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A Review on Energy Efficiency in Autonomous Mobile Robots 

Abstract 

Purpose: This paper aims to provide a comprehensive analysis of the state of the art in energy 
efficiency for Autonomous Mobile Robots (AMRs), focusing on energy sources, consumption 
models, energy-efficient locomotion, hardware energy consumption, optimization in path planning 
and scheduling methods, and to suggest future research directions. 
 
Design/methodology/approach: The systematic literature review identified 244 papers for 
analysis. Research articles published from 2010 onwards were searched in databases including 
Google Scholar, ScienceDirect, and Scopus using keywords and search criteria related to energy 
and power management in various robotic systems. 
 
Findings: The review highlights the following key findings: 1) batteries are the primary energy 
source for AMRs, with advances in Battery Management Systems enhancing efficiency; 2) hybrid 
models offer superior accuracy and robustness; 3) locomotion contributes over 50% of a mobile 
robot's total energy consumption, emphasizing the need for optimized control methods; 4) factors 
like the center of mass impact AMR energy consumption; 5) path planning algorithms and 
scheduling methods are essential for energy optimization, with algorithm choice depending on 
specific requirements and constraints. 
 
Research limitations: The review concentrates on wheeled robots, excluding walking ones. 
Future work should improve consumption models, explore optimization methods, examine AI/ML 
roles, and assess energy efficiency trade-offs. 
 
Originality/value: This paper provides a comprehensive analysis of energy efficiency in AMRs, 
highlighting the key findings from the systematic literature review and suggests future research 
directions for further advancements in this field. 
 
Keywords: Autonomous Mobile Robots, Energy Efficiency, Systematic Literature Review, 
Optimization, Energy Consumption Models, Path Planning 
 
Article Type: Review 
 
 
 



 

 

1. Introduction 

Global concerns regarding CO2 emissions and climate 
change have intensified in recent years. Among the various 
sectors, manufacturing has emerged as a significant 
contributor to these pressing environmental challenges. 
Often, stakeholders in this industry concentrate on 
functional aspects and solutions, overlooking the critical 
role of energy efficiency in mitigating the adverse impacts 
of manufacturing processes. This oversight extends to 
utilizing AMRs and Automated Guided Vehicles (AGVs), 
which have become increasingly prevalent in manufacturing 
settings. 

Considering these concerns, this review paper will 
specifically focus on the energy efficiency of wheeled 
mobile robots within the realm of AMRs, analyzing their 
application in manufacturing environments. The objective 
of this study is to contribute to the ongoing discourse on 
sustainable manufacturing and climate change mitigation by 
exploring the diverse aspects of energy efficiency within this 
framework. 

The increasing adoption of AMRs has revolutionized 
various industries, including manufacturing, logistics, 
agriculture, and healthcare (Alexovič et al. 2021). 

According to a report by the International Federation of 
Robots (IFR), the global installation of industrial robots has 
experienced a significant increase, from 166,000 units in 
2011 to 571,000 units in 2021 (Zhang and Zhu 2023). As 
industries continue to rely heavily on robots to improve 
efficiency and productivity, the energy consumption of the 
robotics sector is projected to grow considerably in the 
coming years. This rapid growth in energy consumption 
emphasizes the urgent need to address energy efficiency in 
AMR, as they play a critical role in reducing greenhouse gas 
emissions and mitigating the impacts of climate change. 

Designed to navigate and execute tasks in complex, 
dynamic environments with minimal human intervention, 
AMRs can perceive their surroundings, make decisions, and 
act based on their internal algorithms and sensor data. This 
review paper encompasses AGVs, mobile robots, and 
wheeled robots under the umbrella term of AMRs. These 
versatile robotic systems hold the potential to significantly 
enhance efficiency, productivity, and safety across a wide 

array of applications. Fig. 1 shows a common AMR. 

  

Fig. 1 AMR is used for logistics 

 
Considering the environmental impact of the increasing 

energy consumption of AMRs, this review aims to provide a 
comprehensive analysis of the state-of-the-art in energy 
efficiency for AMRs, including energy sources, 
consumption models, energy-efficient locomotion, 
hardware energy consumption, optimization in path 
planning, and scheduling methods. By addressing these 
issues, researchers and practitioners can develop more 
sustainable and energy-efficient AMR technologies, 
contributing to a greener future. 

2. Review Methods 

In this Systematic Literature Review (SLR), a thorough 
search was carried out to pinpoint studies that concentrate 
on energy and power optimization across diverse mobile 
robotic platforms. The search terms employed in this study 
consisted of combinations such as "Energy" or "Power" or 
"Solar panels" or "Fuel Cells" or "Green" or "Battery," along 
with phrases like "Automated Guided Vehicle (AGV)", 
"Autonomous Mobile Robot (AMR)", "Mobile Robot", 
"Wheeled Robot", "Automated Intelligent Vehicle (AIV)", 
"Self-guided vehicle", and "Robotic vehicle". To ensure a 
comprehensive examination of the existing literature in this 
field, databases including Google Scholar, ScienceDirect, 
and Scopus were utilized, with a focus on research articles 
published from 2010 onwards. By employing these 
keywords and search criteria, the aim was to encompass a 
wide range of energy and power management research 
within various robotic systems. The systematic literature 
review centered on document type, excluding dissertations, 



 

 

books, and review articles. 
This process identified a total of 384 papers for further 

analysis. The 140 documents retrieved are unrelated to the 
topics covered in this literature review or are book type. This 
literature review focuses on wheeled mobile robots and does 
not discuss walking robots like quadruped ones. A total of 
244 papers were finally selected for the systematic review, 
focusing on robot/vehicle energy optimization.  

After analyzing the 244 papers, several insightful 
statistical conclusions have been derived: 

 Energy optimization 
 Battery management system (BMS) and charging 

technology 
 Energy consumption model 
 Energy source 
 Battery swap 
 Energy recovery system  

 

Fig. 2 Statistics About Topic Type 

 
As shown in Fig. 2, the research interest in these topics 

has evolved over the past decade. The classification of 
studies reveals diverse topics being explored within the field. 
Specifically, 63.3% of research is concentrated on 
optimization, while 17.9% is dedicated to battery 
management systems (BMS) and charging technology. 
Additionally, 10.8% focus on energy consumption 
measurement methods and 5 % delve into energy sources. 

Through the analysis of the results shown in Fig. 2, it 
can be found that current research about energy efficiency 
can be mainly divided into three aspects, which refers to the 
energy sources and its managements, energy consumption 
model research, and energy efficient optimization research.  
Therefore, the review paper is organized as follows:  

Section 3 introduces the brief hardware structure and 

energy consumption in hardware of the AMRs. Section 4 
focuses on the current research on energy source and 
management technologies, which includes the state-of-art 
research of energy sources, and BMS and charging 
technology in AMRs. Section 5 analyses and summarizes 
the research status of energy consumption model, which 
includes the energy consumption model, and the factors 
influencing AMR energy consumption. Section 6 focuses on 
the analysis and summary of the current energy optimization 
research methods. The last part summarizes the energy 
efficiency review and gives the main findings of the review 
and our judgment on the future research trends in this field.  

3. System Overview 

An AMR is a mobile robot capable of autonomously 
navigating from one location to another while carrying loads 
(Illah Nourbakhsh 2004).  

AMRs have applications in various industries, such as 
in logistics, support services in healthcare, food and 
beverage or household cleaning and security checks. 
Although AMR and AGV are sometimes used 
interchangeably, they have subtle differences. AMRs are 
often considered more intelligent because they use 
technologies like LIDAR, cameras, and SLAM 
(Simultaneous Localization and Mapping) for navigation. 
On the other hand, AGVs typically rely on guidance 
mechanisms such as magnetic tape, induction, or colored 
tape on the floor for navigation. 

Despite these differences, some individuals regard 
AMRs and AGVs as synonymous, given that both robots 
perform tasks autonomously. Various terms refer to AMRs, 
including AIV (Automatic Intelligent Vehicle), AGV 
(Automatic Guided Vehicle), self-guided vehicle, mobile 
robot, guided robot, and wheeled robot. Understanding these 
distinctions and similarities is essential for comprehensively 
evaluating the energy efficiency of AMRs and their 
applications in different industries. 

3.1. Overview of Hardware Structure in AMRs 

The standard hardware structure of an AMR comprises 
sensor, control, driver, motor and power modules. Control 
modules typically utilize embedded systems, programmable 



 

 

logic controllers (PLCs), or industrial PCs. Holonomic 
robots can move in any direction without altering their 
orientation, whereas nonholonomic robots need to turn or 
change direction for movement. 

Various locomotion configurations are employed by 
AMRs, such as differential-driven systems or four-wheel 
drives. Some AMRs also incorporate mecanum wheels to 
achieve holonomic motion capabilities. In general, AMRs 
with a higher number of motors consume more energy, 
making it essential to understand hardware design aspects 
for assessing energy efficiency. 

Figure 3 shows the hardware architecture of AMRs, 
which consists of four primary components: sensor, control, 
driver and power modules. These components work together 
to ensure the efficient operation and seamless integration of 
the robot's subsystems. 

The sensor module gathers data from the environment, 
while the control module processes this information and 
decides on suitable actions. 

The driver module manages actuators, and the power 
module provides power like electrical to the entire robot.    
Effectively integrating these components is crucial for 
successfully developing a well-functioning AMR system.

 
Fig. 3 Hardware structure diagram of a mobile robot 

 

3.2. Energy Consumption in Hardware 

The energy consumption of robots is primarily 
concentrated in hardware and motion control. The central 
control factors of hardware energy consumption lie in 
energy management and its control techniques. This is 
achieved by studying theoretical energy consumption 
models and methods of optimizing motion energy. 

Liangkai Liu et al. conducted a study (Liangkai Liu et 

al. 2019) where they first described the experimental setup 
using an indoor AMR called HydraOne, a multi-purpose 
platform for various computer vision applications. 
HydraOne uses the Robot Operating System (ROS) to 
manage resources and has multiple concurrent computer 
vision applications running on it. The power analysis of 
HydraOne reveals that locomotion accounts for over 50% of 
total power dissipation, while computation and sensors 
make up 33% and 11%, respectively. Fig. 4 from the study 
shows the percentage of power consumption by different 
modules. The main reason locomotion accounts for a high 
proportion of energy consumption in AMR is that motors 
require significant power to operate. 

 
Fig. 4 Power dissipation breakdown of an AMR (Liangkai Liu 

et al. 2019). 

Although this study may not represent the energy 
consumption model of all AMRs, it raises awareness among 
researchers that computation and sensors contribute 
significantly to energy consumption. 

4. Energy Sources and Management Technologies 

in AMRs  

4.1. Energy Sources for AMRs 

AMRs rely on various energy sources to function 
effectively. Batteries are the most common and account for 
98.5% of the research found in the systematic literature 
review. These energy storage devices are composed of 
electrochemical cells that transform stored chemical energy 
into electrical energy. Different battery types, such as lead-
acid, nickel, and lithium batteries, have unique advantages 
and drawbacks, offering diverse options for specific AMR 
requirements (McNulty et al. 2022). 

Despite the dominance of batteries, other energy 



 

 

sources show promise for AMR applications. Solar energy, 
for instance, has been studied by A. Sulaiman et al. in 2013, 
who explored solar hydrogen energy systems for mobile 
robots (A. Sulaiman et al. 2013). Although solar energy 
faces challenges like photovoltaic efficiency, hydrogen 
storage technology, and cost, further research could improve 
its viability as a renewable energy source for AMRs. 

Fuel cells have also been investigated as potential 
energy sources for AMRs, comprising approximately 1% of 
related studies (J. S. Artal et al. 2012; J.S. Artal-Sevil et al. 
2017). J.S. Artal-Sevil's research in 2012 and 2017 focused 
on active hybrid power systems, suggesting that combining 
PEM fuel cells with ultracapacitors or lithium batteries 
could offer significant advantages. However, economic 
factors and practical applications require more in-depth 
exploration. 

Supercapacitors, another alternative energy source, 
exhibit high energy density and perform between 
electrolytic capacitors and batteries. In 2020, Lukasz 
Wieckowski et al. demonstrated that combining batteries 
and supercapacitors could improve robot power system 
performance (Lukasz Wieckowski and Klimek 2020). 
Similarly, Marvin Sperling et al. developed a dual-energy 
storage system (DESS) in 2022 (Marvin Sperling and Kivelä 
2022), which effectively reduced the required battery 
capacity but faced challenges in development and 
integration into AGVs. 

By investigating and refining these alternative energy 
sources, AMRs can become more efficient and versatile, 
expanding their applicability across various industries and 
environments. 

 
Table. 1 Advantages and Disadvantages of Each Energy Source 

Energy 
Source 

Advantages Disadvantages Proportion 

Batteries  Widely studied and 
mature technology 

 Simple to implement 
and maintain 

 Variety of battery 
types for specific 
applications 

 Limited energy 
storage capacity 

 Long charging 
times 

 Performance 
degradation over 
time 

 Environmental 
concerns 

98.5% 

Solar 
Panels 

 Renewable and eco-
friendly energy 
source 

 Continuous energy 
supply (in optimal 
conditions) 

 No direct emissions 
or pollution 

 Limited 
applicability in 
indoor/low 
sunlight areas 

 Relatively low 
photovoltaic 
efficiency 

 High initial cost 
and complexity 

0.2% 

Fuel 
Cells 

 High energy 
efficiency and low 
operational noise 

 Zero emissions 
during energy 
conversion 

 Faster refueling and 
longer operating 
times 

 Limited research 
and development 

 High initial cost 
and complexity 

 Uncertain 
economic 
feasibility and 
practicality 

0.9% 

Superca
pacitor 

 High power density 
and rapid charging 
capabilities  

 Longer cycle life and 
minimal degradation 
over time  

 Less sensitive to 
temperature 
fluctuations 

 Limited energy 
storage capacity 

 Lower energy 
density compared 
to batteries  

 Higher initial 
cost and 
complexity  

 Requires 
additional energy 
management 
systems for 
optimal 
performance 

0.4% 

Table 1 summarizes the advantages and disadvantages 
of three commonly used energy sources and their relative 
representation in the literature searched for this review 
(Rosenbaum and Schröder 2010; Gröger et al. 2015). 
Proportion represents the number of papers on the topic over 
the total papers reviewed. 

This part covers AMR energy sources, discussing their 
pros and cons. Batteries, are widely studied and versatile but 
have limitations in energy storage, charging times, and 
environmental impact. Solar panels offer renewable, eco-
friendly energy but face indoor applicability, efficiency, and 
cost challenges. Fuel cells boast high energy efficiency and 
low noise but have limited research, high costs, and 
uncertain feasibility. Exploring solar panels and fuel cells 
can lead to diverse, efficient, sustainable mobile robot 
energy solutions. 

4.2. Battery Management Systems (BMS) 

Battery Management Systems (BMS) are crucial 
systems that monitor and manage various battery parameters 
in mobile robots, particularly AGVs. BMS optimizes the 
charging and discharging processes by monitoring 
parameters such as voltage, current, and temperature to 
ensure efficient battery operation and extend their lifespan. 

BMS plays a vital role in the efficient performance and 
longevity of batteries in mobile robots, including AGVs 
(Hanschek et al. 2021). It is responsible for monitoring and 



 

 

managing various battery parameters, such as voltage, 
current, and temperature, for optimizing the charging and 
discharging processes. By doing so, the BMS ensures the 
efficient operation of batteries and prolongs their life, 
thereby contributing to the overall performance and 
reliability of the mobile robots that rely on these energy 
sources. 

Due to the numerous studies and recent literature 
reviews available in the field of BMS, this paper will not go 
into detailed discussions regarding BMS. 

4.3. Charging Technology for Energy Storages in 

AMRs 

Efficient charging technologies for AMRs are essential 
for seamless operation and widespread adoption. Inductive 
coupling and conductive coupling are two primary charging 
methods. Inductive coupling uses magnetic fields for 
wireless power transfer, offering benefits like simplified 
alignment, reduced wear and tear, and increased safety, but 
with lower efficiency than conductive coupling (Kojima et 
al. 2015; Huang et al. 2017, 2019; Anyapo 2019; Chen et al. 
2019; Dewi et al. 2019; Zhang et al. 2019; Yi et al. 2020; 
Ying-Chun Chuang et al. 2020; Pamungkas et al. 2022; Pan 
et al. 2022; Lee et al. 2023). Conductive coupling transfers 
power through a physical connection, providing higher 
efficiency and quicker charging times, but requires more 
accurate alignment and is prone to wear and tear. 
Customized AMR charging infrastructures can be 
implemented for different application requirements and 
environments, combining inductive and conductive methods 
as needed for flexibility and convenience. 

5. Energy Consumption for AMRs 

The energy consumption model of AMRs and the key 
factors affecting energy consumption are prerequisites for 
optimizing AMR energy consumption. This section focuses 
on the study of theoretical energy consumption models and 
key factors that impact the energy consumption of AMRs. 

5.1. Models for Estimating Energy Consumption 

Numerous models have been devised to accurately 
estimate energy consumption by accounting for factors like 
robot motion, power losses, and energy storage capacities. 
Such models play a crucial role in pinpointing areas for 
enhancement and devising more energy-efficient robotic 
systems. In the subsequent subsections, an overview of 
various energy consumption models is provided, 
encompassing physics-based models, data-driven models, 
hybrid models, as well as approaches for model validation 
and comparison. 

Physics-based models are founded on fundamental 
principles such as forces, torques, and energy loss. They 
offer an in-depth understanding of a robot's motion 
dynamics, providing critical insights for designing energy-
efficient systems. 

Data-driven models utilize machine learning 
techniques and historical data to estimate a robot's energy 
consumption. These models are adaptable and can deliver 
high accuracy in various scenarios. 

Hybrid models combine the benefits of both physics-
based and data-driven models. They integrate the 
fundamental principles from physics with machine learning 
techniques to create robust and highly accurate energy 
consumption estimations in robotic systems. 

As shown in Fig. 5, there were 11 studies (44%) that 
focused on physics-based models, 10 studies (40%) on data-
driven models, and 4 studies (16%) on hybrid models. In 
addition, one study compared two different types of models. 

 
Fig. 5 Energy consumption model research classification 

5.1.1. Physics-based Models 

Physics-based models primarily concentrate on the 



 

 

fundamental principles governing a robot's motion, such as 
forces, torques, and power losses. By incorporating these 
factors, these models provide a deeper understanding of 
energy consumption patterns and allow for developing more 
energy-efficient robotic systems. 

In 2015, Merlin Stampa et al. proposed a physics-based 
model, a polynomial function model based on physical 
principles and experimental data to estimate the energy 
consumption of a four-wheel mecanum omnidirectional 
autonomous navigation vehicle on any trajectory (Merlin 
Stampa et al. 2015). In the paper, the authors demonstrated 
a comparison between the proposed energy consumption 
estimation method and actual measurement data but did not 
provide specific error ranges or accuracy percentages. 
Equation (1) represents the calculation method for total 
energy consumption. Equation (3) is the calculation method 
for mechanical power, and Equation (4) is the calculation 
method for electrical power. 

𝐸𝐸 = ∫  𝑡𝑡end 
𝑡𝑡=𝑡𝑡start 

𝑃𝑃loss d𝑡𝑡                                (1) 

𝑃𝑃loss = ∑  𝑖𝑖 �𝑃𝑃m,𝑖𝑖 + 𝑃𝑃e,𝑖𝑖�           (2) 
𝑃𝑃m,𝑖𝑖 = 𝑀𝑀fric ,𝑖𝑖�̇�𝜑𝑖𝑖               (3) 
𝑃𝑃e,𝑖𝑖 = 𝑅𝑅a𝐼𝐼a,𝑖𝑖

2                                       (4) 
 

In a 2017 study by Vaibhav Deshmukh et al. (Vaibhav 
Deshmukh et al. 2017)., the primary focus was on an energy 
consumption estimation method based on kinetic energy 
transformation and traction resistance. This approach 
originates from physical principles, considering the changes 
in kinetic energy and motion resistance of the robot during 
the interception of a moving target. The authors conducted 
simulation experiments to analyze the energy consumption 
under nonholonomic and holonomic constraints in various 
scenarios. They discussed various influencing factors, such 
as path curvature and velocity constraints. This paper still 
holds significant reference value for understanding the 
energy consumption patterns of robots under dynamic 
trajectory planning. However, the article does not provide a 
specific accuracy metric to evaluate the proposed method. 
Equation (5) represents the sum of motor energy, including 
kinetic energy and resistance energy. In this model, motor 
energy is assumed to be the combined energy of kinetic and 
resistance energy. In other words, the energy provided by the 
motor is used to overcome resistance and provide kinetic 

energy for the robot. Equations (6) and (7) respectively 
demonstrate the calculation methods for kinetic energy and 
resistance energy. 

𝐸𝐸motor (𝑡𝑡) = 𝐸𝐸kinetic + 𝐸𝐸res            (5) 

𝐸𝐸kinetic = 1
2
𝑚𝑚𝑣𝑣𝑐𝑐(𝑡𝑡)2 + 1

2
𝐼𝐼𝜔𝜔𝑐𝑐(𝑡𝑡)2        (6) 

𝐸𝐸res (𝑡𝑡) = ∫  𝑡𝑡 (𝑃𝑃𝑙𝑙 + 𝑃𝑃𝑟𝑟)𝑑𝑑𝑡𝑡                          (7) 
In 2020, Said Fadlo et al. established an energy model 

for a differential drive mobile robot using Simscape 
software (Said Fadlo et al. 2020). They conducted a multi-
domain dynamic simulation using the Simscape tool 
developed by Mathworks. They proposed a complete 
physics-based energy model that considers DC motors, gear 
heads, kinetic losses, and friction losses. As the paper did 
not furnish specific accuracy data, it is not possible to 
directly quantify the accuracy of the proposed model. 
However, from the experimental results, the model proposed 
in the paper is superior to the hybrid energy model in 
predicting energy consumption. In the motor model, the total 
energy is 80 joules; in the hybrid energy model, the total 
energy is 105 joules, while in the model proposed by Said 
Fadlo et al., the total energy is 120 joules. This suggests that 
the model proposed in the paper considers more energy 
consumption. Equations (8) to (12) illustrate the calculation 
relationships where𝐸𝐸𝐷𝐷𝐷𝐷 term symbolizes the energy losses 
in dc motors, 𝐸𝐸𝐺𝐺   the energy losses in gearhead,𝐸𝐸𝐾𝐾 the 
kinetic losses, and 𝐸𝐸𝑓𝑓the energy losses due to friction. 

𝐸𝐸𝑇𝑇𝑇𝑇𝑡𝑡 = 𝐸𝐸𝐷𝐷𝐷𝐷 + 𝐸𝐸𝐺𝐺 + 𝐸𝐸𝐾𝐾 + 𝐸𝐸𝑓𝑓                       (8) 
 

𝐸𝐸𝐷𝐷𝐷𝐷 = ∫ 𝑅𝑅(𝑖𝑖𝐿𝐿2 + 𝑖𝑖𝑅𝑅2)𝑑𝑑𝑡𝑡                          (9) 
 

𝐸𝐸𝐺𝐺 = (1− 𝜂𝜂)𝐾𝐾𝑡𝑡∫ �𝑖𝑖𝐿𝐿�̇�𝜃𝐿𝐿 + 𝑖𝑖𝑅𝑅�̇�𝜃𝑅𝑅�𝑑𝑑𝑡𝑡     (10) 

𝐸𝐸𝑘𝑘 = 1
2

(𝑚𝑚𝑣𝑣(𝑡𝑡)2 + 𝐼𝐼𝜔𝜔(𝑡𝑡)2)                (11) 

𝐸𝐸𝑓𝑓 = 𝜇𝜇𝑚𝑚𝜇𝜇∫ 𝑣𝑣𝑑𝑑𝑡𝑡             (12) 

5.1.2. Data-driven Models 

Data-driven models employ machine learning 
techniques and historical data to estimate energy 
consumption in robotic systems, offering adaptability and 
accuracy across various scenarios. In a 2022 study, Pawel 
Benecki et al. thoroughly investigated various Recurrent 
Neural Network (RNN) architectures, such as LSTM and 



 

 

BiLSTM (Pawel Benecki et al. 2022). Their findings 
showed that the IEEE Battery BiLSTM 1-layer 70 model 
performed best with all features, achieving a μMSE value of 
0.0102 and a μMAE value of 0.3348, indicating high 
accuracy. However, it is essential to recognize that the 
appropriate model depends on the specific task, dataset, and 
performance requirements. Fig. 6 illustrates the basic 
structure of an RNN (Pawel Benecki et al. 2022). In Fig. 7, 
an algorithm flowchart is depicted, which demonstrates the 
process of training a recurrent neural network on a single 
sequence. This flowchart provides a visual representation of 
the critical steps involved in the training procedure, helping 
the reader better understand the algorithm's underlying logic. 
Similarly, Fig. 8 showcases an algorithm flowchart detailing 
the process of applying a model to a dataset. This flowchart 
highlights the essential steps in processing the model on a 
dataset, offering a clear and concise overview of the 
algorithm's implementation. 

 
Fig. 6 Recurrent Neural Network Architecture 

 

 
Fig. 7 Algorithm flowchart for training recurrent neural 

network on a single sequence. 

 
Fig. 8 Algorithm flowchart for processing a model on a 

dataset. 



 

 

In a 2022 study by Marco Visca et al. , the authors 
proposed a probabilistic deep meta-learning approach for 
predicting driving energy consumption of AMRs navigating 
in complex, unstructured environments (Marco Visca et al. 
2022). Figure 9 visually demonstrates the difference 
between meta-learning and multi-task learning. Through 
five different train-validation splits, the study found that as 
the number of meta-training samples increased, the accuracy 
of the most likely predictions improved for all methods that 
decreasing root mean square error (RMSE) and increasing 
R2. At the same time, the uncertainty associated with the 
probabilistic approaches also reduced that decreasing 
Negative Log-Likelihood (NLL). This feature was 
particularly pronounced in the highly unstructured subsets. 
For example, in the case of only three meta-training samples, 
the R2 scores decreased by 3.59%, 5.55%, 2.79%, and 4.61% 
for Meta-Conv1D-Gamma, Meta-Conv1D-Lognorm, Meta-
Conv1D-Gaussian, and Meta-Conv1D-GMM models, 
respectively. In simpler subsets, the reductions were smaller, 
at 1.55%, 0.54%, -0.03%, and 1.37%, respectively. 

 
Fig. 9 The difference between multi-task learning and 

meta-learning(Huisman et al. 2021). 

5.1.3. Hybrid Models 

Hybrid models merge physics-based and data-driven 
models to estimate energy consumption in robotic systems, 
capitalizing on both approaches' strengths for accurate and 
robust predictions(S. D. Lee and Jung 2015; Sedat Dogru 
and Marques 2016; Morales and Mendoza 2018; 
Pushpendra Kumar et al. 2018). Mauricio F. Jaramillo 
Morales et al. proposed a hybrid energy model for 
differentially steered mobile robots, combining dynamic 
robot and motor models and providing more accurate energy 
consumption estimates in some aspects (Morales and 
Mendoza 2018). Equation (12) describes the calculation of 
electrical energy, E(t). It is the integral of voltage, V(t), 
multiplied by current, i(t), over time, t. Equations (13) and 
(14) provide the methods for calculating voltage and current, 

respectively. 

 
𝐸𝐸(𝑡𝑡) = ∫ 𝑉𝑉(𝑡𝑡)𝑖𝑖(𝑡𝑡)𝑑𝑑𝑡𝑡                         (12) 

𝑖𝑖 = 𝑉𝑉−𝐾𝐾𝑤𝑤�̇�𝜃
𝑅𝑅

                   (13) 

𝑉𝑉 = (𝑆𝑆𝑇𝑇𝑇𝑇)−1�𝑆𝑆𝑇𝑇𝑀𝑀𝑆𝑆�̇�𝜂 + 𝑆𝑆𝑇𝑇𝑀𝑀�̇�𝑆𝜂𝜂 + 𝑆𝑆𝑇𝑇𝐹𝐹𝑆𝑆𝜂𝜂 + 𝑆𝑆𝑇𝑇𝐶𝐶�   (14) 
In another study, they proposed a power model for a 

two-wheel differential drive mobile robot with prediction 
accuracies of 96.67% for linear trajectories and 81.25% for 
curved trajectories, making it an excellent hybrid model 
(Mauricio F Jaramillo-Morales et al. 2020). 

5.1.4. Model Validation and Comparison 

Understanding various models and approaches for 
estimating energy consumption in autonomous mobile 
robots is vital for optimizing performance and efficiency. 
Each of the physics-based, data-driven, and hybrid models 
possesses its own advantages. Drawing on previous research, 
the strengths and weaknesses of these various models have 
been summarized and are presented in Table 2. Proportion 
refers to the percentage of studies in the SLR that belong to 
this subcategory.  

Table. 2 Advantages and Disadvantages of Each Model for 
Estimating Energy Consumption 

Models for 
Estimating 
Energy 
Consumpti
on 

Advantages Disadvantages Proport
ion 

Physics-
based 
Models 

 Based on 
fundamental 
principles and 
physics 

 Deeper 
understanding of 
energy 
consumption 

 Allows for more 
energy-efficient 
design 

 Limited adaptability 
to diverse scenarios 

 May require complex 
calculations and 
assumptions 

 May not account for 
all factors in real-
world systems 

44% 

Data-driven 
Models 

 Adaptable to 
various scenarios 

 High accuracy 
 Can automatically 

improve with 
more data 

 Dependent on 
historical data and its 
quality 

 May require large 
amount of data 

 May not provide 
insights into 
underlying principles 

40% 



 

 

Hybrid 
Models 

 Combine the 
strengths of both 
approaches 

 Accurate and 
robust predictions 

 Can account for a 
wide range of 
factors 

 Can be more complex 
to develop and 
implement 

 May still require large 
amount of data 

 Limited 
interpretability of the 
underlying principles 

16% 

In 2022, Tomas Petr and colleagues conducted a 
comparative study, showing that mathematical models and 
artificial neural networks could be used interchangeably for 
predicting energy consumption, with AI methods being 
more versatile and not dependent on the robot's motion 
structure (Krystian Góra et al. 2021). Model validation and 
comparison are essential for identifying areas for 
improvement and developing more energy-efficient robotic 
systems. Hybrid models perform better but require relevant 
physics knowledge and strong mathematical skills. 
Comparing models helps guide future research in the field. 

5.2. Factors Influencing AMR Energy Consumption 

Understanding the factors influencing energy 
consumption in mobile robots is essential for designing 
energy-efficient systems and optimizing their performance. 
Factors including rolling friction, cornering, passage 
dimensions, and payload weight can have a significant effect 
on a robot's energy consumption. 

This part covers a discussion of the primary factors that 
influence energy consumption, along with a review of 
relevant studies that explore these elements. 

5.2.1. Impact of Rolling Friction 

Rolling friction is a crucial factor affecting a robot's 
energy consumption as it moves on various surfaces. In 2011, 
Shuang Liu et al. conducted a study comparing a single 
algorithm's performance in different path environments 
(Shuang Liu and Dong Sun 2011). They employed the A* 
path planning algorithm to generate three distinct paths. The 
path traversing gravel was 8% faster but consumed 123% 
more energy than the path traversing a regular road surface. 
Notably, the fastest and most energy-efficient paths were not 
the shortest. This study introduced one of the earlier 
methods in the field of mobile robots that took both path 
planning and trajectory planning into consideration. In 2014, 
Piotr Jaroszek et al. conducted a related study where they 

experimentally examined friction on different types of 
surfaces and modeled it (Piotr Jaroszek and Trojnacki 2014). 
The surfaces included concrete/asphalt, unpaved, crushed 
stone, and ice. They quantitatively analyzed the energy 
consumption of robot motion on each surface and found that 
energy consumption varied depending on the surface type. 
Among them, the friction on the ice surface is the smallest. 
However, the influence of surface friction on energy 
consumption differed on inclined surfaces at various angles. 

Fig. 10 illustrates this relationship. After reaching 2 
degrees, the coefficient of friction on the contact surface is 
no longer a factor affecting energy consumption. 

 

Fig. 10 energy consumption for different pitch angles and 
surface (Piotr Jaroszek and Trojnacki 2014) 

5.2.2. Impact of Cornering 

Cornering is another critical factor influencing energy 
consumption in mobile robots. In optimal control theory, 
"cornering" refers to the that-planning strategy adopted by a 
robot when making turns. The chosen path-planning method 
significantly impacts the robot's energy consumption during 
cornering. Research has shown that using energy-
minimizing path planning methods can reduce the energy 
consumption of robots during cornering, thus extending 
battery life and enhancing work efficiency. In a 2017 study 
by Hongjun Kim and colleagues (Kim and Kim 2017), they 
found that the curvature of turns in a virtual simulation 
environment affected the energy consumption of path 
planning algorithms. Their research revealed varying 
performance levels for loss-minimization, Minimum Energy, 



 

 

and TRAPE methods in acute, right, and obtuse angle 
scenarios. For angles close to 90°, the energy consumption 
of loss-minimization and TRAPE methods increased by 1.49% 
to 5.47% compared to Minimum Energy, indicating a 
decrease in energy efficiency. When dealing with obtuse 
angles, the energy consumption of these methods increased 
by 1.12% to 2.81%, suggesting relatively better energy 
efficiency. However, for acute angles, the energy 
consumption increased by 3.34% to 15.20%, indicating 
poorer energy efficiency. 

5.2.3. Impact of Passages Dimension 

The dimensions of passages through which mobile 
robots navigate can also play a significant role in their 
energy consumption. A study conducted by Dong Sun et al. 
in 2011 experimentally found that mobile robots consume 
more energy when passing through narrow passages 
(Shuang Liu and Dong Sun 2011). Although the path 
through narrow passages is shorter, mobile robots require 
more time and an additional 20% energy consumption than 
those without narrow passages. Fig. 11 (a) and (b) illustrate 
these two paths. They discovered that mobile robots require 
more time and energy to avoid collisions (like PID) when 
passing through narrow passages. 

 

 
(a)               (b)                (c)  
Fig. 11 Optimal path generation: (a) minimum energy; (b) 

minimum travel distance; (c) minimum travel time (Shuang 
Liu and Dong Sun 2011). 

5.2.4. Impact of Payload Weight 

Payload weight significantly impacts mobile robot 
energy consumption, as heavier payloads require more 
moving energy. This is crucial for robots involved in 
material handling or delivery tasks. Optimizing robot design 
and movement strategies can minimize energy consumption 
with different payload weights, but further research is 
needed for comprehensive models and strategies addressing 

energy management in such scenarios. 

5.2.5. Impact of Terrain 

The terrain is an essential factor to consider when 
assessing the energy consumption of AMRs. It refers to the 
surface characteristics and topography of the robot's 
environment. Different terrains include smooth surfaces like 
concrete or asphalt, uneven surfaces like grass or gravel, and 
more complex terrains like sandy or rocky areas. In a study 
conducted by Qingdan Yuan and others in 2017 (Yuan et al. 
2017), researchers calculated the power ratio factors of the 
same algorithm on different terrains. On concrete roads, the 
power ratio factor is 1, which represents the baseline energy 
consumption. On grass and sandy terrains, the power ratio 
factors are higher than 1, indicating that the energy 
consumption of the robot on these terrains is higher than 
concrete roads. On grassy terrain, the energy consumption 
of the robot is slightly higher than on concrete roads, while 
on sandy terrain, the energy consumption is even higher. 

5.2.6. Impact of the Center of Mass 

The center of mass is fundamental in physics and 
engineering, significantly affecting robotic systems' energy 
consumption. In 2022, Mohammad pour et al. proposed a 
path-planning algorithm considering the center of mass 
(Mohammad pour et al. 2022). Their research emphasizes 
the impact of centroid displacement on self-guided vehicles' 
(SGVs) energy consumption, showing that payload 
placement alters the SGV's dynamic inertial parameters and 
shifts the center of mass, affecting energy consumption 
during rotational motion. In this study, it was found that 
when the center of mass is placed on the right side of the 
SGV, allowing the SGV to perform obstacle avoidance 
rotation with the right side as the outer edge, it consumes 
less energy compared to the scenario where the center of 
mass is in the middle. However, when the center of mass is 
on the right side and the SGV performs a curved right-angle 
turn with the right side as the outer edge, it consumes more 
energy than the scenario with the center of mass in the 
middle. Researchers utilized data-driven methods to find 
more energy-efficient paths under different center of mass 
distributions. 



 

 

5.2.7. Impact of Hardware Design 

Liangkai Liu et al. discovered in their study that power 
analysis of HydraOne revealed computational power and 
sensor power accounted for 33% and 11% respectively 
(Liangkai Liu et al. 2019). This indicates that hardware does 
have an impact on AMR energy consumption. Jaiem and 
colleagues proposed an energy consumption model that 
divides energy expenditure into dynamic and static 
components (Jaiem et al. 2016). In this model, the energy 
consumption of sensors in AMR (Autonomous Mobile 
Robot) differs between stationary and motion states. 

The research demonstrates that the design of hardware 
significantly affects the energy consumption of Autonomous 
Mobile Robots (AMRs), with computational power and 
sensor power being major contributors. 

6. Energy Optimization for AMRs 

Energy optimization is crucial in reducing the energy 
consumption of AMRs. It can be achieved through various 
approaches, including hardware and software modifications. 
By employing these strategies, designers can improve the 
overall energy efficiency of AMRs, which is a critical aspect 
of research in the field of energy-related topics for AMRs. 

Various methods can be employed for energy 
optimization, such as optimizing the control method, 
enhancing sensor and computing systems, implementing 
efficient power management systems, improving path 
planning, and refining scheduling methods. These strategies 
target different aspects of AMR's operation and can be 
employed individually or in combination to achieve 
significant energy savings. 

6.1. Energy Optimization for AMR in Control 

Method 

Control methods refer to various algorithms and 
techniques used to regulate the behavior of systems, such as 
AMRs, to achieve desired performance characteristics. 
Several control methods have been proposed to optimize 
energy consumption in AMRs, including PID (Proportional-
Integral-Derivative) Control, Model Predictive Control 

(MPC), PID (Proportional-Integral-Derivative), Fuzzy 
Logic Controller and Minimum-energy Trajectory Tracking 
Controller. 

PID is a widely used control algorithm in engineering 
and industrial processes that achieves stable and precise 
control by adjusting proportional, integral, and derivative 
gains. Kim et al. proposed the Intelligent Slip-Optimization 
Control (ISOC) algorithm in 2014 for balancing traction 
force and energy consumption in wheeled robots on different 
terrains (Jayoung Kim and Lee 2014). In 2018, they 
introduced the Traction Energy Balance (TEB) adaptive 
control to optimize sliding and traction energy balance on 
rough terrain (Jayoung Kim and Lee 2018). 

MPC is another control method to address energy 
optimization challenges. In 2013, Yacoub tackled torque 
saturation in robot climbing with an energy optimization 
algorithm using MPC (Yacoub et al. 2013). MPC using 
voltage and current control reduced energy consumption by 
63% and 53%, respectively, compared to PID control, while 
providing more robust speed control performance. 

The methods are considered classic control 
optimization approaches. However, there are newer control 
optimization methods specifically targeted at AMR energy 
optimization that are worth considering and exploring. 

Deep Reinforcement Learning (DRL) combines deep 
learning and reinforcement learning to enable adaptive 
control strategies through learning from environmental 
feedback. Drungilas et al. applied DRL in 2022 to control 
AGV speed and optimize energy consumption in container 
terminals, achieving a 4.6% reduction in energy 
consumption (Darius Drungilas et al. 2023). However, their 
method focused solely on AGV speed control and did not 
consider other factors, such as scheduling and path planning. 

Said Fadlo et al. introduced a method based on a fuzzy 
logic controller that optimizes energy consumption by 
adjusting the input voltage according to the motor's angular 
velocity (Said Fadlo et al. 2021). This approach results in a 
reduction of 2.51% in energy consumption for each actuator. 
However, this method requires a detailed understanding of 
the robot's parameters, as well as intricate computational and 
programming skills for its design and implementation. 

Jianbin Wang et al. introduced the Minimum-energy 
Trajectory Tracking Controller, which achieves up to 79% 
reduction in motor power consumption (Jianbin Wang et al. 



 

 

2018). It utilizes Lyapunov stability theory and backstepping 
control methods. However, precomputation is necessary for 
all optimization results, limiting its real-time control 
applicability. For practical use, a pre-established database 
can be created using the minimum-energy trajectory 
tracking algorithm, considering robots' common linear path 
tasks. 

Various control methods have been developed to 
optimize energy consumption in AMRs, enhancing their 
efficiency and performance in diverse applications. Table 3 
summarizes the pros and cons of different optimization 
methods based on the reviewed studies. However, it should 
be noted that these advantages and disadvantages are 
generalized and may vary depending on specific models, 
applications, and implementation details. 

 
Table. 3 Advantages and Disadvantages of Different Energy 

Optimization Methods for AMRs in Control Methods 
Optimization 
Method 

Advantages Disadvantages 

PID Control  Simple and widely 
used control 
algorithm. 

 Stable and precise 
control 

 Easy to implement 
and tune 

 May not handle 
complex dynamics 
efficiently. 

 Limited optimization 
capabilities 

 Less adaptive to 
changing conditions 

Model 
Predictive 
Control 
(MPC) 

 Can handle 
complex dynamics 
and constraints. 

 It offers more 
robust and efficient 
control. 

 Can achieve 
significant energy 
savings compared 
to other methods 

 Computationally 
intensive 

 Requires accurate 
models for effective 
performance. 

 May be more 
challenging to 
implement and tune 

Deep 
Reinforceme
nt Learning 
(DRL) 

 Adaptable to 
various scenarios 

 Can learn from 
environmental 
feedback. 

 Potential for 
significant energy 
savings 

 Requires large amounts 
of data for training. 

 Computationally 
intensive 

 May not consider all 
factors, such as 
scheduling and path 
planning 

Fuzzy Logic 
Controller 

 Handles uncertainty 
and imprecision 
well. 

 Does not require 
precise 
mathematical 
models. 

 Adaptable to 
changing conditions 

 Requires expert 
knowledge to design 
and tune. 

 Can be computationally 
intensive. 

 May not provide 
optimal control in all 
scenarios 

Minimum-
energy 
Trajectory 
Tracking 
Controller 

 Effective for path 
tracking problems  

 Can save up to 79% 
of motor power 
consumption.  

 Considers wheel 
speed redundancy 
for optimization 

 All optimization results 
need to be computed in 
advance, not suitable 
for real-time control. 

 Requires pre-built 
database for most daily 
tasks 

 

6.2. Energy Optimization for AMR in Sensors and 

Computing Systems 

Energy optimization in AMRs can also be achieved 
through sensors and computing systems enhancements. 
Approaches include energy efficiency middleware and 
sensor network design optimization. 

Liangkai Liu et al. investigated the energy efficiency of 
AMRs during computer vision tasks in 2019 (Liangkai Liu 
et al. 2019). They identified three major energy efficiency 
issues and proposed an energy-efficient middleware called 
E2M to address them. E2M improved the energy efficiency 
of the computing platform by 24% and increased battery 
usage time and robot running time by 11.5% and 14 minutes, 
respectively. 

Sensor network design optimization is another 
approach to energy conservation. In 2011, Myounggyu Won 
et al. proposed an innovative mobile sensor design to reduce 
energy consumption and processing time by controlling the 
movement of robots (Myounggyu Won et al. 2011). This 
design was demonstrated to be feasible through a sensor 
repositioning application, but further practical applications 
may be necessary to verify its feasibility and performance. 
In 2019, Paola Flocchini (Paola Flocchini et al. 2019) 
examined the effectiveness of mobile robots for distributed 
energy retrieval with a decentralized online strategy called 
Local Information and Communication (LIC). Theoretical 
and experimental analysis showed that LIC's effectiveness is 
on par with most networks' optimal centralized strategy, 
OPTIMAL. However, its effectiveness is lower than the 
OPTIMAL strategy in smaller networks. 

A type of robot, named Brain-inspired Intelligent 
Robotics, merits our attention (Qiao et al. 2023). This robot 
emulates human brain processes for decision-making and 
control. This represents an interdisciplinary endeavor that 
could offer novel insights into optimizing energy 
consumption for AMRs. 

These approaches offer valuable insights into 
enhancing energy efficiency and performance, but further 
research and practical applications may be needed to 
understand and optimize these strategies in various network 
environments fully. 



 

 

6.3. Energy Optimization for AMR in power 

management systems 

The studies reviewed cover a wide range of topics, 
including the optimal design of energy sources for 
photovoltaic/fuel cell extended-range agricultural mobile 
robots (Ghobadpour et al. 2023), forecasting AMR battery 
discharging using machine learning methods (Pavliuk et al. 
2022), and reviewing lithium-ion batteries for autonomous 
mobile robots (Partovibakhsh and Liu 2015). Other studies 
explore applying artificial intelligence techniques, such as 
reinforcement learning for energy-constrained coverage 
with mobile robots (Lee and Jae Jang 2022). Additionally, 
several studies propose different algorithms for battery 
management, including replacing the battery of an 
automated tool using serving mobile robots (Kozyr’ et al. 
2022) and designing an embedded energy management 
system for Li-Po batteries based on a DCC-EKF approach 
for use in mobile robots (Chellal, Gonçalves, et al. 2021). 

Recent developments in power management systems 
for mobile robots emphasize the potential for more efficient 
energy consumption in the future. Researchers have not 
extensively focused on using BMS to reduce the energy 
consumption of AMRs, but rather on algorithms with lower 
hardware requirements to implement energy management 
systems. 

Two notable studies have made significant 
contributions to power management systems in AMRs, 
focusing on battery management systems and innovative 
power source designs, respectively. 

In 2021, Arezki Abderrahim Chellal and colleagues 
proposed a BMS based on the Extended Kalman Filter (EKF) 
and an Embedded Energy Management System for Li-Po 
batteries using a Dual Coulomb Counting Extended Kalman 
Filter (DCC-EKF) approach for energy management in 
mobile robots (Chellal, Gonçalves, et al. 2021; Chellal, 
Lima, et al. 2021). These algorithms achieved high energy 
efficiency and provided more accurate remaining battery 
capacity predictions for mobile robots without relying on 
external devices to process data. The Li-Po Embedded 
Energy Management System achieves a high energy 
efficiency of 94% and realizes a SOC accuracy error 
between 2% and 8% using low-cost components. 

Amin Ghobadpour and colleagues proposed an energy 

optimization design for a photovoltaic/fuel cell extended-
range agricultural mobile robot (Pavliuk et al. 2022). This 
innovative design combines photovoltaic and fuel cell 
technologies, enhancing the energy efficiency of the mobile 
robot. The proposed design reduces fuel consumption and 
total cost, contributing to lower operating costs, increased 
energy efficiency, and sustainability, making agricultural 
mobile robots more competitive in practical applications. 
The proposed design can reduce fuel consumption in the 
power transmission system by up to 12.21% compared to the 
particle swarm optimization (PSO) method by employing a 
rule-based component sizing adjustment method. 
Furthermore, utilizing PSO to optimize the powertrain 
reduces the total cost by 8.79% compared to traditional 
theoretical selection methods. 

6.4. Energy Optimization for AMR in path planning 

Path planning is an essential component of AMR 
energy optimization. The path planning algorithm aims to 
generate the shortest path for AMR navigation while 
considering various constraints such as obstacle avoidance, 
task requirements, and energy consumption. The path 
planning algorithm reduces AMR energy consumption by 
minimizing the distance traveled (Alajlan et al. 2017; Yuan 
et al. 2017; Dechao Chen et al. 2022; Satyendra Shukla and 
Kumar 2022) and avoiding unnecessary movements (Vinay 
Singh et al. 2015; Inderjeet Singh et al. 2020; Satyendra 
Shukla and Kumar 2022). In addition, some algorithms can 
consider the energy characteristics of different paths and 
choose the path with the lowest energy consumption (Piotr 
Jaroszek and Trojnacki 2014; Dogru and Marques 2015, 
2015; Go Sakayori and Ishigami 2017; Yuan et al. 2017). 
Therefore, effective path planning algorithms can 
significantly reduce AMR energy consumption, extend 
AMR operating time, and improve AMR efficiency. This is 
particularly important for battery-powered AMRs, where 
energy consumption directly affects their operating time and 
efficiency.  

6.4.1. Path planning algorithms about shortest-path 

planning (SPP) 

Shortest-path planning involves finding the shortest 



 

 

path between two points in each environment while avoiding 
obstacles. The relationship between shortest-path planning 
algorithms and energy consumption lies in their potential to 
optimize the energy use of systems that rely on navigation, 
such as AMRs or transportation networks. By finding the 
shortest or least-cost path, these algorithms can reduce the 
distance traveled, decreasing energy expenditure. This is 
particularly relevant for battery-powered systems, where 
energy conservation and maximizing operational time are 
critical. 

However, it is crucial to recognize that the shortest path 
may not always be synonymous with the most energy-
efficient route. Terrain, environmental conditions, and 
system dynamics can influence energy consumption. 
Therefore, researchers often explore adaptations or 
enhancements to traditional shortest-path planning 
algorithms to consider energy-related factors better. These 
adaptations aim to balance the optimization of path planning 
to minimize energy consumption, ultimately leading to more 
sustainable and efficient systems. 

For achieving path planning in AMRs, various path 
planning algorithms have been proposed in the literature. 
These algorithms can generally be divided into two main 
categories: algorithm types and optimization directions. 
Algorithm types include: (1) the Dijkstra algorithm 
(Zhongwei Zhang et al. 2021; Emna Mejri et al. 2022), (2) 
the A* algorithm (Shuang Liu and Dong Sun 2011; Piotr 
Jaroszek and Trojnacki 2014; Shuang Liu and Sun 2014; Go 
Sakayori and Ishigami 2017; Jing Liu et al. 2020; Cong Liu 
et al. 2021; Satyendra Shukla and Kumar 2022), (3) The 
optimal control theory (Kim and Kim 2012; Hongjun Kim 
and Kim 2014), (4) Tabu-search (Wei et al. 2012), (5) the 
Genetic algorithm, (6) Ant Colony Optimization algorithm 
(Wongwirat and Anuntachai 2011; Anuntapat Anuntachai et 
al. 2014), (7) Bee Swarm Optimization (BSO), (8) Particle 

Swarm Optimization (PSO), (9) Cuckoo–beetle swarm 
search (CBSS) algorithm (Dechao Chen et al. 2022), (10) 
Deep reinforcement learning algorithm (Nguyen et al. 2020). 
Optimization directions can be categorized based on factors 
such as: (1) Terrain (Wongwirat and Anuntachai 2011; 
Anuntachai and Wongwirat 2012; Anuntapat Anuntachai et 
al. 2014; Piotr Jaroszek and Trojnacki 2014; Xu Zhao et al. 
2014; Satyendra Shukla and Kumar 2022), (2) velocity 
trajectory (Shuang Liu and Dong Sun 2011; Hongjun Kim 
and Kim 2014; Shuang Liu and Sun 2014), (3) path 
smoothing (Manas Chaudhari et al. 2014; Jing Liu et al. 
2020; Cong Liu et al. 2021). 

Fig. 12 provides an intuitive demonstration of path 
smoothing. By employing the Hamiltonian function 
formulation, the optimal velocity profile that guarantees 
minimal energy consumption can be obtained. 

 
Fig. 12. Path Smoothing (Zhao and Tsiotras 2011) 

A thorough review and synthesis of these algorithms have 
been carried out, examining the advantages, disadvantages, 
and key focus points of each method. This examination 
allows for a better understanding of their respective 
strengths and weaknesses in the context of mobile robot 
energy consumption optimization. Table 4 provides a 
specific comparison of the differences. 

Table. 4 Comparison of common SPP algorithms 
Algorithm Advantage Disadvantage Primary Focus Points 

Dijkstra 1. Guarantees finding the shortest path.  

2. Simple algorithm, easy to implement.  

3. Applicable to directed and undirected graphs. 

 1. Cannot handle edges with negative 

weights.  

2. Lower computational efficiency for 

dense graphs. 

1. Shortest path.  

2. Applicable scenarios. 

A* Algorithm 1. Improves search efficiency through heuristic 

search.  

2. Finds the shortest path.  

 1. Heuristic function choice 

significantly impacts performance.  

 2. Higher memory requirements. 

1. Heuristic search.  

2. Heuristic function selection. 



 

 

3. Relatively general-purpose algorithm. 

The optimal control 

theory 

1. Provides mathematically optimal solutions. 

2. Applicable to both linear and nonlinear 

systems.  

 1. Computationally expensive for large 

systems. 

 2. Assumes perfect system model and 

knowledge. 

1 . Minimization of energy consumption. 

2 . Model-based design and control. 

Tabu-search 1. Efficiently explores solution space. 

2. Can escape local optima with tabu list. 

 1. Sensitive to parameter tuning. 

 2. It May require long computational 

times. 

1. Exploration and exploitation balance. 

2. Neighborhood search and trajectory 

guidance. 

Genetic Algorithm (GA)

  

1. Strong global search capabilities.  

2. Applicable to various optimization problems.  

3. Easy to combine with other methods. 

 1. Slow convergence speed.  

 2. Requires significant computational 

resources. 

1. Crossover, mutation, and selection 

operations.  

2. Encoding and decoding. 

Ant Colony Optimization 

algorithm 

1. Population-based approach. 

2. Robust to uncertainties and noise. 

 1. Computationally intensive due to 

large populations. 

 2. Requires parameter tuning. 

1. Bio-inspired optimization. 

2. Pheromone update and evaporation. 

Bee Swarm Optimization 

(BSO) 

1. Utilizes bee foraging behavior for global 

search.  

2. High convergence speed.  

3. Avoids local optima. 

 1. Parameter selection greatly affects 

performance.  

 2. The initial solution May influence it. 

1. Bee foraging behavior.  

2. Parameter selection. 

Particle Swarm 

Optimization (PSO) 

1. Simple and easy to implement.  

2. Suitable for continuous and discrete 

optimization problems.  

3. Possesses good global search capabilities. 

 1. Prone to local optima.  

 2. Parameter settings greatly affect 

performance. 

1. Particle velocity and position updates.  

2. Parameter selection. 

Cuckoo-Beetle Swarm 

Search (CBSS) 

1. Combines optimization strategies with global 

search, improving search efficiency.  

2. High search precision.  

3. Better at avoiding local optima. 

 1. Higher algorithm complexity.  

 2. Parameter settings greatly affect 

performance. 

 1. Stability and convergence.  

 2. Parameter selection.  

3. Search strategies. 

Deep reinforcement 

learning (DRL) 

1. Adapts to complex and changing environments. 

2. Learned from experience, improving over time. 

3. Can handle high-dimensional spaces. 

 1. Requires large amounts of training 

data. 

 2. Computationally expensive. 

 3. High sensitivity to hyperparameters 

 1. Energy-efficient reward functions. 

 2. Policy optimization for energy 

minimization. 

 3. Integration with domain knowledge for 

energy-aware path planning. 

In a 2022 study conducted by Dechao Chen et al., they 
compared the performance of various algorithms under 
specific conditions. Table 5 presents a summary of the 
experimental data collected. Regrettably, the research does 
not provide a direct comparison of the energy consumption 
for these algorithms. As a result, it is necessary to consult 
other data sources for reference. 

Table. 5 The average planning and average execution 
time of the experiment (Dechao Chen et al. 2022). 

Algorithm Average 
Planning 

Average 
Execution 

Time (s) Time (s) 
CBSS 0.68  4.23 
Dijkstra 1.56  4.94 
A*  2.35  5.32 
BSO 1.64  5.04 
PSO 1.86  5.29 
GA 2.93  5.98 

This is a significant study; however, the authors did not 
directly compare the energy consumption between different 
algorithms, opting to use time as a proxy, raising questions 
for the readers. 



 

 

6.4.2. Path planning algorithms about coverage path 

planning (CPP) 

Coverage path planning, on the other hand, involves 
finding a path that covers all or a specified portion of a given 
area. This technique is commonly used in cleaning, 
surveillance, and agriculture tasks. Fig. 13 provides a simple 
demonstration of coverage path planning. 

 

Fig. 13 Coverage path planning algorithm (Galceran and 
Carreras 2013) 

The primary difference between SPP and CPP 
algorithms is that SPP focuses on finding the shortest or 
least-cost path between two points, while CPP aims to 
determine an optimal route that covers an entire area or 
region without unnecessary overlap or redundancy. 

The relationship between coverage path planning 
algorithms and the energy consumption is centered around 
their ability to optimize energy use in systems that require 
complete coverage of a specified area. By finding a path that 
minimizes redundancy and overlap while ensuring full 
coverage, these algorithms can reduce the total distance 
traveled, decreasing energy expenditure. This is particularly 
important for battery-powered systems, where energy 
conservation and maximizing operational time are 
paramount. 

A compilation of standard CPP algorithms has been 
assembled. Table 6 presents a comparison of these 
algorithms, emphasizing their focal points, advantages, and 
disadvantages. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Table. 6 Algorithm comparison. 
Algorithm Principle Advantage Disadvantage 
CBD Calculates the 

longest distance 
between two 
points in the 
environment.  

1. Lower energy 
consumption in 
environments with 
fewer obstacles. 

2. It reduced 
computational 
energy 
consumption due 
to simplicity.  

1. Higher energy 
consumption in 
complex 
obstacle 
environments. 

2. Limited 
adaptability, 
potentially 
leading to 
increased energy 
consumption. 

TASP Finds an optimal 
starting point by 
turning away 
from obstacles. 

1. More efficient 
energy usage in 
complex obstacle 
environments. 

2. Adaptability 
optimizes energy 
consumption 
across various 
environments. 

1. Less energy-
efficient in 
environments 
with fewer 
obstacles. 

2. Higher 
computational 
resource 
requirements 
may increase 
energy 
consumption. 

BSA Utilizes a spiral 
pattern and 
backtracks when 
encountering 
obstacles. 

1. Complete area 
coverage 
potentially reduces 
energy waste.  

2. Lower 
computational 
energy 
consumption due 
to ease of 
implementation. 

1. Potential energy 
inefficiency in 
specific 
environments. 

2. Suboptimal 
paths may 
increase energy 
consumption.
  

DT Divides the 
environment 
into cells and 
finds a path from 
the goal location 
back to the start 
location. 

1. Adaptability 
optimizes energy 
consumption 
across different 
environments. 

2. Generation of 
energy-efficient 
paths. 

1. Higher 
computational 
resource 
requirements 
increase energy 
consumption. 

2. Complexity may 
lead to increased 
energy 
consumption. 

 
In a study by Marcel Mitschke et al. in 2018, an 

efficient coverage path planning algorithm was proposed for 
tasks such as outdoor cleaning and mowing (Mitschke et al. 
2018). The proposed algorithm considers energy 
consumption a criterion, as mobile robots generally have 
limited battery capacity. Two coverage path planning 
algorithms were proposed, one based on prior knowledge of 



 

 

the environment and the other based on sensor data. 
Experimental results showed that even online algorithms 
could generate satisfactory paths, and the quality of the path 
depended on the environment and starting point. The online 
algorithm had only a 2.98% difference in energy 
consumption compared to a genetic algorithm, making it a 
good choice for coverage path planning in large 
environments. 

In this noteworthy paper, the author conducted a 
comparative analysis and evaluation of four algorithms, 
namely the Turn-away Starting-point (TASP) algorithm, 
Calculate Longest Distance (CLD) algorithm, Distance 
Transform Methodology (DT), and Backtracking Spiral 
Algorithm (BSA). Table. 7. presents the data from this 
experiment. 

Table. 7.  Comparison of generated trajectories by 
different algorithms (Mitschke et al. 2018)  

Metric CBD TASP BSA DT 

Av. Energy 5158 J 5483 J 5609 J 7542 J 

Min. 

Energy 
4871 J 5003 J 5030 J 5952 J 

Max. 

Energy 
5403 J 6027 J 5948 J 8659 J 

St.Dev. 

Energy 
101.12 J 224.87 J 206.86 J 474.53 J 

Av. Time 907.5 s 949.9 s 949.8 s 1115 s 

Min. Time 876.2 s 894.8 s 885.2 s 957.3 s 

Max. Time 951.9 s 1014.6 s 990.2 s 1432 s 

St.Dev. 

Time 
14.81 s 25.76 s 21.64 s 76.27 s 

Av. Length 244.9 254.9 248 224.9 

Min. 

Length 
237 241 239 224 

Max. 

Length 
258 268 264 227 

St.Dev. 

Length 
4.42 4.46 5 0.72 

Av. 

Comp.T. 
227.49 s 0.95 s 0.14 s 282.18 s 

Min. 

Comp.T. 
6.61 s 0.47 s 0.11 s 1.46 s 

Max. 

Comp.T. 
750.42 s 1.33 s 0.41 s 8916.57 s 

St.Dev. 

Comp.T 
138.53 s 0.163 s 0.043 s 675.59 s 

 
Following a quantitative analysis of the experimental 

data, it becomes evident that CLD outperforms the other 
algorithms in terms of energy efficiency, with energy 
consumption being 6.3% lower than TASP, 8.7% lower than 
BSA, and 46.2% lower than DT. Regarding time, CLD is 
faster, requiring 4.7% less time than both TASP and BSA 
and 22.8% less time than DT. 

When comparing path lengths, DT generates the 
shortest paths, with a 13.3% reduction compared to TASP, a 
10.3% reduction compared to BSA, and an 8.9% reduction 
compared to CLD. TASP and BSA demonstrate remarkable 
efficiency in the context of computational time, with BSA 
being 85.3% faster than TASP.   However, TASP and BSA 
are significantly faster than CLD and DT, with TASP being 
23894.7% faster than CLD and 29655.8% faster than DT. 
Table. 4 shows an algorithm comparison(Mitschke et al. 
2018). 

The performance of each path planning algorithm 
varies in terms of energy consumption, with CLD being the 
most energy-efficient and DT consuming the most energy. 
The shortest path is not necessarily the fastest, nor is it 
guaranteed to be the most energy efficient. The choice of the 
most appropriate algorithm for minimizing energy 
consumption depends on the application's and environment's 
specific requirements and constraints, considering factors 
such as the complexity of the environment, computational 
resources, and adaptability. It is essential to weigh these 
factors in selecting the most suitable path-planning 
algorithm for optimizing energy efficiency. 

Collaborative Deep Neural Networks (DNNs) also 
represent a potential optimization method, particularly the 
edge-device collaborative inference paradigm, which is 
applicable to path planning and energy consumption 
forecasting for AMRs (Ren et al. 2023). 

6.5. Energy optimization for AMRs in the 

scheduling method 

Energy optimization for AMRs in scheduling methods 
is crucial in intelligent industrial systems to improve 
productivity and reduce energy consumption. This chapter 



 

 

discusses the impact of scheduling methods on robot energy 
consumption, covering both single and multiple robot 
scenarios. 

For individual robots, optimizing scheduling 
algorithms enhances efficiency and lowers energy 
consumption, especially in complex environments or tasks 
with tight deadlines. Consequently, addressing single AMR 
scheduling problems while considering energy consumption 
is vital for future research and development. 

In the context of multiple robots, various methods have 
been proposed to optimize energy consumption. The 
Artificial Bee Colony (ABC) (Ezzeddine Fatnassi et al. 2014) 
is one such method, achieving an Average Relative 
Percentage Deviation (ARPD) value that was only 5% of the 
GA's average ARPD value. The Improved Knee point-
driven Evolutionary Algorithm (IKnEA) (Zhang, Zhang, et 
al. 2023) was developed, demonstrating better distribution 
and convergence rates than NSGA-II and KnEA. 

The cycle strategy (Colling et al. 2019) was introduced 
to address charging issues, which uniformly distributes the 
starting times of charging processes. In addition, the battery 
charge scheduling method [31] significantly improved 
performance, nearly 20-fold compared to the CPLEX 
method. Researchers also developed a time-dependent 
Markov decision-process model (Dehnavi-Arani et al. 2019)  
that achieved high rewards with lower battery stress, such as 
RBC1-40, which obtained 62.4% of the reward with a 
battery life below 40% only 3.4% of the time(Tomy et al. 
2019). 

Finally, bi-level programming models with bi-objective 
optimization (Wang et al. 2019) were explored, resulting in 
an 11.65% reduction in overall energy consumption 
compared to efficiency-only models. This approach 
decreased low-speed no-load energy consumption by 22.29% 
and low-speed full-load energy consumption by 72.2%. 
Further research should focus on incorporating dynamic 
production scheduling and including AGVs in other frequent 
production scheduling problems, such as job-shop and 
flexible job-shop scheduling (He et al. 2022). 

Bio-inspired Single-population Swarm Intelligence 
and Human-machine Hybrid Swarm Intelligence can serve 
as new avenues for exploration in the optimization of multi-
robot systems (Wang et al. 2023). This includes algorithms 
such as GA (Cheng and Meng 2023) and Differential 

Evolution Algorithm (DE). Hybrid Particle Swarm 
Optimization algorithms also represent a method worth 
exploring (Zhang, Dou, et al. 2023). 

7. Conclusion 

7.1. Summary of Key Findings 

In this systematic literature review, a comprehensive 
examination of research on energy efficiency in AMR was 
conducted. The findings are as follows: 

1. Most studies within the SLR scope focus on energy 
consumption optimization, concentrating on 
specific aspects such as path planning, control, and 
scheduling methods. Although systemic energy 
optimization solutions have not been proposed yet, 
significant achievements have been made in 
research for single and multiple robot scenarios. 

2. Locomotion accounts for over 50% of a mobile 
robot's total energy consumption, while 
computation and sensors contribute 33% and 11% 
respectively. This underscores the importance of 
optimizing control methods to enhance energy 
efficiency when designing and operating mobile 
robots. In addition, improving middleware and 
optimizing sensor network design can achieve 
energy consumption optimization. 

3. Batteries serve as the primary energy source for 
AMRs, with electric drive being the dominant 
propulsion method. However, other energy sources 
warrant attention. Battery Management Systems 
(BMS) are crucial for AMRs, as they optimize the 
charging and discharging processes by monitoring 
voltage, current, and temperature. By focusing on 
BMS and innovative power design, researchers 
have made significant advancements in AMR 
energy management systems, improving energy 
efficiency and reducing operational costs. 

4. Hybrid models, which combine the strengths of 
physics-based and data-driven models, 
demonstrate superior accuracy and robustness in 
various scenarios. Energy consumption 
optimization for AMRs can be achieved by 
employing control methods such as PID, Deep 



 

 

Reinforcement Learning, and Model Predictive 
Control, with PID optimization being the most 
common method. 

5. AMR energy consumption factors include rolling 
friction, turning, aisle dimensions, load weight, 
terrain, and center of gravity location. A thorough 
understanding of these factors helps design energy-
saving systems and optimize mobile robot 
performance. 

6. Path planning algorithms are crucial in optimizing 
AMR energy consumption by generating efficient 
paths that minimize travel distance and avoid 
unnecessary movements. Selecting the most 
suitable algorithm depends on the specific 
requirements and constraints of the application and 
environment. Dijkstra and A* algorithms are 
popular choices for SPP, while CBSS demonstrates 
faster planning capabilities in some tests. In CPP, 
the CBD algorithm exhibits higher energy 
efficiency in environments with fewer obstacles; 
however, the TASP algorithm may be more 
suitable in complex environments, offering higher 
energy efficiency. 

7. Scheduling methods are vital for AMR energy 
optimization, as they coordinate the movements 
and tasks of single and multiple robots to maximize 
energy efficiency. Research in this area has 
significantly progressed, addressing various 
challenges in different applications and 
environments. 

7.2. Future Research Directions 

Based on the findings, the following directions can be 
considered for future research in the field of energy 
efficiency in Autonomous Mobile Robots (AMR): 

1. Develop systemic energy optimization solutions: 
While current research focuses on specific aspects 
like path planning, control, and scheduling 
methods, there is a need for a comprehensive 
approach that holistically addresses energy 
optimization in AMRs. 

2. Explore alternative energy sources and storage 
technologies: Investigate novel energy sources and 

storage methods to diversify and improve the 
energy efficiency of AMRs beyond batteries and 
electric drives. 

3. Advance hybrid modeling techniques: Further 
research into hybrid models can help improve the 
accuracy and robustness of energy consumption 
predictions and optimizations in various scenarios. 

4. Enhance middleware and sensor network design: 
Investigate innovative middleware architectures 
and sensor network designs to optimize energy 
consumption during data processing and 
communication. 

5. Analyze environmental and operational factors: 
Conduct in-depth research into factors affecting 
AMR energy consumption, such as terrain, load 
weight, and center of gravity location, to design 
energy-saving systems that can adapt to different 
environments and tasks. 

6. Develop adaptive and context-aware path planning 
algorithms: Design new algorithms that can 
dynamically adapt to complex and changing 
environments, allowing AMRs to optimize energy 
consumption based on real-time environmental 
data. 

7. Advance scheduling methods for energy 
optimization: Continue to develop scheduling 
methods that optimize energy consumption for 
single and multiple AMRs, considering constraints 
such as time, space, and battery life. 

8. Investigate energy-aware collaboration strategies: 
Study collaboration strategies among multiple 
AMRs that focus on energy optimization, 
considering factors such as load distribution, 
cooperative path planning, and task allocation. 

9. Evaluate energy-efficient control methods in real-
world scenarios: Conduct experimental studies to 
assess the performance of energy-efficient control 
methods in diverse real-world applications, 
identifying challenges and opportunities for further 
improvement. 

10. Investigate the impact of emerging technologies: 
Assess the potential of emerging technologies, 
such as edge computing and 5G communication, to 
enhance the energy efficiency of AMRs in various 



 

 

applications and environments. 
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