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Abstract:
The aim of this study was to explore the use of principal component analysis (PCA) in understanding 

multivariate relationships in soccer training load data. Training load data were collected from 20 professional 
male soccer players during a 28-week in-season period. Twelve training load variables (total distance, 
PlayerLoadTM, low-speed running distance, moderate-speed running distance, high-speed running distance, 
sprint distance, moderate-speed running efforts, high-speed running efforts, sprint efforts, accelerations, 
decelerations, and changes of direction) were collected during training sessions, with correlation analysis 
revealing high intercorrelation between most variables (r = 0.04-0.98). Principal component analysis was 
performed on datasets containing all players and on individual players. On the whole dataset, two principal 
components were retained explaining a total of 81% of data variance. The first component comprised variables 
associated with distances in speed zones and the second component changes of direction. Whilst some 
individual variation existed among players, distances in speed zones were loaded on the first component 
and inertial movement analysis variables, such as accelerations, decelerations, and changes of direction, 
were loaded on the second component. These findings evidence the strong relationships between several 
common training load variables and highlight the risk of data redundancy. By selecting variables from 
each component, practitioners can reduce the number of variables reported whilst retaining as much of the 
variation in data as possible.

Key words: training load, Global Positioning Units (GPS), multivariate analysis, football, feedback

sion-making of key stakeholders (e.g., coaches). For 
example, coaches generally support the usefulness 
and importance of training data collected by these 
technologies (Nosek, Brownlee, Drust & Andrew, 
2021; Weston, 2018), yet it is still unclear whether 
this information is impactful in aiding decision-
making and may represent the ‘translational gap’ 
often suggested within sport science (Eisenmann, 
2017; Fullagar, McCall, Impellizzeri, Favero, & 
Coutts, 2019). Such gaps may be due to coaches 
perceiving a lack of a common goal with their sport 
science departments as a barrier towards using 
training data in coach decision-making (Nosek, et 
al., 2021).

Feedback on performance related data is a key 
step in the coaching process (Franks & Goodman, 

Introduction
To maximise soccer performance, professional 

players participate in training sessions (i.e., prac-
tice) with the aim to improve technical, tactical, 
physical, and psychological performance (Morgans, 
Orme, Anderson, & Drust, 2014; Williams & Reilly, 
2000) From a physical perspective, the volume and 
intensity of these sessions, known collectively as the 
training load (Impellizzeri et al., 2019), are planned 
and manipulated to produce this desired response. 
Utilisation of soccer training load monitoring tech-
nologies, such as Global Positioning Systems (GPS), 
is now considered common in soccer (Akenhead & 
Nassis, 2015). The success of using such devices lies 
in their ability to support and influence the deci-
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2008) and involves the collection, analysis, and 
delivery/communication of data to those respon-
sible for decision-making (e.g., coaches; Buch-
heit, 2017). Perhaps the most important part of this 
process may be the communication of this data to 
coaches as if done poorly, it can create a barrier to 
data utilisation (Nosek, et al., 2021). Consequently, 
the delivery format and complexity of chosen data 
must be considered carefully when designing feed-
back to ensure efficient communication of key data 
to stakeholders and decision makers. Adding to 
feedback complexity is potential disagreements 
between coaches and sport scientists regarding the 
information provided. For example, Weston (2018) 
reported differences between coaches and practi-
tioners (sport scientists; fitness coaches; strength 
and conditioning coaches) regarding the frequency, 
timing, and expertise requirements of training load 
reports. Furthermore, whilst practitioners identify 
typically using 4-10 variables in reports (Akenhead 
& Nassis, 2015), coaches have suggested receiving 
too much information is a barrier towards using 
training data to inform decision-making (Nosek, et 
al., 2021). These variables often show strong rela-
tionships with each other, with intercorrelations 
existing between various measures such as total 
distance, PlayerLoadÔ (sum of accelerations in all 
planes collected via tri-axial accelerometer), high-
speed running, sprinting, session rating of perceived 
exertion (sRPE), and heart rate (HR)-derived meas-
ures during soccer training (Casamichana, Castel-
lano, Calleja-Gonzalez, San Román, & Castagna, 
2013; Maughan, MacFarlane, & Swinton, 2021; 
McLaren, et al., 2018). This high intercorrela-
tion may result in data ‘overload’ for coaches, and 
reporting many variables appears unnecessary and 
may increase complexity during decision-making 
(Weaving, Beggs, Dalton-Barron, Jones, & Abt, 
2019; Weaving, Marshall, Earle, Nevill, & Abt, 
2014).

Reducing variable number (dimensionality 
reduction) can be complex, as simple variable 
removal can lead to information loss. A popular 
dimension reduction technique is principal compo-
nent analysis (PCA), which extracts important 
information from correlated variables and expresses 
them as new, uncorrelated compound variables 
named principal components (PCs) (Jolliffe, 1986; 
Jollife & Cadima, 2016). In a sporting context, 
PCA has previously been used to examine tech-
nique analysis (Federolf, Reid, Gilgien, Haugen, 
& Smith, 2014; Gløersen, Myklebust, Hallén, & 
Federolf, 2018), injury risk (Williams, Trewartha, 
Cross, Kemp, & Stokes, 2017), performance indi-
cators (Parmar, James, Hearne, & Jones, 2018), and 
training load (Weaving, et al., 2014, 2018, 2019; 
Weaving, Jones, Till, Abt, & Beggs, 2017). The PCs 
produced can then have hypotheses framed around 
them. For example, Parmar et al. (2018) examined 

the classification accuracy of PCs against the win/
loss probabilities in rugby league and reported a 
90% accuracy. Similarly, Williams et al. (2017) 
examined the relationship between variables in each 
PC against injury risk in rugby union, reporting 
that 4-week cumulative load, acute:chronic work-
load ratio, and daily workload were the measures 
describing the largest amount of variation in injury 
risk from the first three PCs, respectively. Taken 
together, these studies provide a framework to 
reduce large datasets into groups of variables that 
can then be explored against outcome measures of 
interest (Williams, et al., 2017).

Recently, PCA has been applied to training 
data collected via GPS with the aim of reducing 
the number of variables used in training load moni-
toring. For instance, Weaving et al. (2018) iden-
tified 60-70% of training load variance in field-
based skills training could be provided by a PC 
containing total distance, sRPE or PlayerLoadÔ, 
supporting the use of these variables as moni-
toring measures. Moreover, Weaving et al. (2019) 
demonstrated how 12 training load variables could 
be transformed into a 2D scatterplot, allowing for 
heuristic decision-making such as modifying future 
training content after comparing present day data 
to historical benchmarks. In soccer, Maughan et al. 
(2021) illustrated that multiple measures of subjec-
tive and external training load variables could be 
reduced to two PCs that explained 83% of the vari-
ance within the data, one which contained all the 
variables to represent total training load, and one 
which contrasted subjective and external measures. 
Furthermore, during the competitive season, PCA 
produced only one PC which housed all training 
load variables excluding sprinting, which suggests 
all the variables used represent similar underlying 
information and could theoretically be used inter-
changeably (Maughan, MacFarlane, & Swinton, 
2022). Despite some interesting results here, 
research utilising PCA within professional soccer 
is limited.

Whilst most training load PCA studies analyse 
whole squad data (Parmar, et al., 2018; Ryan, 
Kempton, & Coutts, 2021; S. Williams, et al., 
2017), this may result in individual player charac-
teristics being hidden in the analysis. One possible 
approach is to perform PCA on each player. Using 
this approach, Weaving et al. (2018) reported that 
the same variables were loaded on each PC for all 
rugby union players. Despite this, some individual 
variation in loadings were reported meaning that 
utilising PC scores (i.e., standardized training load 
data multiplied by PC loadings for each variable), 
as suggested by the authors, would only allow 
within-player comparisons and not between-player. 
Whilst PCA appears a suitable method for dimen-
sion reduction of training load data, its application 
in soccer is not understood. Therefore, the main aim 
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of the present study was to explore the use of PCA 
to uncover multivariate relationships within soccer 
training load data. In line with previous research 
(Casamichana, et al., 2013; Weaving, et al., 2018, 
2019) we hypothesized high intercorrelation would 
exist within soccer training load data and that these 
relationships would vary between players when 
analysed with PCA.

Methods
Participants

Twenty male professional soccer players (age 
20.50 ± 1.20 years, height 178.60 ± 6.60 cm [Seca 
213, Seca, Hamburg, Germany], weight, 80.10 ± 
8.10 kg [Seca 876, Seca, Hamburg, Germany]) 
were recruited for this study. All players came 
from the same Professional Development Phase 
squad at an English Premier League club that was 
competing in the Premier League 2-Divison 1 (i.e., 
the highest tier) for the 2019/20 season. Goalkeepers 
were excluded from the analysis due to their vastly 
different training and game physical requirements 
(Moreno-Pérez, et al., 2020). Players represented 
the following primary positions: centre-back (n = 
4), full-back (n = 4), centre-midfield (n = 5), wide-
midfield (n = 3) and forward (n = 4). The inclusion 
criteria were that players must have completed a 
minimum of 50 available sessions (mean 83 ± 12). 
Data were provided entirely as part of players’ normal 
daily training routine; thus, no ethical approval 
was required. The study did, however, conform 
to the Declaration of Helsinki and Gatekeeper 
written consent was provided to allow data use.

Experimental design
A longitudinal, observational design was used 

with training load data collected during 28 weeks of 
the competitive, in-season period between August 
2019 and March 2020. Although the competitive 
season typically runs to May, the season concluded 
early due to the COVID-19 pandemic. Prior to the 
season, microcycle structure was designed with 
input from coaching and sport science departments 
to meet the tactical, technical, and physical require-
ments of the game. During weeks containing one 
match (MD; n = 18), this involved a recovery session 
the day after the match (i.e., match day plus one; 
MD+1), followed by a day off. There would then 
be three consecutive days of conditioned training 
before a tactical themed activation session the day 
before the next match (MD-1; n = 18).

The themes for the three conditioned training 
days were termed strength (MD-4; n = 25); inten-
sive work in small areas of <110 m2 per player over 
duration bouts of 45-s to 4-min per activity, with 
small player numbers (2-12, to overload accelera-
tion, deceleration, change of direction and meta-
bolic demands; endurance (MD-3; n = 42); exten-

sive work in large areas of greater than 160 m2 per 
player over durations of 4-12 min, with increased 
player numbers (8-22) to overload high-speed 
running demands; and speed (MD-2; n = 29); work 
in moderately sized areas of 110-160 m2 focusing 
on speed of play (Buchheit, Lacome, Cholley & 
Simpson, 2018), which involved various numbers 
of players per activity. These themes typically 
corresponded to MD-4, MD-3, and MD-2, respec-
tively, though not in all cases. Training was typi-
cally conducted in the morning with games in the 
evening.

Training content was designed to reflect the 
fitness and physical status of individual players (i.e., 
number of days between games, acute and chronic 
loadings, wellbeing responses to training) and 
therefore, whilst the areas, durations and players 
numbers outlined were typical of each theme, these 
were not strict constraints for the sessions. Further-
more, some sessions included individual work and/
or physical sessions designed to provide additional 
stimuli typically to substitutes known as ‘top-ups’, 
as required. Training data from rehabilitation, indi-
vidual, physical fitness and partially completed 
(i.e., player injured during session) sessions were 
excluded from the analyses.

Equipment and procedures
During sessions, training load data were 

recorded using 10 Hz GPS with an embedded 100 
Hz tri-axial accelerometer (Catapult Vector, Cata-
pult Sports, Melbourne). Units were worn in a tight-
fitting vest placing the unit between the scapulae, 
with players wearing the same unit for each session 
to minimise inter-unit variability. All players had 
previous experience of wearing the vests and units 
as it was part of routine working practice to collect 
such data. Prior to training, units were turned on 
outside for 30 min to allow optimal connectivity 
with satellites. After each session, data were down-
loaded into the manufacturer’s software (Open-
field v2.2) and inspected for artefacts (i.e., unre-
alistic spikes in velocity). Data were collected 
and analysed by a member of the sports science 
department at the club who is a current professional 
doctorate student and lead author of the study. Data 
were included if the number of connected satel-
lites was at least six and if the horizontal dilution 
of precision (HDOP) was <1.5 as per manufacturer 
guidance. Where these conditions were not met, 
or full session data were not available due to other 
errors such as units running out of battery, these 
data were removed and replaced with positional 
mean averages for that session (Jaspers, et al., 2018). 
This method was chosen to represent what had 
occurred in the current session as opposed to using 
player previous data of sessions which may have 
looked vastly different. This resulted in 11 out of 
1466 (0.8%) individual player files being replaced.
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Data were split into individual drills, exported 
into a custom Excel spreadsheet and assigned 
the corresponding session theme. The variables 
selected for analysis are described in Table 1. These 
were based primarily on research involving training 
and match load and associated fitness, fatigue and 
injury responses, alongside some variables used as 
part of a club-wide monitoring philosophy (Barrett, 
Midgley, & Lovell, 2014; Bradley, et al., 2009; Lute-
berget, Holme, & Spencer, 2018). Accelerations, 
decelerations, and changes of direction were calcu-
lated based on the manufacturer’s inertial move-
ment analysis (IMA). This uses accelerometer and 
gyroscope data to count one-step efforts, the magni-
tude of which is expressed as delta velocity (m·s-1) 
(Luteberget, et al., 2018). Although limited research 
has shown IMA counts in intensity bands to possess 
moderate reliability, this is shown to improve when 
multiple bands, such as medium and high intensity, 
are aggregated (Luteberget, et al., 2018) as in the 
present study. Further, it is hoped that improvements 
in effort detection algorithms through updates in the 
manufacturer’s software have improved this. Dwell 
time was set at 0.5s for GPS variables.

Though HR-derived variables were collected, 
due to a change in measurement devices mid-
season and data recording issues that arose from 
this change, these variables were removed from the 
analyses. 

Data reduction and analysis
Prior to PCA, the dataset, which consisted 

of 1466 rows of data, was explored for missing/
erroneous data, which may have occurred due to 
units not being worn or poor satellite connectivity. 
These data were replaced with the session posi-

tional averages. Redundancy of the dataset was 
examined using repeated-measures correlation to 
view the strength of relationships between the vari-
ables (Bakdash & Marusich, 2017). The qualita-
tive descriptors for the magnitude of the correla-
tions were: <0.1 trivial; 0.1 to 0.3 small; 0.3 to 0.5 
moderate; 0.5 to 0.7 large; 0.7 to 0.9 very large; 0.9 
to 1.0 almost perfect (Hopkins, 2010). Additionally, 
the Bartlett test of sphericity and the Kaiser-Meyer-
Olkin (KMO) measure of sampling adequacy were 
performed to assess the suitability of the data for 
PCA. The Bartlett test of sphericity was significant 
(p<.01) with a KMO of 0.7, with a KMO above 0.5 
suggesting data were suitable for PCA (Williams, 
Onsman, & Brown, 2010).

Data were mean-centred and scaled to unit 
variance allowing equal weighting across vari-
ables with differing measurement units such as 
distances and counts. PCA was performed on the 
whole dataset using the singular value decomposi-
tion method where components with an eigenvalue 
of >1 were retained for analysis and indicated the 
PC accounted for more variance than a single orig-
inal variable alone (Kaiser, 1960). Visual inspec-
tion of the scree plot to identify the ‘elbow’ of the 
eigenvalues was also utilised to support this deci-
sion (Nguyen & Holmes, 2019). Factor loadings, 
the strength of a variable’s relationship with the 
PC, were considered meaningful if it exceeded 0.7 
(Rojas-Valverde, Pino-Ortega, Gómez-Carmona, 
& Rico-González, 2020). Subsequently, the same 
analysis was performed on each individual players’ 
dataset using the same method. All analysis was 
performed in R (Version 4.0.0) using the Facto-
MineR package for PCA (Lê, Josse, Rennes, & 
Husson, 2008).

Table 1. Description of GPS training load variables

Variable (Abbreviation) Description

Total Distance (TD) Total distance covered during the session.

Player LoadTM (PL) Accumulated accelerometer data across vertical, medio-lateral, and anterior-
posterior planes, divided by a scaling factor of 100.

Low-Speed Running Distance (LSRD) Distance covered between 0 and 4.5m·s-1.

Moderate-Speed Running Distance (MSRD) Distance covered between 4.5 and 5.5m·s-1.

High-Speed Running Distance (HSRD) Distance covered between 5.5 and 7m·s-1.

Sprint Distance (SD) Distance covered above 7m·s-1.

Moderate-Speed Running Efforts (MSRE) Number of efforts between 4.5 and 5.5m·s-1.

High-Speed Running Efforts (HSRE) Number of efforts between 5.5 and 7m·s-1.

Sprint Efforts (SE) Number of efforts above 7m·s-1.

Accelerations (ACC) Number of medium and high intensity accelerations above 2.5m·s-1 derived from 
inertial movement analysis (IMA) using accelerometer and gyroscope data.

Decelerations (DEC) Number of medium and high intensity decelerations above 2.5m·s-1 derived from 
IMA using accelerometer and gyroscope data.

Changes of Direction (COD) Number of medium and high intensity changes of direction to the left above 
2.5m·s-1 derived from IMA using accelerometer and gyroscope data.
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Results
The repeated-measures correlation matrix is 

shown in Table 2. All correlations were significant 
(p<.01) except for between sprint efforts (SE) and 
changes of direction (COD) (p=.12).

Principal component analysis of the whole 
dataset extracted two PCs as having an eigenvalue 
of >1 with PC1 (65%) and PC2 (16%) accounting 
accumulatively for 81% of the variance in training 
load data (Table 3). The correlation between each 
training load variable and each PC is also shown 
in Table 3. Whilst all variables were loaded some-
what on PC1, those relating to overall volume and 
running in different speed zones were loaded above 
the meaningful threshold (Figure 1). IMA variables 
were highest loaded on PC2, however, only COD 
were above the meaningful threshold (Table 3).

When individual players were analysed, all 
players produced two PCs with eigenvalues >1 (PC1 
eigenvalue range 6.32-9.13; PC2 eigenvalue range 
1.3-2.65). PC1 accounted for 53-76% of the vari-
ance, whilst PC2 accounted for a further 11-22%. 
Loadings between the variables and PCs for each 
player are shown in Table 4 and Table 5.

Discussion and conclusions
The primary aim of the present study was to 

explore the use of PCA to uncover multivariate rela-
tionships within soccer training load data to reduce 
reporting redundant data to coaches. Correlation 
analysis revealed strong relationships between 
multiple training load variables with subsequent 
PCA identifying two PCs explaining a combined 
81% of the variance in training load data. Although 
similar within-player results were produced, some 
variation in variable loadings on each PC existed 
suggesting that some individual player character-
istics may be hidden by analysing the full dataset.

Correlation analysis revealed most variables had 
a moderate to almost perfect relationship, although 
some correlations between IMA-based variables 
and running variables were trivial or small (Table 2). 
This highlights the redundancy in the dataset in that 
many of the variables will change at similar rates 
across the training period and supports the need to 
perform data reduction techniques to explore these 
relationships further. These results are similar to 
others, which have reported very large to almost 
perfect correlations between total distance (TD) 

Table 2. Correlation matrix (95% confidence intervals) for each training load variable during soccer training

TD PL LSRD MSRD HSRD SD MSRE HSRE SE ACC DEC COD

TD 1

PL
0.98

(0.98-0.99)
AP

1

LSRD
0.99

(0.99-1.00)
AP

0.98
(0.98-0.98)

AP
1

MSRD
0.93

(0.92-0.94)
AP

0.90
(0.89-0.91)

AP

0.90
(0.88-0.91)

AP
1

HSRD
0.88

(0.86-0.89)
VL

0.85
(0.83-0.86)

VL

0.83
(0.81-0.85)

VL

0.89
(0.87-0.90)

VL
1

SD
0.67

(0.63-0.70)
L

0.65
(0.61-0.69)

L

0.63
(0.59-0.67)

L

0.60
(0.56-0.64)

L

0.75
(0.72-0.79)

VL
1

MSRE
0.93

(0.92-0.93)
AP

0.89
(0.88-0.90)

VL

0.88
(0.86-0.89)

VL

0.96
(0.95-0.96)

AP

0.84
(0.83-0.86)

VL

0.63
(0.60-0.66)

L
1

HSRE
0.85

(0.83-0.86)
VL

0.80
(0.78-0.82)

VL

0.78
(0.76-0.80)

VL

0.89
(0.88-0.90)

VL

0.94
(0.94-0.95)

AP

0.75
(0.72-0.77)

VL

0.92
(0.91-0.92)

AP
1

SE
0.67

(0.65-0.70)
L

0.63
(0.60-0.66)

L

0.61
(0.58-0.64)

L

0.66
(0.63-0.69)

L

0.79
(0.77-0.80)

VL

0.93
(0.93-0.94)

AP

0.69
(0.66-0.72)

L

0.81
(0.80-0.83)

VL
1

ACC
0.37

(0.32-0.43)
M

0.45
(0.40-0.50)

M

0.40
(0.35-0.45)

M

0.24
(0.18-0.30)

S

0.24
(0.18-0.30)

S

0.26
(0.20-0.32)

S

0.24
(0.19-0.29)

S

0.15
(0.10-0.20)

S

0.13
(0.08-0.18)

S
1

DEC
0.46

(0.41-0.51)
M

0.49
(0.44-0.54)

M

0.49
(0.44-0.54)

M

0.34
(0.28-0.39)

M

0.30
(0.24-0.36)

M

0.21
(0.15-0.27)

S

0.26
(0.21-0.30)

S

0.15
(0.09-0.20)

S

0.06
(0.01-0.11)

T

0.35
(0.30-0.41)

M
1

COD
0.48

(0.43-0.53)
M

0.55
(0.50-0.59)

L

0.51
(0.46-0.57)

L

0.36
(0.30-0.41)

M

0.31
(0.25-0.37)

M

0.22
(0.16-0.28)

S

0.28
(0.23-0.33)

S

0.13
(0.08-0.19)

S

0.04
(-0.01-0.09)

T

0.58
(0.54-0.62)

L

0.65
(0.62-0.69)

L
1

Note. AP – almost perfect, VL – very large, L – large, M – moderate, S – small, T – trivial; TD – Total Distance, PL – PlayerLoadTM, 
MSRD – Moderate-Speed Running Distance, HSRD – High-Speed Running Distance, SD – Sprint Distance, MSRE – Moderate-
Speed Running Efforts, HSRE – High-Speed Running Efforts, SE – Sprint Efforts, ACC – Accelerations, DEC – Decelerations, COD 
– Changes of Direction.
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Table 3. Principal component analysis results for the training load data showing eigenvalues, percentage of variance explained, 
cumulative variance explained, and component loadings for the first two PCs

PC1 PC2
Eigenvalue 7.78 1.96

% of total variance explained 64.85 16.35

Cumulative % of total variance explained 64.85 81.19

Variable loadings

TD 0.96 0.08

PL 0.95 0.15

LSRD 0.93 0.17

MSRD 0.91 -0.15

HSRD 0.88 -0.33

SD 0.74 -0.35

MSRE 0.95 -0.07

HSRE 0.93 -0.25

SE 0.79 -0.37

ACC 0.37 0.69

DEC 0.45 0.64

COD 0.47 0.75

Note. TD – Total Distance, PL – PlayerLoadTM, MSRD – Moderate-Speed Running Distance, HSRD – High-Speed Running Distance, 
SD – Sprint Distance, MSRE – Moderate-Speed Running Efforts, HSRE – High-Speed Running Efforts, SE – Sprint Efforts, ACC – 
Accelerations, DEC – Decelerations, COD – Changes of Direction.
Loadings that met interpretation criteria (≥ 0.7) are highlighted in bold

Table 4. Correlations between variables and PC1 for individual players

Player TD PL LSRD MSRD HSRD SD MSRE HSRE SE ACC DEC COD

1 0.98 0.98 0.97 0.96 0.96 0.88 0.97 0.97 0.92 0.28 0.67 0.63

2 0.98 0.98 0.97 0.96 0.96 0.88 0.97 0.97 0.92 0.37 0.40 0.30

3 0.96 0.94 0.93 0.81 0.84 0.65 0.95 0.91 0.75 0.28 0.57 0.55

4 0.95 0.94 0.90 0.84 0.54 0.60 0.96 0.88 0.56 0.69 0.59 0.76
5 0.98 0.96 0.96 0.95 0.95 0.86 0.97 0.96 0.90 0.47 0.50 0.39

6 0.98 0.98 0.97 0.95 0.91 0.82 0.96 0.94 0.85 0.35 0.42 0.64

7 0.96 0.95 0.94 0.93 0.86 0.74 0.95 0.94 0.81 0.57 0.50 0.57

8 0.96 0.94 0.92 0.90 0.87 0.78 0.95 0.91 0.80 0.27 0.43 0.25

9 0.93 0.87 0.85 0.79 0.70 0.77 0.91 0.88 0.78 0.17 0.16 0.18

10 0.95 0.94 0.91 0.80 0.71 0.80 0.89 0.85 0.77 0.41 0.51 0.61

11 0.98 0.98 0.96 0.96 0.92 0.85 0.96 0.95 0.90 0.64 0.60 0.51

12 0.97 0.98 0.96 0.94 0.94 0.66 0.96 0.95 0.80 0.60 0.52 0.71
13 0.97 0.97 0.94 0.93 0.89 0.85 0.96 0.93 0.90 0.55 0.49 0.60

14 0.96 0.91 0.90 0.84 0.84 0.80 0.94 0.91 0.79 0.40 0.39 0.34

15 0.98 0.98 0.97 0.92 0.95 0.52 0.95 0.95 0.64 0.34 0.68 0.79
16 0.97 0.95 0.92 0.93 0.85 0.54 0.96 0.93 0.66 0.11 0.48 0.51

17 0.98 0.97 0.96 0.93 0.95 0.71 0.96 0.96 0.78 0.58 0.38 0.50

18 0.98 0.97 0.97 0.98 0.96 0.85 0.97 0.98 0.85 0.41 0.18 0.12

19 0.97 0.94 0.93 0.89 0.82 0.82 0.94 0.91 0.88 0.43 0.53 0.49

20 0.97 0.93 0.93 0.84 0.76 0.75 0.94 0.91 0.81 0.39 0.54 0.52

Loadings that met interpretation criteria (≥ 0.7) are highlighted in bold

and PlayerLoadTM (PL) in soccer (Casamichana, et 
al., 2013; Maughan, et al., 2021; Scantlebury, et al., 
2020), which is likely due to these measures being 
functions of the duration of the session and accumu-

lations of all other variables. In contrast, however, 
whilst this study showed a very large relation-
ship between TD and high-speed running distance 
(HSRD), Scantlebury et al. (2020) reported only a 
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moderate relationship. Furthermore, Scantlebury et 
al. (2020) reported only a trivial correlation between 
PL and HSRD compared with a very large relation-

ship in the present study. These differences may be 
due to the method used to define HSRD (distance 
covered above 61% of a player’s maximum velocity 
compared with an arbitrary threshold of 5.5m·s-1 in 
the present study) or the large differences in training 
output and methodology used by semi-professional 
players used by Scantlebury et al (2020). Whilst 
correlations between running-based variables were 
strong, those between IMA variables and running-
based variables were weaker. This could be due to 
the different physical qualities being captured by 
IMA variables since the one-step actions of accel-
erations (ACC), decelerations (DEC) and changes 
of direction (COD) are highly independent of any 
running effort in different speed zones. For example, 
to produce an effort in the sprint speed zone, a player 
must travel through all previous zones, thus accu-
mulating TD, low-speed running distance (LSRD), 
moderate-speed running distance (MSRD), HSRD 
and sprint distance (SD), which can be achieved 
without registering any ACC, DEC or COD. Taken 
together, the reported high intercorrelation suggests 
that all these measures may lead to data redundancy 
and unnecessary data overload for coaches.

Performing PCA on the whole dataset uncov-
ered two PCs identified as having eigenvalues >1 
indicating these new composite variables account 
for more variance in training load data than a 
single original variable (Kaiser, 1960). The first 
PC accounted for 65% of the total variance in the 

Table 5. Correlations between variables and PC2 for individual players

Player TD PL LSRD MSRD HSRD SD MSRE HSRE SE ACC DEC COD

1 -0.03 0.01 0.01 -0.16 -0.20 -0.11 -0.12 -0.15 -0.22 0.84 0.36 0.69

2 0.17 0.32 0.33 -0.28 -0.41 -0.42 -0.03 -0.29 -0.46 0.71 0.66 0.86
3 0.03 0.24 0.14 -0.34 -0.31 -0.28 -0.11 -0.24 -0.32 0.85 0.48 0.71
4 -0.23 -0.30 -0.37 0.29 0.70 0.64 0.07 0.41 0.68 -0.49 -0.43 -0.52

5 -0.02 0.11 0.04 -0.17 -0.22 -0.27 -0.09 -0.18 -0.25 0.64 0.68 0.82
6 0.03 0.11 0.12 -0.17 -0.29 -0.27 -0.09 -0.23 -0.32 0.72 0.69 0.68

7 0.06 0.13 0.12 -0.07 -0.33 -0.44 -0.02 -0.22 -0.39 0.35 0.69 0.68

8 0.13 0.26 0.23 -0.15 -0.40 -0.32 -0.02 -0.26 -0.43 0.81 0.76 0.84
9 0.20 0.37 0.33 -0.22 -0.47 -0.23 -0.05 -0.26 -0.28 0.59 0.82 0.87
10 0.10 0.26 0.23 -0.41 -0.53 -0.18 -0.28 -0.42 -0.19 0.75 0.66 0.68

11 0.04 0.09 0.10 -0.15 -0.20 -0.31 -0.12 -0.22 -0.28 0.38 0.56 0.72
12 -0.06 -0.02 -0.01 -0.23 -0.25 -0.09 -0.14 -0.21 -0.17 0.55 0.72 0.52

13 0.07 0.10 0.18 -0.25 -0.36 -0.26 -0.13 -0.28 -0.28 0.60 0.67 0.69

14 0.14 0.29 0.28 -0.28 -0.40 -0.34 -0.11 -0.28 -0.33 0.63 0.72 0.82
15 -0.10 -0.10 -0.13 -0.14 0.15 0.80 -0.11 0.11 0.72 0.11 -0.50 -0.34

16 0.15 0.26 0.30 -0.16 -0.41 -0.53 -0.01 -0.23 -0.56 0.50 0.60 0.72
17 0.02 0.07 0.09 -0.15 -0.21 -0.32 -0.09 -0.18 -0.33 0.40 0.75 0.77
18 0.01 0.10 0.04 -0.02 -0.12 -0.32 0.07 -0.01 -0.35 0.60 0.81 0.91
19 0.12 0.27 0.25 -0.29 -0.41 -0.34 -0.15 -0.32 -0.30 0.70 0.56 0.76
20 0.09 0.29 0.23 -0.30 -0.54 -0.27 -0.13 -0.34 -0.35 0.75 0.62 0.75

Loadings that met interpretation criteria (≥ 0.7) are highlighted in bold

Note. TD – Total Distance, PL – PlayerLoadTM, MSRD – 
Moderate-Speed Running Distance, HSRD – High-Speed 
Running Distance, SD – Sprint Distance, MSRE – Moderate-
Speed Running Efforts, HSRE – High-Speed Running Efforts, 
SE – Sprint Efforts, ACC – Accelerations, DEC – Decelerations, 
COD – Changes of Direction.

Figure 1. PCA loading plot for the two extracted principal 
components.
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dataset with running- and volume-based variables 
showing meaningful relationships with the compo-
nent (Table 3). The second PC accounted for 16% 
of the total variance where COD was the only vari-
able with a meaningful relationship with the compo-
nent, although the other IMA variables loaded just 
short of the threshold (Table 3) yet within other 
reported acceptable thresholds (Rojas-Valverde, et 
al., 2020). This demonstrates the independent infor-
mation that running-based metrics and explosive 
actions provide which is unsurprising given their 
differing physical requirements. These results are 
dissimilar to Maughan et al. (2021) who reported 
that accelerations and decelerations measured by 
GPS were loaded on the first component with other 
running-based metrics such as TD, PL, HSRD and 
subjective measures of session rating of perceived 
exertion (sRPE). The differences here may highlight 
the benefit of using IMA-derived accelerations and 
decelerations over those produced by GPS, as these 
provide additional information to running-based 
GPS variables. The results here show some simi-
larities to those by Scantlebury et al. (2020) who 
also showed that TD and PL were heavily weighted 
on PC1, however, in contrast to this study, they 
reported high loadings for HSRD on PC2. This is 
likely due to differences in variables collected as no 
IMA data were reported (Scantlebury, et al., 2020). 
This shows how the results of PCA are dependent 
on the variables used, meaning practitioners should 
perform PCA on their own dataset and not use 
results from research studies.

When PCA was performed on individual 
players, similar results were found; however, some 
individual differences were observed. For example, 
COD was highly associated with PC1 for three 
players (Table 4) and on PC2 there were various 
IMA variables (Table 5) that were meaningfully 
loaded for each player. These results contrast the 
main findings of Weaving et al. (2018) who showed 
that all rugby union players had sRPE, TD and PL 
meaningfully loaded on PC1 and HSRD loaded on 
PC2. These differences could be attributed to the 
type of dataset analysed, with only skills training 
used in Weaving et al. (2018), which will likely yield 
different results due to the differences in relation-
ships between training load variables in different 
modes of training (Lovell, Sirotic, Impellizzeri, 
& Coutts, 2013; Weaving et al., 2014). Whilst the 
individual variation highlights the unique training 
outputs between players, selecting different vari-
ables for different players would seem nonsensical 
and would make the evaluation of training sessions 
difficult for coaches.

To make use of PCA results, practitioners have 
several options. By multiplying the standardized 
training data by the loadings on each PC, PC scores 
can be produced giving a single score for each PC 
(Weaving, et al., 2019). Whilst this may seem ideal 

in that it will reduce 12 training load variables down 
to just two yet still retaining 81% of the variance, 
the new variables, reported in arbitrary units, may 
increase the complexity of the report and misun-
derstanding of coaches. For example, understanding 
what an increase of 1AU for PC1 and making infer-
ences around this is very difficult. Applying this 
method to individually analysed datasets would 
further reduce interpretability if different varia-
bles for different players were used to create the PC 
scores which would make between-player compari-
sons impossible. Furthermore, the repeated-meas-
ures nature of training load monitoring would 
mean the standardized data is updated with each 
training session, thus adjusting the PCA model and 
rendering comparisons between sessions using PC 
scores as unworthwhile.

An alternative approach to using the PCA infor-
mation is to simply select variables from each PC 
that are highly loaded. In its simplest form, this may 
be selecting a single variable from each PC, such as 
those that have the highest validity and reliability 
or practicality (Ryan et al., 2021). Although many 
variables are available to choose from PC1, TD has 
been shown to be a valid and reliable measure that is 
easily understood by coaches (Johnston, Watsford, 
Kelly, Pine, & Spurrs, 2014). Yet this measure does 
not account for any distances in higher speed zones 
which are an important aspect of soccer match play 
(Barnes, Archer, Hogg, Bush, & Bradley, 2014). 

Selecting a single variable from PC2 may be 
more difficult as the IMA variables show similar 
levels of validity and reliability as well as inter-
pretability (Luteberget, et al., 2018). In this regard, 
practitioners may aggregate variables that are both 
loaded above the threshold on the PC and share 
the same measurement units. For example, HSRD 
and SD could be grouped from the first PC, whilst 
ACC, DEC and COD could be grouped from the 
second PC. Using these two new aggregate vari-
ables would give a coach an idea of the volume 
of high-speed running and the number of intense 
actions in the session, with both giving unique 
information and expressed in interpretable units 
as opposed to the arbitrary units of PC scores. 
It could be suggested that sport scientists utilise 
PCA results, their domain-specific expertise, and 
input from other key stakeholders such as coaches 
to co-create an impactful feedback tool (Richter, 
O’Reilly, & Delahunt, 2021).

Despite the potential application of PCA seen 
here, several limitations exist. No internal training 
load variables such as HR-based measures and 
sRPE were used in this study, which may provide 
additional information due to the individual internal 
response to external training load (Impellizzeri, 
et al., 2019) and the differences in internal load 
between different training formats (Owen, Wong, 
Mckenna, & Dellal, 2011). Furthermore, only one 
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information is fed back to them regarding GPS-
derived training load data (Nosek, et al., 2021). Data 
reduction was undertaken using PCA which identi-
fied two PC’s, suggesting a multivariate approach 
is needed when utilising training data. Results 
from both the whole dataset and individual anal-
ysis demonstrated how PCA can be used to uncover 
multivariate relationships between twelve training 
load variables, with variables relating to volume 
and running distances in speed zones associated 
with the first PC and IMA-derived intensive effort 
variables mostly associated with PC2. Practitioners 
can therefore be confident that by reporting vari-
ables from each PC they capture unique informa-
tion compared to using multiple variables from a 
single PC. The impact of these results, however, 
relies on the collaboration between sport science 
practitioners and coaches to select variables that 
help answer coach questions, such as those perti-
nent to planning and evaluating training.

soccer team was studied, meaning the results likely 
depend on the periodisation model and training 
strategy of the team, and thus may not be gener-
alisable to other soccer teams or team sports. The 
team studied showed a distinct variation in load-
ings throughout the training week whereby different 
physical qualities were targeted on each day, which 
may in part explain the correlations between vari-
ables and PCA loadings. It is recommended that 
sport scientists perform PCA on their own data set 
to provide insights relating to their team’s specific 
periodisation and loading strategy. Finally, speed 
zones analysed were arbitrary, which fails to account 
for differences in fitness and athleticism across the 
squad (Hunter, et al., 2014). Future research may 
look to perform PCA using individualised speed 
and acceleration zones as well as comparing vari-
able relationships between positions and competi-
tive level.

In sum, the present study aimed to address 
concerns from soccer coaching staff that too much 
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