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Abstract—Blockchain relies on storing and verifying a
large volume of data across multiple nodes, making efficient
data compression techniques crucial. By reducing the size
of data, compression techniques enable more data to be
stored within the limited space constraints of the blockchain
networks. Furthermore, compressed data consumes less band-
width for transmission and enhances the overall performance
of blockchain networks by reducing the time and resources
needed for data storage and retrieval. To overcome this issue,
this paper presents a new data representation approach to
enable efficient storage and management of diverse data types
on the blockchain, ensuring scalability, cost-effectiveness, and
improved network efficiency. A binary matrix M of size m xn
bits can be converted to two vectors H and V of sizes
m’ and n/, respectively. The compression rate expressed by
(m’+n'+ | Hash(M) |) x 100/(m x n) increases exponentially,
i.e., 2 with A depends on m and n); this makes the proposed
technique is very effective in data size reduction. With a
matrix, for example, M = 512 x 512 bits, we achieve a
rate of reduction equal to 96.42%. The original data can be
recovered using H, V, and Hash(M). The conversion from M
to (H,V) is simple, which optimizes energy consumption for
low-power devices. Meanwhile, the challenge of recovering the
original data could be exploited in a blockchain process, where
the mining consensus could be identified based on the node
that recovered a predefined set of vectors. Furthermore, this
technique ensures that data integrity checking is available only
at the nodes with a massive computation capacity.

Index Terms—Data representation; Blockchain; Variety of
resources computation; Distributed computing.

I. Introduction

In recent years, blockchain technology gained consider-
able interest and popularity not just as a secure and de-
centralized ledger of transactions that is tamper resistant,
but also as a technology for data storage across a variety of
applications [1]. Blockchain data storage presents several
challenges. As the number of transactions and participants
increases, the amount of data that needs to be stored on
the blockchain increases exponentially, posing scalability
challenges. The size of the blockchain grows over time,
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making it difficult for new participants to join the network
and synchronize with the existing data. Additionally, stor-
ing large volumes of data on the blockchain is expensive,
especially if the blockchain uses a consensus mechanism
that requires every participant to store a complete copy
of the blockchain. The issue of storage limitation can lead
to slower transaction processing and the need for more
expensive hardware.

The block size refers to the maximum amount of data
that can be stored in a single block. This size of the
block is important in determining a blockchain network’s
transaction capacity and performance. Large block sizes
can increase network node storage requirements and de-
mand higher bandwidth usage. This makes it difficult for
resource-constraint nodes to participate in the network,
potentially leading to further centralization [2], [3].

Data representation is an aspect of data management
which greatly affect the usability and accessibility of the
data [4], [5]. It also significantly impacts the memory size
required to store and transmit data. Different data repre-
sentation methods can result in vastly different storage
requirements, with some methods being more efficient
than others [6]. Data representation also has a direct
impact on the block size. Binary data representation is
often used in blockchain to represent transaction data
as it can be efficiently processed and transmitted across
the blockchain network. Each transaction in a blockchain
is represented as a set of binary data, which includes
information such as the sender and the receiver addresses,
the transaction data, and the transaction timestamp.
A collection of transactions verified and added to the
blockchain network form a block [7], [8].

Another factor that affects block size is the use of
compression algorithms [9]. Compression algorithms re-
duce the data size by removing redundant or unnecessary
information. This can result in significant reductions in



block size [10]. Each data representation type requires
different compression methods to optimize storage and
transmission efficiency. However, compression algorithms
can also increase the computational overhead required to
process the data, which can affect the overall efficiency
of the blockchain network. Therefore, the choice of com-
pression algorithm for a given type of data representation
depends on various factors such as the data characteristics,
the desired level of compression, the intended use of the
compressed data, and the processing power available for
compression and decompression [11], [12].

One way to organize and manipulate data in a struc-
tured manner is the matrix representation which is ef-
ficient for storing large datasets. Matrix representation
helps identify patterns and relationships in the data;
therefore, redundancies can be identified and removed
easily, reducing the amount of storage space needed [13].
Blocks can be represented in matrices, where each row
of the matrix could represent a transaction within the
block, while each column represents a feature or variable
of the transaction. For example, the columns could include
information such as the sender address, recipient address,
timestamp, transaction amount, and transaction fee.

This paper proposes a new method of presenting and
storing information in blockchain to reduce the size of
data. The solution is reached by converting a binary
matrix M of size m xn bits to two vectors H and V' of sizes
m’ and n’, respectively. The proposed method represents
data in a way where the size is much less than traditional
storage. The original matrix can be recovered using H,
V, and the hash of the matrix Hash(M). This proposed
method of compressing large data helps in efficient data
transfer, use, and storage, especially for devices with
limited hardware resources.

The rest of the paper is structured as follows. Section II
provides a review of related work in the field of reduced
data in the blockchain. SectionlII presents the proposed
technique and its underlying concepts. Section IV dis-
cusses the efficiency analysis and shows the feasibility of
the proposed technique. Finally, Section V concludes the
paper and discusses future directions for research.

II. Related Work

Blockchain technology can potentially revolutionize var-
ious industries and applications, such as secure messaging,
and supply chain management [14]. However, it must
address several challenges to achieve its full potential,
including scalability, privacy, and efficient storage. Those
challenges emerge because blockchain-based systems gen-
erate vast amounts of data, making storing and trans-
mitting this information challenging. This challenge is
particularly significant for resource-constrained devices
like those in the Internet of Things (IoT) and smart
homes [15].

Various propositions were made to address the afore-
mentioned issues. Some propose solutions that reduce

the size of the data, such as summarizing and com-
pressing blocks, storing bytecode off-chain, segmenting
the blockchain, and using distributed storage systems
to bypass storing liabilities. Others suggested strategies
enabling nodes to store only part of the blockchain,
such as deleting part of the blockchain or designing
a semi-full node. These solutions aim to reduce the
storage requirements and increase the throughput of the
blockchain network, making it more suitable for data-
heavy applications and expanding the number of nodes
participating in the network.

Some techniques involve creating summary blocks and
compressing them to increase space savings and make
it easier for nodes to verify transactions. The proposed
method in [9] is applied to the Bitcoin blockchain, and
the space-saving is calculated by comparing the original
block size with the summarized and compressed block
sizes. The experiment results show that the space-saving
for summary blocks is 22.318%, while the space-saving for
compressed summary blocks is 78.104%.

To help reduce the size and growth of the blockchain,
a system for the Ethereum blockchain that moves the
bytecode of a contract creation transaction off-chain is
proposed [16]. It replaces contract creation transaction
data with hashes that identify a file in the InterPlanetary
File System (IPFS). The proposed system retains the
assurance provided by blockchain while reducing network
traffic under certain conditions.

The authors of [17] proposed a segment blockchain
approach that allows nodes to only store a copy of one
blockchain segment. The proposed system uses Proof-of-
Work (PoW) as a membership threshold to limit the
number of nodes taken by an adversary. The system can
sustain a (AD/n)™ failure probability when the adversary
has no more than AD number of nodes and every segment
is stored by m number of nodes. However, the proposed
segment blockchain system can fail if an adversary stores
all copies of a segment, causing a permanent loss of the
segment.

Sohan et al. [18] proposed a method using a distributed
storage system called TPFS to bypass storage liabilities
and increase throughput. Moreover, the proposed method
employs a dual-blockchain approach that adds references
of the main block to the ledger instead of the original
block, preserving the core features of the blockchain.

To tackle the data bloating problem in blockchain sys-
tems, Chou et al. [19] presented the BC-Store framework
that deploys a data accessing model on an IPFS cluster
system to classify hot and cold blockchain data. Hot data
is stored in the local cache, whereas cold data is stored in
the IPFS cluster, substantially shortening the blockchain’s
initial synchronization time and saving a considerable
amount of data storage.

Researchers have also proposed several lightweight
blockchain solutions that can reduce the computational
and storage requirements of blockchain consensus proto-



cols. For instance, in [20], an improved PBFT blockchain
consensus mechanism based on a reward and punishment
strategy was proposed to achieve a lightweight blockchain.
Furthermore, a blockchain storage optimization scheme
based on the RS erasure code was introduced to reduce
the storage overhead of the blockchain.

Privacy and security of transaction aspects are
so important in the blockchain. While immutability
makes blockchain systems secure, it also raises con-
cerns about privacy. Several research efforts proposed
privacy-preserving solutions to protect the sender and
receiver’s identities and the transaction amount’s con-
fidentiality [21]. For example, in [22], the authors pro-
posed a mnew blockchain ring confidential transaction
protocol (RingCT3.0) that can protect the privacy of
the sender’s identity, the recipient’s identity, and the
confidentiality of the transaction amount.

III. Specifications of the New Data Representation
Technique

In this Section, we present a detailed explanation of
the proposed technique, which aims to present the data
in a very small way. The node converts the matrix that
contains the data according to the proposed method and
then sends it. The conversion process is very easy and fast
regardless of the size of the matrix; also the converted
output is small in size compared to the original data size.

A. Representation of the Proposed model

In this section, we present the specifications of a new
data representation technique suitable for data com-
pression on the blockchain. This technique extracts two
vectors, horizontal H and vertical V' which replace the
matrix. Suppose we have a matrix M containing m rows
and n columns. The first vector H is a vector containing m
values, the first value is the number of ”1” in the first row
of the matrix, the second value is the number of 71”7 in
the second row, and so on ... until the last value, that is
the number of ”1” in the last row of the matrix.

Similarly, for the second vector V, it is a vector that
contains n values, the first value is the number of ”1” in
the first column of the matrix, the second value is the
number of 71”7 in the second column, and so on ... until
the last value, that is the number of “1” in the last column
of the matrix.

Representing the information in this way is insufficient
to retrieve it from the cloud because we can find two differ-
ent matrices A and B with the same vector representation,
i.e., Hy = Hg and V4 = Vg. Therefore, in the proposed
model, we add the hash of the matrix to represent data
uniquely, where Hash 4 # Hashpg. The following example
illustrates a demonstration in a simple way.

1 0 0 1
00 11
A_l()Ol
01 10

with Ha = (2,2,2,2); Va = (2,1,2,3).
and

-0 O
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O O = =
_ = O

with Hg = Ha = (2,2,2,2); Vg =V4 =(2,1,2,3).
B. Proposed Model: Recuperation

After representing a matrix M as mentioned in Sub-
section III-A, the cloud can use its available computing
power to recover the original matrix based on Hys, Vi,
and Hashys. The currently used algorithm in the proposed
model is based on searching exhaustively according to the
possibilities that exist. When the search starts from a zeros
matrix with m rows and n columns, then the existing
possibilities are tested based on the number of 1 in the
two vectors Hp; and V. For each matrix possibility M;
is calculated, the cloud calculates its hash and compares
it with Hashjy;. Algorithm 1 gives a general illustration
of this procedure.

Algorithm 1 Recover matrix algorithm

Require: Hys, Var, Hashyy
Ensure: matrizcM

1: function RecM

2: My < zeros

3: for for each possible composition of the number of 1
do

4: form M;

5: compute H;

6: compute V;

7 compute Hash;

8: if H; = Hy; and V; = Vy and Hash; = Hashyy
then

9: M <« M,;

10: exit

11: end if

12: end for

13: return M

14: end function

Now, we discuss the number of possible matrices (NPM)
that the algorithm 1 will extract from H and V.

Lemma 1. If size(M) = n x m then NPM,,, =
[1iX, NPR; where m is the number of rows and NPR;
denotes number of possibilities in the row 1.

We give NPR; = a X (a+ 1) x (2 X a4+ 4)/12 where
a=n—z+1

Proof. The RecM algorithm 1 will not try all possi-
bilities from ’zeros’ to ’ones’; in this case, the number
of possibilities is 2™*". This is because the number of
possible values for the first line is 2" if the first line
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Fig. 1. Simplified block representations: basic and ours, where h; denotes the number of 1 in row ¢ (tz : ¢) and v; denotes the number of 1

in column ¢

size is equal to n, and if the matrix has m rows, then
NPM =2 x 2™, 2" =2mxm,

The RecM algorithm 1 will exploit the number of ‘ones’
in each line to reduce the total number of possibilities, thus
greatly reducing the number of trials.

Suppose the number of ”1” is x with < n where n is
the size of a row; the first possibility is to position the x
bits of 71”7 successively (e.g. 11100000000 where z = 3
and n = 11). The next possibility is to move the last ”1”
(11010000000; then 11001000000 ... ) etc.

Therefore, we have (n — x 4 1) possibilities. Next, we
move the 71”7 before the last one and do the same with
the last 71”7 as the first step (10110000000; 10101000000
10100100000), so there are (n —x + 1) — 1 possibilities.

In the third step, we do the same thing with the first
”1”, we will finally find that NPR is equal to the sum of
the series 1+(14+2)4+(14+243) -+ (14+2+3+4+-- - +a)
where « is (n — 2 + 1) and x denotes the number of "1”
in the first row.

We have s; =Y _,i=1ix (i+1)/2=(i*+1i)/2.

Therefore, NPR =0, s; = 1/2x (Y0 i*)+ > o i.

NPR=1/2x(ax(a+1)x(2xa+1)/6)+ax (a+1)/2.

So, NPR=ax (a+1)x (2x a+4)/12.

O

For example, consider a matrix M of size 6 x 6. In an
absolutely exhaustive search without using H and V', the
number of possibilities in the first line NPR; = 26; so,
NPM =26 x 26,26 = (26)6 = 236 = 68719476736.

In our proposal using H and V and according to
Lemma 1, if we assume that the number of 71" equals
3, x = 3 (the average), this gives «a = 6 -3+ 1 =4

and NPR = 4 x (4+1) x (2 x4+ 4)/12
NPM = 205 = 64000000.

20; so

C. New Block Size

Among the most important application of the proposed
technique is Blockchain. The blockchain is made up of a
group of blocks and each block is a set of transactions,
then, these transactions can be considered a matrix of
data where each line is one transaction or more.

Figure 1 shows the matrix design (Basic representation
of block) containing m transactions, each transaction size
is n bits; i, = {0,1},a € [1,m] and S € [1,n]. Using
the proposed method, the block representation changes
as shown on the right of Figure 1 (Proposed model
representation). Since h; denotes the number of 71”7 in
row i and the size of row i equals n bits, we need logs(n)
bits to represent each h;.

| H |=m x loga(n) (1)

and

| V |=n x logz2(m)

and

| M |=| H |+ |V |+ [Hashu | (3)

If any party wants to view the transactions, it will be
obtained by calculation from H,V,andHash ;.



TABLE I
Limitations and challenges related to blockchain size and consensus.

Limitations and Challenges of Blockchain

Category Limitation/Challenge

Description

Size Limited Scalability

High Storage Costs

The blockchain size increases with ev-
ery new transaction, which can limit
the number of transactions that can be
processed at any given time.

Every node on the network has to
store a copy of the entire blockchain,
resulting in high storage costs.

Consensus

Energy Consumption

Slow Transaction Processing

The consensus mechanism used to val-
idate transactions can lead to longer
transaction times.

Some consensus mechanisms require
a large amount of energy, which can
lead to high costs and environmental
concerns.

IV. Performance Analysis

Reducing the data size in blockchain can lead to im-
proved performance (including storage utilization, band-
width and speed) and scalability. By reducing the amount
of data that needs to be stored and processed, blockchain
applications can become faster, storage efficient, and more
scalable. Table I provides a taxonomy of limitations and
challenges associated with using blockchain technology,
specifically focusing on issues related to size and con-
sensus. The first column of the table identifies the two
main categories: Size and Consensus. The second column
describes the specific limitations and challenges within
each category, while the third column briefly explains
each limitation or challenge. Two main limitations are
observed in the size category: limited scalability and high
storage costs. These limitations arise because the size
of the blockchain increases with every new transaction,
limiting the number of transactions that can be processed
at any given time, where every node on the network has
to store a copy of the entire blockchain, resulting in high
storage costs.

On the other hand, in the consensus category, two
crucial challenges could be identified: slow transaction
processing and energy consumption. These challenges
arise because the consensus mechanism used to validate
transactions can lead to longer transaction times. Some
consensus mechanisms require a lot of energy, leading to
high costs and environmental concerns.

To this end, we discuss such practical examples to
explain further the efficiency of the proposed method
and how it works. Suppose that M = 100 x 100, i.e.,
n = m = 100, the largest value that wv; can take is
100, where the column contains one hundred ”17, the
number 71007 is written in binary as 1100100, so the
size of each v; is equal to 7, while the number "128” can
be also represented in 7 bits (which means 128 rows or
transactions).

We can say that size(V) = 700 bits for a matrix of
100 x 100 and size(V) = 700 bits for a matrix of 128 x 128.

Therefore, it is desirable that the number of rows (col-
umn size) are not random so that the proposed method is
more effective. In other words, the number of rows (namely
transactions) and the number of columns (row size) must
be equal to 2% and 2Y, respectively, the following study
shows that (Table II and Figure 2).

Now suppose that M = 16 x 16 and therefore the size
of M is equal to 256 bits; since there are 16 columns (re-
spectively 16 rows), the vector H (respectively vector V')
contains 16 values, each h; (respectively v;) is represented
in 4 bits, which gives a size of H (respectively V) equal
to 4 x 16 = 64 bits. By adding the matrix hash, the total
data size is equal to (4 x 16) x 2 + 160 = 288 bits. We
notice here that the application of the proposed method
did not help in reducing the data size.

By supposing that M = 32 x 32 and therefore the
size of M is equal to 1024 bits; since there are 32
columns (respectively 32 rows), the vector H (respectively
vector V') contains 32 values, each h; (respectively v;) is
represented in 5 bits, which gives a size of H (respectively
V') equal to 5 x 32 = 160 bits. By adding the matrix hash,
the total data size is equal to (5 x 32) x 24 160 = 480
bits. Now, we notice that the application of the proposed
method helps in reducing the data size (480 bits vs. 1024
bits).

With M = 64 x 64, the size of M is equal to 4096
bits; since there are 64 columns (respectively 64 rows),
the vector H (respectively vector V) contains 64 values,
each h; (respectively v;) is represented in 6 bits, which
gives a size of H (respectively V') equal to 6 x 64 = 384
bits. By adding the matrix hash, the total data size equals
(6x64)x2+160 = 928 bits. In this example, we see the rate
of reducing size is increasing, 53.12 with 32 bits and 77.34
with 64 bits.

If M = 128 x 128, the size of M is equal to 16384 bits;
since there are 128 columns (and 128 rows), the vector H
(and vector V') contains 128 values, each h; (respectively
v;) is represented in 7 bits, which gives a size of H (also
V) equal to 7 x 128 = 896 bits. By adding the matrix



TABLE II
A comparative summary of basic and our reduced block sizes

square matrix of 16 32 64 128 256 512
x bits
basic size (bs) 256 1024 4096 16384 65536 262144
reduced size (1s)  (16x4)x2+160 = (32 x 5) x 2 + (64x6)x2+160 = (128 x 7) X 2 + (256 x 8) x 2 + (512 x 9) x 2 +
with SHA1 (160 288 160 = 480 928 160 = 1952 160 = 4256 160 = 9376
bits)
rate (bs/rs) 0.88 213 T4l 8.39 15.39 27.06
reducing rate / 53.12 % 77.34 % 88.08 % 93.50 % 96.42 %
—rate (basic size / reduced size) basic size —reduced size
30 27.96 300000
262144
25 250000
20 Z 200000
Q =2
® o
e 15 & 150000
10 100000
65536
5
56000 16384
256 4096
0 288 10380 928 1952 4256 9376
o
16 32 64 128 256 512 16 32 64 128 256 512
square matrix of X bits square matrix of X bits
(A) (B)

Fig. 2. Original and reduced block sizes comparison

hash, the total data size equals (7 x 128) x 2+ 160 = 1952
bits. The reduction rate now achieves 88.08%.

With a matrix M of 256 x 256 bits, we achieve a
rate of reduction equal to 93.50%; in the last test where
M =512 x 512 bits, we achieve a rate of reduction equal
to 96.42%.

For M of 512 x 512 bits, Table III shows a comparison
with Yu et al. [23] technique.

TABLE III
A comparative summary of reduced size techniques

technique rate of reducing
Yu et al. [23] 35.5 %
Ours 96.42 %

In this proposal, data integrity verification in blockchain
will not be done as classical verification. The verification
relies on reconstructing the original data from vectors
and hashes, which can require extensive computational
resources. This process involves reconstructing the data
in its entirety and thus can be computationally intensive
and time-consuming. This can be considered inconve-
nient compared with others. However, in several domains,
blockchain verification is a process that is rarely requested.

Furthermore, with the huge computation of the mainframe
machines, the reconstruction process could be done by
these machines, and the verification is done by any net-
work node. The main advantages and disadvantages of the
proposed reduced size and computation-based verification
technique are summarized in Table IV. The proposed
technique takes care of the size aspect, and as for the
security aspects, any lightweight encryption method can
be chosen to encrypt H and V.

V. Conclusion

This manuscript presented a new approach to repre-
senting big data in a way where the size is much less
than known traditional storage techniques. We consider
that our proposal is a method of compressing big data
in the blockchain, which helps in its transfer, use, and
ease of storage, especially for devices with low power.
Given the large data size of the blockchain, we claim
it appropriate to exploit the proposed model for this
pioneering storage technology. The provided explanation
showed that our technique is easy to apply, as it does
not require complex operations to compress data, which
reduces the amount of energy consumed to do so. After
analyzing the new method, the obtained values proved its



TABLE IV
The main Advantages and Inconveniences of the proposed
technique

Advantages

Inconveniences

o Reduced size: The tech- o Computationally

nique is based on extract- intensive: The integrity
ing two vectors that re- verification is  based
place the matrix, which on the original data
can significantly reduce reconstruction, which
the size of the stored in- requires a huge
formation. computation.

o Efficient storage: The e Limited to binary data:
technique efficiently The technique is limited
stores information using to binary data as it relies
the horizontal and on the number of ”1”s

in each row and matrix
column.

Possible hash collisions:
While adding the hash
of the matrix allows for
a unique representation
of data, there is still a
possibility of hash colli-
sions, potentially result-
ing in data corruption.

vertical vectors, reducing
storage costs.

e Unique representation: .
The addition of the
hash of the matrix in
the  proposed  model
allows for a unique
representation of data,
which helps to ensure its
integrity and prevents
data tampering.

effectiveness, as we saw that the percentage of reducing the
size is very large, especially when the original size of data is
considerable; for a matrix M = 512 x 512 bits, we achieved
a rate of reduction equal to 96.42%. In other words, the
effectiveness of the proposed method increases as the data
size to be represented increases. In future work, we intend
to exploit the proposed technique to create a consensus
system based on the original data recovery. This is done
by diffusing the computed matrix (H,V, and Hashys)
problem in the network, after that, the nodes compete to
obtain the original matrix M. Furthermore, we propose
to define a central system that stores the original data
where any integrity check should be passed by this system.
Overall, the proposed technique opens many advantages
and solutions.
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