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A Novel Bottleneck Residual and Self-Attention
Fusion-Assisted Architecture for Land Use

Recognition in Remote Sensing Images
Ameer Hamza , Muhammad Attique Khan , Member, IEEE, Shams ur Rehman ,

Mohammed Al-Khalidi , Senior Member, IEEE, Ahmed Ibrahim Alzahrani , Nasser Alalwan ,
and Anum Masood

Abstract—The massive yearly population growth is causing haz-
ards to spread swiftly around the world and have a detrimental im-
pact on both human life and the world economy. By ensuring early
prediction accuracy, remote sensing enters the scene to safeguard
the globe against weather-related threats and natural disasters.
Convolutional neural networks (CNNs), which are a reflection of
deep learning, have been used more recently to reliably identify land
use in remote sensing images. This work proposes a novel bottleneck
residual and self-attention fusion-assisted architecture for land use
recognition from remote sensing images. First, we proposed using
the fast neural approach to generate cloud-effect satellite images.
In neural style, we proposed a 5-layered residual block CNN to
estimate the loss of neural-style images. After that, we proposed two
novel architectures, named 3-layered bottleneck CNN architecture
and 3-layered bottleneck self-attention CNN architecture, for the
classification of land use images. Training has been conducted on
both proposed and original neural-style generated datasets for both
architectures. Subsequently, features are extracted from the deep
layers and merged employing an innovative serial approach based
on weighted entropy. By removing redundant and superfluous
data, a novel chimp optimization technique is applied to the fused
features in order to further refine them. In conclusion, selected
features are classified using the help of neural network classifiers.
The experimental procedure yielded respective accuracy rates of
99.0% and 99.4% when applied to both datasets. When evaluated
in comparison to state-of-the-art methods, the outcomes generated
by the proposed framework demonstrated enhanced precision and
accuracy.
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I. INTRODUCTION

SATELLITE imaging plays a crucial role in a wide range
of applications, including environmental monitoring, law

enforcement, and disaster response [1]. In order to do these
duties, it is crucial to use a human procedure for recognizing the
facilities and objects shown in the photographs. This strategy
is crucial for organizations or governments aiming to produce
precise representations of the Earth [2]. Remote sensing (RS)
refers to the process of collecting and analyzing data about an
object, location, or event from a distance. The technologies used
to capture these pictures are categorized under RS [3]. Satellite
imaging has been used to generate paddy maps with the imple-
mentation of advanced remote sensing technology [4]. Satellite
imaging sources are often freely accessible, offering a wide
coverage area and regular updates with excellent time resolution
over a large geographical expanse [5]. Due to the growing need
for enhanced clarity, satellite pictures are progressively rising in
size [6]. Furthermore, with the increasing abundance of RS data,
it is now possible to explore a diverse array of intricate scientific
problems [7].

The scope of data collecting, processing methods, and ap-
plications within remote sensing is extensive [8]. Furthermore,
technologies from several disciplines, such as pattern recogni-
tion and machine learning, are typically used to build approaches
to interpret remotely sensed data [9]. Before classification, the
classification techniques primarily use extracted features for
training. These attributes can generally be categorized into three
main groups: low, mid, and high levels [10]. While possessing
unique advantages, most current classification techniques have
solely relied on attributes derived from one of the three cate-
gories, resulting in limited precision [11]. On the other hand,
we think that using several features at different levels, a process
known as feature fusion will improve classification resilience
and accuracy by reducing all the drawbacks associated with
using a single method [12]. The primary driving force behind
feature fusion is providing the classifier with the most complete
and pertinent data possible, which could not be accomplished
with a single technique [13].
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Many scene classification methods have been presented to
help comprehend and identify the scene information in aerial
photographs; these methods can be broadly classified into two
categories: low-level scene characteristics and mid-level scene
features [14]. A few of the often employed low-level techniques
are GIST, local binary pattern [15], color histogram [16], and
scale invariant feature transform [17]. Using low-level feature
descriptors as a code, the midlevel methods depict a scene. Im-
proved Fisher Kernel, locality-constrained linear coding, proba-
bilistic latent semantic analysis [18], bags of visual words [19],
spatial pyramid matching, latent Dirichlet allocation [20], and
vector of local aggregated descriptors are some of the midlevel
coding techniques [21]. In recent years, deep learning techniques
have made significant progress in computer vision applications
like face, object, and picture recognition. Convolutional neural
networks (CNNs) are among the best-performing algorithms
for deep learning [22]. CNN models, including CafeNet and
GoogLeNet, have recently outperformed low-level and mid-
level techniques in classifying aerial scenes [23]. Deep models
based on CNNs have been employed in this context for feature
extraction.

The deep features of the images that are nonlinear, dis-
criminant, and invariant are extracted by means of multiple
convolutional and pooling layers [24]. Various techniques are
used, including transfer learning through finetuning and feature
descriptors. This allows for learning high-level features in deeper
layers and determining low-level characteristics in shallower
layers [25]. However, to train CNNs effectively and achieve
decent performance, a substantial amount of labeled training
data is needed [26]. The design of an intelligent system heavily
relies on computer vision. Features extraction, fusion, and se-
lection are the three primary parts of computer vision. The deep
features are extracted by the deep learning model [27].

Consequently, feature fusion approaches were proposed by
computer vision researchers. The fusion process has increased
the system’s precision and predictor count. Serial-based fusion
and parallel fusion are two common fusion methods [28]. Lastly,
feature selection is crucial in determining the most discrimi-
nating features when considering feature fusion approaches for
better classification [29]. Feature selection should proceed con-
currently with feature fusion to maximize the classification rate;
otherwise, the performance will suffer in terms of computational
time, memory usage, and overall accuracy [30]. In this article,
we proposed an automatic deep learning-based framework for
classifying land use scenes from satellite images, as shown in
Fig. 1.

The primary contributions are as follows.
1) We proposed a technique to generate cloud-effect satellite

images using the fast neural approach. In neural style, we
proposed a 5-layered residual block CNN to estimate the
loss of neural-style images.

2) We proposed two novel architectures, named 3-layered
bottleneck CNN architecture and 3-layered bottleneck
self-attention CNN architecture, for the classification of
land use images.

3) We proposed a newly weighted entropy serial feature
fusion technique, and the fused information was further

Fig. 1. Samples of each class from UC-Merced land use dataset.

refined by employing a new Chimp optimization for the
best feature selection.

4) A detailed ablation study has been performed to validate
the performance of the proposed method. Also, a brief
comparison has been conducted with a few recent tech-
niques.

The rest of this article has been organized as follows. Sec-
tion II presents this article’s related work, including a sum-
mary of a few existing techniques. Section III describes the
proposed methodology, including the proposed CNN model,
weighted entropy serial fusion process, and chimp optimiza-
tion for feature selection with mathematical justification.
Section IV discusses the results of the proposed methodology
on UC-Merced and cloudy UC-Merced datasets, and Section V
concludes the results of the proposed methods.

II. RELATED WORK

Several deep learning-based computer vision techniques have
recently been presented for classifying satellite images [31].
While some researchers used satellite data to study agricultural
and urban areas, others used airborne to concentrate on buildings
[32]. For example, Nguyen et al. [33] presented a method
for the classification of satellite images using deep learning.
They utilized CNN-based deep neural network architecture. As
a result, they achieved 93% accuracy. The limitation of this
presented method is that mapping the agriculture framework is
a challenging task for processing satellite images. Unnikrishnan
et al. [34] developed a technique for classifying imagery from
satellites with deep learning. This study employed the CNN-
based architecture of Alex-Net and VGG neural network to train
and assess various outcomes. The drawback of this strategy is
the decrease in the number of trainable parameters, which will
be examined in future analysis.

Chen et al. [35] presented an approach for classifying remote
sensing using deep learning. They created CNN-based network
architecture using attention-guided sparse filters. As a result,
they achieved 94% accuracy. The limitation of this method
was the lack of a large-scale dataset. Insufficient annotated
images have been demonstrated to be a barrier to improving
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CNNs’ accuracy in classifying land-use scenes. Datta et al. [36]
presented a method presented a method for the classification of
imbalanced hyperspectral images using ADASYN. The authors
extracted the global discriminative features and multigrained
scanning features for the classification and they achieved 94.19%
average accuracy. The limitation of work was the authors did
not include the ablation study and comparison with recent
techniques. Khalid and Karan [37] presented an automatic deep
learning framework for the classification of plant deceases. The
authors implemented the CNN and mobilenetV2 architecture
with explainable AI for using GradCam algorithm and they
achieved the 89% accuracy. Presented a survey on deep mapping
analysis framework for the analysis of dehazing images. The
authors used three online databases namely y, IEEE Xplore, Web
of Science, and ScienceDirect. The data were collected from
2008 to 2021. They collected 152 articled in the final set and
they picked 55 out of 152 articles based on dehazing methods.

Zhang et al. [38] presented a method for classifying satellite
images using deep learning. They utilized CNN-based architec-
ture to combine the TC best track data with various infrared
satellite image intensities. The limitation of this method is that
the aforementioned physical attributes will be incorporated into
our model to enhance its performance in estimating TC inten-
sity, particularly to offer novel concepts for examining abrupt
variations in TC intensity. Kadhim and Abed [39] presented a
deep-learning approach for the classification of satellite images.
In this work, they utilized the CNN-based Convolutional Neural
Network of Alex-Net and VGG19 for training purposes. As
a result, they achieved 98% accuracy. Li et al. [40] presented
a model based on SDVI as, compared to other models, they
offered the best accuracy. In this article, ship detection was
done using SDSOI images. The enhanced YOLOV3 real-time
network is employed to identify minute particles. Compared to
SOAT, it is 9.6% more efficient. The primary drawbacks of this
investigation are that: 1) changes in input size have an impact
on performance, and 2) it shows a lackluster level of noise
tolerance.

Wu et al. [41] presented a model for detecting airplanes
in satellite images that relies on a novel aircraft detection
framework based on the objectiveness methodologies of CNN
and BING. CNN is useful in object detection tasks and can
automatically extract features from the provided raw data. BING
provides a candidate object zone that increases the detection rate
and saves time. A dataset from Google Earth’s airplane detection
was used in this article. This work’s limitations stem from the
fact that differences in the type of aircraft, including size and
position, reduce efficiency. Liu et al. [42] presented a technique
for classifying imagery from satellites with deep learning. They
employed a CNN architecture for the purpose of classification.
Consequently, they attained a level of accuracy of 99%.

An approach was developed by Olsen et al. [43] that
targets synthetic aperture radar images characterized by an
exceptional degree of detail. Vessels were identified in high-
resolution synthetic aperture radar images by utilizing infor-
mation gathered from both terrestrial and satellite sources.
The results are presented using high-resolution images ob-
tained from RADARSAT-2. A primary limitation of this

TABLE I
DESCRIPTION OF SELECTED AND GENERATED SATELLITE DATASET

methodology is its propensity to induce delays in the process
of decision-making, particularly in comparison to alternative
models. Chaudhary et al. [44] presented a YOLOv2-based
model. This model demonstrated that YOLOv3’s average ac-
curacy (AP) score, which was about 90.25, was significantly
higher than YOLOv2’s, which generated an AP score of ap-
proximately 90.05. The fact that this model’s inference time
is 22 ms, far faster than YOLOv2’s 25 ms, is another im-
portant finding. The Sentinel-1 images and Gaofen-3 are in-
cluded in the dataset. This model has two shortcomings: 1)
it is unsuitable for video; and 2) it is negatively impacted by
weather.

III. PROPOSED METHODOLOGY

In this section, the proposed framework for the classification
of land use scenes using remote sensing images is presented.
Fig. 2 illustrates that, initially, the UC-Merced dataset is utilized
to generate the cloudy effect in the images by using a novel
fast-style transfer method. After that, both datasets are utilized
to train the two novel customized deep-learning models. Deep
features are extracted from both trained models. The extracted
features are fused using a newly proposed weighted entropy
serial fusion approach. Fused features are further utilized for
the feature selection process. The best features are selected
by employing a chimp optimization technique. In addition, the
selected features are passed to the neural network classifier for
the final classification.

A. Proposed Neural Style Cloudy Dataset Generation

1) Original Dataset: In this research, we selected the pub-
lically available land use dataset for the experimental purpose.
The selected dataset is UC-Merced land use (https://captain-
whu.github.io/BED4RS/). The nature of dataset was RGB. The
UC-Merced dataset consists of 21 land use classes: agriculture,
airplane, baseball, diamond, beach, buildings, chaparral, dense
residential, forest, freeway, golf course, harbor, intersection,
medium residential, mobile home park, and others. The total
number of instances in the UC-Merced dataset is 2100 as shown
in Table I. Every class consists of 100 samples, and the dimen-
sion of each sample is 256 × 256 pixels. A few sample images
have been shown in Fig. 3.

2) Proposed Cloudy Dataset: The second dataset is gener-
ated using the UC-Merced land use dataset by using a fast neural
style transfer approach [45] to create a cloudy effect in the dataset
because the UC-Merced dataset has clear scenes in the dataset.
Both datasets are separately used for the experimental process.

https://captain-whu.github.io/BED4RS/
https://captain-whu.github.io/BED4RS/
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Fig. 2. Proposed framework for the classification of land use scenes from satellite images.

Fig. 3. Samples of original and cloud-generated UC-Merced dataset. Samples
(a), (b), (c), (d), and (e) presented the original images, and (a1), (b1), (c1), (d1),
and (e1) presented the generated cloudy UC-Merced land use images.

Fig. 3 presents a few samples of cloudy UC-Merced land use
dataset.

The fast neural style transfer technique is the extended form of
neural style transfer [46], which creates a stylish image by giving
the reference style image. We used a fast neural style transfer
approach to generate the cloudy effect in the UC-Merced dataset.
In fast neural style transfer, an image transformer, also called an
image-to-image network, is employed.

This network is primarily divided into three main phases; the
initial phase takes an input an RGB image size of 256 × 256 × 3
denoted with f(x) and samples it to feature map dimension
of 64 × 64 × 3.

The second phase consists of five identical residual blocks.
The final phase of the network performs upsampling on the

feature map to restore it to the image’s original dimensions,
ultimately producing an altered image, which is denoted with
g(x) in Fig. 4. In addition, a two-residual block-based CNN is
created to extract the features of the content and style images
at multiple levels. These multilayer features are utilized to
determine content and style loss, respectively. The estimation
of the style transfer loss includes the utilization of a 2-residual
block-based (CNN). This process involves providing the input
images, denoted as f(x), the altered images, denoted as g(x),
and the style image, denoted as S(x), to the proposed CNN. The
network is capable of extracting several features from the given
images. The content loss is computed by the algorithm via the
utilization of the spatial features of both the input imagef(x) and
the output image g(x).In addition, the calculation of style loss is
performed by combining the stylistic features of the generated
output image g(x) and the style image S(x). Ultimately, the
overall loss is computed by combining the losses acquired from
content and style. The content and style loss are mathematically
formulated as follows:

Lcon =
1

α

∝∑
i=1

μ
(
[ϕ (f(x)i)− ϕ (g(x)i)]

2
)

(1)

LSty =
1

∝
∝∑

i=1

4∑
j=1

[G (ϕj (f(x)i))−G (ϕj (S(x)))]
2 (2)
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Fig. 4. High-level architecture of fast style transfer network for the generating of cloudy effect in satellite images.

where f(x) presents the input image, g(x) denotes the trans-
formed image, α is denoted the mini-batch size, and ϕ presents
the extracted activation layer, and G is denoted as the gram
matrix. Gram matrix is employed to calculate the style of image
by considering the correlation among the multiple features in the
hidden layers of proposed model. The gram matrix is measured
using the following:

G (∝, β, γ) =
1

H ×W × C

H∑
h=1

W∑
w=1

ϕτ

× (h,w, ci)ϕτ (h,w, cj) (3)

where ϕτ are denoted the activations for the τ th image in
the mini-batch. The high-level architecture of a style transfer
network is presented in Fig. 4.

B. Proposed Bottleneck Residual Architecture

A bottleneck residual block is a building block utilized in deep
convolutional neural networks, specifically in residual network
(ResNet) architectures. ResNet is a well-known deep-learning
architecture with excellent results in several computer vision
tasks [47]. In this work, we designed a CNN that contains three
bottleneck residual blocks. The proposed CNN accepts the input
size of 224 × 224 × 3. After input, the convolutional layer
and RELU activation are attached with a 3 × 3 kernel size,
32 depths, and a 2 × 2 stride. The first bottleneck block has a
convolutional layer with a 1 × 1 kernel size; the depth is 64, and
the stride is 1. The second convolutional has a 3 × 3 kernel size,
depth is 96, and stride is one, and the third convolutional has a
1 × 1 kernel size, depth is 32, and stride is 1. Each convolutional
is attached to batch normalization and RELU activation in the
block. After that, one convolutional and one max pooling layer
is attached with 3 × 3, 3 × 3 kernel size and pool size, 128
depth, 2 × 2, 2 × 2 stride, and padding are the same. The
second bottleneck block starts with batch normalization, RELU
activation, and a convolutional layer with a 1 × 1 kernel size,
256 depths, and a 1 × 1 stride. In addition, batch normalization

and RELU are attached, followed by the second convolutional
layer with a 3 × 3 kernel, size 256, depth, and a 1 × 1 stride.
After two bottleneck blocks, a convolutional layer having a 3× 3
filter size, 256 depths, and stride 2 × 2, and max pooling with
3 × 3 pool size and 2 × 2 stride, respectively, and the RELU
activation layer is attached. After that, the third bottleneck block
is created, the first and third convolutional layers of this block
having 1 × 1 filter size, 1 024 512 depth, and 1 × 1 stride,
respectively. The middle convolutional has a 3 × 3 filter size,
1024 depths, and a 1 × 1 stride. Each convolutional layer of
this block is attached with one batch normalization and one
RELU activation. After the third block, one convolutional layer
is attached with a 3× 3 filter size, 1024 depths, and 2× 2 strides.
The closing layers are global average pooling, fully connected,
softmax, and classification. The total parameters of this model
is 16.3million with 11 layers are convolutional out of 43 lay-
ers. The designed model is trained on both datasets and deep
features are extracted from the global average pool layer. The
dimension of extracted features is N × 1024. The architecture
of the proposed bottleneck residual-based CNN is presented in
Fig. 5.

C. Proposed Self-Attention Architecture

A deep learning strategy with a two-dimensional structure was
designed for the classification problem as the images from the
satellite have tiny objects to see. For this challenge, an efficient
model was designed. The proposed model strategy consists of
two sequence folds with CNN and two attention mechanism
blocks, as shown in Fig. 6. The attention mechanism was utilized
to improve the capturing of deep features and concentration on
small instances of feature maps. The proposed attention-based
CNN accepts the input size of 227 × 227 × 3. The sequence
folded has been added to transform the data into a sequence.
Four convolutional layers are attached with filter size 3 × 3,
depth 32, 64, 96, and stride 1 × 1, 2 × 2, 1 × 1, and 1 × 1,
respectively. The first two convolutional layers are attached with
batch normalization, RELU activation, and max pooling, having
a 3 × 3 pooling size with a 2 × 2 stride.
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Fig. 5. Architecture of the proposed bottleneck residual-based CNN for the classification of land use images.

Fig. 6. Proposed attention mechanism-based CNN for the classification of
satellite images.

After that, one attention layer was added, and the sequence
was unfolded and placed. In addition, the convolutional layer is
placed with a 3 × 3 filter size, 128 depth, and 2 × 2 strides.
RELU activation is attached to introduce the nonlinearity, and
the sequence folded layer is attached to transform the feature
map into sequences. After that, two convolutional layers are
attached with 1 × 1 kernel size, 256, 512, 1024 depth, and 1 × 1
stride. After both convolutional layers, batch normalization,
RELU activation, and max pooling layer with 3 × 3 pooling
size and 2 × 2 stride are attached. Moreover, the attention layer
and sequence unfolds are attached, and the feature map is passed
to the global average pooling layer. At the end of the proposed
network, the fully connected layer is placed with an output size of
21 classes, and the softmax and classification layers are attached
to the final output. The total parameters of the attention model
is 32.5 million with 45 layers and 13 layers are convolutional
layers. The proposed was trained on the selected datasets and
global average pool activation is utilized for the attention feature
extraction. The size of extracted information is N × 1024. The
complete proposed self-attention architecture is presented in
Fig. 6.

D. Proposed Weighted Entropy Serial Fusion

Feature fusion is an essential process in which heterogeneous
information from multiple sources is integrated to yield an
enhanced outcome [48]. We proposed a feature fusion approach

Fig. 7. Proposed weighted entropy serial fusion.

named weighted entropy serial fusion in this work. This ap-
proach calculates the entropy for deep features extracted from
the bottleneck CNN and self-attention CNN. Following that,
the weight is measured for both entropy-calculated features.
The 70% and 30% of the weights are considered for entropy
bottleneck CNN and self-attention CNN features. After that, the
weighted vectors are fused using a serial approach, as shown in
Fig. 7.

The mathematical description of this proposed approach is
defined as suppose the proposed bottleneck CNN and self-
attention CNN feature vectors V bf

I , V sf
I having dimensions

of I × 1024. Where I is the number of samples and bf, sf
are the features. The entropy of both vectors is computed as
follows:

ωentropy =
∑
M

∑
N

p (M,N) log p (M,N) (4)

The entropy of V bf
I , and V sf

I is defined as follows:

Ω
(
V bf
I

)
ent = ωentropy

(
V bf
I

)
(5)

Ω
(
V sf
I

)
ent = ωentropy

(
V sf
I

)
(6)

where Ω(V bf
I )ent and Ω(V sf

I )ent present-ed the calculated en-
tropy of both the proposed bottleneck CNN and self-attention
CNN features vectors and ωentropy denoted the formula that is
utilized to measure the entropy. After performing the entropy
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process, the 70 and 30% weights are measured by using the
following equations:

wΩ(V bf
I )ent

= int64 (bf × 0.70) (7)

wΩ(Vsf
I )ent

= int64 (sf × 0.30) (8)

where wΩ( V bf
I )ent

and wΩ( Vsf
I )ent

presented the output of

weighted vectors, and bf and cf denoted the number of features.
In the last phase, the weighted entropy features are fused using
a serial approach mathematically presented in the following:

VserialFusion =

(
wΩ(V bf

I )ent

wΩ(Vsf
I )ent

)
I×F

(9)

where VserialFusion is denoted the final output, we obtained the
final output dimension of N × 1024 for both datasets. The
resultant features are passed to the proposed Chimp optimization
for feature selection.

E. Proposed Chimp Optimization

In computer vision, feature selection (FS) is the systematic
process of finding a subset of features from an initial set to
eliminate redundant, irrelevant, or noisy features. Adopting FS
improves accuracy and a shortcoming in computational time
[49]. In this research, we employed chimp optimization for
feature selection. The Chimp optimization was introduced by
Khishe and Mosavi in 2020. The basic idea underlying chimp op-
timization originates from the sexual drive and intellect of chim-
panzees, which distinguishes them from other social hunters
by their collective haunting behavior [50]. This technique’s
simplicity, capacity to avoid local optima, quick convergence,
and low computational cost have made it widely used to identify
the optimal answers for complex optimization issues [51]. The
mathematical models of driving, chasing, blocking, attacking,
and independent groups. The Chimp optimization is given as
follows.

1) Driving and Chasing the Prey: Hunting prey occurs be-
tween the processes of exploration and exploitation. The math-
ematical model of driving and chasing the prey is formulated in
the following:

z = |k.sprey(t)− j.schimp (t)| (10)

schimp (t+ 1) = sprey(t)− a.z (11)

where t represents the number of iterations and a, j, k indicates
the coefficients of the vector, sprey And schimp denoted the position
vector of prey and chimps. So, a, j, k are measured as follows:

a = 2.u.x1 − u (12)

k = 2.x2 (13)

j = chaotic − value (14)

where u indicates reduced nonlinearity, x1 and x2 are repre-
sented as the range of random vectors and j is based on the
chaotic value.

2) Attacking Method (Exploitation Phase): Two approaches
are devised to model the aggressive behavior exhibited by chim-
panzees mathematically. Chimpanzees can engage in various

behaviors, such as driving, blocking, and chasing, to investigate
and ultimately surround the location of their prey. The hunting
process is typically carried out by chimpanzees that assume
the role of aggressors. Drivers, barrier, and chaser chimpanzees
occasionally engage in the hunting process. Regrettably, there
is a lack of available information about the prey’s optimal
location within an abstract search space. To mathematically
model the behavior of chimpanzees, it is postulated that the
initial attacker (optimal solution), driver, barrier, and chasers
possess superior knowledge regarding the whereabouts of po-
tential prey. Four of the most optimal solutions acquired thus
far are retained, and the remaining chimpanzees are com-
pelled to adjust their positions based on the location of the
most superior chimpanzees. The relationship is denoted by the
following:

zAttacker = |k1 sAttacker − j1s| , zBarrier = |k2sBarrier − j2s| ,
(15)

zChaser = |k3 sChaser − j3s| , zDriver = |k4zDriver − j4s|
s1 = sAttacker − a1 (zAttacker) , s2 = sBarrier−a2 (zBarrier),

(16)

s3 = zChaser − a3 (zChaser) , s4 = sDriver − a4 (zDriver)

s (t+ 1) =
s1 + s2 + s3 + s4

4
. (17)

3) Social Incentive (Sexual Motivation): Acquiring a meal
and consequent social motivations, such as sexual and groom-
ing behaviors, during the last stage leads to chimpanzees re-
linquishing their hunting responsibilities. Consequently, they
endeavor to acquire meat through coercive and disorderly
means. The observed disorderly conduct exhibited by chim-
panzees in the concluding phase effectively addresses the is-
sues of being trapped in local optima and the sluggish rate
of convergence encountered when attempting to solve com-
plex, high-dimensional problems. The mathematical model is
expressed in (18) to update the chimpanzees’ position during
optimization

schimp(t+1) =

{
sprey(t) − a.z, if, μ < 0.5

Chaoticvalue if, μ ≥ 0.5.
(18)

After every iteration of the chimp algorithm, fitness value is
measured by utilizing the KNN. The KNN classifier returned the
cost value. The cost function of KNN is mathematically defined
in the following:

cost = α× error + β ×
(

No.of selected features
Max of features

)
(19)

where α is 0.99 and β is 0.01, and error is calculated by using
the following:

Eerr = 1−Acc. (20)

The optimized features have a size of N × 192 for the orig-
inal UC-Merced dataset and N × 207 cloud effect UC-Merced
dataset. The hold-out method is employed for validation pur-
poses the value of the hold-out is 0.2 which indicates that the 20%
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TABLE II
RESULTS OF BOTTLENECK RESIDUAL CNN FOR THE CLASSIFICATION OF UC-MERCED LAND USE DATASET

TABLE III
RESULTS OF SELF-ATTENTION CNN MODEL FOR THE CLASSIFICATION OF UC-MERCED LAND USE DATASET

TABLE IV
RESULTS OF THE PROPOSED WEIGHTED ENTROPY SERIAL FUSION FOR THE CLASSIFICATION OF UC-MERCED DATASET

of features are used as validation. The optimization is stopped
when it approaches 100 iterations.

The final features are further passed to neural network classi-
fiers for the final classification

IV. RESULTS AND ANALYSIS

In this section, the experimental results of the proposed
framework have been presented. The UC-Merced land use and
generated cloudy effect in UC-Merced datasets (as discussed
under the section Data collection and preprocessing) are used
for the experimental process. The datasets were divided into
50:50 ratios. The 50% of the images were used for training, and
the remaining data was used for testing. We selected k = 10 due
to the widespread use of k-fold cross-validation and its capacity
to achieve an optimal ratio between computational costs and
variance, which is associated with the generalizability of the
efficiency estimate. The experiment utilized feature dimensions
of N × 1024; a lesser value of k was found to be ineffective,
whereas a performance consisting of 10 was observed when k
was set to that value. So, for all experiments were performed
using ten k-fold cross-validation. The hyperparameters like an
optimizer, mini-batch size, learning rate, and epochs with values
SGDM 16, 0.0001, and 10 were used to train the proposed
models. Neural Network classifiers were chosen based on vary-
ing hidden layers to evaluate the classification outcomes. The

narrow neural network consists of 10 hidden layers and one fully
connected layer, whereas the medium neural network has 25
hidden layers and one fully connected layer. The neural network
is defined by its extensive architecture, consisting of 100 hidden
layers and one fully connected layer. Trilayered neural network
architecture consisting of three layers was used, including 10
hidden layers and 2 fully connected layers. The bilayered neural
network model consisted of 10 hidden layers and 3 fully inter-
connected layers. The classification results are evaluated using
precision, recall, f1-score, accuracy, false discovery rate (FDR),
false negative rate (FNR), Fowlkes Mallows index (FM), and
computation time in seconds. The FDR, FNR, and FM were
calculated using the following equations:

FDR = 1− PPV (21)

FNR = 1− TRP (22)

FM =
√

TRP × PPV. (23)

The PPV is a positive predictive value known as precision,
and TPR is a true positive rate known as recall. All simulations
were conducted using a core i7 13gen configured with a 12 GB
3060RTX NVIDIA graphics card, 500 SSD, and 128 GB of
RAM. The results are divided into two major sections. In the
first section, we discuss the results of the UC-Merced dataset,
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Fig. 8. Confusion matrix of WNN classifier with bottleneck residual CNN
weights for the classification of UC-Merced Land use dataset.

and in the second section, the results of the cloudy UC-Merced
dataset are explained.

A. Experimental Results of UC-Merced Dataset

In the first section, the results of the UC-Merced dataset have
been presented. The features are extracted from the proposed
bottleneck residual CNN and self-attention CNN. Table II shows
the results of the bottleneck residual CNN model. In this table,
the WNN classifier achieved a higher accuracy of 95.7%. The
precision rate is 95.9%, the recall rate is 95.71%, the F1-score
is 95.80%, FDR is 4.23, FNR is 4.29, and FM is 95.73%.

In Contrast, Table III illustrates the results of the self-attention
CNN model with a maximum of 95.6% accuracy of the WNN
classifier. The precision rate is 95.6%, the recall rate is 95.1%, the
F1-score is 95.3%, FDR is 4.4, FNR is 4.9, and FM is 95.3%. The
computation is noted for all listed classifiers in both cases. The
MNN classifier has the lowest computation time, 10.52 (s). In
contrast, the TNN classifier has the highest computation among
all listed classifiers, 33.657 (s) using bottleneck residual CNN
weights. At the same time, the MNN classifier takes 33.988 (s)
for execution.

In the next phase, the extracted features are fused using the
proposed weighted entropy serial fusion, and the results of
the proposed fusion are presented in Table IV. In this table,
the WNN classifier attained the highest accuracy of 98.9%.
The precision rate is 98.83%, the recall rate is 98.94%, the
f1-score is 98.8%, the FDR is 1.2, the FNR is 1.1, and FM
is 98.8%. These parameters are also measured for the listed
classifiers. The accuracy is significantly improved from the
previous experiments. The computation time is recorded for
all listed classifiers, and it is observed that after the fusion
process, the computation time also increases. The maximum
time recorded for the TNN classifier is 53.23 (s) among all
classifiers, while the lowest computation is 19.22 (s) for the
MNN classifier. Figs. 8–10 show the confusion matrices of
both architectures that can utilize to verify the performance of
WNN.

Fig. 9. Confusion matrix of WNN classifier with Self-attention weights for
the classification UC-Merced land use dataset.

Fig. 10. Confusion matrix of the proposed weighted entropy serial fusion for
classification of UC-Merced dataset.

In the last phase, chimp optimization is employed for the
feature selection to reduce duplicate and redundant information
from the fused weights. Table V shows the results of binary
chimp optimization, with the highest accuracy of the WNN
classifier at 99.0%. The value of the precision rate is 99.0%,
the recall rate is 98.9%, the f1-score is 98.9%, FDR is 1.0, FNR
is 1.1 and FM is 98.9%. The confusion matrix of this WNN
classifier is shown in Fig. 11. The execution time is noted for
the listed classifiers; it is observed that after feature selection, the
computation is significantly reduced. The TNN classifier takes
14.67 (s) for execution, whereas, in the previous experiment,
the TNN takes 53.23 (s). Compared to the previous phases, the
selection method shows the better computational time.

B. Experimental Results of Cloudy UC-Merced Dataset

In this section, the classification results of the cloudy UC-
Merced dataset have been presented. In the initial phase, the
bottleneck residual CNN and self-attention CNN were trained
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TABLE V
CLASSIFICATION RESULTS OF CHIMP OPTIMIZATION FOR THE UC-MERCED DATASET

Fig. 11. Confusion matrix of WNN classifier with chimp optimization for classification of UC-Merced land use dataset.

TABLE VI
CLASSIFICATION RESULTS OF BOTTLENECK RESIDUAL CNN WITH WNN CLASSIFIER FOR THE CLASSIFICATION OF CLOUDY UC-MERCED DATASET

on a cloudy UC-Merced dataset, and the trained model was
employed for the feature extraction. The classification results of
bottleneck residual CNN are illustrated in Table VI. In this table,
the WNN classifier attained the highest accuracy of 96.3% (see
Fig. 12). The other computed parameters, including precision,
recall, F1-score, FDR, FNR, and FM, have values of 96.3%,
96.2%, 96.2%, 3.7, 3.8, and 98.2%, respectively.

In addition, all classification results are measured by the
self-attention CNN model described in Table VII. From this
table, the WNN classifier achieves a higher accuracy of 95.0%,

a precision rate is 95.0%, a recall rate is 94.9, F1-score is 94.9%,
FDR is 5.0, FNR is 5.1, and FM is 94.9%. The bottleneck residual
CNN with the WNN classifier was observed to outperform
the previous model. Fig. 13 shows the confusion matrixes for
further clarification. The computation time is also noted for
both methods. The bottleneck CNN with MNN classifier is
executed in 17.48 (s), while the highest time is recorded from
self-attention CNN with TNN, which was 76.27 (s).

The proposed weighted entropy serial fusion is employed in
the next stage to improve the classification results. Table VIII
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TABLE VII
CLASSIFICATION RESULTS OF THE PROPOSED SELF-ATTENTION CNN FOR CLOUD UC-MERCED DATASET

TABLE VIII
CLASSIFICATION RESULTS OF THE PROPOSED WEIGHTED ENTROPY SERIAL FUSION IN CLOUDY UC-MERCED DATASET

Fig. 12. Confusion metric of bottleneck residual CNN with WNN classifier
for cloudy UC-Merced dataset.

shows the results of the WNN classifier with the highest accuracy
of 99.4%. The other parameters are precision, recall, f1-score,
FDR, FNR, and time. The values of these parameters are 99.45%,
99.34%, 99.3%, 0.6, 0.5, and 99.3%, respectively. The confusion
matrix is presented in Fig. 14 for the further verification of
numerical analysis. By employing this fusion, the computation
time of each classifier is significantly higher than in the previous
experiments. The MNN classifier has the shortest execution
time, which is 22.38 (s), while in the last two results, the MNN
classifier has 17.48 (s) and 20.09 (s), respectively.

To reduce the computation time and irrelevant information
from the fused weights. We employed chimp optimization for
the best feature selection. The classification results of chimp
optimization have been presented in Table IX. From this table,
it was observed that the WNN classifier achieved 99.0% accu-
racy. The precision rate is 98.9%, the recall rate is 98.8%, the

Fig. 13. Confusion matrix of self-attention CNN with WNN classifier for
cloudy UC-Merced dataset.

F1-score is 98.8%, FDR is 1.1, FNR is 1.0, and FM is 98.8%.
The confusion matrix is visually illustrated in Fig. 15. By this
method, the accuracy is decreased by 0.3%, but the computation
time of the WNN classifier is improved by 13.08 (s). The MNN
classifier requires 6.97 (sec), considered the shortest time from
all experiments on the cloud UC-Merced dataset.

C. Comparison With Recent Techniques

A Comprehensive comparison with recent techniques was
conducted based on the UC-Merced dataset, presented in
Table X. The table shows that the proposed framework’s perfor-
mance outperforms the recent techniques listed. [52] published
recently, in which the authors used a CNN-based hybrid system
to classify land use images and achieved 93.3%.Similarly, [53],
[54], and [49] employed the latest deep learning techniques
and achieved 98.0%, 95.0%, and 91.8% accuracy, respectively.
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Fig. 14. Confusion matrix of proposed feature fusion with WNN classifier for cloud UC-Merced dataset.

Fig. 15. Confusion metric of chimp optimization on WNN classifier in cloudy UC-Merced dataset.

TABLE IX
CLASSIFICATION RESULTS OF CHIMP OPTIMIZATION FOR CLOUDY UC-MERCED DATASET
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TABLE X
COMPARISON WITH STATE-OF-THE-ART RECENT TECHNIQUES

Fig. 16. Prediction of the proposed bottleneck residual and self-attention model.

Meanwhile, [47] used the most recent quantum-based classical
image processing to classify land use images and achieved
85.5% accuracy. In addition, [48] employed the voting-based
mechanism for land use image processing to achieve high pre-
cision in 2021, and they achieved 95.1% accuracy. At the end of
the 2021 year, [49] a retrieval system was designed using fuzzy
clustering, and they achieved 97.0% accuracy. In addition, a few
labeled results of the proposed method have been illustrated in

Fig. 16. In this figure, it is shown that the predicted labels are
generated using both CNN architectures.

V. CONCLUSION

The goal of scene classification is to classify an image using
semantic categories. This is a particularly challenging problem
since distinct objects may exist at different sizes and orientations,
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and there may be a lot of variation in the land covers that
belong to a particular class. An intelligent architecture based
on deep learning was presented in this work to classify land
use in remote-sensing images. A neural-style architecture has
been included in the suggested architecture to create new cloudy
remote sensing images to create a new dataset that would aid
in the generalizability of the proposed framework. Two new
deep architectures have been proposed: 3-layered bottleneck
CNN architecture and 3-layered bottleneck self-attention CNN
architecture. Both architectures have been trained on the original
and newly prepared cloudy datasets and extracted features from
the deeper layers. The self-attention architecture performance
was better at this stage. Later, we proposed a fusion technique
based on weighted entropy that fused the information of both
architectures. The fused features improved the performance;
however, the computational time has been increased. To handle
this problem, we proposed a Chimp optimization method that
selects the best features and removes the irrelevant information.
The selection process improved the proposed architecture’s per-
formance and reduced computational time.

The drawback of this work is the weighted fusion process that
added little redundant information; however, the strength of this
work is better accuracy on a smaller amount of remote sensing
images for the training. In the future, a comparative study will
be considered that compares several architectures’ performance
on the selected datasets of this work.
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