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A B S T R A C T   

Objective: Conduct a multicenter proof-of-concept clinical evaluation to assess the accuracy of an artificial intelligence system on a smartphone for automated 
detection of diabetic foot ulcers. 
Methods: The evaluation was undertaken with patients with diabetes (n = 81) from September 2020 to January 2021. A total of 203 foot photographs were collected 
using a smartphone, analysed using the artificial intelligence system, and compared against expert clinician judgement, with 162 images showing at least one ulcer, 
and 41 showing no ulcer. Sensitivity and specificity of the system against clinician decisions was determined and inter- and intra-rater reliability analysed. 
Results: Predictions/decisions made by the system showed excellent sensitivity (0.9157) and high specificity (0.8857). Merging of intersecting predictions improved 
specificity to 0.9243. High levels of inter- and intra-rater reliability for clinician agreement on the ability of the artificial intelligence system to detect diabetic foot 
ulcers was also demonstrated (Kα > 0.8000 for all studies, between and within raters). 
Conclusions: We demonstrate highly accurate automated diabetic foot ulcer detection using an artificial intelligence system with a low-end smartphone. This is the 
first key stage in the creation of a fully automated diabetic foot ulcer detection and monitoring system, with these findings underpinning medical device 
development.   

1. Introduction 

Diabetic foot ulcers (DFUs) and associated amputations are a global 
health and economic burden. In the United Kingdom, they account for 
10% of the diabetes health services budget [14]. A reduction of DFU 
cases by one-third would result in a gross annual saving of more than 
£250 GBP million in the UK [16]. In the United States, the cost related to 
DFU is estimated to be approximately $9–13 USD billion in addition to 
the cost associated with diabetes [15]. Patients with diabetes have a 
lifetime risk of up to 34% of developing a DFU, with more than half of all 
cases leading to infection [4]. DFU is considered to be a clinical marker 
for increased risk of amputation and mortality [19,11]. 

Smartphone healthcare apps and associated research has seen 

notable growth in recent years, with increased engagement with self- 
monitoring health apps [3,23]. Artificial intelligence (AI) has been 
used in recent studies for real-time screening of diabetic retinopathy [3] 
(accuracy = 94.7%), diabetes prediction using lifestyle data [28] (ac-
curacy = 82.1%), and screening for pre-diabetes in children and ado-
lescents [29] (accuracy = 90.13%). AI applications are also being 
developed for other clinical areas such as endometriosis screening [30] 
and screening for genetic syndromes in children [31]. These studies 
showed promising results, indicating the potential importance of AI in 
clinical settings. 

There have also been numerous advances in the use of AI for auto-
mated and semi-automated DFU screening, detection, and monitoring. 
Brown et al. [6] developed the MyFootCare smartphone app, which 
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attempted to motivate self-care using aspects such as personal goals. 
Three patients participated in the study, with delineation of DFU wound 
region completed using a semi-automated procedure where the user was 
required to manually indicate DFU location and surrounding skin within 
the app. 

Yap et al. [26] developed a smartphone app used to standardise 
capture of DFU photographs to improve follow-up analysis. The app 
used basic image processing techniques to display a ghost image of the 
initial foot photo which could be used to align subsequent follow-up 
photographs for standardisation purposes [1]. However, this system 
was used only for image capture and was not designed for automated 
DFU recognition. 

Wang et al. [24] proposed a system to perform wound area mea-
surement to monitor healing progress. In a later study they used a 
smartphone app with a capture box to perform automated wound region 
delineation. However, these studies were limited due to a small sample 
size of 65 photographs from patients and hand-crafted wound models. 

Thermographic technologies have shown promise for providing early 
indication of DFU development [2,12]. However, from a self-monitoring 
perspective, thermographic smartphone attachments are prohibitively 
expensive. Therefore, photography remains an important research field 
for automated DFU screening, detection and monitoring, as it allows for 
accurate indication of pathology, whereas thermography is mainly 
aimed at identifying DFU before they appear. Additionally, monthly 
temperature monitoring failed to show a significant reduction in ulcer 
recurrence rates or increased ulcer-free survival [20]. 

Chan et al. [9] tested a smartphone app capable of measuring DFU 
wounds in hospital settings with 28 patients. However, this solution was 
not able to accurately delineate wound regions and required manual 
intervention to correct, further emphasising the importance of accurate 
DFU detection as the first key stage in automated DFU monitoring. 

Goyal et al. [13] demonstrated high levels of accuracy in DFU 
detection using fully automated AI techniques in experimental settings. 
These AI techniques showed high sensitivity and specificity (>0.9) for 
automatic detection of DFU from 355 test images. 

Semi-automated wound monitoring systems have been introduced in 
recent years using smartphone technologies [25], however, they are not 
suitable for patient use as they require manual adjustments to prediction 
results. As evidenced by the literature reviewed here and further high-
lighted by a recent review [10], most wound detection and monitoring 
solutions lack rigorous evaluation studies to determine their efficacy in 
real-world settings. 

Automated AI detection of DFU with high accuracy will allow for 
remote screening and self-monitoring of patients outside hospital/clinic 
settings, resulting in a reduction in hospital visits. Associated financial 
impacts are particularly pertinent for patients in developing countries 
with restricted access to healthcare where the cost of treating the disease 
can be equivalent to 5.7 years of annual income [8]. Accurate remote 
screening and monitoring of DFU will aid earlier DFU detection to 
reduce amputations and improve overall health outcomes. 

The aim of this study is to investigate if an AI algorithm running on a 
cloud platform connected to low-end smartphone devices can be used 
for screening and accurate automatic detection of DFU in ‘real-world’ 
settings. 

2. Subjects, materials and methods 

A proof-of-concept clinical evaluation for the smartphone app and 
cloud-based framework took place at two hospitals in the United 
Kingdom: Salford Royal NHS Foundation Trust, and Lancashire Teach-
ing Hospitals NHS Foundation Trust, between September 2020 and 
January 2021. Ethical and governance approvals were obtained from 
the Northern Care Alliance NHS Foundation Trust (REF: S19HRANA37) 
and Lancashire Teaching Hospitals NHS Foundation Trust (REF: SE- 
281). Written informed consent was obtained from all participating 
clinicians and patients. 

Main inclusion criteria for patient participants included: aged > 18 
years, diagnosed with diabetes type 1 or 2, and had at least one intact 
foot. The main exclusion criteria for patients was amputation of both 
feet at or above the ankle. Participating clinicians were clinical spe-
cialists in the diabetic foot (podiatrist (n = 3), surgeon (n = 1), and 
consultant (n = 1)). 

2.1. AI algorithm development 

The deep learning model used in the evaluation is a single classifier 
localisation model using the Faster R-CNN and Inception-ResNetV2 ar-
chitectures for feature extraction and object localisation [13]. Transfer 
learning from the MS COCO dataset was followed by model training 
using 1775 DFU photographs and expert labels obtained from Lanca-
shire Teaching Hospitals. 

2.2. Data collection 

The smartphone app created for this proof-of-concept clinical eval-
uation was used by clinicians on a low-end smartphone device to 
automatically detect a DFU if present at various stages of development. 
A total of 203 foot photographs were captured from 81 patients at two 
hospitals in the United Kingdom. The app is a non-contact solution that 
connects to a cloud-based platform to run the artificial intelligence al-
gorithm and complete the automated analysis. The cloud platform hosts 
an AI algorithm that is capable of identifying the location of DFUs on 
photographs acquired using the smartphone app. Six clinicians partici-
pated in the evaluation, comprising podiatrists, surgeons, and consul-
tants. Each clinician was provided with a low-end Android smartphone 
(a Nokia 1 Plus or a Motorola E5 Play) with the app pre-installed. Low- 
end smartphones were used to demonstrate that the efficacy of the 
system was not affected by the quality of the smartphone device or ac-
quired photograph, since the automated analysis was performed on the 
cloud platform. The app was used to acquire photographs of patient’s 
feet during scheduled appointments where a DFU was either present or 
not present to allow for the analysis of all possible detection results. 
Fig. 1 shows the main data capture screens within the smartphone app 
and the associated clinical workflow used during the proof-of-concept 
clinical evaluation. 

General guidelines were agreed with clinicians for the acquisition of 
foot photographs when using the app. These included orienting the foot 
vertically within the photograph so that the heel was positioned at the 
bottom of the image and the toes at the top. DFUs were photographed in 
different states of preparation. Each smartphone device used was pur-
posely configured to use a different image resolution to challenge the AI 
algorithm: 700 × 933; 700 × 525; 700 × 350, and 500 × 1000 pixels. 
Flashes and other image processing features were disabled on all de-
vices. Of the DFU cases photographed during the proof-of-concept 
clinical evaluation, some wounds may have surfaced naturally, while 
others had been exposed as a result of debridement. 

The data that the results of the study were derived from can be 
divided into three distinct sets:  

1. Patient foot photographs, consisting of lesion-free feet and feet 
exhibiting DFU and other associated pathology at various stages of 
development.  

2. Diagnostic results returned by the AI algorithm for each foot 
photograph taken using the app.  

3. Diagnosis results returned by the AI algorithm for each photograph 
taken using the app following a post-processing stage to refine 
predictions. 

At the end of the evaluation, two additional podiatrists who did not 
participate in the initial evaluation were asked to provide answers to 
four questions for all 203 foot photographs together with the AI 
predictions: 
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1. How many DFU can you see in the photo?  
2. How many predictions do you agree with in the photo?  
3. How many predictions do you disagree with in the photo?  
4. How many DFUs in the photo are undetected? 

For each image, we showed the predicted DFU to both expert raters 
and recorded their clinical decisions and agreement in terms of pre-
dictions that they agreed with (True Positive; TP), predictions that they 
disagreed with (False Positive; FP), missing predictions (False Negative; 
FN) and photographs without DFU (True Negative; TN). We then 
derived a confusion matrix from these answers, which allowed for the 
validation of the AI predictions. We analysed the results in terms of 
sensitivity, specificity, positive precision and F1-score. We also con-
ducted an inter- and intra-rater reliability analysis to observe reliability 
between rater’s results when rating their agreement with predictions 
made by the AI algorithm. In medical image analysis, the application of 
post-processing to further refine prediction results has been shown to 
reduce the number of FPs [13]. To study the effect of this technique on 

our data in a second phase of analysis, we included results from this 
additional experiment to investigate if the AI algorithm accuracy can be 
further improved by this post-processing. Visual analysis of the rater’s 
results showed that they would classify an intersecting prediction 
bounding box as a FP (see Fig. 2 (a)). Therefore, in this experiment, we 
applied a bounding box merging algorithm that merges intersecting 
prediction bounding boxes. We then adjusted the number of false posi-
tives derived from each rater in the sensitivity and specificity measures 
acquired previously. A total of 5 prediction bounding boxes where 
identified which intersected with other bounding boxes. We made an 
assumption that clinicians would identify at least 2 of these predictions 
and adjust the number of false positives accordingly. An example of 
prediction bounding box merging is shown in Fig. 2 (a) and (b). Fig. 2 (c) 
to (g) show other predictions reported by the system, and are discussed 
further later in the paper. 

A summary of baseline characteristics of the data collected during 
the clinical evaluation is shown in Table 1. 

Fig. 1. Illustration of the main data-capture screens in the smartphone app and the clinical procedure for its use in patient appointments during the proof-of-concept 
clinical evaluation. 
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2.3. Study protocol 

Clinicians who participated in the clinical evaluation (n = 6) were 
provided with printed QR Codes (QRCs). Each QRC contained a 
randomly generated Globally Unique Identifier (GUID) - a series of 
random alpha-numeric characters. During the patient’s initial appoint-
ment, the patient QRC was scanned using the app. The clinician then 
indicated which of the patient’s feet they were examining, and how 
many DFU were visible on each foot (see Fig. 1). The clinician would 
take a photograph of each foot being examined, which would then be 
uploaded to the cloud platform and stored in a database, with the 
diagnosis returned to the app in < 6 s. Results were displayed as red 
rectangles drawn around each DFU identified by the system (see Fig. 1). 

2.4. Qualitative analysis 

For the qualitative analysis, we evaluate the following:  

1. Sensitivity and specificity measures acquired from two raters who 
rated their agreement / disagreement with individual AI prediction 
results.  

2. Adjusted specificity measures for the prediction results from the AI 
algorithm using measures acquired from two raters following an 
additional post-processing stage to merge intersecting prediction 
bounding boxes. This step is an experimental adjustment of the re-
sults from step 1 where we adjust the number of false positives by a 
value representing the minority of the total number of intersecting 
bounding boxes. In this case, 2 out of 5 bounding boxes were merged. 
We perform this step to emphasise how post-processing could be 

used for real-world application to enhance the results returned by the 
AI algorithm.  

3. The inter-rater reliability of clinician agreement / disagreement with 
individual diagnostic results (prediction bounding boxes) returned 
by the AI algorithm, of which there may be more than one per case.  

4. The intra-rater reliability of clinician agreement / disagreement with 
individual diagnostic results (prediction bounding boxes) returned 
by the AI algorithm, of which there may be more than one per case. 

2.5. Statistical analysis 

Statistical analysis to obtain inter-rater (between different clinicians) 
and intra-rater (between individual clinicians) reliability measures 
taken from clinicians rating AI diagnostic results was completed using 
IBM SPSS version 28.0.1.0 (SPSS Inc., Chicago, Illinois). Krippendorff’s 
alpha was used to analyse inter- and intra-rater reliability, and was 
chosen due to its ability to provide more stable estimates in cases of 
missing data [27]. Our intra-rater results were missing a small number of 
ratings (n = 4 for rater 1; n = 3 for rater 2), therefore Krippendorff’s 
alpha was deemed a more suitable measure so as to provide less biased 
results. To provide Krippendorff’s alpha confidence intervals, a boot-
strap value of 10,000 was used. The relevant mathematical expressions 
for assessing diagnostic accuracy and rater reliability are presented in 
the appendix. 

3. Results 

3.1. Experts ratings on the AI algorithm predictions 

High sensitivity (m = 0.92, sd = 0.0099), specificity (m = 0.89, sd =

Fig. 2. Illustration showing a selection of notable AI prediction results from the proof-of-concept clinical evaluation.  
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0.0080), positive precision and F1-score measures were identified for 
the diagnostic results returned by the AI algorithm compared to expert 
clinical decision (Table 2). 

3.2. Experts ratings on the AI algorithm predictions with Post-Processing 

High sensitivity (m = 0.92, sd = 0.0099), specificity (m = 0.93, sd =
0.0107), positive precision, and F1-score measures were identified for 
the diagnostic results returned by the AI algorithm compared to expert 
clinical decision following a post-processing stage to merge intersecting 
prediction results (Table 2). 

3.3. Inter-rater reliability 

High inter-rater reliability measures were identified for question 1 
(Kα = 0.84), question 2 (Kα = 0.90), question 3 (Kα = 0.94), and 
question 4 (Kα = 0.84), as shown in Table 3. These measures show the 
reliability between the two clinician ratings of the AI algorithm pre-
dictions for each question. The author of the Kα advises that variables 
with reliabilities above Kα = 0.8000 can be considered reliable, and that 
variables with a reliability value between Kα = 0.6670 and Kα = 0.8000 

should only be used for drawing tentative conclusions [17]. Hence, 
given the values obtained are all > 0.8000 we are confident in the 
reliability of clinical decision-making. 

3.4. Intra-rater reliability 

High intra-rater reliability measures were identified for both raters 
(m = 0.89, sd = 0.0430), as shown in Table 3. These measures show the 
reliability of within-clinician ratings of the AI algorithm predictions. 
This analysis was performed using repeated-measures from the same 
two raters in the previous inter-rater reliability analysis. 

3.5. AI system performance 

The mean response time for the cloud-based system to return results 
to the user on the smartphone identifying any DFU present, was 5.866 s 
per-case (sd = 0.747 s). This indicates a fast and consistent response time 
for per-case requests in a real-world situation. 

4. Discussion 

In this paper, we show for the first time, proof-of-concept efficacy for 
accurate automated DFU detection using a smartphone app employing 
an AI algorithm operating as part of a cloud-based architecture. The AI 
algorithm was able to automatically detect DFU with a sensitivity and 
specificity of 0.92 and 0.89, respectively. These findings come from 
hospital environments with AI automated decisions/outcomes validated 
against expert clinical judgement on DFU identification. Furthermore, 
this process was quick, with only 5.9 s between the foot image being sent 
to the cloud by the user and identification of any DFU present returned 
to their smartphone. 

The hospital environment was used to provide a high number of 
DFUs and associated pathology to test the AI algorithm. However, this 
real-world proof-of-concept clinical evaluation demonstrates the effi-
cacy of the AI system for remote patient screening and monitoring. The 
future implications being that a patient’s spouse or carer could take 

Table 1 
Baseline characteristics for the data acquired during the proof-of-concept 
clinical evaluation based on clinical assessment.  

Category Number 

No. of patients 81 
No. of cases with DFU 162 
No. of cases without DFU 41 
Pathology  

Control 145 
Infection 37 
Ischemia 4 
Both (infection & ischemia) 2 
Undetermined 1 

Visible comorbidities  
Amputation 25 
Charcot neuropathic osteoarthropathy 3 
Calosity 55 
Cellulitis 4 
Oedema 6 
Onychomycosis 5 
Cyanosis 15 

DFU anatomical location  
Midfoot 11 
Lateral midfoot 1 
Forefoot 18 
Forefoot midfoot 2 
Lateral forefoot 21 
Lateral midfoot forefoot 1 
Medial forefoot 30 
Anterior forefoot 9 
Anterior lateral forefoot 13 
Anterior medial forefoot 38 
Hindfoot 12 
Hindfoot midfoot 4 
Lateral hindfoot 4 
Posterior 2 
Posterior midfoot 1 
Posterior hindfoot 19  

Table 2 
Measures derived from the expert raters on AI algorithm predictions with and without post-processing. TP – true positive, FP – false positive, TN – true negative, FN – 
false negative, Sen – sensitivity, Spe – specificity, PP – positive precision, F1 – F1-score.  

Rater TP FP TN FN Sen Spe PP F1 Post-proc 

1 189 5 41 19  0.9087  0.8913  0.9742  0.9403 No 
2 155 6 44 13  0.9226  0.8800  0.9627  0.9422 No           

1 189 3 41 19  0.9087  0.9318  0.9844  0.9450 Yes 
2 155 4 44 13  0.9226  0.9167  0.9748  0.9480 Yes  

Table 3 
Inter- and intra-rater reliability measures for the proof-of-concept clinical 
evaluation. Note - number of cases is 203; Q = question number; Kα = Krip-
pendorff alpha; LB = lower bound; UB = upper bound; CI = Confidence interval; 
Inter = inter-rater; Intra = intra-rater.  

Rater Q Kα Lower Bound 95% 
CI 

Upper Bound 95% 
CI 

Analysis 

– 1  0.8329  0.7626  0.9033 Inter 
– 2  0.8986  0.8341  0.9539 
– 3  0.9320  0.8640  0.9864 
– 4  0.8338  0.7452  0.9114       

1 1  0.8837  0.8210  0.9374 Intra 
1 2  0.9347  0.8881  0.9813 
1 3  0.9256  0.8635  0.9752 
1 4  0.8798  0.8077  0.9519 
2 1  0.8396  0.7641  0.9056 
2 2  0.9132  0.8554  0.9614 
2 3  0.8734  0.7890  0.9437 
2 4  0.8086  0.7130  0.8924  
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photographs enabling remote screening and providing patient reassur-
ance. Potentially, such a system could function fully remotely, even 
without connection to the cloud, whereby the model is installed onto the 
smartphone itself. In the event a DFU was detected, the system could in 
theory trigger an alert with appropriate treatment signposting enabling 
early treatment, reduction of DFU severity and reduced risk of associ-
ated infection/amputation. This evaluation purposely used low-end 
smartphone devices with varying photographic quality to challenge 
the AI algorithm and demonstrate its efficacy in real-world scenarios. 

The high sensitivity of 0.92 indicates that the system correctly 
identified DFU occurrences when present. Specificity was 0.89, slightly 
lower than the sensitivity value of 0.92, indicating that the system was 
better at correctly identifying DFU when present in contrast to correctly 
rejecting when a patient did not have a DFU, resulting in a slightly 
higher number of FPs. For the experts’ ratings on AI algorithm pre-
dictions (see Table 3), the reported SD values indicate that there is little 
variance between the mean values in each group. 

Using post-processing of the AI algorithm predictions in a second 
phase of analysis (Table 3), we observed that the modest reduction of 
FPs (by 2) resulted in an increase in specificity from the primary anal-
ysis. Specificity increased from 0.89 to 0.93, thereby reducing the 
number of FPs. Positive precision and F1-score measures also showed a 
corresponding increase in this secondary analysis. 

For the inter- and intra-rater reliability results, we observed that Kα 
> 0.8 for all raters in Table 3. The inter- and intra-rater results can 
therefore be viewed as indicating a high level of reliability between and 
amongst raters. 

We observe from the prediction results that the AI algorithm was 
capable of accurately detecting DFU wounds on different regions of the 
foot at various stages of development. Such cases include examples 
where the AI algorithm was able to detect partially visible DFUs present 
on the curvature of the foot (shown on the hindfoot in Fig. 2 (c)) and 
DFUs surrounded by tissue affected by large areas of debridement 
(shown on the anterior support in Fig. 2 (d)). Note that the bruising on 
the forefoot was not miss-detected in Fig. 2 (c). Fig. 2 (d) and (e) show 
two challenging cases (with (e) exhibiting Charcot neuropathic osteo-
arthropathy) which indicate that the AI algorithm is capable of accu-
rately detecting very small early stage DFUs. Fig. 2 (f) shows another 
challenging case, exhibiting partial amputation, where the AI algorithm 
has accurately detected a DFU, but also detects a partially visible toenail 
that is located next to the wound presenting ambiguous nail and wound 
boundaries. This may indicate that the AI algorithm requires a larger 
and more diverse set of training data. Fig. 2 (g) shows the left plantar 
aspect from a non-white patient in a visually complex medical setting. 
This result indicates that the AI algorithm is capable of returning true 
negative results where there may be newly epithelialised skin from a 
recently healed DFU, shown here on the lateral support region. Of the AI 
detection results shown in Fig. 2 (c to g), clinicians indicated agreement 
with (c), (d), (e), and (g), and disagreement with (f). These promising 
examples indicate that the AI system will be able to detect early stage 
DFUs, which would reduce complications if used as part of an early 
screening system. 

Accurate detection is the first key stage in automated monitoring of 
DFU wounds. Without it, longitudinal monitoring and other forms of 
automated analysis of DFU healing status may be limited. Detection, as 
described in this paper, allows for the wound region to be isolated from 
background details and can act as a vital preprocessing stage in auto-
mated DFU delineation, which involves the detection of the detailed 
outline of the wound [22]. 

4.1. Recommendations and future work 

Following the completion of this proof-of-concept clinical evalua-
tion, a more fully-featured version of this AI system is being developed 
which will integrate into existing NHS healthcare systems in the United 
Kingdom. DFU has worse outcomes for people living in rural localities 
when compared to those living in urban areas and remote screening and 
monitoring of DFU may be able to reduce this health inequality. 

By 2035 the global prevalence of diabetes is estimated to rise to 
almost 600 million, and around 80% of these people will live in devel-
oping countries [5]. This proof-of-concept clinical evaluation was con-
ducted primarily on white participants. Therefore, to make the model 
more relevant globally, we plan to collect substantial datasets from a 
range of ethnicities to retrain and further enhance the model. 

DFU and resulting amputation attracts less public concern, research 
effort, political consideration, and clinical attention than other condi-
tions with similar impacts on quality of life and survival. Substantial 
geographic variations exist in service provision, with delays in assess-
ment directly associated with increased DFU severity and longer healing 
times [16]. Tools to increase early intervention, such as the present AI 
system, could be important contributors to addressing the growing 
global challenges presented by DFU. 

The intention of this research is to augment medical expertise. This 
can be especially useful in scenarios where clinicians lack specialty 
training to accurately diagnose conditions [18] To help combat the 
trend of overburdened healthcare systems and to maintain high stan-
dards of quality in patient care, new technologies could provide a net 
benefit in terms of both time and costs. 

4.2. Summary 

This paper presents the results of a proof-of-concept clinical evalu-
ation for a framework that is capable of automatic detection of DFUs 
using smartphone, cloud and AI technologies. The automated system 
was shown to provide high sensitivity and specificity, together with 
excellent inter- and intra-rater reliability. To the best of our knowledge, 
this is the first system capable of fully automated DFU detection using 
smartphone, cloud and AI technologies that has been evaluated in 
clinical settings [21],Cassidy et al. [7]. The intention is to build on this 
work to bring this technology into the hands of patients and their carers. 
This solution will be used as a tool to promote regular remote screening 
of diabetic feet. 
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Appendix 

The relevant mathematical expressions for assessing diagnostic accuracy are as follows: 

Sensitivity =
TP

TP + FN
(1)  

Specificity =
TN

TN + FP
(2)  

PositivePrecision =
TP

TP + FP
(3)  

F1 − score =
Sensitivity × PositivePrecision
Sensitivity + PositivePrecision

=
2TP

2TP + FP + FN
(4)  

where TP is the total number of true positives, TN is the total number of true negatives, FP is the total number of false positives and FN is the total 
number of false negatives. 

The relevant mathematical expression for the general form of Krippendorff’s alpha is as follows: 

Ka =
Pa − Pe

1 − Pe
(5)  

where Pa represents the observed weighted percent agreement, and Pe represents the chance weighted percent agreement. 
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