly complex intrusion detection models in IoT devices.
Thus, we argue that the NID method for IoT should adhere to
the following restrictions:

« High Classification Performance. In the real-world IoT
network, any intrusion that is not detected may bring huge
losses. Therefore, the primary goal of NID methods is to
accurately classify the traffic of normal and specific attack
scenarios.
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e Low Model Complexity. IoT devices usually have
limited computing capabilities, so it is necessary to adopt
the NID method with low model complexity to reduce the
computing burden of the device.

o Small Model Size. The NID method for IoT must take
into account the limited storage space of IoT devices. In
other words, the smaller the model size of the classifier,
the better.

To address the aforementioned challenges, we propose
a lightweight deep neural network (LNN) model for NID,
which achieves more efficient feature extraction through
lightweight units. The lightweight unit has three special
designs for traffic feature extraction, including expansion and
compression structure, inverse residual structure and channel
shuffle operation. Besides, The computational complexity of
the DL-based classifier grows exponentially with number of
neurons [16]. This means that the dimensionality of the input
of the classifier must be as low as possible. Thus, the PCA
algorithm is adopted for feature dimensionality reduction,
which can obtain low-dimensional and high-quality traffic data
for the classifier. The major contributions of the proposed work
are four-fold:

e We propose a novel NID method based on LNN for
IoT, where lightweight units are key components for
our method. Our method can efficiently extract traffic
features while reducing model complexity by expansion
and compression structure. At the same time, we also use
inverse residual structure and channel shuffle operation to
achieve more effective feature extraction.

o To deal with class imbalance in the multi-classification
task, we design NID Loss that acts as a better
loss function to replace standard cross-entropy loss.
Specifically, NID Loss can down weight the contribution
of easy samples and pay more attention to hard samples
during training.

o The PCA algorithm is introduced to achieve feature di-
mensionality reduction, which avoids the high complexity
of DL-based model caused by high-dimensional features
as input.

o We evaluate our method on two real-world NID datasets.
Experimental results show that our method has excellent
classification performance with low model complexity
and small model size, and it is suitable for classifying
the IoT traffic of normal and attack scenarios.

The rest of the paper is organized as follows. In Section II,
we present the review of related work in the field of intrusion
detection. In Section III, we introduce some backgrounds
of our proposed lightweight NID method, including feature
dimensionality reduction algorithm and lightweight feature
extraction network. In Section IV, we describe dataset
preprocessing method, and then propose the lightweight NID
model for IoT. In Section V, we analyze the training process
and the performance of the proposed method on UNSW-
NB15 and Bot-IoT datasets. Finally, we conclude this paper
in Section VI. The abbreviations used in this paper are
summarized in Table I.

II. RELATED WORK

A variety of methods have been developed and implemented
in NID to differentiate attacks or threats from normal traffic.
Traditional machine learning methods were utilized at the
beginning of the research, I. Thaseen et al. [17] proposed a
method based on the fusion of principal component analysis
(PCA) and optimized support vector machine (SVM). Through
suggested automatic parameter selection, SVM parameters and
kernels were optimized, thereby reducing training time and
providing better accuracy for a few attacks such as U2R
and R2L. Other popular machine learning approaches such
as multilayer perceptron (MLP), Random Forest (RF), and
Naive Bayes (NB), have also been used to detect attacks
within modern network [18]-[24]. However, the performances
of these traditional machine learning methods were limited
due to shallow learning, thus cannot provide an effective
solution for a considerable number of traffic data. With the
development of DL, more and more DL-based models have
achieved excellent performance [25]-[31]. C. Yin et al. [32]
proposed an IDS based on recurrent neural network (RNN).
Compared with traditional classification methods, the design
method achieved higher accuracy and detection rate in both
binary and multiclass classification. H. He er al. [33] proposed
an intrusion detection model based on long short-term
memory (LSTM) and multimodal deep autoencoder to achieve
more accurate detection by grouping traffic characteristics.
S. Garg et al. [34] proposed an IoT intrusion detection
model using leverages grey wolf optimization (GWO) and
CNN. The experimental results show that this method can
obtain minimized features and better detection performance on
DARPA98, KDD99 and synthetic datasets. X. Xu et al. [35]
used log-cosh conditional variational autoencoder (CVAE) to
capture the complex distribution of observed data and generate
new data with pre-specified classes, which proves to be more
effective to generate diverse intrusion data for the imbalanced
classes.

Although these DL-based methods have made some
progress in the accuracy of intrusion detection, they lack the
consideration of computational complexity when the method
is actually deployed. Due to the limitation of storage space
and computing power, the storage and calculation of neural
network models on devices without GPUs is still a huge
challenge [39], [40]. Especially the deployment of intrusion
detection systems based on federated learning in IoT devices,
which will put forward higher requirements on the lightweight
performance of the model [41]. Recently, some researchers
have paid attention to this problem and proposed some
lightweight NID methods. S. I. Popoola et al. [36] proposed
a method of LSTM autoencoder (LAE) combined with DL
algorithm for IoT intrusion detection, which reduces the
dimension of traffic data through AE and then input the low-
dimensional data to the classifier for classification. Y. Mirsky
et al. [37] adopts clustering algorithm to divide the traffic
features into multiple groups, and independently calculates the
reconstruction loss of different characteristic groups through
the AE network to reduce the complexity of the model. G.
Bovenzi et al. [?] proposed a two-stage hierarchical NID
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TABLE I
COMPARISON WITH DL-BASED RELATED WORK.

Ref.  Feature extractor Classification scenarios IoT traffic Feature reconstruction Lightweight FE network Generality evaluation
[32] RNN Binary, multi-class X X X X
[33] AE+LSTM Binary, multi-class X v X v
[34] GWO+CNN Binary, multi-class X v X v
[35]  Log-cosh CVAE+CNN Binary, multi-class X v X X
[36] LAE+LSTM Binary, multi-class v v X X
[37]  Clustering Algorithm+AE Binary v v X X
[?]  AE+RF Binary, multi-class v v X X
Ours PCA+LNN Binary, multi-class v v v v
TABLE I
SUMMARY OF ABBREVIATIONS. HI. PRELIMINARIES
Abbreviations Notations In this section, we introduce some backgrounds of
IoT Internet of Things our proposed lightweight NID method, including feature
IDS Intrusion Detection System dimensionality reduction algorithm and lightweight feature
NID Network Intrusion Detection extraction network.
HID Host Intrusion Detection
DL Deep Learning )
ML Machine Learning A. PCA Algorithm
FE Feature Extraction The feature dimensionality (i.e., the total number of
LNN Lightweight Deep Neural Network traffic features) is an important factor that directly affects
CNN Convolutional Neural Network the computational complexity of the DL-based classifier,
SNN Separable Convolutional Neural Network which grows exponentially with number of neurons [16].
RNN Recurrent Neural Network Thus, it is necessary to use feature dimensionality reduction
LSTM Long Short-Term Memory methods on the original traffic data to achieve better
AE Autoencoder lightweight performance. Feature dimensionality reduction is
LAE Long Short-Term Memory Autoencoder mainly achieved by using linear or non-linear transformation
CVAE Conditional Variational Autoencoder methods for high-dimensional features. AE-based methods
GWO Grey Wolf Optimization employ nonlinear transformation techniques. However, since
NB Naive Bayes the reconstruction error is calculated by backpropagation,
SVM Support Vector Machine these methods require multiple rounds of training, which
MLP Multilayer Perceptron brings more computational cost. As a low-complexity linear
RE Random Forest transformation technique, the PCA algorithm is more suitable
PCA Principal Component Analysis Fo be afiopted in our method. The bas%c.principle of .PCA
GAP Global Average Pooling is to ehmmgte the relevance of the orl.glnal data Va.rlal.)les
FLOPs Floating Point Operations and recombine a set of uncorrelated variables. The principal

approach, which achieves a lightweight model by inputting
each feature of traffic (i.e. a single modality) independently
into AE network and finally weighting sum of the per-modality
losses.

The aforementioned lightweight NID methods all reduce
the complexity of the model by reconstructing traffic features
(i.e., reducing dimensionality or grouping). However, in the
structural design of the feature extraction network, they still
extract features through some conventional and complex DL
algorithms. Different from the previous work, we design
a novel lightweight deep neural network to extract traffic
features, and prove that LNN is a general network for NID
through the performance on the UNSW-NB15 and Bot-IoT
datasets. Table II summarises the review of DL-based related
work for NID.

components are obtained by linear combination, and the
amount of information contained in each principal component
can be measured by variance. The greater the variance, the
more information it contains. The main steps of the calculation
are as follows:

The first step is to calculate the normalized result y;; of
each data. The original dataset contains ¢ instances with its
corresponding p features. The value of the i*" row and ;"
column of the input matrix is x;;, p; is the mean value of the
jth dimension vector, and o is the standard deviation of the
jth dimension vector.

Tij = Wy
gj

Yij = (n

The second step is to calculate the covariance matrix

C and the eigenvalues (A1, A2, ---,A,) and eigenvectors
(cvi1, @z, - -+, agp) of the covariance matrix.

P - yvT
C:ZZ_;(_}/TI,}/’L )7(22172,,17) (2)
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Channel Input

Channel Input
Maps x 3

Filters x 4

Standard Convolution

Fig. 1. Key building blocks of the lightweight unit.

The third step is to calculate the contribution rate 7

according to the eigenvalues.
n= :D)\Z Y 3)

i=1/\n
The greater the contribution rate corresponding to the
principal component, the more information it contains.
According to the contribution rate, take the eigenvectors
(a1, @42, -+ ,ay) corresponding to the first &k largest
eigenvalues to form a transformation matrix U with p rows
and k columns. The matrix T obtained after dimensionality
reduction is:

T=XU G))

Through the above steps, we can obtain lower-dimensional
data for traffic classification.

B. Lightweight Feature Extraction Network

The lightweight feature extraction network is designed to
achieve more efficient feature extraction for NID through a
special structure design.

We know from principle of convolution operation that if
the tensor dimension is lower, the multiplication calculation
amount of the convolutional layer is smaller. Therefore, if
the entire neural network is a low-dimensional tensor, the
overall calculation speed will be very fast. However, if we just
use low-dimensional tensor, the effect will not be satisfactory.
The filters of the convolutional layer all use low-dimensional
tensors to extract features, so it is difficult to extract enough
information. It is necessary to use a method that can have
high-dimensional tensors for feature extraction without a lot of
computational cost. Many successful lightweight networks use
separable convolutions, depthwise convolutions, and special
network structural designs (e.g., expansion and compression
structure, inverse residual structure, channel shuffle operation,
etc.) to achieve more effective feature extraction [45]-[47].
Inspired by these excellent work, our classifier also adopts
these lightweight convolutions and structures. Separable
convolution splits convolution into two separate layers, namely
depthwise convolution and pointwise convolution. The feature
map after the depthwise convolution has the same number of
channels as the input layer and cannot be expanded. The size
of the convolution kernel of pointwise convolution is 1 x1x M,
and M is the depth of the previous layer. Therefore, the
convolution operation here will weight the map of the previous
step in the depth direction to generate a new feature map.

Filters x 3

Depthwise Convolution

Maps x 3 B (] TICTTT]

G2 G3

Reshape, ‘
Transpose

(gxn)

R Jun i

G1 G2

Flatten

Channel Shuffle

Standard convolution takes an h; X w; X d; input and an
h; X w; x d; output. The computational cost of the standard
convolutional layer is as follows:

The computational cost of Separable Convolution is as
follows:

It can be seen that using depthwise convolution (k = 3) for
feature extraction, the computational cost is almost 9 times
lower than that of standard convolution.

In our lightweight feature extraction network, the
lightweight unit is the most important component, which
uses a compression and expansion structure to extract traffic
features. Key blocks of the lightweight unit are shown in Fig.
1. Before the tensor is input to the depthwise convolution,
we first use the standard convolution to expand the number
of feature map channels. After extracting features through
the depthwise convolution, standard convolution is used to
compress the feature map. This structure can greatly reduce the
computational cost and effectively extract features. In addition,
due to the influence of the distance between the features,
it is difficult for convolution network to capture the long-
distance feature. Thus, channel shuffle operation is adopted
to strengthen the information interaction between different
features. In following introduction of the proposed method,
we will describe the lightweight unit more specifically.

IV. PROPOSED LNN-BASED NID METHOD FOR 10T

In this section, we present our LNN-based NID method
for IoT. The framework of proposed model is shown in
Fig. 2. Our method adopts PCA method to reduce traffic
feature dimensionality and lightweight feature extraction
network to achieve high classification performance with
low computational cost. The process of our approach is
summarized in Algorithm 1. The details of each processing
stage in the proposed method are presented as follows.

A. Dataset

Before introducing the data preprocessing method, we first
describe the two intrusion detection datasets used by the LNN-
based NID model.

1) The UNSW-NBI15 Dataset: The raw network packets
of the UNSW-NBI15 dataset was created by the IXIA
PerfectStorm tool in the Cyber Range Lab of the Australian
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structure of lightweight unit group

) ~ - ~ N
/ Metrics
Train Data [ \I Test Data
- | Input Standard Depthwise st | —

| Tensor Conv Conv I h
\ /
\\ __________________ L ihtlniht_bzt/\ /

Numerization , - - N Numerization

Normalization I/ Va \ Normalization Classiheation

Input Channel Standard Depthwise Standard Channel | Result
‘ensor branch onv. onv. Conv uffle
PCA : g ¢ . it | PCA
’ﬂ Y
\ Channel /I
branch
\\ \—U Lightweight UmtB / m
_______________________ | @ Label 2]
v Lightweight Lightweight Lightweight | @ Label 3]
p -
/ \ ‘ ST H UnitA UnitB UnitB GAP Final
Network . -
Q\\/J Train Model

Fig. 2. Proposed framework for LNN-based NID method for IoT.

TABLE III
SUMMARY OF THE DATASETS USED FOR EVALUATION.

Dataset |Category Training dataset Testing dataset
Normal 56,000 37,000

Fuzzers 18,184 6,062

Analysis 2,000 677

Backdoors 1,746 583

DoS 12,264 4,089
UNSW-NB15 | Exploits 33,393 11,132
Generic 40,000 18,871

Recon. 10,491 3,496

Shell 1,133 378

Worms 130 44

Total 175,341 82,332

Normal 286 191

DoS 146,293 97,529

DDos 163,287 108,858

Bot-IoT | con. 54,649 36,433
Theft 47 32

Total 364,562 243,043

Centre for Cyber Security for generating a hybrid of real
modern normal activities and synthetic contemporary attack
behaviours [42], [43]. It overcomes shortcomings of the
KDD99 dataset (e.g., no modern attacks, etc.) and gradually
becomes the most widely used dataset in the field of NID in
recent years. The number of records in the training dataset
is 175,341 and in the testing dataset is 82,332. The UNSW-
NB15 dataset has nine types of attacks, namely, Fuzzers,
Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance,
Shellcode and Worm:s.

2) The Bot-IoT Dataset: The Bot-IoT dataset is the

latest NID dataset for IoT [44]. The network environment
incorporated a combination of normal and botnet traffic. It
contains normal IoT network traffic and four attack scenarios
including DoS, DDoS, Reconnaissance, and Theft. There are
many IoT scenarios in the testbed, including a weather station,
a smart fridge, motion activated lights, a remote-controlled
garage door, and a smart thermostat. Since there are too many
traffic records in the raw CSV file of this dataset, we select part
of the traffic records for experimental evaluation. The number
of traffic records in the training dataset is 364,562 and in the
testing dataset is 243,043.

The detailed numbers of different scenarios in the two
datasets are shown in Table III.

B. Data Preprocessing

Before the traffic data is applied to the NID model, the data
needs to be preprocessed. This involves four steps.

1) Symbolic feature numerization: Convert the symbolic
features in dataset such as protocol, service, and state into
one-hot encoding.

2) Label numerization: In the multi-classification NID
model for 10T, the category label of the traffic data needs to be
converted into a numerical representation (e.g., O for Analysis,
1 for Backdoor, 2 for DoS, and so on.), and then converted
into a one-hot encoding before training.

3) Normalization: Since the traffic data has features of
different dimensions, the level of each dimension of the dataset
varies greatly. If the original value is directly used for analysis,
it will highlight the role of indicators with higher values in
the comprehensive analysis, and relatively weaken the role of
indicators with low value levels. Therefore, it is necessary to
use normalization methods to ensure the reliability of data.
The Min-Max normalization is adopted to normalize the data
as follows: ) v — MIN

¥ T MAX — MIN @
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Algorithm 1 Pseudocode of the proposed LNN-based NID
method for ToT.
Input:
Training dataset D,
Testing dataset Dy,
Total epoch times n
Output:
LNN model for intrusion detection
1: procedure Data_Preprocessing (D,, D)
2:  Convert the symbolic features in dataset
3:  Transform the category label into a numerical represen-
tation
4:  Compute the Min-Max normalization result of the
dataset (7)
5: D, <— Reduce the training dataset features by PCA
6: Dy <— Reduce the testing dataset features by PCA
7: return D., D; = the new k-dimensional feature space
8
9

: procedure LNN_Model (D., Dy)

: while i < n do
10:  Load lightweight network
11:  Input D, into the lightweight network for training
12:  if the task is binary classification detection, then

13: Use binary cross-entropy as loss function
14:  else

15: Use NID Loss as loss function

16:  end if

17:  Save NID; model

18: end while

19: Save NID,, model as LNN model
20: Test and save the performance of LNN model on Dy
21: return LNN model

Min-Max normalization technology makes the result fall into
the interval [0, 1] through linear transformation of the original
data. z is the attribute value, M IN is the minimum of the
attribute, and M AX is the maximum of the attribute.

4) Feature dimensionality reduction: The original high-
dimensional traffic features will increase the complexity of the
classifier (i.e. DL-based model). As a lightweight intrusion
detection method, it is necessary to use the dimensionality
reduction method to achieve low-dimensional and high-quality
traffic data. As mentioned in Section III-A, PCA algorithm can
quickly and effectively reduce traffic feature dimensionality.
Thus, we use the PCA method to transform the original high-
dimensional traffic features into new low-dimensional features
through linear transformation.

C. Lightweight NID Model for loT

In order to deploy intrusion detection systems in IoT
devices, some intrusion detection methods have to use tra-
ditional machine learning algorithms with low computational
complexity and low detection accuracy [14]. However, even
if only one intrusion into the IoT system is not detected, it
can lead to huge property losses. In our method, we use DL-
based neural networks to build our lightweight NID model to
accurately detect intrusions.

Input Tensor
HxWxC
Channel Split

HxWx C;  HxWx C,
]

C=C+GC,

Channel
branch

HxWxC,

Standard
Convolution

Feature
layer

HxWxE

Channel
branch l Depthwise

HxWxC Convolution
! Expansion

layer
HxWxE

Convolution

Compression
layer

HxWxC,

l Standard

'
Channel Shuffle

HxWxC

Fig. 3. The structure of lightweight UnitB.

As shown in Fig. 2, the lightweight NID model for IoT
is mainly implemented by lightweight unit. We will first
give a specific introduction to the two lightweight units (i.e.
Lightweight UnitA and Lightweight UnitB).

Lightweight UnitA is a lightweight network without
residual structure, which mainly implements the functions of
downsampling and changing the output shape of the tensor.
The commonly used downsampling method is to use the
maxpooling layer, which is to take the maximum value
of the signal in the window and perform translation and
non-deformation processing to reduce the signal dimension.
Lightweight UnitA can realize the downsampling function
when setting the stride = 2. The parameter stride is the
step size, which represents the step size of the filter for each
convolution operation, and determines whether the window
of the filter needs to be overlapped. Using this structure to
replace maxpooling can effectively reduce computational cost
while extracting features.

Lightweight UnitB contains an inverse residual structure,
which mainly implements the feature extraction function. The
unit structure is shown in Fig. 3. The advantage of using the
inverse residual structure is mainly to avoid the problem of
model over-fitting and the disappearance of gradient, so we
first split the input into two branches of the same size at
the beginning of each unit. If the ordinary residual structure
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is adopted, the feature map is compressed first, and then
the convolution is used to extract the features, which can
extract very limited features. Therefore, the input tensor after
the channel separation will not be compressed, but will be
expanded through the expansion layer. Expansion layer uses
1 x 1 network structure, the purpose of which is to map low-
dimensional space to high-dimensional space. The expansion
multiple can be set to achieve a balance between the size of the
feature map and the amount of model parameters. After using
the depthwise convolution to extract the features, the feature
map is compressed through the compression layer using 1 x 1
network structure. Since the output of the activation function
relu for negative inputs is all zero, the conversion from high-
dimensional to low-dimensional, using the activation function
relu may cause information loss or destruction, so the relu
activation function is no longer used in the compression layer
but the linear activation function. Finally, the two branches
are connected and channel shuffle is used to realize the
information exchange between the two branches.

In order to avoid a large number of parameters brought
by the fully connected layer, the LNN model uses the global
average pooling (GAP) layer instead of the fully connected
layer to directly achieve dimensionality reduction. Besides,
the dropout approach is used to avert over fitting. As shown
in Table III, the number of different categories in the dataset
is unevenly distributed. In order to solve this problem, we
designed NID loss as a loss function for training in the
multi-classification task. In recent years, many successful loss
functions have been used to solve the problem of unbalanced
distribution of datasets for classification tasks [48], [49]. We
refer to the design of the Focal Loss to set different weights
oy, for the examples according to the amount of data. Focal
Loss is to solve the problem of sample imbalance in binary
classification task. In this paper, we extend it to our multi-
classification tasks. The calculation formula of the NID Loss
function is as follows:

NID(pn) = —an(1 — p,)? log(pn) (8)

where p,, is the model estimated probability for the class n.
[ is used to set the degree of loss value attenuation. The
higher the accuracy of the example, the more the loss value
attenuates. When 8 = 0 and «a,, = 1, NID loss is equivalent
to the standard cross entropy loss. Using NID loss function
for training can better learn those examples that are difficult
to train.

V. EXPERIMENTAL RESULTS

In this section, several stage experiments are designed to
evaluate the performance of the LNN-based NID method
for IoT on the UNSW-NB15 and Bot-IoT datasets. We use
the other two convolutional neural networks (i.e. CNN and
SNN) as comparison DL-based models, both of which have
the same number of layers as LNN model. The CNN model
uses standard convolutions (i.e. Conv1D) and the SNN model
uses some separable convolutions (i.e. S-Conv1D) for feature
extraction. The details of three DL models are shown in Table
IV. In order to conduct effective and accurate experimental

TABLE 1V
THE DETAILS OF THREE DL-BASED MODELS.
Layer CNN SNN LNN
Input Input Input Input
Laver] ConvlD ConvlD ConvlD
Y (163,1) | (163,1) | (163,1)
Laver2 ConvlD | S-ConvlD | L-UnitA
Y 64.32) | (6432 | (643.2)
Laver3 ConvlD | S-ConvlD | L-UnitB
Y 64.3,D) | (643D | (643,1)
Laverd ConvlD | S-ConvlD | L-UnitB
Y 643,1) | (643,1) | (643,1)
GlobalPool GAP GAP GAP
Output Output Output Output

We set similar filters and kernel size in the convolution of
the neural network, which is expressed as (filters, kernel
size, stride). The value of the filters of the lightweight unit
is the number of input channels for depthwise convolution.

evaluation, each model needs to be run 3 times on both datasets
to avoid randomness, and the average performance of the three
runs is considered the final result. The following three stage
experiments are conducted to verify the performance of the
LNN model.

o We evaluate the impact of different time lengths and PCA
methods on the performance of the model, and determine
the hyperparameter settings of the model.

o We compare the detection performance of various convo-
lutional neural networks and machine learning methods
(e.g., SVM, RF and MLP) on the binary classification
task. Moreover, to achieve better performance on multi-
classification tasks, we use NID Loss as the loss function
for training, and analyze the confusion matrices of the
classification results.

o To evaluate the lightweight performance of the LNN
model, we compare the parameters, model complexity,
and model size of different DL models.

To make the experimental evaluation clearer, we introduce
the experimental environment and evaluation metrics as
follows.

1) Experimental Environment: All the evaluations are
conducted in Python 3.6 with the TensorFlow framework of
version 2.0.1 and running on the PC with Intel Core i5-
8259U@2.30 GHz, 16 GB RAM, and a 512G SSD. The
specific configuration and virtual machine implementation
environment are shown in Table V.

2) Evaluation Metrics: The parameters and related calcula-
tion methods used in the evaluation are shown below, where T},
is a true positive example, T;, is a true negative example, F), is
a false positive example, and F), is a false negative example.
Based on the above definition, Accuracy, Recall, Precision and
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TABLE V
VIRTUAL MACHINE ENVIRONMENT.

Configuration Description

Ubuntu 18.04 Operating System
Python 3.6 Compiler Environment

Numpy 1.16.3 Extension Library

TensorFlow 2.0.1
Scikit-learn
Keras 2.3.1

Machine Learning Library
Machine Learning Library
Machine Learning Library

F'; can be obtained:

T, +1T,
Accuracy = d = 9
YT, YT, +F,+F, ®

T,
Recall = —2 10
eca T+ P, (10)
T,

Precision = —L2— (11D

T, + Fp

2Precision - 2T,

P = recision - Recall » (12)

(Precision + Recall) B 20, + F, + F,

A. Training Process of LNN Model

Before training the classifier, the raw traffic data is
preprocessed according to the steps in Section IV-B. We use
the binary cross-entropy as the loss function to train the binary
classification model and the NID Loss as the loss function to
train the multi-classification model. Since the traffic flow is a
sequence of packets from a source computer to a destination,
multiple continuous flows have more information to reflect the
characteristics of the flow at this stage. Thus, we take multiple
continuous flows as input features for intrusion detection.
The time length represents the number of multiple continuous
flows. In addition, the PCA method can reduce the feature
dimension and improve the performance of the classifier. In
the first stage experiment, we evaluate the impact of time
length and PCA method on the classification performance of
the multi-classification model.

We vary the value of time length in the set
{1,2,3,4,5,6,7,8,9,10,11,12} and check the corresponding
multi-classification accuracy on UNSW-NB15 and Bot-IoT
datasets. The results are illustrated in Fig. 4. The LNN model
achieves the best performance on the UNSW-NB15 dataset
when time length is 8 and on the Bot-IoT dataset when time
length is 4. Moreover, a dropping trend on both datasets is
present as time length increases. For larger time length, LNN
basically has no improvement in classification performance
and becomes more difficult to train due to large amount of
parameters. In addition, it can be seen that the PCA method
significantly improves the classification performance of the
model. The PCA method maps the raw traffic features from
high-dimensional to low-dimensional not only greatly reduces
the feature dimensionality, but also enables the classifier to
extract features more effectively due to the optimized feature
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2 4 6 8 10 12
Time Length

(a) Multi-classification accuracy on the UNSW-NB15 dataset.
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(b) Multi-classification accuracy on the Bot-IoT dataset.

Fig. 4. Impact of time length and PCA method.

representation. We will use the optimum hyperparameters of
the LNN model in this stage for subsequent experiments.
The training accuracy and loss of the LNN model on the
UNSW-NBI15 and Bot-IoT datasets are shown in Fig. 5. It can
be seen that the loss value of each epoch gradually decreases,
and finally converges to close to zero. The UNSW-NBI5
dataset has more attack scenarios, so the accuracy of the multi-
classification model on the UNSW-NB15 dataset is lower than
that of the Bot-IoT dataset. However, as a multi-classification
model, its accuracy has been very satisfactory. Thus it could be
concluded that due to the excellent network structure design,
the LNN model can be effectively trained on both datasets and
learn the characteristics of traffic in different scenarios well.

B. Classification Performance of LNN Model

As a misuse detection method for NID in IoT network,
the LNN model is trained on benign and malicious traffic
samples. Specifically, on the binary classification task, our
model can detect normal and malicious traffic, and on the
multi-classification task, our model can classify the traffic of
normal and specific attack scenarios.

The binary classification task is the basic task of the NID
model, which is to distinguish between normal traffic and
malicious traffic. It is important to timely and accurately detect
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Fig. 5. Train accuracy and loss of LNN model on two datasets.

malicious traffic in the IoT network. In this stage experiment,
we first analyze the binary classification results of the LNN
model, and then compare the performance of different models
in the binary classification task. The confusion matrices of the
binary classification results of the LNN model are shown in
Fig. 6. Observe that our approach produces perfect results in
the binary classification task, even where the normal samples
in the BoT-IoT training dataset is very few, the LNN model
can still correctly classify the [oT network traffic.

In addition, we also compare the detailed performance
of various deep learning and machine learning methods
such as SVM, RF and MLP. For the binary classification
task, besides accuracy, we also evaluate the F} of the
classification result. Since there are very few normal samples
in the Bot-IoT dataset, we use macro-F} (i.e., the F} of
all categories is directly averaged regardless of the number
of samples) for evaluation. Table VI shows the detailed
performance of each binary classification model. Experimental
results show that the three DL models (i.e. CNN, SNN and
LNN) achieve high binary classification accuracy and macro-
F1. However, machine learning models have not achieved
satisfactory detection performance due to insufficient feature
extraction capabilities. The F) of the proposed LNN model
is higher than other DL models on both datasets, and is
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0.6

r0.4
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Normal Attack
(a) The confusion matrix on the UNSW-NB15 dataset.
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(b) The confusion matrix on the Bot-IoT dataset.

Fig. 6. The confusion matrices of LNN model in the binary classification.

more than 10% higher than traditional ML models. The
excellent detection performance of the LNN model shows
that the lightweight unit of LNN can extract traffic features
more effectively than standard convolution and separable
convolution. In addition, it can be seen that the PCA method
can also improve the detection performance of the classifier.
Since traditional ML algorithms have not achieved satisfactory
detection performance, we will only evaluate neural network
models in subsequent experiments.

Previous experimental results show that DL-based methods
can obtain satisfactory detection performance in binary
classification tasks. However, due to the similarity of some
attacks and the uneven distribution of samples in the
training dataset, accurate classification of different attacks
has always been a challenge in intrusion detection research.
To comprehensively evaluate the performance of different
multi-classification DL models, we compare the classification
accuracy, macro-F; and weighted-F; of CNN, SNN and LNN
methods on the UNSW-NB15 and Bot-IoT datasets. In the
calculation process, weighted-F; performs a weighted average
according to the number of samples of each traffic type, and
macro-F} directly averages the Fj of each traffic type. In
the evaluation experiment of multi-classification performance,
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TABLE VII
COMPARISON OF LNN WITH DEEP LEARNING MODELS IN THE MULTI-CLASSIFICATION.

UNSW-NB15 Bot-IoT
Model
Acc. Weighted-F;  Macro-F; Acc. Weighted-F;  Macro-F;
CNN 85.19% 83.86% 43.70% 94.14% 94.09% 90.61%
SNN 82.55% 82.17% 39.34% 91.40% 91.26% 86.26%
LNN 85.97% 84.37% 44.60% 95.83% 95.81% 90.41%
LNN with NID Loss 86.11% 87.02% 54.66 % 96.15% 96.14% 96.68 %

TABLE VI
COMPARISON OF LNN WITH MACHINE LEARNING AND DEEP LEARNING
MODELS IN THE BINARY CLASSIFICATION.

Model UNSW-NB15 Bot-IoT
Acc. Fy Acc. Fi

SVM 80.97% 79.40% 99.66% 61.69%
RF 85.41% 84.66% 99.95% 84.02%
MLP 82.87% 81.68% 9997% 87.34%
CNN w/o PCA  96.93% 96.88% 99.98% 92.51%
SNN w/o PCA  9536% 95.26% 99.97% 90.11%
LNN w/o PCA  97.56% 97.52% 99.99% 95.30%
CNN 98.28%  98.26% 99.98%  94.05%
SNN 96.34% 96.28% 99.98%  90.56%
LNN 98.94% 98.93% 99.99% 98.81%

we run the model on the testing dataset and evaluate the
performance of the model in classifying the traffic of normal
and specific attack scenarios. The evaluation results are
reported in Table VII. It can be seen that LNN with NID
Loss achieves the best performance in both two datasets in
terms of all evaluation metrics. We can observe that DL
models with standard cross-entropy loss cannot pay attention
to categories with a small number of samples, which leads to
the classification results of the model with high accuracy but
low macro-F}. In addition, due to the structural limitation of
separable convolution, the classification performance of SNN
in all tasks is not as good as other DL models. Benefiting
from the sophisticated feature extraction unit structure, the
LNN model can achieve classification performance close to
that of the CNN model, and even outperforms CNN in
many evaluation metrics. Furthermore, since NID Loss pays
more attention to categories with the samples difficult for
classification, the macro-F; of the LNN with NID Loss
improves significantly.

To further investigate the specific classification of different
types of data by the model, we analyze the confusion matrices
of the LNN model with the standard cross entropy loss
function and the NID loss function. As shown in Fig. 7, LNN
model with NID Loss pays more attention to training the
hard samples and achieves better performance. On the UNSW-
NB15 dataset, it can be seen from Fig. 7(a) that the LNN
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Fig. 7. The confusion matrices of LNN with the standard cross entropy loss
and NID loss in the multi-classification.

model with cross entropy loss predicts many attack categories
as ‘Exploits’ attacks. These misclassifications are due to the
similarity of these attacks and the lack of attention to difficult
samples by the classifier. Compared with LNN using standard
cross entropy loss, we observe that the accuracies in “Worms’,
‘Shellcode’ and ‘Dos’ are improved 46%, 40% and 37% by
NID Loss, for the other classes are improved 1% up to 5%.
On the Bot-IoT dataset, NID Loss significantly improves the
classification performance of ‘Normal’ and ‘Theft’ scenes.
However, Dos and DDos are both a type of denial of
service attack, so even the LNN model with NID Loss has
some confusion in the traffic of these two attack scenarios.
Obviously, our NID Loss can enhance the performance of the
LNN model in multi-class intrusion detection. Experimental
results show that our proposed model is more suitable for
deployment in IoT devices due to its lightweight performance,
and it has high accuracy in detecting various attacks to ensure
system security.
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TABLE VIII
COMPUTATIONAL COST AND MODEL SIZE.

Model UNSW-NBI5 Bot-IoT
Parameters FLOPs Model Size Parameters FLOPs Model Size
CNN w/o PCA 37,914 374,204 496kB 29,669 123,742 401kB
SNN wio PCA 19,914 (325.?1’820(/)1) (4%.912 31?/1) 11,669 (SZ.ligi/i) (51?§;<‘£¢)
LNNwoPCA B0 i) iy 5™ osamy e
CNN 29,946 (32:%7702) (1:(.)9251(6711) 28,901 (2%977’572?) (23331157’?@
SNN 11,946 (713.?5702) (5;989;‘2@ 10901 (62?1’290/1) (55366 11(‘3/1)
LNN 5,082 (8451.91"1“573@ (6}.96091{‘;:@ 4277 (8(2).36’3‘67:1) (Sﬂltﬁk"/lji)

C. Lightweight Performance of LNN Model

Our method aims not only to achieve excellent classification
performance, but also focuses on lightweight performance
for better deployment in IoT devices. Since the IoT
devices usually have limited computing capabilities and
communication resources, we conduct experiments to compare
the model complexity and model size of different DL-based
models. The model complexity is evaluated by floating point
operations (FLOPs), which counts the amount of calculation of
the model. In addition, due to the different number of features
in data of UNSW-NB15 and Bot-IoT datasets, the lightweight
performance of the model is evaluated on the two datasets.

We can see from Table VIII that our proposed model has
the minimal FLOPs on both datasets. Compared with the
CNN w/o PCA model, the complexity of the LNN model
is reduced by 84.11% on the UNSW-NBI15 dataset and
80.63% on the Bot-IoT dataset. Our proposed method also
has the smallest model size, which can effectively reduce the
occupancy of the limited storage space of the IoT device.
Moreover, benefiting from the use of the PCA algorithm in the
data preprocessing stage, model complexity and model size are
further reduced. Especially for the LNN model on the UNSW-
NBI15 dataset, compared with the LNN w/o PCA model, the
model complexity and model size are reduced by 68.20% and
32.86% respectively. Thus, it could be concluded that both
lightweight feature extraction network and PCA contribute to
the lightweight performance of LNN to a considerable extent,
and our method provides a lightweight NID solution for IoT.

VI. CONCLUSION

operation to achieve more effective feature extraction. For
the multi-classification task, we train our model through NID
Loss, which can pay more attention to difficult samples and
deal with the problem of uneven distribution of samples. The
experimental results show that our proposed model not only
has excellent performance in intrusion detection, but also can
substantially reduce computational cost and model size. Our
method can therefore provide a feasible solution for intrusion
detection in IoT devices.

In future research, we will focus on the actual deployment
of intrusion detection methods and carry out real world
experiments in IoT devices. In addition, we will conduct
research on intrusion detection datasets. We plan to build an
intrusion detection dataset that is close to the actual situation
in terms of attack types and methods.
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