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Abstract

Personalized federated learning (PFL) is an exciting approach that allows machine learning (ML) models to be trained on diverse
and decentralized sources of data, while maintaining client privacy and autonomy. However, PFL faces several challenges that can
deteriorate the performance and effectiveness of the learning process. These challenges include data heterogeneity, communication
overhead, model privacy, model drift, client heterogeneity, label noise and imbalance, federated optimization challenges, and client
participation and engagement. To address these challenges, researchers are exploring innovative techniques and algorithms that
can enable efficient and effective PFL. These techniques include several optimization algorithms. This research survey provides
an overview of the challenges and motivations related to the model optimization strategies for PFL, as well as the state-of-the-
art (SOTA) methods and algorithms which seek to provide solutions of these challenges. Overall, this survey can be a valuable
resource for researchers who are interested in the emerging field of PFL as well as its potential for personalized machine learning
in a federated environment.

Keywords: Personalized Federated Learning, Model Optimization, Distributed Machine Learning, Collaborative Learning,
Privacy-Preserving

1. Introduction

1.1. Overview
Personalized Federated Learning(PFL) is an emerging re-

search area that combines two popular machine learning tech-
niques, namely Federated Learning(FL) and Personalization.
The field of PFL has garnered significant attention, as it offers a
promising solution for handling the challenges of personalized
machine learning while upholding client data privacy and secu-
rity. However, despite its potential, PFL is still a nascent area
of research, necessitating a comprehensive survey to assess the
current state-of-the-art (SOTA), highlight challenges, and out-
line future directions. This survey will contribute to a deeper
understanding of PFL and its potential research domains re-
garding model optimization. In this research work, we provide
a comprehensive overview of PFL model optimization strate-
gies, including their definitions, algorithms, architectures, chal-
lenges, and future directions. We start by introducing the basic
concepts of Personalization, then we discuss the various model
optimization techniques with respect to their architectures. We
focus on the future directions and open research questions in
PFL strategies. Finally, we conclude the survey paper by sum-
marizing the key contributions and limitations of the existing
research on PFL and providing directions for future research.
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Figure 1: Personalized Federated Learning Architecture

1.2. Definition of PFL
FL is a method which allows number of clients to partic-

ipate in training a shared model collaboratively, in which raw
data is not exchanged. On the other hand, Personalization is
an approach that tailors a model to a specific client or group
of clients, by leveraging their individual data and preferences.
Whereas the PFL is a specific type of FL where the objective
is to train machine learning (ML) models that are tailored to
the individual characteristics of each client in a federated net-
work. In general, as shown in figure. 1, in PFL a global model
is trained first over a central server. Then, every client further
fine-tunes global model by using the local data, while preserv-
ing the privacy of its data. Then global model is personalized
for every client, based on the local data and preferences, while
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benefiting from the collective knowledge of all clients.

Algorithm 1 Algorithm for PFL
Input(s):
Initial global model with shared parameters and personalized
layers for each client.
The dataset, split into multiple non-overlapping subsets as-
signed to each client.
Number of rounds and clients to be selected for each round.
The learning rate for updating global model’s parameters.
Output(s):
The trained global model with updated shared parameters and
personalized layers for each client.
The training loss and evaluation metrics of global model on a
held-out validation set.
Algorithm:

1: Initialize global model and personalized layers.
2: Split the dataset into multiple non-overlapping subsets.
3: Assign each subset to a different client.
4: for each round of PFL do
5: Select a subset of clients to participate.
6: for each selected client do
7: Compute local gradient of the personalized layers.
8: Send the local gradient to the server.
9: end for

10: Aggregate local gradients to update global model’s per-
sonalized layers.

11: Send updated personalized layers to each client.
12: for each selected client do
13: Freeze the shared parameters.
14: update personalized layers.
15: Compute the local gradient of entire model.
16: Send the local gradient to the server.
17: end for
18: Aggregate local gradients to update global model’s

shared parameters.
19: end for
20: Repeat steps 4 to 19 for number of rounds or until conver-

gence.

Algorithm 1 illustrates the implementation of PFL, which is
an extension of the basic FL algorithm that includes personal-
ized layers for each client, allowing for client-specific adapta-
tion of the model. There are many variations and optimizations
depending on the specific use case and problem being solved.

In every round of PFL, the selected subset of clients or
clients participates by providing their local gradients and up-
dating the personalized layers and shared global model param-
eters. These local gradients are aggregated to update the global
model’s personalized layers and shared parameters. The up-
dated personalized layers are then transmitted back to each client,
where they are combined with the shared parameters to calcu-
late the local gradient of the entire model. The local gradients
from each client are then aggregated for updating the global
model’s shared parameters . This iterative process continues for
the specified number of rounds, ultimately resulting in a trained

global model as the final output.
Lets consider a PFL environment where C = {1, 2, . . . , n}

denotes the set of n clients. Where every client i ∈ C owns lo-
cal data Di. Let θ represent the global model parameters, which
are to be learned collaboratively across all clients. At each it-
eration, the global model is updated using a subset of clients’
local updates. The objective is to minimize the PFL loss func-
tion Li(θ) for each client i ∈ C. The loss function calculates
the inconsistency between the global model and the local data
at client i. The PFL problem can be expressed in mathematical
form as follows:

min
θ

∑
i∈C

wiLi(θ) (1)

Where, wi represents the weight assigned to client i to reflect
its importance or contribution to the FL process. These weights
can be determined based on various factors, for example; size
of the local dataset, and computational resources, or data distri-
bution properties. The global model parameters θ are updated
iteratively using a federated optimization algorithm, which typ-
ically involves a communication and aggregation steps. The
updated global model is obtained as follows:

θ ← Aggregate({θi}i∈C) (2)

Where, θi is the updated local model parameters by client i us-
ing its local data. The aggregation function can be performed
using various methods, such as averaging, weighted averag-
ing, or other consensus algorithms. The FL process lasts till
maximum number of iterations defined or until a convergence
requirement is met. The final learned global model θ∗ repre-
sents the collective intelligence obtained from the collaboration
among all clients in the PFL setting.

1.3. Motivations for this paper

Despite of significant advances achieved in multiple appli-
cations, still there are several challenges that are required to
be addressed in PFL. Some of these issues on which we are
focussed, include; The increasing number of edge servers par-
ticipating in FL has led to challenges related to models of ex-
isting PFL approaches [1] [2]. These challenges arise due to
several factors e.g.; In deep learning tasks commonly used in
FL, the size of model parameters can be substantial, ranging
from tens to hundreds of megabytes. The FL training conver-
gence typically requires hundreds or thousands of communi-
cation rounds. This leads to frequent long-distance transmis-
sion, global model aggregation, and backhaul of model param-
eters, which contribute to significant communication overhead.
These factors collectively impose limitations on the scalabil-
ity of PFL systems. Efforts should be focused on developing
techniques that minimize communication overhead while en-
suring effective collaboration and convergence in FL training
processes. Following are the motivations behind conducting a
research survey on PFL:

• Emerging research area: PFL is an emerging area of re-
search which targets to leverage the benefits of FL while
considering the personalized nature of client data. As this
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field continues to evolve, there is a need to review and
analyze the existing optimization strategies employed in
PFL.

• Diverse optimization approaches: There is a wide range
of optimization approaches and algorithms used in PFL.
These include meta-learning techniques, adaptive opti-
mization methods, gradient aggregation strategies, and
more. A research survey can provide a comprehensive
overview of these approaches, their strengths, limitations,
and applicability in different scenarios.

• Insights for future developments: A survey can high-
light the existing research gaps and challenges in opti-
mization strategies for PFL. By understanding the limita-
tions of current approaches, researchers can propose new
techniques and directions for future developments.

• Practical implications: PFL has various applications in
healthcare, finance, and other domains where privacy and
personalization are crucial. A research survey on opti-
mization strategies can provide insights and guidelines
for practitioners and policymakers to effectively imple-
ment PFL systems and address potential optimization chal-
lenges.

1.4. Contributions
Number of surveys are available, which provide general

overview of concepts, techniques, and applications of FL [3, 4].
Some of them specifically delve into FL from the robustness
and privacy perspectives [5, 6]. The obective of this survey pa-
per is to bridge the gap in the current literature on PFL. This
paper provides characteristics, graphical overview, algorithms
used, advantages, disadvantages and challenges in PFL model
architectures for the researchers. The contributions of this sur-
vey are summarized as follows:

• Comprehensive overview: This survey provides a com-
prehensive overview of the existing strategies used in PFL.
It catalogs different approaches, algorithms, and tech-
niques employed in the field, giving researchers and prac-
titioners a holistic understanding of the optimization land-
scape.

• Categorization of Model Architectures: The survey pa-
per presents PFL model architectures, their benefits and
limitations and their applicability in different PFL sce-
narios. This includes approaches; parameter de-coupling,
neural architecture search, hyperparameter optimization,
data augmentation, regularization, adversarial training,
meta-learning and clustering.

• Identifying research gaps: Reviewing the literature, this
survey identifies research gaps and open challenges in
the field of optimization in PFL. These gaps include un-
explored optimization techniques, limited evaluation on
certain types of data or applications, or specific issues re-
lated to scalability, fairness, or privacy. These gaps can
guide future research efforts.

• Inspiring future research: This research survey inspires
and stimulates further research in the field by highlight-
ing promising directions and emerging trends. It pro-
poses novel research avenues, such as hybrid optimiza-
tion approaches, adaptive learning rate scheduling, com-
pression schemes, or personalized aggregation methods.
By identifying these research opportunities, the survey
can foster innovation and advancements in the field.

In summary, this research survey contributes by providing a
comprehensive overview, classification, and performance anal-
ysis of existing approaches in PFL for model architectures. It
also identifies research gaps, offers guidelines, and inspires fu-
ture research directions. These contributions collectively en-
hance the understanding, development, and application of these
strategies in PFL.

1.5. Structure of this paper

This research survey provides a comprehensive overview of
model optimization in PFL, offering valuable insights and guid-
ance for researchers and practitioners working in this field. Fol-
lowing is the brief overview of this research survey:
Introduction: In this section we present the overview of PFL,
its basic architecture and algorithm. Then we discuss our mo-
tivation behind conducting this research survey. After that we
discuss our contributions. Research Work Classification: The
main contribution of this survey includes; classification and
analysis of existing research on PFL model optimization tech-
niques, detailed description of each technique, including advan-
tages. Limitations: This section discusses the limitations of
existing research works, Challenges & Open Problems: Iden-
tifies the key challenges and includes discussion of potential
open problems and future directions of research in PFL. Con-
clusion: Summary of the key findings and contributions of the
paper Discussion of the implications of the study for future re-
search and practical applications of PFL.

2. Research Work Classification

In this section we classify the research works, including the
main ideas and contributions, proposed architectures, advan-
tages, algorithms, related to the model optimization in Person-
alized Federated Learning (PFL), as shown in figure. 2.

2.1. Model Optimization Techniques

In order to attain accurate and effective learning in PFL
models, it is essential to optimize the architecture of the model.
This section explores different model architectures that are of-
ten used in the context of PFL. These optimization methods can
be tailored and integrated to fit specific PFL scenarios, taking
into account factors such as data properties, client clients, and
learning goals. The choice of techniques could be based on the
inherent trade-offs between communication efficiency, model
accuracy, privacy preservation, and computational constraints.
Following are some widely employed model optimization tech-
niques frequently utilized in PFL:
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Figure 2: Classification of Model Optimization Strategies in PFL

2.1.1. Parameter de-coupling

A technique utilized in PFL to separate the local and global
model parameters. The purpose of this methodology is to ex-
clusively train private parameters on individual client clients
without sharing them with the server. This approach allows the
acquisition of task-specific representations, thereby enhancing
personalization in the PFL framework. Parameter de-coupling
is a widely employed technique in machine learning (ML) for
the improvement in training efficiency of neural networks. Its
fundamental concept involves isolating different sets of param-
eters within a neural network, allowing for independent updates
to be performed on each set. By decoupling the parameters, the
training process becomes more flexible and can adapt to spe-
cific requirements or constraints, leading to enhanced learning
outcomes.

Parameter de-coupling proved to be a valuable technique
for enhancing the efficiency and efficacy of training neural net-
works, particularly in scenarios involving large and intricate
networks, where different sets of parameters may exhibit dis-
tinct convergence rates or update requirements. Algorithm 2
illustrates the implementation of parameter de-coupling:

It is important to highlight that the results obtained from
Algorithm 2 can be utilized for fine-tuning the global model
or training a new model specifically tailored to each individual
client. The personalized parameters obtained through this pro-
cess can also be used to evaluate the model’s performance on
individual clients or compare the performance across different
clients. By decoupling the global and local parameters, Algo-

rithm 2 offers a means to enhance the performance of models
trained on distributed data by effectively capturing both global
and local information. Furthermore, it helps mitigate the risk of
overfitting and improves the model’s generalizability.

In a research study [7], the authors proposed a PFL algo-
rithm that allows the generation of personalized local models
for each client while maintaining a up-to-date global model on
a central server. The algorithm achieves this by dividing the
deep neural network model into global and personalized layers,
where the process of training consists on two stages: an ear-
lier stage and a later stage. To enable effective personalization,
the authors employed a layer-wise parameter division approach.
This approach facilitates a cumulative learning strategy where
parameters on different layers are updated at varying frequen-
cies. The intention is to leverage the global features learned in
the earlier stage to enhance personalization of the local models
in the later stage. In [8], authors introduced pFedLA, a Layer-
wise PFL framework that optimizes personalized model aggre-
gation by considering the importance of each layer from differ-
ent clients, resulting in superior performance compared to ex-
isting PFL methods. It incorporates a dedicated hyper-network
per client on the server side and a parameterized mechanism to
update layer-wise aggregation weights.

Parameter decoupling and split learning (SL) are two dis-
tinct private and distributed ML paradigms [9, 10]. Parameter
decoupling, as applied in PFL, focuses on separating local and
global model parameters. It allows clients to retain and up-
date their personalized model parameters privately, while shar-
ing and aggregating global model parameters with the central
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Algorithm 2 Algorithm for PFL with Parameter De-Coupling
Input(s):
Global model parameters initialized on the server.
Partitioned groups of participating clients.
Training data on each client.
Personalization factor or threshold for the parameter de-
coupling technique.
Output(s):
Global model parameters updated with personalized informa-
tion from participating clients.
Personalized parameters for each client’s local model.
Algorithm:

1: Global model parameters Initialization on server.
2: Partition the participating clients into groups.
3: for each group do
4: Send global model parameters to all clients in group.
5: for each client in the group do
6: Train local model of each client on its data.
7: Compute local gradients of the client’s model with

respect to the global parameters.
8: Compute the personalized parameters of client’s

model by applying parameter de-coupling technique.
9: Send the personalized parameters to the server.

10: end for
11: end for
12: Aggregate personalized parameters received from all

clients.
13: Update global model parameters using aggregated person-

alized parameters.
14: Repeat steps 3-13 until convergence or maximum number

of iterations is reached.

server. This approach enables clients to learn personalized rep-
resentations while leveraging shared knowledge for improved
performance. On the other hand, split learning (SL) partitions
the deep neural network between the server and clients on a
layer-by-layer basis. In SL instead of transmitting the server
model to the client for training, just the split layer weights are
transmitted, located at the boundary between the clients and
server, are shared at time of forward propagation, whereas gra-
dients are exchanged during backpropagation from the split layer.
This privacy characteristic of SL offers an advantage as com-
pared to FL as neither the clients nor server possess access to
the global and local models completely [11]. SL also has certain
drawbacks, one limitation is reduced training efficiency due to
sequential client training, where clients need to be trained one
after another, leading to increased latency. Additionally, SL
may exhibit inferior performance compared to FL when deal-
ing with non-IID (non-independent and identically distributed)
data, as the split layers may not capture all relevant informa-
tion from the clients’ local data. Furthermore, SL involves
higher communication overheads, as gradients need to be ex-
changed between the clients and server during the training pro-
cess, which can impact scalability and efficiency in distributed
settings. It is important to consider these trade-offs when se-

lecting between parameter decoupling in PFL and split learn-
ing, depending on the specific constraints and requirements of
the application [12].

There are two common configurations for parameter decou-
pling used in FL. First configuration, known as ”base layers +
personalized layers” was introduced by Arivazhagan et al. in
their work [13]. In their work, clients keep private their per-
sonalized layers for locally training, which allows the clients
to learn personalized task-based representations. whereas, the
base layers are shared with server, enabling the learning of low-
level generic features that are shared across all clients. The sec-
ond design focuses on considering personalized feature repre-
sentations for each client. Bui et al. explored this approach in a
classification model based on a Bidirectional Long Short-Term
Memory (LSTM) architecture trained with FL [14]. In this
setup, client embeddings are treated as private model param-
eters specific to each client. The character embeddings, LSTM
layers, and Multilayer Perceptron (MLP) layers, on the other
hand, are considered as FL model parameters shared among
all clients. In addition, Liang et al. proposed a method called
Local Global Federated Averaging (LG-FedAvg) [15]. LG-
FedAvg integrates local representation learning with global fed-
erated training to improve communication and computational
efficiency. The different configurations and approaches for pa-
rameter decoupling in FL provide flexibility in learning person-
alized representations while leveraging shared knowledge and
improving efficiency in the training process.

Personalized Layers.
Parameter de-coupling can be extended to incorporate person-
alized layers, which can further enhance the performance of the
model. Personalized layers are layers that are specific to each
client and are learned independently of the global parameters.
Recognizing the significance of personalization in FL, in [16],
authors provide an overview of recent research conducted in
this area, highlighting the advancements and strategies devel-
oped to solve the issue of statistical heterogeneity and enhance
performance of model on a client-specific basis.

Figure 3: Privacy in Federated Learning Using Private Personalized Layers [17]

The figure. 3 illustrates that all client clients possess a com-
mon set of base layers with identical weights (highlighted in
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blue), alongside individual personalization layers that have the
potential to adapt to each client’s specific data. The Algorithm 3
represents parameter de-coupling in FL with personalized lay-
ers:

Algorithm 3 Parameter De-coupling with Personalized Layers
Input(s): Personalized layers Li for each participant i, global
model parameters θ
Output(s): Updated global model parameters θ′

Algorithm:
1: Initialize θ′ ← θ
2: for i = 1 to N do ▷ N is the number of participants
3: Set model parameters to θ′ ▷ Initialize with global

parameters
4: Set personalized layer to Li ▷ Replace the shared layer

with personalized layer
5: Train the model on participant i’s data using personal-

ized layer Li

6: Update the global model parameters θ′ with participant
i’s trained parameters

7: end for
8: Return θ′

Algorithm 3 uses personalized layers Li for each participant
i. The main steps of the algorithm involve initializing the global
model parameters, setting the personalized layer for each par-
ticipant, training the model using the personalized layer, and
updating the global model parameters based on each partici-
pant’s trained parameters. The incorporation of private person-
alized layers in the proposed scheme by [17], aims to improve
model accuracy through local adaptation while minimizing the
transmission of model information to the server.

Personalized Feature Representations.
Parameter de-coupling in FL with personalized feature repre-
sentations can be done by splitting the model into a shared fea-
ture extractor and multiple personalized classifiers, where each
classifier is responsible for predicting labels for a specific sub-
set of the data. During training, each client updates personal-
ized classifier using only local data and then sends the updated
classifier to the server. Then the server updates shared feature
extractor based on the decoupled gradients obtained from the
personalized classifiers.

Algorithm 4 represents the parameter de-coupling in FL
with personalized feature representations. The algorithm 4 takes
personalized feature representations Xi and global model pa-
rameters theta as input and returns updated global model pa-
rameters θ′ as output. The main steps of the algorithm involve
computing the local gradients and updating the global model
parameters on the basis of those gradients. In [18], the authors
proposed a novel framework and algorithm for FL that aims
to learn a shared data representation across clients while incor-
porating unique local heads for each client. Their algorithm
takes advantage of the distributed computational power avail-
able across clients to perform multiple local updates with re-
spect to low-dimensional local parameters during each update
of the shared representation. FL and multi-task learning have

shown great success by leveraging knowledge from different
tasks to overcome limitations imposed by limited training sam-
ples. To deepen the understanding of mechanisms underlying
knowledge utilization, the authors conducted a comprehensive
study in [19] on the sample complexity of FL algorithms, fo-
cusing on their expected population risks. They examined sev-
eral representative algorithms: (i) training personalized models
using local data exclusively, (ii) training a single model jointly
using data from all clients, and (iii) jointly training a shared fea-
ture representation while learning individual classifiers for dif-
ferent clients, which has gained popularity recently. The study
revealed that the effectiveness of the shared representation al-
gorithm is influenced by various factors, including task similar-
ities, model dimensionality, and sample size.

Algorithm 4 Parameter De-coupling with personalized feature
representations
Input(s): Personalized feature representations Xi for each par-
ticipant i, global model parameters θ
Output(s): Updated global model parameters θ′

Algorithm:
1: Initialize θ′ ← θ
2: for i = 1 to N do ▷ N is the number of participants
3: Compute local gradients gi ← ∇θL(Xi, θ

′) ▷ L is the
loss function

4: Update θ′ ← θ′ − ηgi ▷ η is the learning rate
5: end for
6: Return θ′

In [26], authors proposd a novel FL method called Align-
Fed. This method addresses the feature shift issue in cross-
domain FL scenarios by dividing the model into personalized
feature extractors and a shared classifier. The personalized fea-
ture extractors align the features of different clients to specific
points in the feature space, mitigating the feature shift prob-
lem. The shared classifier then aggregates knowledge across
clients in the aligned feature space, improving model perfor-
mance. In [27], authors proposed PFL method for ECG clas-
sification, in which initially a global model is trained by us-
ing a FL framework on number of clients. This global model
is then used as a starting point for training local models with
the clients’ private data. To address feature inconsistency and
improve fitting of the local data, a ”feature alignment” mod-
ule is introduced, comprising global alignment and local align-
ment components. This approach aims to overcome challenges
related to insufficient data, privacy preservation, and local de-
ployment in ECG classification. In [28], the authors present
a novel framework called Partial Model Aggregation Feder-
ated Learning (PMA-FL) to addressed challenges in commu-
nication resources and data heterogeneity in FL. PMA-FL fo-
cuses on aggregating lower layers for feature extraction while
keeping upper layers of neural network at clients for personal-
ized pattern recognition. In [20], the authors introduce a novel
FL architecture called multibranch multilevel federated learn-
ing (MBMLFL) to address limitations in feature extraction and
hierarchical structure. MBMLFL improves feature extraction
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Table 1: Summary of contributions in PFL Model Optimization Techniques using Parameter de-coupling

Model(s) /
Technique(s)

Main Idea/Contribution Advantage(s)/Real-World
Application(s)

FedVF, FedVFDP
[7]

Personalized local models for individual clients by main-
taining the most recent global model on a central server
through a unified federated training process.

Health monitoring, language modeling,
road traffic prediction

pFedLA [8] A parameterized mechanism to update the aggregation
weights at each layer, enabling a progressive exploration
of inter-client similarity and achieving precise model per-
sonalization.

Can be used in large-scale scenarios,
where communication capacity is lim-
ited.

FedPer [13] A novel approach for federated training of deep feed-
forward neural networks. FedPer utilizes a combina-
tion of base layers and personalization layers to address
the challenges posed by statistical heterogeneity, thereby
mitigating their adverse effects.

Personalization, recommendation,
fraud detection, etc.

LG-FEDAVG [15] A novel FL algorithm that concurrently learns com-
pact local representations on each individual client and
a global model that encompasses information from all
clients.

Personalized mood prediction from
real-world data where privacy is key.

MBMLFL,
MBMLFL-SGD,
M2DCFedAvg [20]

Especially designed FL architecture(s) having an excel-
lent feature extraction

Friendly, useful for large scale coopera-
tion, enhances privacy [21, 22, 23, 24].

TailorFL [25] A dual-PFL framework that customizes a submodel for
each client. This framework incorporates personalized
structure during the training phase and utilizes personal-
ized parameters for local inference.

Image Classification, Human Activity
Recognition,
health monitoring, language modeling,
road traffic prediction

FedRep [18] A novel FL framework and algorithm to learn a shared
data representation across multiple clients while main-
taining unique local heads for each client.

Generalization to new clients, health
monitoring, language modeling, road
traffic prediction

by leveraging multiple branches and levels, each with its spe-
cific effect. The framework, designed to be privacy-friendly,
extends FedAvg and proposes the M2DCFedAvg algorithm for
distributed optimization.

2.1.2. Knowledge Distillation
Knowledge distillation is a technique commonly used in

machine learning to transfer knowledge from one model, known
as the Teacher model, to another model, called the student model.
This process involves training the local model to copy the be-
havior and predictions of the more complex teacher model.

The objective function for knowledge distillation is given
by:

Ltotal = Lce + λ · Ldist (3)

where, Ltotal is the total loss combining standard and distillation
losses, Lce is cross-entropy loss between Local model predic-
tions and ground truth labels, Ldist is the distillation loss mea-
suring the difference between Local and global predictions, λ is
a weighting factor used to control the effect of the distillation
loss.

In [30] authors proposed a novel model; Federated Codis-
tillation (FedCodl), in which a distillation term is added to the

Algorithm 5 Knowledge Distillation in PFL
Input(s): Centralized Global model T , Client clients
C1,C2, . . . ,Cn

Output(s): Updated global model
Algorithm:

1: for i = 1 to n do
2: Initialize Local model S i on client client Ci

3: Obtain personalized data Di on client client Ci

4: Train S i on Di with distillation
Distillation Loss:

5: Generate soft targets Qi using T on Di

6: Calculate cross-entropy loss Lce between S i predictions
and ground truth labels

7: Calculate distillation loss Ldist between S i predictions
and Qi

8: Calculate total loss Ltotal = Lce + λ · Ldist ▷ λ is the
weight for distillation loss

9: Update S i parameters by optimizing Ltotal
10: end for
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Figure 4: Illustration of pFedSD workflow [29].

local objective function, so that local models can be trained on
outputs of the global model. They also extend FedCodl to Fed-
erated Two-way codistillation (Fed2Codl) to personalize local
models for each device, meanwhile the global model is retained
and iteratively updated in parallel. In their work [31], the au-
thors proposed MetaFed, a novel framework aimed at facili-
tating reliable FL in heterogeneous federations. MetaFed intro-
duces a unique technique called Cyclic Knowledge Distillation,
which enables the generation of personalized models for every
federation instead of relying on server. The MetaFed frame-
work adopts a perspective where each federation is considered
as a meta distribution. This perspective allows for the cyclic
aggregation of knowledge from the different federations in a
collaborative manner. The training process within MetaFed is
based on two primary stages: common knowledge accumula-
tion and personalization. During the common knowledge accu-
mulation, knowledge is aggregated from the participating fed-
erations. This aggregation process aims to capture the shared
information and patterns across federations, enabling the de-
velopment of a common model that benefits from the collec-
tive knowledge of the entire system. This shared knowledge
accumulation helps to improve overall performance and gener-
alization capabilities of model. Following the common knowl-
edge accumulation, the personalization stage takes place. In
this stage, the aggregated common model is adapted or person-
alized to the specific characteristics and requirements of each
individual federation. This personalization allows the model to
be customized and tailored to the unique data distributions and
task specifications within each federation, enhancing its perfor-
mance and relevance to the local context. By cyclically repeat-
ing the two stages, MetaFed ensures an iterative and collab-
orative process of knowledge aggregation and personalization
among federations.

In [35], authors proposed an innovative solution to address
the challenges posed by heterogeneous FL. They introduce a
data-free knowledge distillation method as part of their approach.
The key idea involves training a lightweight generator at the
server level, enabling the aggregation of client information with-
out requiring access to the client’s raw data. Afterwards, result-
ing knowledge is distributed to individual clients, who utilize
this acquired knowledge as an inductive bias during their lo-
cal training process. In their research, Jeong et al. [32] intro-
duced a novel PFL algorithm. The proposed algorithm lever-

ages knowledge distillation (KD) techniques to empower in-
dividual client clients by enabling them to estimate statistical
distances between their local models. This approach facilitates
performance enhancement for each client without the need to
share their local data. By assessing the similarity between in-
termediate outputs derived from local samples, akin to knowl-
edge distillation, the clients can autonomously and effectively
improve their models within the decentralized Federated Learn-
ing (FL) framework.

In the research work [36], the authors propose a novel FL
algorithm called FedHKD (Federated Hyper-Knowledge Dis-
tillation). This algorithm leverages KD techniques to train lo-
cal models on client clients. In FedHKD, each client extracts
the means of local data representations and the correspond-
ing soft predictions, known as ”hyper-knowledge,” which are
then transmitted to the server. The server aggregates this hyper-
knowledge and broadcasts it back to the clients to aid in their
local training. In the research paper [29], the authors conducted
an investigation into Personalized Federated Learning (PFL),
with a specific focus on training models that exhibit strong per-
formance for individual clients. They observed that the ini-
tialization process during each communication round results in
the loss of historical personalized knowledge. Building upon
this observation, they proposed a novel PFL framework called
pFedSD, which incorporates self-knowledge distillation. The
pFedSD framework, depicted in Figure 4, enables clients to
distill knowledge from their previous personalized models into
their current local models. This approach facilitates the rapid
retrieval of personalized knowledge for the most recent initial-
ized clients.

2.1.3. Neural Architecture Search (NAS)

A technique used to automatically discover effective neural net-
work architectures for a given task. It involves exploring a
search space of possible network architectures and selecting the
best architecture based on a predefined objective, such as maxi-
mizing accuracy or minimizing computational resources. But it
is important to note that combining NAS with PFL introduces
additional challenges. Researchers are actively exploring the
integration of NAS with PFL to address these challenges and
unlock the potential benefits of automated architecture search
in PFL scenarios.

The algorithm 6 takes participant attributes Ai, federated
data D, and the search space S as input, and it outputs the opti-
mal architectures A∗ for each participant. The main steps of the
algorithm involve encoding participant attributes into an archi-
tecture representation, initializing and updating architectures
based on candidate architectures, training and evaluating mod-
els with the candidate architectures, and selecting the optimal
architecture for each participant based on their performance.

In [45], the authors introduced Resource-aware Federated
Learning (RaFL), a framework designed to address the chal-
lenges of data heterogeneity and system/resource heterogene-
ity in FL systems. RaFL leverages Neural Architecture Search
(NAS) to allocate resource-aware models to edge clients, al-
lowing customized model deployment based on diverse com-
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Table 2: Summary of contributions in PFL Model Optimization Techniques using Knowledge Distillation

Model(s) /
Technique(s)

Main Idea/Contribution Advantage(s)/Real-World
Application(s)

FedCodl,
Fed2Codl[30]

Automatically tune the parameter specific to heteroge-
neous datasets at different phases of training.

personalized learning and performance
improvements.

KDGaN[32] A personalized and fully decentralized FL algorithm that
leverages KD techniques. This approach empowers each
client to discern statistical distances between local mod-
els, allowing for enhanced personalization and improved
performance in the FL setting.

advantageous for agents with small
datasets, as it eliminates the necessity
for a central server while still providing
benefits in terms of personalized learn-
ing and performance improvements.

pFedSD [29] Expedites the retrieval of personalized knowledge for
newly initialized clients by enabling them to distill the
knowledge obtained from previous personalized models
to their current local models.

beneficial to applications with small
datasets

MetaFed [31] Utilizes Cyclic KD to obtain a personalized model for
each federation without relying on a central server.

healthcare related applications

FedKD [33] Utilizes adaptive mutual KD and dynamic gradient com-
pression techniques to optimize the learning process.

Strong model with privacy-preserving
and less communication cost, person-
alized news recommendation, adverse
drug reaction (ADR) mentioning text
detection, and medical named entity
recognition (NER).

Def-KT [34] Incorporates mutual knowledge transfer among local
clients. Clients fuse their learned knowledge by transfer-
ring it to each other, facilitating a collaborative learning
process.

IoT applications

FeDGen [35] A lightweight generator is trained by the server to com-
bine client information in a data-free manner. This gen-
erated knowledge is then shared with the clients, serving
as a guiding factor during their local training processes.

Healthcare, Smart Cities, Edge Com-
puting, Mitigates discrepancy of latent
distributions across clients, and directly
regulates local model updating.

putational resources. It incorporates a multi-model architecture
fusion scheme for aggregating distributed learning results. By
combining NAS and FL, RaFL offers a promising solution for
handling data and system heterogeneity in FL systems, enabling
efficient model deployment and learning while preserving pri-
vacy in distributed settings. RaFL is a resource-aware feder-
ated neural architecture search to search for resource-tailored
models for edge clients as shown in figure. 5. The OFA super-
network has been trained by minimizing the objective function
shown in Equation:

min
Θ

∑
archi

Lval(C(Θ, archi)) (4)

where Θ represents the search space of architecture param-
eters, archi denotes a particular architecture within the search
space, C(Θ, archi) represents the neural network model with ar-
chitecture archi and parameters Θ, and Lval(C(Θ, archi)) is the
validation loss or error of the model on the given dataset.

In [41], the authors introduce a novel approach called Fed-
erated Modular Network (FedMN) for PFL. While PFL has
gained popularity for collaboratively training federated models
with privacy constraints, to overcome the limitations of existing

Figure 5: Resource-Aware Heterogeneous FL using NAS [45].

Personalized Federated Learning (PFL) approaches, which may
result in sub-optimal solutions due to divergence in the joint dis-
tribution among local clients, the FedMN method introduces an
adaptive selection mechanism. It involves assembling hetero-
geneous neural architectures by choosing sub-modules from a
module pool, specifically tailored to the unique characteristics
and requirements of individual clients.

In [39], the authors proposed a novel method called fed-
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Table 3: Summary of contributions in PFL Model Optimization Techniques using Neural Architecture Search(NAS)

Model(s) /
Technique(s)

Main Idea/Contribution Advantage(s)/Real-World
Application(s)

FedSup, E-FedSup
[37]

Combines the training of supernet architectures and FL.
FedSup addresses scenarios where clients both send and
receive a supernet containing all possible architectures
sampled from their own local supernet.
E-FedSup, a sub-model is sent to clients during broadcast
stage, resulting in improved efficiency also incorporates
different approaches to enhance supernet training.

Enhanced representation capabilities
compared to its static counterpart. Ad-
ditionally, the supernet mitigates the
problem of excessive energy consump-
tion and CO2 emissions associated with
designing dedicated Deep Neural Net-
works (DNNs)

FedorAS [38] Designed to address the challenges of discovering and
training promising architectures in a resource-aware
manner. Specifically focuses on scenarios where clients
have varying capabilities.

non-IIDness handling

FedClassAvg [39] Unlike existing methods that necessitate the collection of
auxiliary data or model weights to generate a counterpart
It only requires clients to communicate with few of fully
connected layers.

Ensures high communication effi-
ciency, Stabilize decision boundaries
Improved local feature extraction abili-
ties for clients.

GsONG [40] Integrates the searchability of evolutionary computation
with the learning ability of a hybrid artificial neural net-
works method.

Computational efficiency

FedMN [41] Adaptive selection of submodules from pool of modules
and their integration to construct heterogeneous neural ar-
chitectures that are tailored to the specific characteristics
and needs of individual clients.

Reduces the communication burden be-
tween the server and the clients

SPIDER [42] Focuses on exploration and identification of personalized
neural network architectures tailored to individual clients.

Can be beneficial for business models.

FEDPNAS [43] Learns a base architecture that can be structurally person-
alized, allowing for quick adaptation to each local task.
This approach enables efficient and effective customiza-
tion of architectures, tailored to requirements of individ-
ual clients.

superior performance compared to
other benchmarks on heterogeneous
multitask scenarios.

RT-FedEvoNAS [44] Approach that optimizes model performance while re-
ducing local payload. It incorporates a double-sampling
technique to reduce computational and communication
costs.

reduced computational and communi-
cation costs, suitable for real-time fed-
erated NAS applications

erated classifier averaging (FedClassAvg) for PFL. The goal
of FedClassAvg is to enable clients with heterogeneous neu-
ral network architectures to participate in collaborative train-
ing without exchanging private data, while ensuring commu-
nication efficiency. FedClassAvg focuses on supervised learn-
ing tasks using deep neural networks, which consist of fea-
ture extractor and classifier layers. The method aggregates the
weights of the classifier layers across different clients, creating
an agreement on decision boundaries in the feature space. This
allows clients with non-iid data to effectively learn scarce la-
bels, improving the generalization performance of the federated
model. The contribution of FedClassAvg lies in its ability to
improve the collaborative training process, achieve better gen-
eralization performance, and reduce communication and com-
putation overhead in PFL scenarios. In [46], the authors tackled
the challenge of achieving personalized sleep state tracking us-

ing deep learning techniques.
In [38], the authors explored the combination of NAS and

FL in the context of cross-client federated settings. While NAS
has shown promise in centralized settings, it relies on access to
centralized datasets, which may not always be available. Fur-
thermore, existing work combining NAS and FL has primar-
ily focused on cross-silo federated settings, assuming homoge-
neous compute environments with datacenter-grade hardware.
In this study, the authors investigate the feasibility of designing
architectures with different footprints in a cross-client federated
setting, where clients vary significantly in terms of capabilities,
availability, and scale. They propose a system called FedorAS
shown in figure. 5, which aims to discover and train archi-
tectures in a resource-aware manner while dealing with clients
having different capabilities and non-IID distributed data.

In [37], authors presented a novel framework called Fed-
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Algorithm 6 Neural Architecture Search in PFL
Input(s): Participant attributes Ai for each participant i, feder-
ated data D, search space S
Output(s): Optimal architectures A∗ for each participant
Algorithm:

1: Initialize optimal architectures A∗ for each participant
2: for i = 1 to N do ▷ N is the number of participants
3: Encode participant attributes Ai into architecture repre-

sentation Ri

4: Initialize architecture Ai from search space S
5: while not converged do
6: Sample a set of candidate architectures Ci from Ai

7: for Ac ∈ Ci do
8: Train model with architecture Ac on participant

i’s data Di

9: Evaluate model performance on validation data
10: Update Ai if Ac outperforms the current best ar-

chitecture
11: end for
12: end while
13: Set the optimal architecture A∗i as the final architecture

for participant i
14: end for
15: Return A∗ for each participant

eration of Supernet Training (FedSup) that addresses the chal-
lenges posed by data and system heterogeneity in the context
of efficient deployment of deep neural networks. While previ-
ous approaches have focused on either FL or NAS separately,
FedSup combines both approaches to tackle data and system
heterogeneity concurrently. The framework leverages the ob-
servation that the parameter averaging in FL can be viewed as
weight-sharing in supernet training. By incorporating weight-
sharing techniques into the FL averaging process (FedAvg),
FedSup enables clients to exchange a supernet that encompasses
various sampled architectures from their local datasets. Exist-
ing FL approaches typically use predefined architectures that
are shared among all clients, neglecting the private nature of
client data and the variations in data distributions across clients.
To overcome this limitation, the authors of [42] proposed SPI-
DER, a framework for searching personalized neural architec-
tures in FL. SPIDER incorporates two key features to enable
personalized adaptations: i. Alternating Optimization: SPI-
DER optimizes both a homogeneous global model (Supernet)
following conventional FL principles and heterogeneous local
models that are connected to the global model through weight
sharing-based regularization. This allows for personalized adap-
tations based on each client’s specific data distribution. ii. Neu-
ral Architecture Search (NAS): SPIDER utilizes a novel NAS
method to obtain architecture-heterogeneous local models. It
progressively selects optimal subnets through operation-level
perturbations, using accuracy as the criterion.

The authors of [43] proposed FED PNAS, a personalized
Neural Architecture Search algorithm designed for FL. Their
approach enables the learning of a base architecture that can be

customized to adapt to the unique characteristics of each local
task. By personalizing the model structure, FED PNAS aims
to improve FL performance in scenarios with heterogeneous
multitask settings. To address the customization of model ar-
chitecture for individual tasks in the FL workflow, FEDPNAS
adopts a sub-network representation approach. For each task,
the model architecture is represented as a sub-network sampled
from a large, over-parameterized network. The sampling dis-
tribution and the parameters of the sampled network are jointly
learned in a collaborative manner. This process builds upon the
Discrete Stochastic NAS (DSNAS) method [47], which lacked
the capability to customize architecture for individual tasks.

2.1.4. Hyperparameter Optimization

This strategy can be used for personalization by searching for
the optimal hyperparameters for each client based on their data
and preferences. Hyperparameter optimization (HPO) in PFL
refers to the selection process of the optimal hyperparameters
for training models in an FL setting, where each participant
trains a local model using their own data while collaborating
with a central server. Algorithm 7 illustrates the HPO in PFL.

Algorithm 7 Hyperparameter Optimization in PFL
Input(s):
Participants’ datasets {D1,D2, ...,DN}

Set of hyperparametersH
Number of iterations T
Output(s):
Optimal hyperparameters ĥ for all clients
Algorithm:

1: Initialize best hyperparameters ĥ
2: Initialize best performance p̂ = 0
3: for t = 1 to T do
4: Sample hyperparameters h fromH
5: Broadcast h to all participants
6: for each participant i do
7: Train local model Mi using Di and h
8: Evaluate Mi on local validation set to obtain perfor-

mance pi

9: Transmit pi to the server
10: end for
11: Aggregate participants’ performances: P =

{p1, p2, ..., pN}

12: Calculate average performance p̄ = 1
N
∑N

i=1 pi

13: if p̄ > p̂ then
14: Update best hyperparameters: ĥ = h
15: Update best performance: p̂ = p̄
16: end if
17: end for
18: Return ĥ

In [52], the authors focused on addressing client hetero-
geneity and non-IID data in a FL setting. They investigated the
effectiveness of two FL algorithms, namely FedAvg and Fed-
Prox, using a heterogeneous data split consisting of three differ-
ent forms of cancer: cervical, lung, and colon. The authors also
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Table 4: Summary of contributions in PFL Model Optimization Techniques using Hyperparameter Optimization

Model(s) /
Technique(s)

Main Idea/Contribution Advantage(s)/Real-World
Application(s)

HPN [48]

This approach ensures privacy protection for individual
clients while effectively optimizing hyperparameters for im-
proved performance.

address the heterogeneity among
clients.

HyperFed [49]

Global-sharing imaging network and institution-specific hy-
pernetwork are used. The global-sharing imaging network
learns common features from different institutions, improv-
ing performance and personalization in CT imaging.

Competitive performance in CT re-
construction compared with several
other state-of-the-art methods.

HNTROJ [50]

A locally infected model containing a backdoor is transferred
to legitimate and personalized local models generated by the
HyperNetFL model. Furthermore, the method incorporates
backdoor-resistant training algorithms for FL into the Hy-
perNetFL framework.

Outperforms data poisoning and
model replacement attacks and by-
passes robust training algorithms.

pFedHN [51]

Addresses the problem of parameter sharing and personal-
ization in FL. In pFedHN, a central hypernetwork is trained
for the generation of set of models, with every client having
their own unique model.

The use of hypernetworks enables
effective customization and adapta-
tion of models in the FL setting.

examined the impact of hyperparameters in FL, which presents
unique challenges because of distributed nature of the learn-
ing process. To optimize the hyperparameters, the authors em-
ployed Bayesian optimization, a technique used to fine-tune the
hyperparameters and find optimal values that enhance perfor-
mance. They performed HPO for both local and global models
within the FL environment. This highlights the effectiveness of
FedProx in addressing challenges related to client heterogeneity
and non-IID data in FL. To overcome the challenges of PFL, in
[48], authors propose a solution that involves training a Hyper
Parameter Network (HPN) capable of determining personalized
hyperparameters using client encodings. Another study focuses
on PFL, which involves training ML models for various clients
with unique data distributions. This scenario presents chal-
lenges in managing data disparities and minimizing communi-
cation costs during collaborative model training. To overcome
these challenges, in [51], authors propose a novel approach
called pFedHN (personalized Federated HyperNetworks) that
leverages hypernetworks. In pFedHN, a central hypernetwork
model is trained that generates client-specific models, tailoring
each model to the specific requirements of individual clients.

In [50], authors aimed to uncover and analyze previously
backdoor risks which were undisclosed in HyperNet-based PFL
(HyperNetFL) through an investigation of poisoning attacks.
Building upon these findings, they introduced a first of its kind,
model transferring attack called HNTROJ. This model targets
the transfer of a locally infected backdoor model to all legiti-
mate personalized local models that are generated by the Hyper-
NetFL model. This is achieved by effectively leveraging con-
sistent malicious local gradients computed across compromised
clients throughout the entire training process. The basic objec-
tive of HNTROJ is to minimize number of compromised clients

Figure 6: The architecture of the HyperFed [49].

required for a successful attack, while maintaining stealthiness
to avoid any noticeable degradation in the model’s utility on
legitimate data samples.

In their study [49], Yang et al. proposed HyperFed, a novel
approach for personalized CT imaging in the field of Federated
Learning (FL). HyperFed exploits the concept of decomposing
the optimization problem within medical institutions into two
components: the local data adaptation problem and the global
CT imaging problem. Figure. 6 illustrates how HyperFed tack-
les these components by integrating an institution-specific hy-
pernetwork and a global-sharing imaging network. The global-
sharing imaging network captures stable and effective common
features from diverse institutions, while the institution-specific
hypernetwork obtains hyperparameters to customize the global-
sharing imaging network for personalized local CT reconstruc-
tion.
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2.1.5. Data Augmentation

This technique involves generating new training data by apply-
ing transformations to existing data. This can be used for per-
sonalization by generating new training data that is more similar
to a specific client’s data. It is used in ML to increase the di-
versity and size of a dataset through generating new objects or
data points on the basis of existing ones. In PFL, data augmen-
tation can be applied to improve the performance and accuracy
of the model by creating more training data for each client. One
approach to data augmentation in PFL is to apply augmentation
techniques locally on each client’s dataset before sending the
updated dataset to the central server for model training. This
can be done using standard augmentation techniques such as
random cropping, flipping, rotation, and color jittering. An-
other approach is to apply data augmentation techniques at the
server level, before sending the updated model to each client.
This can be done by generating synthetic data points based on
the existing data, using techniques such as Generative Adver-
sarial Networks (GANs), Variational Autoencoders (VAEs), or
Deep Belief Networks (DBNs).

Algorithm 8 Data Augmentation in PFL
Input(s): Client datasets D1,D2, ...,DN

Output(s): Augmented client datasets D′1,D
′
2, ...,D

′
N

Algorithm:
1: for i← 1 to N do ▷ Apply data augmentation locally on

each client
2: D′i ← Empty dataset
3: for each sample x in Di do
4: Apply random cropping, flipping, rotation, color jit-

tering, etc. to x
5: Add augmented sample x′ to D′i
6: end for
7: end for
8: Send D′1,D

′
2, ...,D

′
N to the central server

The Algorithm 8 assumes that client datasets D1,D2, . . . ,DN

are already available. It then iterates over each client’s dataset
and applies data augmentation techniques locally to create aug-
mented datasets D′1,D

′
2, . . . ,D

′
N . Finally, the augmented datasets

are sent to the central server for model training.
The objective of a typical FL model can be written as the

following problem:

min
w

F(w) =
K∑

k=1

nk

N
Fk(wk) (5)

Where, w is the global model, F is the objective function, K is
the number of clients, nk is the number of samples at client k,
N is the total number of samples, and wk is the local model at
client k. The objective function Fk(wk) represents the local loss
function at each client k that measures the model’s performance
on its local data.

Existing PFL methods often assume a uniform distribution
of global data across clients, overlooking the challenges posed

Figure 7: An overview of FedAFA. [53]

by data heterogeneity and long-tail distributions. These factors
can significantly impact the performance of personalized mod-
els. To address this joint problem, authors in [53] devised a
new method called Federated Learning with Adversarial Fea-
ture Augmentation (FedAFA) shown in figure. 7. FedAFA fo-
cuses on optimizing personalized models for every client by
generating a balanced feature set that enhances the represen-
tation of local minority classes. This is achieved through an
adversarial feature augmentation process. FedAFA transfers
knowledge from the local majority class features to generate
local minority class features. By learning from adversarial ex-
amples, FedAFA effectively augments the feature space and im-
proves the representation of underrepresented classes. A fusion
strategy that combines personalized and generic approaches is
introduced by; [54], taking into account the network layer func-
tion. For each network layer number, a fusion threshold is de-
signed. The fusion weights for the feature extraction layer pa-
rameters of each client are calculated using the L2-Norm neg-
ative exponential similarity metric. This approach improves
the efficiency of personalized collaboration with heterogeneous
data. Additionally, a federated global model approximation
strategy is applied to the fully-connected layer of the network.
This generic fusion strategy helps mitigate the overfitting that
can occur when focusing solely on personalized models.

In [56], authors introduced PerFL, a PFL framework that
aims to enhance the performance of clients’ models by leverag-
ing prior information that can be shared between clients. The
traditional FL approach may not be effective for a small num-
ber of clients, as it results in a significant loss of localization
information. To address this, PerFL utilizes client features that
can be shared and calculates the incidence matrix of all clients
based on the available shareable side information. Instead of
updating the local models using all clients, PerFL selects simi-
lar clients and updates the models accordingly. The framework
employs neural networks as the classification model and itera-
tively learns the parameter matrices at each client.

The authors in [57], proposed a self-balancing FL frame-
work called Astraea. Astraea aims to alleviate imbalances in
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Table 5: Summary of contributions in PFL Model Optimization Techniques using Data Augmentation

Model(s) /
Technique(s)

Main Idea/Contribution Advantage(s)/Real-World
Application(s)

FedAFA [53]

Generates balanced features for each client by trans-
ferring knowledge from the global model’s majority
class features in an adversarial example learning manner.
This approach improves the performance of personalized
models and addresses class imbalance in PFL.

FedAFA can enhance the generaliza-
tion ability of the local minority classes
while preserving the robust perfor-
mance of the local majority classes.

pFedCFR [54]

Proposed a multi-layer multi-fusion technique where
the server utilizes network layer parameters from each
client’s uploaded model as the fundamental unit for
information-sharing calculations.

Improving the efficiency of heteroge-
neous data personalized collaboration.

Astraea [55]

Addresses imbalances through Z-score-based data aug-
mentation and Mediator-based multi-client rescheduling.
while addressing local imbalances by rescheduling client
training based on Kullback-Leibler divergence (KLD).
Astraea aims to improve fairness and performance in FL.

It reduces global imbalances through
adaptive data augmentation and down-
sampling.

the training data by employing adaptive data augmentation and
downsampling techniques based on the Z-score, focusing on
addressing global imbalance. Additionally, it tackles local im-
balance by introducing a mediator that reschedules client train-
ing using the Kullback-Leibler divergence (KLD) of their data
distribution.

In [58], authors introduced ChannelFed as a PFL method
that focuses on personalizing the channel attention module, em-
phasizing how channel attention can exploit knowledge from
diverse data sources. The experimental results on CIFAR-10,
Fashion-MNIST, and CIFAR-100 datasets, demonstrating the
superior performance of ChannelFed compared to other PFL
methods in scenarios involving statistical heterogeneity. An-
other study reveals a significant decrease in the accuracy of
FL models when trained on highly skewed non-IID data, where
each client client is limited to training on a single class of data.
The decrease in accuracy is attributed to weight divergence,
which is quantified using the earth mover’s distance (EMD)
between the class distribution on each client and the popula-
tion distribution. To address this challenge, the authors propose
a strategy to improve training on non-IID data by introducing
a small subset of data that is shared globally among all edge
clients. By incorporating this globally shared data, the accu-
racy of FL models can be increased [59].

In [60], authors propose a generative convolutional autoen-
coder (GCAE). It aims to refine model by generating a class-
balanced dataset from each client’s personal data, thereby facil-
itating accurate and personalized health monitoring. Moreover,
GCAE is lightweight, allowing efficient transfer between the
cloud and edge clients and reducing communication cost asso-
ciated with FL in FedHome framework.

2.1.6. Regularization

In PFL, regularization techniques are used to mitigate overfit-

ting and improve the generalization performance of the learned
models. Regularization helps prevent the models from becom-
ing too specific to the training data and encourages them to cap-
ture more general patterns that can be applied to unseen data.
The regularization techniques can be applied within each local
model during the training process in PFL.

Algorithm 9 Algorithm for Regularization in PFL
Input(s):
Federated datasetD = {D1,D2, ...,Dn}

Regularization parameter λ
Number of training epochs T
Model architecture f (·, ·)
Output(s):
Global model M
Algorithm:

1: Initialize global model M with random weights
2: for t = 1 to T do
3: for each client i = 1 to n in parallel do
4: Receive global model M from the server
5: Randomly sample a batch of data Bi fromDi

6: Update local model Mi using gradient descent
7: Send updated local model Mi to the server
8: end for
9: Aggregate and update global model M on the server:

10: M ← Aggregate({M1,M2, ...,Mn})
11: end for
12: return Global model M

Authors [70], in their research introduced ModFed, a novel
model-based federated learning framework that addresses these
challenges. In this approach, model-driven neural networks are
utilized to reduce the dependence on large client-side datasets,
resulting in more efficient learning. The framework introduces
an adaptive dynamic aggregation scheme to handle data het-
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Table 6: Summary of contributions in PFL Model Optimization Techniques using Regularization

Model(s) /
Technique(s)

Main Idea/Contribution Advantage(s)/Real-World
Application(s)

FedSLR [61] A two-stage proximal-based algorithm for FL that effi-
ciently searches for mixed models. It combines sparse
and low-rank representations to optimize the model.

reduces the number of parameters, and
lowers the down-link communication
complexity.

FedABC [62] Adopts one-vs-all training strategy to address unfair com-
petition between classes in each client. FedABC incorpo-
rates a personalized binary classification loss that com-
bines under-sampling and hard sample mining strategies.

Mitigates class imbalance challenges,
This framework promotes fairness and
improves the accuracy of personalized
models in PFL.

Elastic Transfer [63] An approach for social robots that combines FL and Con-
tinual Learning. Captures interaction dynamics across
multiple robots and encounters while prioritizing privacy
and personalization.

Improves robot performance

CD2-pFed [64] Introduced channel decoupling, a channel-wise assign-
ment strategy, and utilizes cyclic distillation to guide the
process. This approach enables fine-grained personaliza-
tion and improves performance.

Accurate and generalized results for
various types of heterogeneity, includ-
ing feature skew, label distribution
skew, and concept shift.

CPFLViT [65] Architecture for distributed and heterogeneous COPD CT
scans. Involves partially personalizing certain heads in
the self-attention layers of ViT to capture personalized
attention patterns.

Identifying COPD, potential advance-
ments in personalized medical imaging
analysis

CCVR [66] Classifier calibration, utilizing virtual representations
sampled from an approximated Gaussian mixture model
(GMM). It aims to adjust the classifier by incorporating
virtual representations, which are generated based GMM.

Improves the performance of PFL in di-
verse heterogeneity settings.

GRP-FED [67] Through adaptive aggregation, the global model ensures
fair treatment of multiple clients and effectively mitigates
the global long-tailed issue.

GRP-FED demonstrates improvements
in both global and local scenarios us-
ing real-world datasets, including ECG
analysis and the CIFAR-10.

Private Mean-
Regularized MTL
[68]

An algorithm for mean-regularized MTL, an objective
commonly used for applications in PFL, subject to JDP.

Improved privacy/utility trade-offs rel-
ative to global baselines.

Fed+ [69] Provides convergence guarantees for both convex and
non-convex loss functions. It is equipped to handle het-
erogeneous computing environments.

Improved Convergence and addressed
Heterogeneity.

erogeneity, leading to enhanced generalization capabilities and
improved robustness of the trained models. Moreover, ModFed
incorporates a spatial Laplacian attention mechanism and per-
sonalized client-side loss regularization techniques, enabling
the system to capture fine-grained information and achieve ac-
curate image reconstruction.

Existing PFL algorithms primarily focus on model-centric
approaches, neglecting the unique data characteristics of indi-
vidual clients. Authors in [71], introduced a novel PFL frame-
work called pFedPT, specifically tailored for image classifica-
tion tasks. pFedPT incorporates personalized visual prompts to
implicitly capture local data distribution information and inte-
grates it into the aggregation process to improve classification
performance. In the pFedPT framework, each client generates a
personalized visual prompt that encapsulates information about
the local data distribution during each training round. The local

model is trained using both the raw data and the personalized
visual prompt, enabling it to learn and encode the distribution
information represented by the prompt. During model testing,
the aggregated model benefits from the prior knowledge of data
distributions obtained through the prompts.

The authors in [61], proposed a personalized model frame-
work for PFL that is based on low-rank and sparse decomposi-
tion. The framework comprises two stages: (1) the extraction
of a low-rank global knowledge representation (GKR) with ap-
propriate regularization, and (2) the fusion of personalized pat-
terns using a sparse component. To efficiently search for the
mixed models by optimizing both the GKR and sparse compo-
nent simultaneously, they introduce a two-stage proximal-based
algorithm named FedSLR. The proposed framework effectively
reduces the number of parameters and minimizes down-link
communication complexity, making it a desirable choice for FL
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algorithms. To further enhance collaboration between private
and shared weights in the model, a cyclic distillation scheme
CD2-pFed is proposed by [64]. Their scheme ensures consis-
tent regularization between local and global model representa-
tions throughout the FL process. Another research study intro-
duces a formulation of the federated multitask learning (FMTL)
problem using Laplacian regularization, applicable to both con-
ventional FL and PFL. The authors propose two algorithms
for solving the FMTL problem, offering improved convergence
rates and sublinear speedup [72].

In [66], the authors proposed a novel algorithm; Classifier
Calibration with Virtual Representations (CCVR) to adjust the
classifier using virtual representations sampled from an approx-
imated Gaussian mixture model. Experimental results demon-
strate that CCVR achieves state-of-the-art performance on pop-
ular FL benchmarks. The paper’s contributions include exper-
imental insights into layer representations and the introduction
of CCVR as an effective algorithm for classifier calibration in
the presence of non-IID data. In another study the authors dis-
cussed the potential of FL in predicting drug-related properties
and addresses the challenges associated with small and biased
data in drug discovery. By harnessing distributed data sources
while upholding data privacy, FL has the potential to signifi-
cantly enhance the success rate of AI-powered drug discovery
pipelines [73].

In [74] the authors introduced GIFAIR-FL, a novel frame-
work that integrates group and individual fairness principles
into FL. The framework includes a regularization term that pe-
nalizes the spread in the loss of client groups, encouraging the
optimizer to converge to fair solutions. GIFAIR-FL is designed
to be applicable in both global and personalized FL scenar-
ios. The paper provides theoretical analysis demonstrating the
convergence properties of GIFAIR-FL in both nonconvex and
strongly convex settings. The convergence guarantees hold for
both independent and identically distributed (IID) and non-IID.
data, enhancing the versatility of the framework. To assess the
practical performance of GIFAIR-FL, the authors apply it to
image classification and text prediction tasks.

2.1.7. Adversarial training

Adversarial training (AT) can be used as a technique for model
optimization in PFL to enhance the privacy and robustness of
the models. Adversarial training involves the use of an addi-
tional model called the adversary or the critic. The adversary’s
objective is to differentiate between the updates generated by
the local models of individual clients and the updates generated
by the global model. By doing so, the adversary aims to identify
any potential information leakage from the updates. The algo-
rith 10 shows a high-level overview of how adversarial training
can be incorporated into PFL.

The PFL framework shown in figure. 7, on Long-Tailed
Data via Adversarial Feature Augmentation (FedAFA) proposed
by; [53] successfully addresses the challenges of data hetero-
geneity and long-tail distribution in PFL, resulting in improved
personalized performance for each client. The authors in [75],
focused on scenarios with a fixed communication budget and

Algorithm 10 Adversarial Training in PFL
1: Initialize global model G
2: Initialize adversary model A
3: Initialize learning rate η
4: Initialize number of iterations T
5: for t = 1 to T do
6: Distribute G to clients
7: for each client c do
8: Generate client update Uc based on local data
9: end for

10: Update adversary model A using updates Uc

11: for each client c do
12: Compute adversarial loss Ladv = A(Uc)
13: Update G using Uc and Ladv with learning rate η
14: end for
15: end for

non-i.i.d. data distribution among the agents. The authors ob-
serve a significant decrease in both natural and adversarial ac-
curacies when applying AT in the federated setting compared
to centralized training. They attribute this drop to two factors:
the drift between local models caused by the number of AT
epochs performed locally, and the increased convergence time
measured in communication rounds.

AT has been widely adopted to enhance the robustness of
deep neural networks against adversarial attacks. However, re-
cent studies have shown that AT can inadvertently introduce
vulnerabilities to privacy attacks. In [77], authors delved deeper
into this unsettling property of AT and introduces a novel pri-
vacy attack specifically targeted at FL systems, which are par-
ticularly sensitive to privacy concerns. Through their proposed
method, an attacker can exploit AT models within the FL sys-
tem to accurately reconstruct clients’ private training images,
even when the training batch size is large.

In [78], authors introduced a semi-centralized adversarial
training approach combined with the use of a Variational Au-
toEncoder (VAE) in FL to address concerns related to discrim-
ination and enhance group fairness. By incorporating sensi-
tive attribute alignment and preserving privacy through the VAE
architecture, the proposed method demonstrates improved per-
formance compared to SOTA FL frameworks. In [76], authors
proposed a FL method that combines co-training and generative
adversarial networks (GANs) shown in figure. 8. By leveraging
co-training and GANs, the proposed method enables clients to
participate in FL with tailored models.

2.1.8. Meta-learning

Meta-learning, also referred to as ”learning to learn,” is a re-
search field dedicated to enhancing learning algorithms by ex-
posing them to diverse tasks or datasets. The objective is to
enable the model to acquire new tasks rapidly and effectively.
Optimization-based meta-learning is one approach within this
field, encompassing algorithms such as Model-Agnostic Meta-
Learning (MAML) and Reptile. MAML and Reptile are known
for their capacity to generalize well and adapt swiftly to novel
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Table 7: Summary of contributions in PFL Model Optimization Techniques using Adversarial training

Model(s) /
Technique(s)

Main Idea/Contribution Advantage(s)/Real-World
Application(s)

FedAFA [53]

optimizes personalized models through the transfer of
knowledge from the local majority class features, which
are extracted by the global model using adversarial exam-
ple learning techniques. Effectively addresses class im-
balances and improves the performance.

It addresses class imbalance and im-
proves the performance of personalized
models in PFL.

PrivayAttackATFL
[77]

identify a privacy vulnerability in adversarial training
(AT) and demonstrate a practical attack in FL systems.
The attack allows for the accurate reconstruction of
clients’ private training images, even with a large batch
size.

Feature restoration from gradients, Im-
age reconstruction from feature, Ro-
bust privacy protection in FL systems.

Fairscat [78]

Utilizes VAE in FL scenarios to generate adversarial sam-
ples. The VAE decoder remains on the server side, while
the encoder remains on the client side to encode local
samples into feature dimensions for transmission, ensur-
ing client data privacy.

This approach combines privacy
preservation, adversarial training, and
attribute alignment to address fairness
concerns.

pFedDef [79]

A defense mechanism that enhances adversarial robust-
ness in PFL while considering resource limitations at
client clients that may hinder adversarial training. Pro-
posed approach significantly improves relative grey-box
adversarial robustness, achieving a 62% increase.

Performs effectively even when clients
have limited system resources, making
it a practical solution for improving the
security.

PerFED-GAN [76]

A method that leverages co-training and generative ad-
versarial networks (GANs) to enable each client to in-
dependently design its own model for participation in
FL training. By combining co-training and GANs, this
method facilitates collaborative learning among clients
while maintaining privacy and independence.

This approach allows for personal-
ized model development within the FL
framework, enhancing the flexibility
and privacy of the learning process.

pFLSynth [80]

pFLSynth utilizes an adversarial model to generate site-
specific and source-target contrast-specific latents. It uses
novel personalization blocks that dynamically adjust the
statistics and weighting of feature maps across the gener-
ator stages.

Enhancing the reliability and perfor-
mance of MRI synthesis in FL settings.

and heterogeneous tasks. In conclusion, optimization-based
meta-learning algorithms like MAML and Reptile have proven
their effectiveness in enhancing the learning capabilities of mod-
els by facilitating rapid adaptation to new tasks and promoting
generalization across diverse datasets [81, 82, 83].

In [90], the authors establish a connection between meta-
learning and FL by emphasizing the similarities in their formu-
lations. They specifically draw a parallel between the phases of
meta-learning, namely metatraining and meta-testing, and dif-
ferent aspects of the FL process. The metatraining phase in
meta-learning involves training a model on various tasks to en-
hance its learning capabilities. The authors relate this phase
to the FL global model training process, where a global model
is trained using data from multiple clients. The objective is
to improve the performance of the global model across diverse
clients and tasks. Similarly, the meta-testing phase in meta-
learning entails quickly adapting the model to a new task through
a few steps of gradient descent. The authors connect this phase

to the FL personalization process, where the global model un-
dergoes further fine-tuning on local data during the local adap-
tation phase on each client. This step aims to personalize the
global model according to the specific data distribution and re-
quirements of each client. Additionally, the authors demon-
strate that the FL algorithm FedAvg is analogous to the Reptile
algorithm from meta-learning. The authors emphasized the po-
tential for integrating meta-learning approaches to improve the
FL framework.

The Algorithm 11 takes the set of clients, C, and the meta-
training data,Dmeta, as input. The output of the algorithm is the
meta-trained model parameters, θ. The ”Output” statement at
the end clarifies the algorithm’s output.

In [88], the authors extend the Per-FedAvg approach and
propose a federated meta-learning framework called pFedMe
(Personalized Federated Meta-Learning) that utilizes Moreau
envelopes. The objective of pFedMe is to find a balance be-
tween personalization and generalization performance in FL.
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Table 8: Summary of contributions in PFL Model Optimization Techniques using Meta-learning

Model(s) /
Technique(s)

Main Idea/Contribution Advantage(s)/Application(s)

HAM [84] A Hierarchical Attention-enhanced Meta-learning Network,
for PFL. It utilizes a meta-learning approach to analyze sim-
ilarities among clients and strike a balance between individ-
uality and common knowledge.

reasonably achieves a trade-of be-
tween clients’ personalities and
commonality

MFPCDR [85] Personalized cross-domain recommendation model that
leverages a server-side meta-recommendation module to un-
cover personalized preferences for cold-start clients. To en-
sure client privacy, clients employ an attention mechanism to
identify transferable features for knowledge transfer, gener-
ating client and item embeddings.

Effectively addresses both user pri-
vacy concerns and the user cold-
start problem.

G-FML [86] A Group-based Federated Meta-Learning framework that dy-
namically groups clients based on data distribution similarity.
Within each group, personalized models are learned using
meta-learning.

This approach enables effective per-
sonalization in highly heteroge-
neous environments.

Per-FedAvg [87] A personalized version of FL aimed at finding an initial
shared model that can be easily adapted by clients to their
local datasets through a few steps of gradient descent.

This approach leverages the bene-
fits of FL while promoting person-
alized models.

pFedMe [88] It separates the optimization of personalized models from the
global model learning, which improved convergence rates.
The algorithm achieves quadratic speedup for strongly con-
vex objectives and sublinear speedup of order 2/3 for smooth
nonconvex objectives.

state-of-the-art convergence
speedup rate.

ARUBA [89] Integrates task-similarity formalizations with online convex
optimization and sequential prediction algorithms for design-
ing and analyzing meta-learning methods. It allows adaptive
learning of task-similarity, improves transfer-risk bounds,
and enables the derivation of average-case regret bounds.

Improves the meta-test-time perfor-
mance on standard problems

MAML [90] Practical applications of MAML in FL, including the inter-
pretation of Federated Averaging as a meta learning algo-
rithm are discussed. Models trained using standard datacen-
ter optimization methods are more challenging to personalize
compared to those trained with Federated Averaging.

Better personalized accuracy, sug-
gesting need a novel way to pre-
dict the generalization of personal-
ized models.

Algorithm 11 Meta-Learning for PFL
Input(s):Set of clients C, Meta-training dataDmeta
Output(s):Meta-trained model parameters θ
Algorithm:

1: Initialize meta-model parameters θ
2: for meta-epoch = 1 to Nmeta-epochs do
3: for each client c ∈ C do
4: Sample task-specific dataDc from client c
5: Initialize client-specific model parameters ϕc ← θ
6: for local-epoch = 1 to Nlocal-epochs do
7: Compute loss Lc(ϕc,Dc)
8: Update client-specific model parameters
9: end for

10: Update meta-model parameters
11: end for
12: end for

To achieve this, pFedMe introduces an l2-norm regularization
loss term into the optimization objective. This regularization
term allows for controlling the trade-off between personaliza-
tion and generalization. By adjusting the strength of the reg-
ularization, one can control the degree to which the model is
personalized to individual clients while still maintaining gener-
alization across clients. The pFedMe algorithm demonstrates
better convergence and accuracy as compared to the FedAvg
and Per-FedAvg methods. It leverages the concept of Moreau
envelopes, which provides a smooth approximation of the non-
smooth regularization term. This facilitates efficient optimiza-
tion and enhances performance in federated meta-learning sce-
narios. Overall, pFedMe expands on the Per-FedAvg approach
by incorporating an l2-norm regularization loss and leveraging
Moreau envelopes. This formulation enables better control over
the balance between personalization and generalization, result-
ing in improved accuracy and convergence in FL settings. In
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Figure 8: Framework of PerFED-GAN [76].

their work, Khodak et al. [89] introduced the ARUBA frame-
work, which focuses on achieving adaptive meta-learning in the
context of FL using online learning techniques. By incorporat-
ing ARUBA with the FedAvg algorithm, the authors observed
enhancements in the generalization performance of the models
and eliminated the requirement for hyperparameter optimiza-
tion during the personalization process. The ARUBA frame-
work offers a promising approach to improve the adaptability
and performance of meta-learning in FL scenarios.

2.1.9. Clustering

Clustering involves grouping similar participants into clusters
to improve the efficiency and effectiveness of the FL process.
In FL, data is distributed across multiple clients, and each client
trains a local model using its own data. In PFL, each client
trains a personalized model for its client. However, training per-
sonalized models can be computationally expensive and may
require a large amount of communication between clients. Clus-
tering can help address this issue by grouping clients that have
similar data or similar personalized models. By doing this,
clients in the same cluster can share information and learn from
each other, reducing the amount of communication required and
improving the overall efficiency of the FL process. Clustering
can be done using various techniques, such as k-means clus-
tering, hierarchical clustering, or density-based clustering. The
choice of clustering algorithm depends on the characteristics of
the data and the specific requirements of the FL task. Algorithm
12 shows the implementation of k-means clustering in PFL.

The task of clustering clients with similar objectives and
training a model for each cluster is a popular approach in PFL.
However, achieving provable and optimal guarantees for this
approach has been an ongoing challenge. In their work, Werner
et al. [91] address this challenge by formulating PFL as a stochas-
tic optimization problem, where the stochastic gradients from a
client can belong to one of K distributions. The authors demon-
strate that by employing a simple thresholding-based clustering
algorithm and utilizing local client momentum, optimal conver-
gence guarantees can be achieved in this stochastic optimization
setting. This work provides insights into effectively clustering
clients in PFL while ensuring optimal performance.

19



Algorithm 12 k-means Clustering in PFL
Input(s):
Personalized model updates from each client
Number of clusters and Maximum number of iterations
Output(s):
Cluster assignments, Final centroids for each of the k clusters,
Number of iterations
Algorithm:

1: Initialize k centroids randomly
2: repeat step 3 and 4
3: Assign personalized model update to nearest centroid
4: Update each centroid to the mean of the personalized

model updates in its cluster
5: until convergence or maximum number of iterations
6: Aggregate personalized model updates in each cluster
7: Communicate the cluster-level model updates to client
8: Repeat steps 1-7 until desired level of accuracy is achieved

In their paper, Yoo et al. [92], introduced Personalized Fed-
erated Cluster Models, a hierarchical clustering-based process
for FL, specifically applied to predict the severity of Major De-
pressive Disorder using Heart Rate Variability data. The pro-
posed approach addresses the challenges posed by non-Independent
and Identically Distributed (non-IID) data commonly encoun-
tered in medical settings. By allowing clients to receive more
personalized models through the clustering process, the authors
observed an improvement in accuracy for severity prediction.
This performance gain suggests that Personalized Federated Clus-
ter Models hold promise for various FL scenarios, including
those involving medical data where the assumption of IID data
is often unrealistic. There are several algorithms that can be
used for clustering in PFL.

In [93], the authors presented a novel framework called PerFed-
CKT for PFL in their paper. PerFed-CKT enables clients to uti-
lize heterogeneous model architectures and avoids direct trans-
mission of model parameters. Instead, the framework employs
clustered co-distillation, where clients transfer knowledge us-
ing logits to other clients with similar data distributions. Through
empirical evaluation, the authors demonstrated that PerFed-CKT
achieves high test accuracy while significantly reducing com-
munication costs compared to state-of-the-art personalized FL
schemes. In their paper, Armacki et al. [94] introduced a novel
approach for PFL that enables automatic model clustering with-
out prior knowledge of the hidden cluster structure or the num-
ber of clusters. The authors provide analytical bounds on the
weight parameter, which allows for simultaneous personaliza-
tion, generalization, and automatic model clustering. This ap-
proach offers the flexibility of providing different models across
different clusters for personalized learning, while also ensur-
ing generalization by providing models that differ from the per-
client models computed in isolation. To address the formulated
problem within a federated server-clients setting, the authors
propose an efficient algorithm based on the Parallel Direction
Method of Multipliers (PDMM). The paper by Jie et al. [95],
proposes a federated recommendation system that uses histor-
ical parameter clustering to improve personalization. Clients

combine their historical learning parameters with global param-
eters received from the server using a weighted average. The
server aggregates and clusters the parameters to identify client
groups with similar preferences. To address limited raw data
availability, the authors introduce a recommendation model based
on client embedding features. The server leverages these fea-
tures for personalized recommendations without accessing indi-
vidual data, while clients use their original data locally. In their
paper Li et al. [102]address the challenge of optimizing the ac-
curacy and cost trade-off in FL by considering model accuracy,
communication resource allocation, and energy consumption.
They propose an iterative solution procedure that incorporates
parameter encryption techniques and employs a deep reinforce-
ment learning approach at the cloud server for edge association.
The objective is to minimize energy consumption at each base
station while maximizing the averaged model accuracy of all
clients. The proposed approach utilizes a reward function that
combines energy consumption and model accuracy to guide the
learning process. By jointly considering these factors, the au-
thors aim to improve the efficiency and effectiveness of FL in
energy-constrained environments.

In the research work, by Lyu et al. [106], an intuitive ap-
proach for PFL by incorporating parameter regularization and
cluster communication is proposed. The authors suggest regu-
larizing the model parameters in a way that encourages clients
within the same cluster to share similar weights. This regular-
ization promotes similarity and coherence among the models
of clients within each cluster. Simultaneously, the distances be-
tween different clusters are also regularized to reflect the dis-
similarity between clusters, capturing the diversity among dif-
ferent groups of clients. The work presented in [106] offers an
innovative perspective on PFL by leveraging parameter regu-
larization and cluster communication. Their algorithm demon-
strates improved convergence properties, surpassing indepen-
dent learning and shared weight learning.

In their paper [98], the authors propose a novel framework
called BPFL (Blockchain-Enabled Personalized Federated Learn-
ing) that combines the advantages of blockchain technology
and edge computing for enhanced privacy, security, and effi-
ciency in PFL. The integration of blockchain technology in BPFL
provides several benefits. Firstly, it enhances client privacy
and security by leveraging the immutability and transparency of
distributed ledger networks. Transactions and interactions be-
tween clients and the PFL system are recorded on the blockchain,
ensuring data integrity and preventing unauthorized access. This
contributes to building trust among participants and maintain-
ing the confidentiality of sensitive information. In the research
paper by Cho et al. [97], a novel and practical framework
for PFL called COMET is introduced. This framework ad-
dresses the challenge of heavy communication overhead in PFL
by allowing clients to use their own heterogeneous models and
avoiding direct communication of model parameters. COMET
employs a technique called clustered codistillation, where clients
utilize knowledge distillation to transfer their learned knowl-
edge to other clients who have similar data distributions. By
leveraging knowledge transfer within clusters, COMET offers
a practical solution for training edge clients in IoT networks,
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Table 9: Summary of contributions in PFL Model Optimization Techniques using Clustering

Model(s) /
Technique(s)

Main Idea/Contribution Advantage(s)/Application(s)

CFedPer [96] Consists of a pre-start phase for client clustering and an in-
training phase with a base layer and a personalization layer.

Addresses the limitations of FL

COMET [97] Allows clients to use their preferred heterogeneous models
without directly sharing model parameters. It employs clus-
tered co-distillation to transfer knowledge.

An efficient PFL solution for train-
ing edge clients via IoT networks
Reduces communication overhead.

BPFL [98] Integrates the benefits of edge computing and blockchain. Enhanced privacy, improved real-
time services and communication.

HPFL-CN [99] Employs clustering to extract privacy-preserving feature rep-
resentations and incorporates an edge-mediator-cloud archi-
tecture with Effective Hierarchical Scheduling (EHS).

Efficient model aggregation, Flexi-
bility, Resource Efficiency

PerFedRec [100] It learns joint representations using a federated GNN, clus-
ters clients based on these representations, and trains person-
alized models for each cluster.

Reduces communication costs, suit-
able for applications with limited
band-width and low latency.

FedCHAR-DC [101] Improve model accuracy and fairness by leveraging the sim-
ilarity between clients. It features dynamic clustering and
adaptation to new clients or evolving datasets in FL-based
HAR scenarios.

Enhancing system robustness by
identifying malicious nodes in at-
tack scenarios

Historical parameter
clustering [95]

Addresses problem of non-IIDness, and proposed recom-
mendation system based on clustering of historical param-
eters.

Provides a method to solve the non-
IID problem in FL.

DRL [102] This approach utilizes deep reinforcement learning for edge
association and minimizes energy consumption while main-
taining high model accuracy.

Optimization of model accuracy,
energy consumption and communi-
cation resource allocation.

FedPRC [103] Incorporates a local outlier factor-based anomaly detection to
identify outliers. Formulated a nested bi-level optimization.

Detection of anomaly clients or out-
liers.

FedGroup [104] Employs data-driven distance measure to cluster, allowing
clients with similar optimization features to be grouped.

Improved training performance and
incorporate new clients seamlessly.

PFCM [92] Tailoring the models to each individual, the approach seeks
to enhance the accuracy of predicting the severity of Major
Depressive Disorder using Heart Rate Variability data.

Enhance the performance of feder-
ated training.

ClusterGrad [105] Leverages the observation that, only small fraction of gradi-
ents have values that are significantly different from zero.

Significantly reduces the volume of
computations communicated.

where communication resources are limited.
In the research conducted by Sattler et al. [107], hierar-

chical clustering is employed as a post-processing step in Fed-
erated Learning (FL). The authors utilize a bi-partitioning al-
gorithm based on cosine similarity of gradient updates to di-
vide FL clients into clusters. However, the recursive nature of
this bi-partitioning clustering framework necessitates multiple
communication rounds to separate dissimilar clients, resulting
in high computation and communication costs. This limits the
practical feasibility of the approach in large-scale settings. In a
anoother study conducted by Briggs et al. [108], a distinct hi-
erarchical clustering framework for Federated Learning (FL) is
proposed. The procedure entails training a global FL model for
a specific number of communication rounds, followed by fine-
tuning the global model on the private datasets of all clients
to calculate the parameter difference, denoted as ∆w, between

the global and local model parameters. These computed ∆w
values for all clients are utilized as inputs to the agglomera-
tive hierarchical clustering algorithm, which generates multiple
client clusters. This approach is specifically designed to han-
dle a wider range of non-IID settings and enables training on a
subset of clients during each round of FL model training.

The study [109] introduces the Iterative Federated Clus-
tering Algorithm (IFCA) as a novel approach. In contrast to
traditional methods that rely on a single global model, IFCA
employs K global models, which are shared among all clients
for local loss computation. Subsequently, the server performs
cluster-based aggregation of the Federated Learning (FL) mod-
els within the partitioned clusters. This iterative clustering ap-
proach enhances collaboration and the learning process among
clients, while simultaneously ensuring model diversity and scal-
ability within the federated learning framework. Huang et al.
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[110] propose a community-based Federated Learning (CBFL)
approach for predicting patient hospitalization time and mortal-
ity. Following the clustering, separate Federated Learning (FL)
models are trained for each cluster. Duan et al. [104], intro-
duce FedGroup, an FL clustering framework that incorporates
a static client clustering strategy and a newcomer client cold
start mechanism. FedGroup utilizes the K-means++ algorithm
[111].

In the work by Li et al. [99], a novel framework called
HPFL-CN (Hierarchical Personalized Federated edge Learning
via Complex Network feature clustering) is proposed. HPFL-
CN is designed to cluster edge servers based on similar en-
vironmental data distributions and to train personalized mod-
els efficiently for each cluster using a hierarchical architecture.
The objective of this framework is to address the communica-
tion and computation overhead in FL and enable more efficient
and effective PFL in the context of urban environmental pre-
diction tasks within Mobile Edge Computing. In their paper,
Yin et al. [40] introduced a technique called growing semior-
ganizing neural gas (GsONG) for personalized and inclusive
differentiated learning. GsONG combines the searchability of
evolutionary computation with the learning capability of a hy-
brid artificial neural network approach. It utilizes an adaptable
neural network architecture composed of competing and coop-
erating neurons that operate in an unstructured mode. Through
a cooperation-competition process, a topological neighborhood
of neurons in a grid is established, allowing for the identifica-
tion of patterns whose classes are initially unknown.

3. Limitations

In our analysis and comparison of the discussed techniques,
we have identified certain limitations. Parameter decoupling
methods, as implemented in studies such as Arivazhagan et al.
[13] and Bui et al. [14], provide a straightforward approach by
introducing personalized layers for each client. However, these
methods have limitations in supporting extensive personaliza-
tion of model design. On the other hand, knowledge distilla-
tion (KD)-based PFL methods offer more flexibility in terms of
personalized model architectures and are advantageous in com-
munication and computation-constrained edge FL settings, as
demonstrated in works like He et al. [112] and Bistritz et al.
[113]. However, the KD process often requires a representative
proxy dataset, which can be challenging to obtain.

Parameter decoupling requires careful classification of pri-
vate and federated parameters to strike a balance between gen-
eralization and personalization performance. Arivazhagan et al.
[13] note the importance of finding optimal strategies for pa-
rameter privatization, which remains an ongoing research chal-
lenge in the field of PFL. In the case of KD, the effectiveness
of knowledge transfer is not solely dependent on model param-
eters but also on the model architecture itself. Large capac-
ity gaps between the teacher and student models can impede
the learning process, as highlighted by Liu et al. [114] and
Li et al. [115]. This emphasizes the need for optimal design
choices for both server and client models in order to facilitate
efficient knowledge transfer in PFL. Parameter decoupling and

KD methods encounter difficulties in model building in PFL.
The challenges include finding optimal strategies for parameter
privatization in parameter decoupling and making appropriate
design choices for the server and client models in KD to over-
come capacity gaps. In PFL, when the local data on each client
is limited, it becomes challenging to train accurate mentor mod-
els. It is important to consider the computational cost imposed
on local clients during the FedKD process [33].

PFL operates in a distributed setting with privacy constraints,
where each client has its own data and task-specific require-
ments. The limitation lies in finding a suitable NAS approach
that can effectively navigate the search space while considering
the distributed nature of PFL [39]. Researchers are actively in-
vestigating the integration of NAS with PFL to overcome these
limitations and leverage the benefits of automated architecture
search in PFL scenarios [44, 116].

Hyperparameter optimization requires frequent communi-
cation and coordination between the clients and the central server
and limited communication and computation resources become
a limitation of this technique. another limitation of hyperparam-
eter optimization is; heterogeneity which makes it difficult to
perform optimization, as the optimal hyperparameters for one
client may not generalize well to others. It also involves ex-
changing information about model architectures, training progress,
and performance metrics which is another limitation of this
technique [48].

Some data augmentation techniques, introduce distortions
that may not accurately represent the real-world data. In certain
cases, this can lead to overfitting or biased model predictions.
Data augmentation techniques may not always be applicable or
effective for all types of data or domains. Different data modal-
ities, such as text, images, or time series, may require specific
augmentation methods tailored to their characteristics. Finding
domain-specific augmentation strategies is still a limitation of
data augmentation [58]. Although this technique is often used
to address data imbalance issues by generating synthetic sam-
ples for underrepresented classes. However, if the original data
distribution is highly imbalanced, augmentation alone may not
fully resolve the problem, and other techniques such as class
weighting or data resampling may be necessary [55]. Data aug-
mentation can significantly increase the computational require-
ments during training, as each augmented sample adds to the
overall training workload. This can lead to longer training times
and increased resource consumption, particularly in large-scale
or resource-constrained settings [117].

Many regularization techniques involve hyperparameters that
need to be manually tuned, such as the regularization strength
or dropout rate. The performance of the model can be sensitive
to the choice of these hyperparameters, and finding the opti-
mal values is one of the limitations of works proposed so far.
Improperly tuned hyperparameters can lead to under- or over-
regularization, resulting in suboptimal model performance. An-
other limitation of existing works is to find the right level of reg-
ularization that achieves this balance. Excessive regularization
can lead to high bias and an underfit model, while insufficient
regularization may result in overfitting. Regularization tech-
niques primarily focus on preventing overfitting to the train-
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ing data. However, they may not effectively handle outliers or
corruptions in the data during training. Outliers or corrupted
data points can disproportionately influence the regularization
process, leading to biased models or poor generalization per-
formance [118]. Regularization techniques alone may not be
sufficient to address inherent biases present in the training data,
especially in scenarios where the data is highly imbalanced or
contains systematic biases [62, 70].

In adversarial training the process of learning becomes more
computationally intensive, which can increase the training time
and resource requirements, especially in large-scale PFL set-
tings. The effectiveness of adversarial training depends on the
quality and strength of the adversary model. Designing and
training a robust adversary model that can accurately distin-
guish between local and global updates is challenging. If the ad-
versary model is not well-designed or is weak, it may not effec-
tively detect potential information leakage, limiting the privacy-
enhancing benefits of adversarial training. Adversarial training
aims to improve privacy by making it difficult for the adversary
to differentiate local and global updates. However, this may
come at the cost of sacrificing model performance. Adversarial
training may be vulnerable to novel and sophisticated attacks
that exploit weaknesses in the training process. These meth-
ods need to be continuously updated and improved to address
emerging privacy threats and adapt to evolving attack strategies
[77]. The diversity of PFL scenarios and adversaries makes it
challenging to establish a one-size-fits-all adversarial training
framework. This lack of standardization may result in incon-
sistencies and variations in the effectiveness and practicality of
different adversarial training methods [78, 80]. PFL often in-
volves clients with non-IID (non-identically distributed) data,
meaning the data distribution across clients may vary signifi-
cantly. Adversarial training techniques may struggle to handle
such data heterogeneity, as the adversary model may not be able
to effectively distinguish between updates from different clients
with distinct data distributions, potentially leading to reduced
privacy guarantees [119].

Meta-learning approaches often require a large amount of
data from diverse tasks or domains to effectively learn gen-
eralizable representations. In PFL, where data is distributed
across multiple clients, accessing a diverse range of tasks or do-
mains can be one of the limitations of Meta-Learning, limiting
the scalability of meta-learning techniques [84]. Meta-learning
techniques may struggle to effectively capture and leverage the
heterogeneity present in the data across clients. In PFL, where
computation and communication resources are limited, the com-
putational complexity of meta-learning techniques may pose
challenges in terms of time and resource efficiency [85]. Meta-
learning often requires the aggregation of information across
multiple clients or tasks, which can raise privacy concerns. Meta-
learning models can be highly complex and difficult to inter-
pret, making it challenging to understand the underlying mech-
anisms and decision-making processes. In PFL, interpretabil-
ity is crucial for ensuring transparency and trust in the learning
process, especially when dealing with sensitive data.

Clustering methods are beneficial when inherent client par-
titions exist. However, they often come with high computa-

tion and communication costs, making them impractical for
large-scale settings, as discussed in Sattler et al. [107]. More-
over, additional architectural components are required for man-
aging and deploying the clustering mechanism, as highlighted
in Briggs et al. [108]. For instance, when dealing with a large
label space like the Glink360 K dataset, the COMET approach
may become less communication efficient. Additionally, in-
corporating a public dataset that is unrelated to the task of in-
terest may not enhance the generalization performance of the
clients [97]. Other challenges include data scarcity, commu-
nication overhead, privacy concerns, heterogeneity, and label
noise. These factors can impact the effectiveness and efficiency
of the federated learning process.

4. Challenges & Open Problems

The Table 10 provides an overview of different models and
methods used in personalized federated learning (PFL), along
with the associated challenges and open problems and future
directions for each approach. Future research in PFL should ad-
dress the issues disscussed in the section III and explore innova-
tive approaches to improve model interpretability, handle data
heterogeneity and distribution shifts, address privacy concerns,
optimize communication efficiency, handle dynamic client par-
ticipation, and validate knowledge discovery techniques in real-
world scenarios.

Approaches parameter de-coupling involve introducing per-
sonalized layers for each client in order to support model design
personalization. However, these techniques face challenges e.g.
as non-IID data, security and privacy concerns, increased com-
munication overhead, and difficulty in global model coordina-
tion. Future directions include improving communication ef-
ficiency, supporting heterogeneity and non-IID data, enabling
adaptive decoupling, and addressing robustness and fault tol-
erance issues. Whereas Knowledge Distillation (KD) based
methods allow flexible model architectures and are advanta-
geous in communication and computation-constrained edge FL
settings. However, they have limitations in terms of model in-
terpretability, distribution shifts, privacy and security, and com-
munication issues. Future directions involve exploring KD in
heterogeneous and healthcare applications [29], combine MetaFed
with common methods such as FedAvg, to implement a com-
plete FL system, including intra- and inter- federations. Ap-
ply MetaFed for heterogeneity architectures and more realistic
healthcare applications [31], rigorous analysis along this line
[35], there is a need to explore how to train large models on low-
resource clients to support the application of FedKD in cross-
client settings. Deployment of FedKD in real-world personal-
ization systems can also be explored to learn intelligent client
profiling models that serve clients privacy-preservation [34]. In
terms of distillation-based personalization, future work can ex-
tend it to unsupervised learning tasks where the distance mea-
surement component does not require class labels, as long as
the local loss function does not include target labels in its met-
ric. Another interesting research problem is the exploration of
topologies and connectivity graphs that consider physical dis-
tances among edge clients [120].
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Table 10: PFL Model Optimization Techniques, Limitations and Open Problems

Model(s) /Method(s) Challenges(s) Open Problem(s)/Future Direction(s)

Parameter de-coupling

Privacy, Communication over-
head, Global model coordina-
tion and Interpretability [20].

Communication efficiency, Heterogeneity and Non-IID sup-
port, Representation learning in non-linear settings [18], Op-
timization strategies [25].

Knowledge Distillation
(KD)

Distribution shifts, Privacy, se-
curity, and Communication is-
sues, Real-world problems Gen-
eralization, difficult to learn
models, computational cost.

Fine-grained tuning strategy [29], KD in healthcare and
multi-task learning [31, 32], Integration with other FL tech-
niques [33], Communication-efficiency [34], Personalization
with unsupervised learning [120], Local loss minimization [?
]

Neural Architecture
Search (NAS)

Heterogeneity, Non-IID data,
Communication overhead, Re-
sources, Adversarial NAS [116]

Combining other un/semi-supervised methods [41]. NAS for
heterogeneous clients, real-time applications [44], To vali-
date for tasks other than image classification,

Hyperparameter
Optimization (HPO)

Increased computation com-
plexity, Communication over-
head, Heterogeneity, Privacy,
Scalability and interpretability

To improve quality of CT imaging and achieve personalized
demands [49], Privacy-preservation and Heterogeneity [51],
Bayesian optimization, [52, 48].

Data Augmentation

Client-specific data distribu-
tions, Communication and
Privacy concerns

Client-specific, Privacy-aware and Adaptive data augmenta-
tion evaluation, [54, 59, 60, 117, 121].

Regularization

Data scarcity, non-IIDness [62],
Communication overhead, Pri-
vacy

Integration with communication strategies and experiments
on more large-scale datasets [62]. Client-specific, Privacy-
preserving and Adaptive regularization [63, 64].

Adversarial training

Communication efficiency, Het-
erogeneity, Data availability

Client-specific, Privacy-preserving and Adaptive AT, Ro-
bustness against diverse attacks [77, 78, 119].

Meta-learning

Communication overhead, Pri-
vacy concerns, Limited data

Communication issues [84], Speed, Preserving privacy [85],
new methods, fairness issues [122], trust mechanisms [123].

Clustering

Generalization performance,
Communication overhead,
Privacy, Heterogeneity.

Methods to solve non-IID issue, representative dataset, Pri-
vacy implications [97], Clustering-based client selection
convergence, fairness and balance data [109, 124]

Neural Architecture Search (NAS) techniques aim to au-
tomatically discover effective neural network architectures for
PFL. Challenges include heterogeneity, non-IID data, commu-
nication overhead, and computational resource requirements.
Future research directions include exploring adversarial and en-
crypted federated NAS, developing more efficient NAS algo-
rithms, better integration, applying NAS to non-IID data and
real-time applications, and validating for tasks beyond image
classification. In the future, federated evolutionary NAS tech-
niques can be developed which can further enhance the classi-
fication performance without significantly increasing computa-
tional costs. In addition, the proposed algorithms for real-time
NAS in large-scale FL systems can be verified and extended.
Furthermore new techniques remain to be investigated to deal
with data that are vertically partitioned and distributed on the

clients [44].
Hyperparameter Optimization (HPO) approaches focused

on selecting optimal hyperparameters for training models in
PFL. Challenges include increased computational complexity,
communication overhead, heterogeneity across clients, privacy
concerns, scalability, and interpretability. Future directions in-
volve privacy-preserving and heterogeneity-awareness in HPO,
exploring AutoML and Bayesian optimization for PFL, and ad-
dressing distributed HPO [48]. Hyperparameter transfer learn-
ing, can be extended by integrating with the existing methods
such as differential privacy and multi-party computation. It can
also be extended by considering more heterogeneous datasets
[52].

Data augmentation techniques aim to generate additional
training data for each client in PFL. Challenges include client-
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specific data distributions, communication overhead, privacy
concerns, and limited data availability. Future directions in-
clude client-specific and privacy-aware data augmentation, fed-
erated data augmentation, adaptive data augmentation, and privacy-
preserving evaluation of data augmentation techniques. In fu-
ture researchers can work on more detailed and generic fusion
strategy based on pFedCFR [54]. Considering that the simi-
larity matrix is sensitive to features and is easily affected by
redundant or noise features, feature engineering [117], is also
the future optimization direction [121]. Improving model train-
ing on non-IID data is key to make progress in this area [59].
FedHome can be applied to many healthcare applications with-
out incurring data leakage and can be a powerful approach for
in-home health monitoring in the future [60].

Regularization methods are used to prevent overfitting and
improve generalization in PFL. Challenges include data scarcity,
non-IID data challenges, communication overhead, privacy con-
cerns, and limited data availability. Future directions involve
integration with communication strategies, client-specific and
privacy-preserving regularization, adaptive regularization, and
regularization-aware model selection. Real-life FL datasets for
specific engineering or health science applications are still scarce
[74]. In [64], authors assigned a fixed personalization ratio
for all layers, which yields an interesting future direction on
searching a layer-specific optimal ratio. Federated Continual
Learning offers a decentralized learning framework that can be
extended to various domains in human-robot interaction (HRI).
To further reduce communication overhead, there is potential
to explore reformulations similar to those introduced by Fed-
Curv [63]. In addition, future directions in research include
extending the privacy model to cases where data subjects have
multiple records across different data silos. Furthermore, it is
valuable to extend theoretical characterizations to deep learning
cases or conduct large-scale empirical studies to gain deeper in-
sights into the performance and scalability of Federated Contin-
ual Learning approaches [66, 125].

Adversarial training (AT) techniques enhance privacy and
robustness in PFL. Challenges include communication efficiency,
privacy and heterogeneity concerns, and limited data availabil-
ity. Future directions include client-specific, privacy-preserving,
and adaptive AT methods, as well as addressing robustness against
diverse attacks. Incorporating dynamic scheduling with more
advanced model fusion techniques remains a topic of future re-
search [75], pFLSynth proposed by [80], might also be adopted
for other image translation tasks involving CT or PET, and other
dense-prediction tasks such as reconstruction or super-resolution.
Future studies can be done to address these issues and develop
some kind of privacy-aware AT [77]. Researchers may explore
the collaborative optimization scheme of fairness and accuracy,
and improve the decision making performance of the model
while optimizing fairness [78]

Meta-learning aims to enhance learning algorithms in PFL
by enabling rapid acquisition of new tasks. Challenges include
communication overhead, privacy concerns, and limited data
availability. Future directions involve reducing communication
issues, improved speed while preserving privacy, exploring new
methods for lifelong learning, addressing privacy-preserving

and fairness issues, and developing new trust mechanisms. There
exist possibility of fairness issues within the the meta-learning
frameworks, which can be addressed in future [122]. We see
great potential for applying ARUBA to derive many other new
LTL methods in a similar manner [89]. The current blockchain
federated technology requires more complex calculations in fu-
ture work [123]. Researchers can continue to investigate privacy-
preserving solutions for cross-domain recommendations in the
future in order to improve speed while safeguarding client pri-
vacy even further [85]. Researchers can also investigate model
compression algorithms for the FedHAM framework to decrease
problems related to communication between the server and the
client [84].

Clustering methods aim to improve generalization perfor-
mance in PFL by grouping similar clients. Challenges include
data scarcity, communication overhead, privacy concerns, het-
erogeneity, and label noise. Future directions include improv-
ing clustering-based client selection convergence, proportional
fairness, understanding privacy implications, developing repre-
sentative datasets, solving non-IID issues, and obtaining higher
quantity and balanced data. Future work directions require more
elaborated experiments on real data sets, as well as further com-
parisons with other personalized FL approaches and practical
implementations of the proposed approaches, their management
and deployment mechanisms [94]. In order to advance the field
of PFL, there is a need for further research in several areas.
Firstly, developing a representative dataset that encompasses
various types of attacks and defenses would enable a compre-
hensive examination of robust protocols for PFL [98]. Ad-
ditionally, future directions should aim to address the limita-
tions of the COMET framework and gain a better understand-
ing of its privacy implications. This involves determining the
optimal level of data correlation to maximize the performance
of personalized models while preserving privacy [97]. More-
over, extending the analysis of federated clustering algorithms,
such as the Iterative Federated Clustering Algorithm (IFCA), to
weakly convex and non-convex functions, as well as consider-
ing stochastic gradients on worker machines and a small subset
of participating clients, would provide valuable insights for im-
proving the efficiency and scalability of personalized federated
learning [109].

5. Conclusion

This paper provides an introduction to Personalized Fed-
erated Learning (PFL), including the fundamental definitions,
related technologies, and state-of-the-art model optimization
techniques. It discusses various implementation scenarios of
model optimization techniques and identifies the current chal-
lenges and open problems in the field of PFL. The potential of
PFL to offer secure and shared security services across different
applications and contribute to the stable development of artifi-
cial intelligence is highlighted. The survey aims to serve as
a valuable roadmap for researchers and practitioners interested
in entering the field of PFL. It emphasizes the importance of
privacy and security protection mechanisms, client cooperation
training modes, fairness, and robustness as key areas of future
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research in PFL. By addressing these aspects, the deployment
and application of PFL technology can be further explored and
advanced. Overall, the this research work provides a compre-
hensive overview of the different approaches used in PFL, their
associated challenges, and potential future research directions.
It highlights the ongoing efforts in addressing these challenges
and the need for further advancements in various aspects of PFL
to enable further research in this domain.
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