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Abstract—As exploitation of low and medium airspace for
air traffic management (ATM) is gaining more attention, aerial
vehicles’ security issues pose a major challenge to the Air-Ground
Integrated Vehicle Networks (AGIVN). Traditional surveillance
technology lacks the capacity to support the intensive air traffic
management (ATM) of the future. Therefore, an advanced
automatic dependent surveillance-broadcast (ADS-B) technique
is applied to track and monitor aerial vehicles in a more
effective manner. In this paper, we propose a grouping-based
conflict detection algorithm based on the preprocessed ADS-
B dataset, and analyze the experimental results and visualize
the detected conflicts. Then, in order to further improve flight
safety and conflict detection, the trajectories of the aerial vehicles
are predicted based on machine learning-based algorithms. The
results are fed into the conflict detection algorithm to execute
conflict prediction. It was shown that the trajectory prediction
model using long short-term memory (LSTM) can achieve better
prediction performance, especially when predicting the long-
term trajectory of aerial vehicles. And the conflict detection
results based on the trajectory prediction methods show that the
proposed scheme can make it possible to detect whether there
would be conflicts within seconds.

Index Terms—Conflict detection, automatic dependent
surveillance-broadcast (ADS-B), trajectory prediction, machine
learning, aerial vehicle.

I. INTRODUCTION

Future sixth-generation wireless network outlines a cellular-
free multi-layer network that integrates space, air, ground and
underwater communications [1]. Internet of aerial vehicles
plays a role in air communications. Compared with space
and underwater communications, it shows flexibility in
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deployment, scheduling and maintenance. Hence, Internet of
aerial vehicles is an important part of future Internet of
everything (IoE), and new applications of air-ground integrated
vehicular networks (AGIVN) can provide golden opportunities
for traditional and emerging enterprises.

With the opening of low-altitude airspace, AGIVN cov-
ering drones, helicopters, and unmanned free balloons are
developing rapidly [2]–[4]. As a result, the low and medium
airspaces are becoming crowded, and security pose higher
requirements for the AGIVN. According to civil aviation
administration of China, more than 90% of accidents have
occurred at low altitudes since the 21st century. Therefore,
new techniques need be utilized to reduce probability of aerial
vehicles collisions [5].

Traditional surveillance technologies, such as primary
surveillance radars and secondary surveillance radars [6]–[8],
have obvious technical limitations in meeting requirements
of future dense air traffic management (ATM) such as high
operating costs, limited coverage, and relatively low accuracy
of tracking [9]–[11]. To address these challenges, an automatic
dependent surveillance-broadcast (ADS-B) technique has been
proposed to enhance the surveillance architecture [12]–[14].
In the future AGIVN and IoE, the ADS-B technique can
play an important role to facilitate the management of aerial
resources in an intelligent manner [15]. Traditional conflict
detection and collision avoidance algorithms often rely on
collaborative systems (e.g., traffic collision avoidance system
(TCAS) [16]), or non-cooperative systems (e.g., stand-alone
photoelectric sensors and airborne radars used for obstacle
detection [17]). However, information provided by the TCAS
and radars is generally two-dimensional and the maintenance
cost is relatively high [18], [19]. Nevertheless, ADS-B
messages obtained from the distributed ADS-B stations can
provide a wealth of aerial vehicles-related information, and
the maintenance cost of the ADS-B stations is much lower.

To determine whether there is a conflict alarm between
arbitrary two aerial vehicles. G. Xiao et al. [20] divided the
space around an aerial vehicle into four quadrants. Based
on the four quadrants, the relative position, speed, and angle
are compared with other aerial vehicles to determine whether
there exists conflicts. B. Zhou et al. divided the three-
dimensional area centered on the evaluated aerial vehicle into
26 areas, including 8 hexagram areas, 6 axial areas, and
12 quadrant areas [21]. The correlation between an invading
aerial vehicle and the evaluated aerial vehicle is determined
by the area where the invading aerial vehicle is located.
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However, the position of the aerial vehicle is time-varying
and dynamic, making the relative relationship between the
invading aerial vehicle and the evaluated aerial vehicle also
dynamic. Therefore, these algorithms using segmented areas
to detect aerial vehicles conflicts are generally not real-time.
In order to solve the above problems, an ADS-B based conflict
detection scheme using a grouping strategy is proposed in
this paper. The conflict detection algorithm is motivated by
the time axis mapping algorithm [22]. First, the route conflict
problem is converted into a three-dimensional coordinate (X,
Y, Z) conflict problem, and the conflict area of the three-
dimensional coordinate axis is uniformly mapped onto the time
axis. The route conflict of the two aerial vehicles is determined
by determining whether there is an intersection of the X,
Y, and Z axes at the same time period. Here, the grouping
strategy is utilized to divide multi-dimensional information
[23] (including longitude, latitude, altitude, ground speed,
vertical speed, heading angle, etc.) of all aerial vehicles at the
same time into multiple small groups. By using the multiple
small groups, the complexity and execution time of the conflict
detection system can be notably reduced.

Although an aerial vehicle has a flight plan in advance,
there could be a difference between the actual flight and the
plan, and the error can be about 7km [24]. Hence, an aerial
vehicle often fails to fly as scheduled, it often conflicts with
other aerial vehicles. Hence, although there is a flight plan, it
is still necessary to predict the trajectories of aerial vehicles.
In order to further improve the safety and advancement of the
conflict detection algorithm, this paper combines a long short-
term memory (LSTM) [25], [26] based trajectory prediction
method with the conflict prediction algorithm. In this way, the
predicted trajectory information can be used to make conflict
detection for future seconds, and can prepare for collision
avoidance in advance. The contributions of this paper can be
summarized as follows:

• A geometric model for detecting whether an aerial vehicle
is in conflict is constructed, and a grouping-based aerial
vehicle conflicts detection algorithm is proposed.

• To improve the safety of the conflict detection algorithm,
it is combined with three machine learning-based
methods, i.e., LSTM, convolutional neural networks
(CNN) and least square (LS), which are used and
compared in predicting the short-term and long-term
trajectories of the aerial vehicles.

• To address the real conflict situations, we discuss the
impact of the trajectory prediction accuracy on the
conflict prediction method.

II. METHODOLOGY

A. ATM System based on ADS-B Technique

Based on the ADS-B technique, parameters such as
an aerial vehicle’s position, heading angle, speed, and
identification signal can be automatically obtained from related
equipment without manual operation. The ADS-B messages
are broadcasted to other aerial vehicles and ground stations.
Hence, the air traffic controller (ATC) can better understand
the aerial space and monitor the aerial vehicles [14].

The ADS-B sub-system mainly consists of three parts,
namely information processing and display, information
transmission channel, and information staff [12]. There
are three main types of transmission methods for ADS-B
messages, which are as follows [27], [28]:

• VHF/UHF digital link mode, whose core technology is
the SOTDMA protocol;

• Universal access transceiver, which uses binary continu-
ous phase shift keying system;

• 1090 MHz S-mode extended Squitter, which uses
selective interrogation and two-way data communication.

The air traffic management (ATM) can benefit from the
ADS-B technique. The ATM generally adopts advanced
monitoring, communication, and navigation technologies to
dynamically monitor the aerial vehicles’ behavior, thereby
ensuring that the aerial vehicles can fly in an orderly and
safe manner [29]. The ATM system mainly focuses on vertical
and horizontal separations among aerial vehicles, and is
responsible for guiding, identifying, and monitoring the aerial
vehicles. The main components of the ATM system are ground
control center, navigation facilities, communication facilities,
and radar systems [10].

The ADS-B sub-system can be divided into ADS-B OUT
and ADS-B IN modes [30]–[32]. An aerial vehicle equipped
with ADS-B computer using onboard navigation receivers can
automatically determine its precise position information. The
ADS-B transmitter then broadcasts its location information
(using the ADS-B OUT mode) every half a second to
nearby aerial vehicles and terrestrial ADS-B receivers (i.e.,
surveillance stations). The ADS-B signal received by other
devices is termed as the ADS-B input signal (using the ADS-
B IN mode). On the other hand, the signal received by the
ground receiver will be transmitted to the ATC, so that the
ATC can understand the flight status of an aerial vehicle and
to better monitor it. In addition, the ADS-B receivers can be
connected to computers and cloud servers, which is promising
for researches in the field of AGIVN [33], [34].

B. Aerial Vehicles Conflict Detection

According to ATC regulations, the space around an aerial
vehicle is defined as collision avoidance area, and other aerial
vehicles are prohibited from entering. Otherwise, there will be
the possibility of collision, and collision avoidance measures
must be taken [14]. Since it is often impossible to take timely
collision avoidance measures in the collision avoidance area,
it is necessary to construct an additional protection area to
further improve flight safety and collision avoidance flexibility.

In this paper, an additional protection area is constructed
outside the collision avoidance area, which is specified by
ATC to enhance the collision avoidance performance. Hence,
the space around the aerial vehicle is divided into a collision
avoidance zone (CAZ) and a protection airspace zone (PAZ)
[22], which is shown in Fig. 1. The CAZ is a cylindrical
collision avoidance area stipulated by ATC, whose horizontal
radius is 9.26 kilometers and the height is 366 meters.
Since the ADS-B has a wide working range as large as 185
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Fig. 1. The space around an aerial vehicle is divided into protection airspace
zone and collision avoidance zone.

kilometers of radius, the PAZ is defined as a sphere with a
radius of 185 kilometers.

The judgment of route conflict is conducted as follows:
when an invading aerial vehicle enters the PAZ of the
monitored aerial vehicle, the route conflict detection is
triggered. If the invading aerial vehicle route enters the CAZ,
it is judged that there is a conflict between the invading aerial
vehicle and the target aerial vehicle.

C. Formulation of Aerial Vehicles Conflict Prediction

To execute the conflict detection algorithm, we need to
extract the input parameters of the conflict detection algorithm.
The work of predicting position and speed information of the
aerial vehicles in the future can make the conflict detection
and the collision avoidance preparation in advance, which
can further improve the safety of the future denser air traffic.
Before giving the definition of the input parameters, we first
define the position vector w, velocity v, and velocity vector s
as follows:

w = [w1, w2, w3] (1)

v = [v1, v2, v3] (2)

s = [vg, vs, θ] (3)

where w1, w2, w3 are the longitude, latitude, and altitude of
the aerial vehicles, respectively. v1, v2, v3 are the component
velocities of the aerial vehicles on the X-axis, Y-axis and
Z-axis, respectively. v

g
, v

s
, θ are the ground speed, vertical

speed, and heading angle of the aerial vehicles, respectively.
Hence, the input parameters of the conflict detection algorithm
can be defined as the vector x, namely:

x = [w, s] (4)

where w and s are the position vector and velocity vector of
the aircraft at a certain time.

As it is known, artificial intelligence (AI) plays an important
role in signal processing, and deep learning is the fastest
growing branch of AI [35]–[37]. The deep learning is playing

a significant part in many fields such as computer vision,
natural language recognition, edge computing, and wireless
communications [38]–[42]. Therefore, in this paper, we aim
to apply deep learning to conflict prediction algorithm.

The prediction model in this paper can be regarded as a
regression model. The data at time t is the input of the neural
network, and the predicted data at the next time is the output,
which can be formulated as follows:

I = y(x1, x2, · · · , xt) (5)

where xt is the input vector at time t, y is the function
performed by the layers of the neural network, and I is the
output vector, respectively.

III. PROPOSED GROUPING-BASED CONFLICT DETECTION
ALGORITHM

A. Acquisition of Wide-Area Surveillance Data

By connecting an ADS-B receiver to a personal computer,
ADS-B messages within a specific area can be obtained.
The distributed ADS-B surveillance station can work in a
cooperative manner to facilitate a wide-area conflict detection.
The ADS-B messages mainly contain 6 kinds of information,
which can be expressed as:

message = [w1, w2, w3, vg, θ, vs] (6)

where w1, w2, w3, vg, θ, vs denote the longitude, latitude,
altitude, ground speed, heading angle, and vertical speed of
the aerial vehicles, respectively.

In order to obtain the required wide-area surveillance
dataset, the ADS-B messages can be preprocessed as follows.

Data cleaning: Because the ADS-B messages is obtained by
the distributed surveillance stations, and contain flight status
information of multiple aerial vehicles at different time, we
need to filter the ADS-B messages according to time, and
divide the aerial vehicles at different regions and moments into
different groups. In addition, we need to remove duplicate data
which are introduced by multiple factors [43].

Data conversion: Because the latitude and longitude
information contained in the ADS-B messages cannot be
used directly in the proposed algorithm, we adopt the
World Geodetic System-1984 Coordinate System (WGS-84
coordinate system), and convert the latitude and longitude from
the geographic coordinate to the WGS-84, which is written as

[X,Y ] = f [w1, w2] (7)

Z = w3 (8)

where f is the conversion function from the geographic
coordinate to the projected coordinate, and X,Y, Z are the
coordinates of the aerial vehicles in the WGS-84 frame. In
addition, the proposed algorithm maps the sub-velocities and
position coordinates on the X, Y and Z axes to the time axis.
Therefore, the ground speed needs to be decomposed:

vx = vg ∗ cos(θ) (9)

vy = vg ∗ sin(θ) (10)

vz = vs (11)
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where vx, vy, vz are the partial speed of the aerial vehicles
on the X, Y, and Z coordinate axes, respectively. After data
pre-processing, the ADS-B messages can be standardized.

B. The Idea of Aerial Vehicles Grouping

If two aerial vehicles are far away, the probability of conflict
between the two vehicles is very low. Therefore, conflict
detection in this scenario is meaningless, and will reduce
the efficiency of the algorithm. This problem motivates us
to divide the entire space into different regions, and thus the
aerial vehicles can be grouped.

First, considering the location of arbitrary two airports P
and Q, we construct a rectangular route area as shown in Fig.
2. Then we filter out all the aerial vehicles in the rectangular
route area, and build a small rectangle area P1 at the bottom of
the large rectangular area, and areas P2, P3, P4 are sequentially
built along the boundary of the large rectangle.

Notice that the grouping method will make the next small
rectangle overlap with the previous small rectangle. The
overlap areas are denoted as Q1, Q2, and Q3 in Fig. 2 (the
shaded parts). In this way, the aerial vehicles at the edges of
the small rectangles will be detected without omission.

Fig. 2. The overall aerial vehicles are grouped to form several small aerial
vehicle groups.

C. Conflict Detection Based on Aerial Vehicles Grouping

We assume that the target aerial vehicle is A and the
intruding aerial vehicle is B, and the projected coordinate of
A is (XA, YA, ZA), and the velocity is (VxA, VyA, VzA). The
projected coordinate of B is (XB , YB , ZB), and the velocity
is (VxB , VyB , VzB). Assuming a threshold u, the conflict
between A and B can be understood as the distance between
them is less than u, hence there is a conflict. Specifically,
the judgement of the conflict between A and B are based on
certain conditions, namely, there exists a certain area in the
route that occurs conflicts on the X, Y, and Z axes at the same
time [22], which is expressed as

|XA −XB | < Tha (12)

|YA − YB | < Thb (13)

|ZA − ZB | < Thc (14)

where XA, XB , YA, YB , ZA, ZB represent the distance
coordinates (in kilometers) on the X, Y, and Z axes,
respectively. Tha, Thb, Thc represent the threshold distance
(in kilometers).

By mapping the conflict area on the coordinate axis to
the time axis, the above three formulas are converted into

conflict time periods [tX1, tX2], [tY 1, tY 2] and [tZ1, tZ2]. The
existence of a conflict is determined by judging whether there
is an intersection between the three conflicting time periods.
Since the detection algorithms for the X, Y, and Z axis
directions are similar, the X axis is used as an example to
illustrate the aerial vehicle route conflict detection algorithm,
and the direction of the speed is the positive direction of the
X axis.

When XA > XB , VxA > VxB or XA < XB , VxA < VxB ,
the distance between the two aerial vehicles on the X axis will
increase.

When XA > XB , VxA < VxB or XA < XB , VxA > VxB ,
the distance between the two aerial vehicles on the X axis will
decrease.

In general, when (XA−XB)(VxA−VxB) > 0, the distance
between the two aerial vehicles on the X axis will increase;
when (XA−XB)(VxA−VxB) < 0, the distance will decrease.
Otherwise, the distance will not change.

The following 5 cases can be obtained [22]:
Case 1: If (XA−XB)(VxA−VxB) ≥ 0, |XA−XB | ≥ Tha,

it indicates there is no conflict.
Case 2: If (XA−XB)(VxA−VxB) = 0, |XA−XB | < Tha,

it indicates a conflict, and the conflict period is [tX1, tX2] =
[0,+∞].

Case 3: If (XA−XB)(VxA−VxB) > 0, |XA−XB | < Tha,
it indicates a conflict, and the conflict period is [tX1, tX2] =
[0, (Tha − |XA −XB |)/|VxA − VxB |].

Case 4: If (XA−XB)(VxA−VxB) < 0, |XA−XB | < Tha,
it indicates a conflict, and the conflict period is [tX1, tX2] =
[0, (Tha + |XA −XB |)/|VxA − VxB |].

Case 5: If (XA−XB)(VxA−VxB) < 0, |XA−XB | ≥ Tha,
it indicates a conflict, and the conflict period is [tX1, tX2] =
[(Tha − |XA −XB |)/|VxA − VxB |, (Tha + |XA −XB |)/|VxA − VxB |].

The above cases show the conflict situations between
the two aerial vehicles in the X-axis direction. Similarly,
the conflict situations in the Y-axis and Z-axis directions
and the conflict time periods can be obtained. The part
outside the virtual box in Fig. 3 shows the flowchart of the
conflict detection algorithm between two aerial vehicles in the
protected area.

If there is a conflict in the protection airspace zone, it is
necessary to detect the conflict in the collision avoidance zone
[22] which is set as

Th2a <

(
(VxA − VxB)(t1 + t2)

2
+XA −XB

)2

+

(
(VyA − VyB)(t1 + t2)

2
+ YA − YB

)2
(15)

If the above formula does not hold, it indicates that there
is a conflict between the invading aerial vehicle and the
target aerial vehicle. Hence, all the conflict cases have been
discussed.

IV. PROPOSED LSTM-BASED CONFLICT PREDICTION
METHOD

Recurrent neural network (RNN) is one of the most
important branches of deep learning [44]–[46]. The RNNs can
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Fig. 3. Flowchart of the proposed conflict prediction algorithm based on
trajectory prediction.

deal with sequence processing, and have been widely used
in speech recognition, natural language processing, and other
fields. The back-propagation through time (BPTT) algorithm is
a commonly used method for training the RNNs [45]. The idea
is to continuously find a better point along the direction of the
negative gradient, and the parameters are updated periodically
until convergence.

The problem of gradient disappearance can easily occur
when using the BPTT, which is particularly serious when
the sequence is relatively long. Therefore, a special case of
the RNN, namely LSTM, can be adopted [47]. The LSTM
introduces the concept of cell states, and uses three gates
named input gate, forget gate, and output gate to maintain
and control information passing and parameter update [48],
[49]. In this paper, we utilize an architecture that combines
the LSTM with fully-connected layers [50], as shown in Fig.

4. In Fig. 4, X and Y represent input and output, respectively,
where the subscripts t, t+1, · · · , t+N−1 and t+N , t+N−1,
· · · , t+2N − 1 represent N times (the sampling interval is 1
second), respectively.

Xt+1

Input

Xt+2

Xt+3

Xt

Xt+N-1

LSTM 

Layer

LSTM

Unit

LSTM

Unit

LSTM

Unit

LSTM

Unit

LSTM

Unit

Output

Yt+N

50

Fully 

Connected

Yt+N+1

Yt+N+2

Yt+N+3

Yt+2N-1

Fig. 4. Trajectory prediction model using LSTM and fully-connected layers.

Algorithm 1 The trajectory prediction algorithm of LSTM-
based.
Input: Real ADS-B data sets of aerial vehicles D =
{d1, d2, . . . , dN}, time step t, lag time τ ;

Output: Predicted ADS-B data sets of aerial vehicles D̂;
1: Standardize the data sets;
2: Transform the standardized time series data sets D into

the supervised learning data sets DSL;
3: for i in 1, 2, 3, · · · , N − t do
4: D

′

input = {di, di+1, · · · , di+t−1};
5: D

′

output = di+t−1+τ ;
6: Ai=data splicing(D

′

input, D
′

output);
7: end for
8: DSL=ensemble(A1, A2, · · · , AN−t);
9: Design the LSTM network, then train and test the

supervised learning data sets DSL;
10: Adjust the network parameters, select the LSTM network

with the best performance, and get the corresponding
predicted data sets D̂ with the best performance;

11: return D̂.

As explained in Section III, ADS-B messages have been
preprocessed to form a dataset, and the input sequences can
meet the requirement proposed by the LSTM-based neural
network after data cleaning and conversion. The grouped
longitude, latitude, altitude, ground speed, vertical speed, and
heading angle information of multiple consecutive moments in
the dataset are sequentially put into the network for training
and testing. Through Algorithm 1, we obtain the trajectory
information of aerial vehicles at the future time. As a result,



IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, MONTH 2021 6

the future flight states predicted by the network can be fed
into the conflict detection algorithm. Hence, we can predict
the conflict situation for the future minutes, and we term the
revised algorithm as LSTM-based conflict prediction method.
After obtaining the predicted trajectory of each aerial vehicle,
we arrange the predicted trajectories in time sequence through
data splicing, and finally input the processed dataset into the
grouping-based aerial vehicle conflict detection algorithm, as
shown in Fig. 3.

V. PROPOSED CNN-BASED CONFLICT PREDICTION
METHOD

Convolutional Neural Networks (CNN) is a type of feedfor-
ward neural networks that includes convolution calculations
and has a deep structure [51]–[53]. In addition, CNN can also
perform time series prediction tasks [54]. Hence, a CNN-based
method can be also adopted for the trajectory prediction task
as a comparison in this paper.

The CNN-based trajectory prediction method is generally
similar to the LSTM-based method. The compared structure
of the CNN-based method is shown in Fig. 5. The execution
process of the compared CNN algorithm is shown in
Algorithm 2. ADS-B messages of each aerial vehicle can
be obtained through the local ADS-B receiver, and the
preprocessed and standardized datasets are fed into the
CNN network. As shown in Fig.5, the datasets successively
go through the convolution operation of the convolutional
layer, the maximum pooling of the pooling layer, and the
dimensional transformation of the fully-connected layer [55]–
[57]. Hence, the predicted trajectories of aerial vehicles can be
obtained and finally fed into the grouping-based aerial vehicle
conflict detection algorithm.

Convolution1D

Relu

Max Pooling

Convolution1D

Relu

Max Pooling

CNN

Preprocessed and 

standardized data Predicted 

trajectory

Dense

Data cleaning

Data conversion

Data grouping

Obtain ADS-B 

messages of aerial 

vehicles

Fig. 5. Structure of the CNN-based network.

VI. PROPOSED LS-BASED CONFLICT PREDICTION
METHOD

In a short period, it can be assumed that the trajectory of the
aerial vehicles changes linearly, and least square (LS) method
is a typical linear regression model. Therefore, this paper also
adopts the LS-based method for the trajectory prediction task,
which is convenient to make a comparison with the LSTM-
based and CNN-based schemes. The principle of the LS-based

Algorithm 2 The trajectory prediction algorithm of CNN-
based.
Input: Real ADS-B data sets of aerial vehicles D;
Output: Predicted ADS-B data sets of aerial vehicles D̂;
1: Divide randomly the mixed samples D into training

samples and validation samples by 7 : 3;
2: Construct CNN network according to Fig. 5 and choose

adaptive moment estimation (Adam) and mean absolute
error (MAE) as optimizer and loss function respectively;

3: Train CNN to minimize loss function;
4: Adjust the network parameters, select the CNN network

with the best performance, and get the corresponding
predicted data sets D̂ with the best performance;

5: return D̂.

method is to construct a suitable estimator so that the residual
sum of squares (RSS) is minimized [58], as shown below:{

N∑
i=1

ri
2

}
min

=

{
N∑
i=1

[f(xi;α1, α2, · · · , αn)− yi]2
}

min
(16)

where
∑N
i=1 ri

2 represents RSS, α1, α2, · · · , αn represent
n unknown estimators, f(xi;α1, α2, · · · , αn) is the pre-
dicted value of x1, x2, · · · , xN at N different points, and
y1, y2, · · · , yN are the actual values of x1, x2, · · · , xN at N
different points.

Algorithm 3 The trajectory prediction algorithm of LS-based.
Input: Real ADS-B data sets of aerial vehicles D =
{d1, d2, · · · , dN}, time step t, lag time τ ;

Output: Predicted ADS-B data sets of aerial vehicles D̂;
1: for i in 1, 2, 3, . . . , N − t do
2: data = {di, di+1, · · · , di+t−1};
3: time = {i, i+ 1, · · · , i+ t− 1};
4: The curve equation data = f(time) is obtained by data

fitting;
5: ˆdatai+t−1+τ = f(i+ t− 1 + τ);
6: end for
7: D̂ = ensemble( ˆdatat+τ , ˆdatat+τ+1, · · · , ˆdataN−1+τ );
8: return D̂.

The LS-based method is effective in curve fitting problems.
The fitted curve obtained by the LS method can reflect the
overall distribution of the data without causing large local
fluctuations, and can also reflect the characteristics of the
approximated function. The execution process of the proposed
LS algorithm is shown in Algorithm 3. Unlike the LSTM-
based and the CNN-based methods, the LS-based method
proposed in this paper executes segmented prediction, namely,
it periodically refits a curve with the previous N seconds data
to predict the next second data. For example, we use the actual
data at time 0 to time t to fit the curve; and according to the
fitted curve, we can predict the data at time t + 1; then we
use the actual data at time 1 to time t+ 1 to predict the data
at time t+2 based on the fitted curve, and so on. Finally, the
predicted data are compared with the actual data to analyze
the performance.
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VII. EXPERIMENTAL RESULTS

In this section, performance of the group-based conflict
detection algorithm is evaluated. The trajectory prediction
algorithms of LSTM-based, CNN-based and LS-based meth-
ods are trained, respectively. Then the three aerial vehicles
trajectory prediction models are compared in terms of
prediction accuracy. We finally discuss the impact of the
trajectory prediction accuracy on the conflict prediction.

A. Results of Route Conflict Detection Algorithm Based on
Grouping

In this experiment, since the CAZ is a cylindrical collision
avoidance area stipulated by ATC (see Fig. 1), we set its
horizontal radius as 9.26 km and its height as 366 meters.
Accordingly, we set Tha = 9.26 km, Thb = 9.26 km,
Thc = 0.366 km in (12)∼(14). Fig. 6 shows a deployment of
the ADS-B-based ground station. The ADS-B omnidirectional
antenna is directly connected to the ground monitoring station,
and continuously receives ADS-B messages from flight within
a diameter of 300 kilometers, which are saved to our computer
to facilitate our data processing.

Omni

antenna

Surveillance

station

WLAN Data center

Display

Fig. 6. Deployment of the ADS-B-based ground station.

In this experiment, we adopted our ADS-B platform to
obtain all aerial vehicles surveillance information on July
10 of the year 2019. Using the surveillance information, we
conducted the conflict detection experiment on 510,000 flight
items from 12:00 pm to 1:00 am. Fig. 7 shows the route
between Liaocheng and Tangshan at 00:00:10 on July 10. The
blue aircrafts represent the conflict-free aerial vehicles. The
red aircrafts represent aerial vehicles with conflict warning.

By using the grouping-based conflict detection algorithm,
we conducted a conflict detection experiment on the 510,000
items of ADS-B messages from 12:00 pm to 1:00 am. As
can be seen from Fig. 7, our experiment based on real-world
ADS-B messages can realize the detection and visualization
of aerial vehicles conflicts. Since the entire route area is
divided into small areas, the burden of calculation can be
significantly reduced, and thus the aerial vehicle conflicts can
be detected and warned in a real-time manner. Fig. 8 shows
the percentage of aerial vehicles conflicts in the total number
of aerial vehicles. It is calculated that the average conflict
probability in every second is approximately 0.383%.

Fig. 7. Visualization of route conflict from Liaocheng city to Tangshan city.
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Fig. 8. Aerial vehicle conflicts per second as a percentage of the total number
of aerial vehicles.
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B. Results of the LSTM-based, CNN-based and LS-based
Predictors

Before training the predictor based on the LSTM model, the
dataset is divided into multiple datasets according to longitude,
latitude, altitude, ground speed, vertical speed, and heading
angle. Preprocess of the dataset before training is conducted
as follows. Since we use the first n seconds of data to predict
the data at t seconds (t > n), the data in a period of n seconds
and the data after t seconds are bundled into a group. In order
to ensure the fairness of the experiment, the input sequences
of the CNN-based and the LS-based methods are the same as
that of the LSTM-based scheme, including the same length
and prediction conditions.

1) Short-term Prediction: In the short-term prediction
experiment, we use the flight information of the first 16
seconds to predict the flight information of the next second.
First, the items of the dataset are bundled into groups. Then the
processed dataset is divided into training set and testing set.
Finally, the longitude, latitude, altitude, ground speed, vertical
speed, and heading angle data are fed into the LSTM-based
model for training and testing, respectively. In this paper, we
use root mean squared error (RMSE) to evaluate the prediction
performance, which is formulated as follows:

RMSE =

√√√√ 1

N

N∑
t=1

(yt − ŷt)2 (17)

where N is the total number of samples; yt is the true values;
ŷt is the predicted values. Results of the LSTM-based, CNN-
based and LS-based short-term prediction are depicted in Fig.
9. The light blue line, green line, and red line represent the
predicted values of the LS-based, CNN-based, and LSTM-
based methods, respectively. The dark blue line represents the
true values.

2) Long-term Prediction: Because the LSTM units are
good at dealing with long-term memory, we evaluate the
performance of the LSTM-based scheme in terms of making
long-term prediction [47]. In this experiment, the flight
information of the aerial vehicles in a period of 16 seconds
(e.g., from the 10th second to the 25th second) is used
to predict the flight information after 40 seconds (e.g., the
65th second). We term this task as mid-term prediction.
In addition, in order to enable the conflict alert can be
triggered several minutes in advance, we evaluate minute-level
trajectory predictions of aerial vehicles. In this section, the
flight information of aerial vehicles in a period of 60 seconds
(e.g., from the 1st second to the 60th second) is used to predict
the flight information after 60 seconds (e.g., the 120th second).
We term this task as long-term prediction. Experiments are
also conducted by the CNN-based and LS-based methods.
Results of the LSTM-based, CNN-based and LS-based mid-
term predictions are shown in Fig. 10. And results of the long-
term prediction are shown in Fig. 11.

3) Analysis: RMSE scores of the three different predictors
are listed in Table I. It can be seen that the deep-learning-based
prediction models (i.e., LSTM, CNN) show better prediction
performance than the utilized traditional machine learning
model (i.e., LS). Specifically, the scores of the LSTM-based

predictor are generally smaller than the CNN-based and LS-
based predictors. However, in order to reach convergence
point, the LSTM-based model requires more training time
(6,000 iterations), while the CNN-based model requires 1,000
iterations and the LS-based model only takes a few seconds.
It can be concluded that the LSTM-based predictor obtains
better accuracy at the expense of adequate training.

In detail, the short-term prediction experiment shows that
the LSTM-based, CNN-based and LS-based methods can
predict the trajectories of the aerial vehicles with relatively low
errors. The RMSE scores for the six metrics have differences,
however, the prediction performance of LSTM-based is the
best of the three methods. On the other hand, compared with
the short-term prediction, the mid-term prediction experiment
shows that the prediction errors increased. In addition, in terms
of the long-term prediction tasks, when selected prediction
time steps increase (from 40 seconds to 60 seconds), the
three prediction models (especially the LSTM-based model)
make their prediction errors generally lower than the mid-
term prediction tasks by increasing the length of their input
sequences (from 16 seconds to 60 seconds). Meanwhile, the
prediction errors of the CNN-based and LS-based methods
are much larger than that of the LSTM-based model, which
demonstrates the effectiveness of LSTM units when dealing
with the long-term prediction tasks.

C. Conflict detection of aerial vehicles based on trajectory
prediction

In this section, we use LSTM to conduct conflict detection
experiments on the predicted values of aerial vehicles
trajectories. The datasets we use here are also the ADS-
B data we collected from 12:00 pm to 1:00 am on July
10, 2019. We used the trajectory information of each aerial
vehicle every 16 seconds to predict the trajectory information
of the next second. Finally, the predicted aerial vehicle
trajectory information from 12:00 pm to 1:00 am formed
approximately 500,000 items. Using the proposed grouping-
based conflict detection algorithm, we conducted conflict
detection experiments on the 500,000 items. The experimental
results are as depicted in Fig. 12∼13.

Fig. 12 shows the percentage of conflicting aerial vehicles
in the total number of aerial vehicles. The calculation results
show that by using the trajectory prediction method, the
average probability of detected conflicts per second is about
0.290%. Fig. 13 compares the difference between the number
of detected conflicts and the number of predicted conflicts.
Compared with the average conflict probability of 0.383%
obtained by using the actual trajectories, the average conflict
probability based on the predicted trajectories is slightly lower.
It is inferred that the predicted trajectories could be more
ideal, while the real trajectories have sudden variations. We
also calculated the RMSE score for evaluating the defect
when using the predicted trajectories, and the RMSE score
was 0.8610. In fact, there could be an error in the trajectory
information obtained from ADS-B receiver, but the error can
be usually about 100 meters [24], which has little impact
on the trajectory prediction tasks. If transmission process of
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Fig. 9. Predicted short-term trajectories by using the LSTM-based, CNN-based and LS-based predictors.

TABLE I
PERFORMANCE COMPARISON OF THE LSTM-BASED, CNN-BASED AND LS-BASED SHORT-TERM, MID-TERM, LONG-TERM PREDICTION TASKS

The
LSTM-
based

short-term
prediction

error

The
LSTM-
based

mid-term
prediction

error

The
LSTM-
based

long-term
prediction

error

The CNN-
based

short-term
prediction

error

The CNN-
based

mid-term
prediction

error

The CNN-
based

long-term
prediction

error

The
LS-based

short-term
prediction

error

The
LS-based
mid-term
prediction

error

The
LS-based
long-term
prediction

error

Longitude
(degree) 0.011 0.02 0.028 0.0247 0.045 0.076 0.054 0.339 0.286

Latitude
(degree) 0.013 0.073 0.031 0.0468 0.078 0.126 0.058 0.468 0.408

Altitude
(ft) 9.338 66.273 28.626 79.6723 32.526 138.706 17.357 718.344 665.836

Ground
Speed
(ft/s)

0.529 2.582 2.572 0.9058 2.979 2.797 4.511 4.732 4.747

Vertical
Speed

(ft/min)
39.515 45.329 44.850 37.1091 55.249 45.453 52.028 201.841 111.822

Heading
Angle

(degree)
0.491 4.704 6.295 0.6037 5.025 6.596 1.076 4.710 7.552
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Fig. 10. Predicted mid-term trajectories by using the LSTM-based, CNN-based and LS-based predictors.

the error is further considered, the RMSE score calculated
by the conflict detection method based on the trajectory
prediction could be increased from 0.8610 to about 1 at most,
which is still within the error range allowed by the conflict
detection method. The result means that the predicted number
of conflicts per second differs from the actual number by less
than one aerial vehicle. Hence, the proposed method makes it
is possible to detect whether there would be conflicts in the
future seconds.

VIII. CONCLUSION

This paper proposes a conflict detection algorithm based
on an aerial vehicles grouping strategy. In order to further
improve the timeliness of conflict detection, we use the
LSTM-based, the CNN-based and the LS-based methods to
predict the trajectory of aerial vehicles, respectively. The
trajectory prediction experiments are divided into short-term,
mid-term, and long-term predictions. The results show that
the short-term predictions can be more accurate than the
mid-term and long-term predictions. In addition, the LSTM-
based model generally outperforms the CNN-based and the
LS-based methods in three prediction tasks, especially when
predicting the mid-term and long-term trajectory of aerial
vehicles. However, the problem is that for the mid-term
and long-term predictions, the performance degradation will
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Fig. 12. Predicted aerial vehicle conflicts per second as a percentage of the
total number of aerial vehicles based on trajectory prediction.

affect the performance of the conflict detection algorithm.
Therefore, in order to overcome this problem, our future work
will focus on designing more reliable neural networks and
integrating more effective information into the training dataset.
Finally, we evaluate influence of the trajectory prediction
on the conflict detection algorithm. The experimental results
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Fig. 11. Predicted long-term trajectories by using the LSTM-based, CNN-based and LS-based predictors.
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Fig. 13. Statistical difference between the actual number of conflicts and
the predicted number of conflicts, and the RMSE score is 0.8610.

demonstrate the effectiveness of integrating the grouping
strategy, the trajectory detection based on machine learning,
and the conflict detection.
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