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Abstract This study aimed to examine the impact of operational factors on the adsorption capac-

ity of methylene blue (MB) using a natural and cost-effective adsorbent, activated carbon from cof-

fee grounds (CAP). The three-factor Box-Behnken design of the response surface methodology

(RSM) was employed to optimize this economically viable process with maximum efficiency.

Through extensive experiments, the factors influencing the adsorption process were identified, their

interactions were measured, and a mathematical model was developed. The experiment evaluated

the quantity of MB adsorbed by CAP based on pH (2.5–10), initial MB concentration (10–

100 mg/L), and CAP adsorbent amount (0.05–0.1 g/L). The results revealed that both concentration

and mass significantly influenced the decoloration enhancement. Optimal conditions for achieving a

91 % degradation efficiency were determined as 0.05 g/L adsorbent weight, 100 mg/L dye concen-
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tration, and pH 2.5, with a desirability score of approximately 0.986, aligning closely with the pre-

dictions of the BBD model. In conclusion, this research addresses a research gap by demonstrating

the high effectiveness of the CAP adsorbent in removing dyes from textiles.

� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Water, being an essential and dynamic asset, undergoes dam-
age due to the release of waste materials containing biologi-
cally resilient and unclean components into the natural
environment [1]. According to the ‘‘United Nations World

Water Development Report” published in March 2012,
approximately 80 % of wastewater is directly discharged into
the environment without undergoing any treatment, leading

to the pollution of both surface and groundwater [2].
The majority of researchers in various fields such as chem-

istry, geology, agronomy, plant physiology, and medicine

within the environmental sciences are focused on developing
innovative methods to decrease the presence of persistent pol-
lutants in wastewater [3]. It is worth noting that wastewater
treatment is not only crucial for maintaining good health but

also for preserving the environment [4]. Moreover, a healthy
population can contribute to enhancing the socio-economic
development of their country [5]. Additionally, treating

wastewater can help mitigate the impact of various distur-
bances caused by human activities and improve water resource
availability. Therefore, considering the fundamental signifi-

cance of water, its purification should be accomplished
through a suitable and cost-effective treatment process [6].

Within their environmental action program, the European

Commission is currently implementing a water quality man-
agement system [7]. This is in response to the presence of con-
taminants in the natural environment, which originate from
various sources, including organic substances such as deter-

gents [8], as well as dyes that are highly concentrated in
wastewater generated by the textile industry [9]. Additionally,
metals such as copper, zinc, cobalt, and iron, which are essen-

tial for biological systems, are present in trace amounts but can
have adverse effects [10], whereas elements like mercury, lead,
and chromium have detrimental impacts [11].

In reality, textile dyes are non-biodegradable and necessi-
tate the use of physical–chemical techniques for degradation,
such as coagulation-flocculation [12], oxidation [13], ultrafil-

tration [14], ion exchange resins [15], and adsorption on acti-
vated carbon [16]. However, the application of these
technologies is currently limited due to their high treatment
costs. Among these techniques, adsorption methods have pro-

ven to be effective in eliminating organic substances [17]. Pre-
sently, activated carbon is the predominant adsorbent
employed, thanks to its exceptional adsorption capacity, par-

ticularly for dyes. In fact, the adsorption process using acti-
vated carbon is widely recognized as the most commonly
employed method for removing dyes from wastewater [18].

To further explore the impact of specific experimental fac-
tors such as initial dye concentration, adsorbent quantity,
and solution pH on the adsorption capacity of MB (methylene
blue), a response surface method (RSM) was employed [19].

RSM is a statistical and mathematical approach that has been

adopted to precisely assess the efficiency of an experimental
system [20,21]. By utilizing RSM, multiple parameters can be

evaluated simultaneously with a minimal number of experi-
ments. Consequently, conducting an investigation using
RSM can help reduce costs, minimize process variability,

and save time compared to the traditional approach of exam-
ining one factor at a time [22 –26].

Additionally, RSM provides a systematic and efficient

approach to optimize experimental conditions by identifying
the optimal values of the factors being studied. By exploring
the response surface, researchers can understand the interac-
tions and relationships among various factors and their impact

on the response variable. RSM also enables the determination
of the most influential factors and their optimal levels, leading
to improved process efficiency and effectiveness [26–31]. In

other words, Response surface methodology (RSM) is a pow-
erful statistical technique and a valuable tool for modeling and
studying the impacts of multiple parameters on a process. It

offers several advantages, including minimizing the number
of required experiments, assessing intricate interactions
between independent variables, facilitating analysis and opti-
mization, and enhancing the efficiency of existing designs.

The objective of this study was to investigate the impact of
three independent parameters (pH, concentration, and adsor-
bent quantity) on the adsorption capacity of MB onto a

CAP biomaterial. Initially, a statistical analysis was performed
on the experimental parameters collected in a previous paper
[31] to determine their significance. Subsequently, the response

surface methodology (RSM) was employed to optimize the
factors influencing the adsorption process. The study focused
on examining the interactions between the independent vari-

ables to gain a deeper understanding of their combined effects.
By analyzing these experimental findings, a mathematical
model will be developed to better understand the dynamics
of methylene blue (MB) adsorption onto the CAP biomaterial.

2. Materials and methods

2.1. Collection of raw material

Spent coffee grounds were recovered and collected from local

coffee shops using the composite method. The grounds were
sieved to remove any impurities, blended until homogeneous,
and then placed in an oven. Subsequently, they were dried in

an oven at 110 �C for 24 h and preserved in a vacuum to avoid
mold formation.

2.2. CAP activated carbon preparation

A 10 g mass of raw coffee grounds was rinsed with water and
then combined with 10 g of KOH in a 1:1 wt ratio. This mix-
ture was evenly distributed in a crucible and placed inside an

alumina tube within a pyrolyzer. The pyrolyzer was sealed,
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and the following parameters were set: temperature increased
gradually at a rate of 10 �C per minute until reaching
800 �C, where it was held for 2 h. Nitrogen gas was continu-

ously injected into the reactor at a flow rate of 100 cc/min
throughout the pyrolysis process. Subsequently, the resulting
activated carbon (CAP) was collected and weighed using a pre-

cision balance. The CAP was then washed with warm deion-
ized water using a filter to eliminate chemical compounds
generated during pyrolysis and achieve a neutral pH. Lastly,

the carbon material was dried in an electric oven at 110 �C
for 24 h.

Characterization of the CAP involved scanning electron
microscopy (SEM) using a Hitachi SU3500 SEM instrument,

while the FTIR spectrum was obtained using a PerkinElmer
Frontier FTIR spectrometer equipped with an ATR sampling
accessory (diamond crystal). The FTIR measurements were

conducted in transmittance mode across the entire range of
4000 to 400 cm-1. Additionally, solid-state nuclear magnetic
resonance (SSNMR) analysis was performed using the Bruker

AVANCE III solid-state NMR to examine the structure of the
activated carbon.

2.3. Adsorption test

Adsorption kinetics refers to the variation in the quantity of
adsorbed material as a function of the contact time between
the adsorbent and adsorbate [32]. Understanding adsorption

kinetics is crucial for optimizing the industrial application of
an adsorbent in adsorption-based processes and identifying
the factors that contribute to achieving rapid kinetics [33]. This

knowledge enables the efficient utilization of adsorbents and
facilitates the design of effective and time-efficient adsorption
processes in practical industrial operations.

In order to conduct the adsorption tests, a 100 mL flask was
utilized, and the activated carbon from coffee grounds (CAP)
was added at a concentration of 0.05 g/L in aqueous solutions

containing methylene blue (MB) dye at an initial concentration
of approximately 50 mg/L. The samples were continuously
stirred at 500 rpm and maintained at room temperature
(20 ± 2) �C with a normal pH value. To determine the adsorp-

tion capacity, samples were collected at specified time intervals,
filtered using a 0.22 mm PTFE syringe filter, and subsequently
analyzed based on Equation (Eq.1) [31,34].

Cp ¼ ðCi � CtÞ � V

m
ð1Þ

The adsorption capacity (Cp) in mg/g is determined using
the equation where Ci and Ct in mg/L represent the initial

and equilibrium dye concentrations in the liquid phase,
respectively.

V in liters denotes the volume of the dye solution, and m in

grams corresponds to the quantity of activated carbon from
coffee grounds (CAP) used

2.4. Optimization of MB removal by CAP adsorption

Building upon our previous research [31], a parametric study
was conducted to investigate the impact of individual parame-
ters on the removal rate of Methylene Blue. This study

involved systematically varying a single parameter while keep-
ing other parameters constant. By analyzing the adsorbent
mass, initial dye concentration, and pH of the solution, we

were able to determine their effects on the removal rate of
Methylene Blue.

To optimize the adsorption process of the studied dye, we

will utilize the experimental design methodology. Our focus
will be on implementing this methodology using the natural
adsorbent CAP as the model adsorbent. Through careful

experimentation and analysis, we aim to enhance the efficiency
and effectiveness of the dye adsorption process using CAP.

In order to achieve our objective, we conducted an experi-
mental design of the adsorption process specifically targeting

the removal of MB. This design incorporated a customized
approach along with the utilization of response surface
methodology (RSM). The factors investigated in this design

included the concentration of the pollutant, the mass of the
adsorbent, and the pH of the system. Each of these factors
was studied at three different levels, allowing us to comprehen-

sively analyze their influence on the adsorption process and
optimize the removal of MB.

The required number of experiments (N) can be calculated

using the following equation:

N ¼ 2KðK� 1Þ þN0 ð2Þ
The equation to calculate the required number of experi-

ments (N) takes into account the number of variables (K)
and the number of center points (N0) [35]. For this research,

the total number of runs (N) was calculated to be 13, which
included 12 factorial points along with 1 center point. The soft-
ware JMP (Ver. 16.2.0) was employed for designing the exper-

iments accordingly.
A standard polynomial regression equation was employed

to represent the predicted response (Y):

Y ¼ a0 þ
Xn

i¼0
aixi þ

Xn

k¼0
aiiðxiÞ2 þ

Xn�1

i¼1

Xn

j¼iþ1

aijxixj ð3Þ

where:
Y: represents the experimental response (the degradation

efficiency (%));
a0: the constant offset term;
ai: the linear coefficients;

aii: the quadratic coefficients that are estimates of the main
effect of factor i for the response Y;

aij: the interaction coefficients between factor i and factor j
for the response Y;

xi and xj: the code values of the independent input variables

calculated by the equation:

xi ¼ Xi �Xi;0

DXi

ði ¼ 1; 2; 3Þ ð4Þ

Xi and Xi,0 respectively represent the real values of the

independent variable and the center point of the design. While
DXi is the value of the step change in the variable.

2.5. Methylene blue treatment

Table 1 presents the independent variables investigated in the
methylene blue adsorption process, including both their real

and coded values.

Optimization of methylene blue removal from aqueous solutions 3



3. Results and discussion

3.1. Characterization of activated carbon (CAP)

After undergoing pyrolysis at 800 �C, the activated carbon

(CAP) is characterized by a high surface area. In this case, a
specific treatment was performed on this sample using water.
Observation of the SEM image (Fig. 1) reveals that the CAP
exhibits a macroporous structure with regular pores ranging

in size from 10 to 20 mm. It appears to have a more complex
carbonaceous structure.

The FTIR technique was used to analyze the functional

groups present in the activated carbon. The spectrum corre-
sponding to the CAP material is presented in Fig. 2.

In accordance with the data cited in the literature, particu-

larly by Centrone et al. (2005) [36], the following absorptions
can be observed:

� Around 3000 cm�1, corresponding to the stretching vibra-
tions of CAH bonds.

� Approximately at 1550 cm�1, associated with the stretching
vibrations of aromatic rings, with intensity depending on

the degree of delocalization of the system.
� At around 700 cm�1 and 730 cm�1, associated with out-of-
plane deformations of CAH bonds, typical of monosubsti-

tuted benzene rings. Their intensity depends on the number
of condensed benzene rings and is more pronounced in the
presence of isolated benzene rings.

� Close to 550 cm�1, associated with out-of-plane deforma-

tions of graphitic structures.
� Around 1570 cm�1, a significant band attributed to the
stretching vibrations of C‚C bonds in aromatic rings can

be observed.
� It is estimated that the IR spectra are not very informative
due to low radiation emission and indistinct signals. Addi-

tionally, there is water vapor absorption during the prepa-
ration of KBr pellets and activated carbon; in particular,
a clearly visible band appears at 3400 cm�1.

The spectra of activated carbons reveal the disappearance
of signals associated with the starting material, suggesting that
the product consists of a predominantly polycyclic material

composed of aromatic and heteroaromatic structures, as evi-
denced by the signals observed in the range of 105 to 150
ppm. Furthermore, the probable presence of signals around

180 ppm indicates the presence of carbonyl groups on the
edges of the basic carbon planes (Fig. 3). Moreover, the liter-
ature mentions that alkaline treatment during the activation
process can promote the formation of polycyclic pyrones [37].

Table 1 Model variable values for the removal of the MB dye

with CAP activated carbon.

Variables Factor

code

Coded and real value

�1 +1

Mass (g/l) X1 0.050 0.250

Concentration (mg/l) X2 10.000 100.000

pH X3 2.500 10.000

Fig. 1 SEM images of the CAP sample analyses.

Fig. 2 FTIR spectrum of the CAP sample.

4 D. Azzouni et al.



3.2. Experimental design and response surface plots of MB
removal

3.2.1. Statistical analysis of the derived response surface model

The 13 experiments performed according to the custom design
and the experimental and model-predicted responses are pre-
sented in Table 2 to summarize the matrix.

Based on the information provided in the table, it can be
observed that the elimination percentage ranged from 0.4 %
to 89 %. To determine the significance of the regression model

and the polynomial coefficients, analysis of variance
(ANOVA) was conducted, and the results are presented in
Tables 3 and 4 [26,29,30].

The Fisher F-test for the model yields a P-value of 0.0007,
which is less than the significance level of 0.05. This indicates
that the model is highly significant, and there is only a 0.07
% chance that such a large F-value could occur due to ran-

dom variation or noise [40–43]. Moreover, the calculated F-
value for the model (Fmodel = 23.167) exceeds the critical F-
value (F0.05, 6, 6 = 4.28) obtained from the F-distribution

table. This suggests that a substantial portion of the response
variation can be explained by the regression equation
[43–46].

The polynomial equation derived from the model for the
removal efficiency of MB (Y) is given by:

Y MB%Removalrateð Þ ¼ 39:005� 2:495x1 þ 39:658x2

� 4:889x3 � 2:677x1x2 � 2:216x1x3

� 4:110x2x3

The ‘‘Prob > F” values less than 0.05 indicate that the
most significant terms in the model are the mass (X1), concen-

tration (X2), and the interaction between these two (X1X2).
These terms have a substantial impact on the removal effi-
ciency of MB. On the other hand, the remaining terms with

a probability (P) greater than or equal to 0.05 are considered
less significant and can be disregarded in the formulation of
the polynomial equation as they do not significantly contribute

to the removal efficiency of MB.
Thus, this can be simply written as follows:

Y MB%Removal rateð Þ ¼ 39:005� 2:495x1 þ 39:658x2

� 2:677x1x2

The regression coefficient R2 obtained in this study is
0.958622, indicating that the chosen custom model accounts
for approximately 95.86 % of the variability observed in the

experimental data. Additionally, the fitted regression coeffi-
cient R2

adj is 0.917245, suggesting that around 91.72 % of the
variability is explained by the model while taking into account
the number of variables and degrees of freedom. These high

regression coefficients provide strong evidence that the selected
custom model accurately represents the experimental data [43–
46].

To assess the agreement between the optimization model
and the experimental data, two plots were analyzed: the corre-
lation between the predicted response and the experimental

data (Fig. 4a) and the residual probability plot (Fig. 4b). These
plots were utilized to identify any potential discrepancies or
divergences in the fit of the optimization model to the

experimental data.

Fig. 3 NMR Spectrum of CAP (Activated Carbon from Coffee Grounds).
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Fig. 4a displays a strong relationship between the experi-
mental and predicted values of the response, indicating excel-

lent agreement between the two. Furthermore, Fig. 4b
reveals that the majority of the data points fall within the lower
and upper limits of outlier detection (-10 and 10, respectively).

This suggests that the statistical model utilized successfully
captures the correlation among the three factors investigated
in the removal of MB. Thus, it can be inferred that the chosen

model is appropriate for accurately representing the relation-
ship between the variables [21,46].

3.2.2. Three-dimensional response surface plots of the studied

parameters

The 3D response surface plots, depicted in Fig. 5 and Fig. 6,
offer a comprehensive visualization of the influence of the
three parameters under investigation on the removal efficiency

of MB when employing CAP-activated carbon. These plots
provide a clear summary of how changes in each parameter

individually, as well as their interactions, affect the overall
removal efficiency. By examining these response surface plots,

valuable insights can be gained regarding the optimal condi-
tions for achieving maximum MB removal efficiency using
CAP-activated carbon.

The findings from the analysis support the results obtained
from the ANOVA and confirm that both concentration and
mass significantly contribute to the enhancement of discol-

oration. These factors play a primary role in increasing the
effectiveness of the discoloration process, as indicated by the
experimental data and analysis [38,39].

3.2.3. Optimization and desirability function

Fig. 7 illustrates the optimal conditions that result in the max-
imum removal of BM (methylene blue).

The highest desirability ratio value, which was 0.986, led to

the determination of the optimal conditions: an adsorbent mass
of approximately 0.05 g/L, a dye concentration of 100 mg/L,

Table 2 Box–Behnken design and results of MB adsorption using CAP.

Test

number

Factors Response

(% removal efficiency)

Residual

X1 X2 X3 Experimental Predicted

1 0.050 50.000 2.500 35.569 45.755 �3.443

2 0.250 100.000 5.500 43.888 60.010 �3.467

3 0.250 50.000 10.000 0.846 10.521 1.588

4 0.050 100.000 5.500 89.384 77.076 4.190

5 0.100 100.000 2.500 87.461 80.076 2.753

6 0.050 10.000 5.500 4.458 7.617 5.580

7 0.100 50.000 5.500 18.483 34.221 �15.247

8 0.100 10.000 2.500 5.692 10.617 3.168

9 0.250 10.000 5.500 �0.346 �9.448 �4.220

10 0.100 10.000 10.000 3.143 �7.549 6.611

11 0.050 50.000 10.000 26.212 27.587 �8.369

12 0.10 100.000 10.000 67.708 61.909 5.434

13 0.250 50.000 2.500 44.579 28.688 5.419

Table 3 ANOVA analysis of model Y response (MB removal efficiency).

Source Total of squares Degree of freedom Mean squares F-value Prob > F

Model 11947.544 6 1991.260 23.167 0.0007

Error 515.698 6 85.950 – –

Total 12463.243 12 – – –

R2 = 0.958622, R2 adjusted = 0.917245.

Table 4 Estimated polynomial coefficients for the response model Y (MB removal efficiency).

Coefficient Coefficient estimate Standard error F value Prob > F

a0 39.005 3.126 23.167 0.0007

a1 �2.495 0.792 9.929 0.019

a2 39.658 3.946 100.991 < 0.0001

a3 �4.889 3.914 1.559 0.258

a12 �2.677 1.090 6.026 0.049

a13 �2.216 1.082 4.193 0.086

a23 �4.110 4.582 0.804 0.404

6 D. Azzouni et al.



Fig. 4 Model Y parity plot: a) predicted vs. experimental response and b) residuals vs predicted response.
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and a pH of 2.5. These conditions yielded a degradation effi-
ciency of 90.62 %, indicating the high effectiveness of the opti-

mized parameters in achieving significant BM removal.
To assess the validity of the optimal model conditions, an

experiment was conducted under the same specified condi-

tions. The experimental result revealed a fading rate of 91

%, which aligns well with the value predicted by the model.
This agreement between the experimental and predicted values

further reinforces the accuracy and reliability of the cus-
tomized model. Thus, the model can be deemed as a depend-
able tool for predicting and optimizing the removal efficiency

of BM in practical applications.

Fig. 5 Response surface plot for mass effect and the two parameters (a) dye concentration and (b) pH on the removal rate of MB% (Y).

8 D. Azzouni et al.



4. Conclusion

In this study, the methodology of experimental design was suc-

cessfully applied to optimize the adsorption capacity of MB by
CAP, while precisely determining the influence of specific
parameters (pH, dye concentration, and adsorbent amount)

on the adsorption process of methylene blue using activated
carbon. The analysis of the data obtained revealed that the

pH of the dye had an adverse impact on the adsorption capac-
ity of methylene blue by CAP. Conversely, the remaining fac-

tors, including dye concentration and adsorbent amount, were
found to significantly affect the treatment process of MB
adsorption onto the biomaterial.

Furthermore, the fitted optimal design model exhibited a
high coefficient of determination (R2 = 0.958622) and an
adjusted R2 coefficient of 0.917245, indicating the strong

goodness-of-fit between the model and the experimental data.

Fig. 6 Response surface plots for dye concentration and pH effects on the MB % removal rate (Y).

Fig. 7 Desirability plot for the removal efficiency of MB by activated carbon CAP: MB concentration (Concentration), adsorbent mass

(Mass), pH and dye removal rate % (Y).

Optimization of methylene blue removal from aqueous solutions 9



The p-value associated with the model was found to be smaller
than 0.05, demonstrating its statistical significance. The
response surface experimental design and methodology were

employed to determine the optimal conditions for MB
removal, which involved a solution pH of 2.5, a methylene
blue concentration of 100 mg/L, and an adsorbent dosage of

0.05 g/L.
These quantitative findings highlight the effectiveness of the

experimental design methodology in optimizing the adsorption

capacity and understanding the impact of key parameters on
the removal of methylene blue using CAP. The results provide
valuable insights for further research and practical applica-
tions in the field of wastewater treatment.
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d’ions et de microfiltration. Diss. Université de Lyon, 2018.
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