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ABSTRACT
Information-Centric Networking (ICN) is receiver driven, asyn-
chronous and location-independent, hence it natively supports
client-mobility. However, post-handover delay is a problem for
delay-sensitive mobile applications, as they need to (re-)submit
their subscriptions and wait for them to get resolved and (probably
re-) transmitted before receiving the demanded data. To avoid this
problem and optimize performance, this paper proposes a Mobility-
based Proactive Multicast (MPM) scheme. Unlike reactive or blind
multicast solutions proposed in the past, MPM takes autonomous
decisions locally at various network access points (cells) prior to
the movement of mobile clients, using a semi-Markov mobility
prediction model that predicts next-cell transitions, along with an-
ticipating the duration between the transitions for an arbitrary user
in a cellular network. Since cellular backhaul links are typically
a bottleneck, MPM trades-off effectively part of the capacity of
the (congested) backhaul link for a decreased delay experienced
by users after handovers thanks to a congestion pricing scheme
used for backhaul capacity allocation. Our preliminary performance
evaluation results show that MPM captures well the temporal local-
ity of mobile requests due to the semi-Markov mobility prediction
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model, hence it achieves a better performance compared to both a (i)
blind/naïve multicast and a (ii) content popularity-based proactive
multicast.
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1 INTRODUCTION
Information-centric Networks (ICNs) [20] can seamlessly support
subscriber host mobility. Mobile receivers merely need to (re-)issue
their subscriptions for Information Objects (IOs) after attaching to a
new network location, and then have their subscriptions resolved by
the network before the actual data transfer starts, utilizing anycast
from some source to the current network location of the requesting
mobile users. Nevertheless, increased delay for receiving data in
ICN networks can still occur after a mobile completes a handover.
Specifically, users need to wait for their subscriptions to be resolved
before starting to receive their desired IOs. Alongside propagation
delay, this can cause Quality-of-Service (QoS) degradation for delay
sensitive applications which demand a tight delay bound, upon
handovers, e.g. video streaming applications.
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Past efforts [2, 7, 22] in the literature adapt multicast for han-
dling large mobile populations. This idea can be the basis for sup-
porting seamless mobility in heterogeneous wireless networking
environments comprised by different types of micro, small, pico
or femto cells, as well as Wi-Fi hotspots. Towards this aim, the
Publish-Subscribe communication in ICNs is intrinsically multicast,
which natively allows a wide distribution of the requested IO data
around the network “areas” of the mobile subscribers. However,
blind/naïve multicast in all possible network regions where the
mobile resides, or can possibly move to, is resource-wasting. This is
important as, although wireless technologies continuously increase
their capacity, the corresponding capacity of the backhaul links
which connect the wireless cells to the backbone network (typically
ADSL or VDSL) are constrained relative to demand, particularly in
scenarios that involve large mobile populations.

Inspired by proactive solutions designed for enhancing mobil-
ity support in cellular and/or Pub-Sub mobile environments via
caching such as [3, 4, 10, 11], and particularly by work which fo-
cuses on leveragingmobility prediction information such as [19, 21],
this paper presents an efficient Mobility-based Proactive Multicast
(MPM) model tailored for delay-sensitive mobile applications. The
solution exploits information on (i) users’ individual mobility via
a semi-Markov mobility prediction model and knowledge of users’
requests, and applies a (ii) congestion pricing scheme for utilising
the congested backhaul capacity of cells in an efficient manner,
so as to take proactive multicast actions that reduce the expected
cost of delay for users who move and attach to another cell. The
proposed solution models the mobility behaviour of users in a cel-
lular network as a semi-Markov process. It is applied for predicting
the next-cell transitions, along with anticipating the duration be-
tween the transitions for an arbitrary user in a cellular network.
The parameters used in the model can be derived from the cellular
data that can be readily obtained from traffic logs. The basic MPM
model follows a simple, lightweight and fully decentralised process
of autonomous proactive multicast decisions at cells, and can be
extended with bandwidth allocation replacement actions (MPM-R)
that may further increase delay cost gains. Moreover, the solution
can best fit within the network layer of ICN architectures which
allow to have a full knowledge of users’ requests and to leverage the
native multicast abilities of Pub/Sub communication. Nonetheless,
the solution can also be applied as an application-layer solution
over standard TCP/IP network architectures, in order to reduce
the delay of establishing a new TCP connection between a mobile
receiver and a remote server.

In what follows, Section 2 discusses the semi-Markov mobility
prediction model that is used for taking the efficient proactive mul-
ticast decisions. Next, Section 3 presents the MPM model. Section 4
illustrates the performance evaluation of the proposed scheme.
Section 5 describes the related work before we summarise our con-
clusions and future plans in Section 6.

2 SEMI-MARKOV PREDICTION MODEL FOR
MOBILITY

Cellular networks are usually divided into cells, each served by
at least one base station. Every cell in the network is identified
by a unique cell ID which is also used to track and identify users’

location. The location of a user can also be identified by his/her ge-
ographic coordinates. In particular, users’ coordinates are directly
mapped to the cell ID in which a user is located. Since our mo-
bility prediction facilitates network resources management, it is
therefore assumed that a user’s location identification via cell ID is
sufficient from network’s perspective. Furthermore, the mobility
history of a mobile user is also described by the list of successive
visited cell IDs during users trip (i.e., the sequence of cells that
the user was connected to throughout his journey). Thus, users’
mobility history patterns can be periodically recorded using the
cell-ID representations. In this context, each cell that is building a
mobility pattern profile, records the number of handovers made to
neighbouring cells, as well as the residence time (time spent in the
current cell i before transition to the next cell l occurs). This allows
for the computation of the cell-transition probabilities pi,l and the
distribution of cell residence times at each location from the set of
recorded residence times. We assume that the network, at each of
its cells, keeps a record of session residence time and the cell ID of
the next-cell transition [1].

In this work, user mobility is modelled by a semi-Markov process
[13], which allows for arbitrary distributed residence times and can
be viewed as a process with an embedded Markov chain. Here, the
embedded points are the time instants when a user attaches to a new
cell. In a semi-Markov process, the successive state occupancy’s
(visited cells represented by cell IDs) are governed by the transition
probabilities pi,l of a Markov process. The residence time in any
state depends on both the current-state and the next-state where the
user will move. The semi-Markov kernel for a time-homogeneous
process is given by Φi,l (t ) [15], which denotes the probability that
immediately after making the transition into state i , the process
makes a transition to state l within t time units. Φi,l (t ) is defined
as

Φi,l (t ) = Pr

Xn+1 = l ,Tn+1 −Tn ≤ t |Xn = i


(1)

where Xn and Xn+1 represent the state of the system after n and
(n + 1) transitions, respectively.Tn andTn+1 are the times at which
the nth and (n + 1)th transitions occur, respectively. We can further
express the kernel as Φi,l (t ) = Pi,lΨi,l (t ), where

Ψi,l (t ) = Pr

Tn+1 −Tn ≤ t |Xn+1 = l ,Xn = i


(2)

Ψi,l (t ) represents the conditional probability that a transition will
take place within t time units, given that the process has just en-
tered state i and next will move to state l . The residence times in
such a process can follow any arbitrary distribution. This allows for
a convenient departure from the common assumption of exponen-
tially distributed residence times, thus permitting a more accurate
representation of the temporal behaviours [6].

Since it is known that as time goes to infinity, Ψi,l tends to one,
we have Pi,l = limt→∞ Φi,l (t ). We also define the kernel ϕi,l (t ) =
pi,lψi,l (t ), where ψi,l (t ) is the corresponding residence time and
P = [Pi j ], ∀ i , j ∈ [1,n] is the state transition probability matrix



Mobility-based Proactive Multicast . . . in Cellular Network Environments MECOMM ’17, August 21, 2017, Los Angeles, CA, USA

defined as:

P =



p1,1 p1,2 p1,3 . . . p1,n
p2,1 p2,2 p2,3 . . . p2,n
...

...
...

. . .
...

pn,1 pn,2 pn,3 . . . pn,n


(3)

where

ϕi,l (t ) = Pr

Xn+1 = l ,Tn+1 −Tn = t |Xn = i


(4)

and

ψi,l (t ) = Pr

Tn+1 −Tn = t |Xn+1 = l ,Xn = i


(5)

Utilizing the past handover history of a user which is represented
as a tuple < attachment time, cell ID >, the state transition prob-
ability matrix P and the residence time distribution matrix Ψ are
initialized as follows:

pi,l =
|Hi,l |
|Hi | (6)

ψi,l (τ ) =
|Hi,l,τ |
|Hi,l |

(7)

where Hi,l is the number of handovers from cell i to l , and Hi is the
total number of user handovers from cell i regardless of the destina-
tion.Hi,l,τ is the number of handovers of user’s from cell i to l with
a residence time within the defined τ time interval. Whenever there
is a handover from cell i to l , pi,l andψi,l (τ ) and ϕi,l (τ ) are updated.
The cell with the highest ϕi,l (τ ) probability is chosen as the pre-
dicted future destination when the time spent in cell i falls within
time interval τ . This prediction process can be used for both offline
learning, where a training period is needed before actively applying
the learned prediction matrices, or it can also be used for online
learning where the probabilities are continuously updated based on
the experienced transitions. Therefore, any changes in the mobility
behaviour are directly reflected on the prediction probabilities. In
this work, we focus on the offline prediction model as operators are
aware of their transition statistics. We use the resulting (residence
time dependent) probability matrix to predict mobile nodes next
destination cells.

3 MOBILITY-BASED PROACTIVE
MULTICAST MODELS

In this section we present our proactive multicast allocation
decision model. Our objective is to minimise the average delay
across all requested IOs, subject to the cell backhaul bandwidth
constraints. Note that the proactive actions taken in one cell are
always independent from the corresponding decisions taken by
other cells, hence our model is fully distributed. Let qls denote the
probability that the mobile requesting IO s moves to cell l and Bl
denote the maximum capacity at the backhaul link of l . For the
sake of simplicity Probability qls is defined by the prediction model
discussed in Sec. 2, where qls ≡ ϕi,l (τ ) when the time spent in cell
i falls within time interval τ . Also, let Sl be the set of IOs that are
currently requested by mobiles that have non-zero probability to

move to l and L be the set of all cells. We define the following
optimization problem:

min
b ls



s ∈Sl
Ds (8)

subject to


s ∈Sl
o · bls ≤ Bl , ∀l ∈ L, (9)

where Ds =

l ∈L Dl

s is the average delay for obtaining s after
completing a handover,bls is equal to one if s is proactively multicast
by l and zero otherwise.Dl

s is equal toqlsDmiss if s is not proactively
multicast by l (bls = 0), in which case the user has to suffer a
delay for re-submitting its request and wait for it to be resolved in
order to start getting the data of s . Alternatively, if s is proactively
multicast by l , then the expected delay cost for obtaining s by the
mobile nodes which attach to l is qlsDhit (bls = 1). The latter cost
is smaller than qlsDmiss , as the data are immediately available to
the users that attach to l and Dhit represents only a minimum
delay for completing the attachment process of mobiles to l in the
MAC layer. The above optimization problem involves autonomous
proactive decisions by each cell l ∈ L for each IO s requested by any
mobile that can possibly move to l , based on the mobile transition
probabilities of the mobiles requesting s to l .

3.1 Basic model
In order to efficiently utilize the available backhaul link of l , we
introduce a congestion price pl which is adapted with each newly
comming request to l based on the current aggregate demand for
multicast s ∈Sl o · bls at l and the available bandwidth of the link
Bl :

pl =

pl
′ + γ



s ∈Sl
o · bls − Bl


+

, (10)

where pl ′ is the previous price value before receiving the latest
request and that γ is a price update factor determining how quickly
the price adapts to changes in the demand for proactive multicast.
The multicast decision for s at cell l is based on rule

bls =


1 if Ql
s (Dmiss − Dhit ) ≥ pl ,

0 Otherwise ,
(11)

where Ql
s aggregates the individual transition probabilities qls of

every mobile with an active request for s , i.e. Ql
s =

qls . Note that

Ql
s expresses local IO popularity with respect to (w.r.t.) the cell

l , which as shown in Sec. 4 can capture temporal locality or user
requests. Note that when no mobile currently being served with
data from s remains connected to l aswell as when there are no other
proactive multicast mobile requests for s (i.e., when Ql

s = 0), the
allocated part of the backhaul capacity is freed and multicast stops
at l . Evidently, the decision rule in (11) provides a fully decentralized
Mobility-based Proactive Multicast (MPM)model approach for taking
autonomous actions for each IO s in each cell l . Adjusting the
congestion price with (10) causes decisions to make an efficient
use of available backhaul capacity and to achieve the optimization
target set with (8): when the backhaul is i) underutilized, the price
decreases and allows for more IOs to be proactively multicast;
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however, if ii) the multicast demand is greater than the backahul
capacity, then the price increases and causes to reduce the number
of IOs being multicast. Last, for the case that the price is such that
iii) the proactive multicast demand equals the backhaul capacity,
then the proactively multicast IOs correspond to the highest values
of Ql

s (Dmiss −Dhit ), which achieves the optimization target of (8).
Regarding who takes the decision, one option is for l to use

the cache congestion price pl and to apply the decision rule (11).
Note that Dhit as well as Dmiss can be easily computed based on a
local history from past mobile attachments to l . Alternatively, the
multicast decision can be taken at the mobile or some proxy on its
behalf. In this case, the mobile needs to learn the current price pl
from all l ∈ L as well as Dhit ,Dmiss .

3.2 Model extensions
We extend our basic MPM model to integrate replacement decisions
for backhaul reservation, hence yielding a Mobility-based Proactive
Multicast model with Replacements (MPM-R). The goal of the adapted
extensions is to improve the model’s effort for capturing temporal
locality via updating proactive decisions with each newly incoming
(resp. leaving) request. The former have an impact onQl

s , thusMPM-
R makes an effort to keep the capacity in the backhaul proactively
allocated only for the IOs that more likely to be served to multiple
users, based on fresh information about mobile requests.

Adapting replacements to our model changes the process of
proactive decisions in twoways: (i) requests are not immediately
satisfied nor rejected with a decision rule like (11) and (ii) actions
are not subject to a congestion price for the requested capacity part
of backhaul of the cell. Instead, an object s is immediately multicast
if its implied bandwidth need os fits in the unallocated backhaul
capacity; otherwise MPM-R explores the possibility of evicting one
or more IOs e that are currently being multicast. To decide which
IOs to evict, MPM-R follows a procedure according to which IOs e
with size oe are polled for eviction in order of increasingG (e )/oe
until there is enough free capacity in the congested backhaul of the
cell for s to fit and provided that


∀e G (e )/


oe < G (s )/os , (12)

G (e ) = Ql
s · (Dmiss − Dhit ) . (13)

If evicting the next e violates (12) during this process, then the
multicast request for s is dismissed. The purpose of (12) is to opti-
mize the total gain per utilized backhaul capacity unit as a heuristic
for tackling the knapsack combinatorial optimisation problem; i.e.
maximising the total gain of the multicast IOs given their different
individual gain values G (s ), different capacity reservation demand
os and the limited capacity of the backhaul link. Evidently, (12) can
be omitted if all requests refer to the same os ≡ o.

3.3 Model computational complexity
The basic MPM model is very lightweight, implying only an O (1)
computational complexity per multicast request decision. On the
contrary, capacity reservation replacements add a significant bur-
den on proactive actions, as the MPM-R model needs to maintain a
gain-based ordering for all its pending multicast requests. This can
be commonly done with a binary heap. The originally proposed
heapsort insertion algorithm implies (in worst case) anO (n ·loд(n))

complexity cost to maintain the ordering after taking n multicast
decisions. Even if a faster insertion method [9] is used, it will still
require (2 + o(1))n actions. Though significantly lowered with [9],
MPM-R decisions imply anO (n) complexity that is worse thanO (1)
in the case of MPM.

4 EVALUATION

This section presents a preliminary performance evaluation with
the use of a custom Java simulator1.

4.1 Simulation setup
We use a realistic car traffic mobility trace and a corresponding cell
distribution trace for the greater urban area of the city of Cologne2.
Due to practical computational resource restrictions, we use six
randomly sampled regions of the trace, each of which corresponds
to 2.5 km × 2.5 km sub-areas. The sampled areas are used in two
stages: first, for extracting the semi-Markov mobility prediction
model and, second, for running the mobile simulations for evalu-
ating the performance of the proactive multicast decisions with
MDM and MDM-R .

User demand for proactive multicast: The number of mo-
biles during a simulation run depends on the sampled area and
the registered time in the mobility trace. We adapt a series of five
synthetic traces of video file requests produced with the Globe-
Traff [12] workload generator. Each trace corresponds to a catalog
of 440 videos and requests follow a Zipfian distribution with pa-
rameter s = 0.9. Each user issues ten requests at any time. Such a
demand model can represent modern mobile applications like Face-
book, which auto-play multiple videos while users scroll down their
“timeline”. Also, recall that mobiles correspond to cars (or buses), i.e.
requests can be assumed to originate from multiple mobile devices
in each traced vehicle.

Availablemulticast resources: Regarding the total “supply” of
multicast resources that are subject to a restricted backhaul capacity,
the number of cells in each simulation run depends also on the
assumed sampled area. Since the original trace contains information
only about the location of the cells, we assume microcells with a
coverage range of approximately 500m and a backhaul link capacity
that is equal to 20Mbps .

Gain metric (90% upon multicast hits):We assume that the
delay Dhit (resp. Dmiss ) experienced for obtaining an IO is the
same for all mobiles in case of a multicast hit (resp. miss), i.e. when
the requested IO is (resp. is not) proactively multicast by the desit-
nation cell. Upon multicast hits the implied delay cost gain is equal
to 90% relative to the case of a multicast miss. This corresponds to
the delay induced by the submission of a user’s IO subscriptions
and the in-network resolution & initial path setup process before
the actual data transfer starts. The remaining 10% of delay cost
corresponds to the MAC-layer connection, which is orthogonal to
our problem and solution.
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Figure 1: Transient performance gains over a period of approximately 21
hours.

4.2 Results
Fig. 1 presents transient performance gains along with 95% con-
fidence intervals over a period of approximately 21 hours taken
from the mobility trace. Apart from MPM and MPM-R, the graph
includes the gains of two benchmark models: (i) MaxPop and (ii)
Naïve. MaxPop multicasts only the topmost popular IOs that can fit
the backhaul capacity of cells based on their long-term requests fre-
quency, while Naïve blindly preallocates the available cell backhaul
capacity by neglecting congestion conditions and users’ mobility
information.

Notice the fluctuations in all gain results. They are due to the
dynamic demand conditions which change with time on the X axis
of the graph. When traffic increases (resp., decreases) during the
simulation, so does demand. A higher (resp., lower) demand causes
MaxPop gains to increase (resp., decrease) and at the same time
MPM and (particularly) Naïve gains to stabilize (resp., increase) up
until demand reduces (resp., increases) again. This is because with
higher (resp., lower) traffic/demand, the chances of requesting a
top-most popular IO are higher (resp., lower). Still, the performance
of MPM remains higher than the one of MaxPop. This is because
MaxPop decisions can not capture temporal locality, unlike our
model which exploits up-to-date information on users’ requests
andmobility conditions via the recorded cell residence times used as
input to the underlying semi-Markov mobility prediction model. As
expected, the graph shows a better performance of MPM compared
to Naïve as well. Mobility prediction and congestion pricing help
to utilize the congested backhaul link more efficiently and, hence,
to achieve greater gains with proactive multicast.

Finally, the results show an improved performance of our model
with capacity reservation replacements, i.e. MPM-R reaches closer
to an optimal allocation of the congested backhaul resources than
the basic MPM model. This is because MPM-R continuously adapts
its decisions to the dynamic demand conditions reflected on Ql

s in
(13). However, it is also important to note thatMPM has a relatively
good performance compared to MPM-R, as MPM is significantly more
lightweight than MPM-R (see 3.3).

1https://github.com/xvasilakos/EPMS-Sim
2Available here: http://kolntrace.project.citi-lab.fr/

5 RELATEDWORK

Proactive solutions have been previously proposed for the pur-
pose of fast handovers [14] and for vehicular Wi-Fi access [8]. The
work of [16] proposes a proactive model for selective neighbour
caching that reduces the handover delay in wireless LANs. The
underlying motivation in the above works lies upon the fact that at
most 3 or 4 APs are possible handover targets, even when the total
number of neighbouring APs is large. In addition, the approach
of [5] improves QoS support during handovers in Wi-Fi and cellular
networks based on mobility information to undertake proactive
cache actions that reduce handover delays. Applying proactive ac-
tions similarly to the aforementioned, only based on multicast
rather than caching, is also possible for reducing resolution & path
setup (resp. connection setup) delay in ICN (resp. over TCP/IP):
for instance, the objective in [16] is to proactively send a mobile’s
context to neighbouring APs to reduce association delay.

Finally, many recent [3, 11, 21] efforts focus on improving the
service of popular IOs with proactive solutions designed for hetero-
geneous wireless networking environments composed of femto or
pico cells and Wi-Fi hotspots as a remedy for backhaul bottlenecks.
Besides these popularity-based solutions, there are proposals that
focus on mobility prediction [17, 19] or combine mobility predic-
tion to IO popularity [18, 21]. The most interesting conclusion out
of these efforts is the importance of mobility information for cap-
turing temporal locality. As it turns out, mobility information can
yield better performance results compared to mere IO popularity
information in several scenarios w.r.t. certain demand conditions or
IO catalog characteristics like popularity skewness, catalog and in-
dividual IO size, etc. Particularly in urban environments, the works
of [18, 21] stress the significance of up-to-date mobility information
on the accuracy of proactive actions due to the higher road network
complexity, traffic congestion and the variety of mobility habits
and routes.

6 CONCLUSIONS

This paper presents a Mobility-based Proactive Multicast model
for cellular networks which uses a semi-Markov mobility predic-
tion scheme. The solution tries to reduce the delay experienced by
mobile users when they attach to a new cell. Within an ICN context,
the model is designed with Pub/Sub-implied delay in mind, but it
can be also applied over regular TCP/IP network architectures to
reduce the time needed for establishing a new connection between
a requesting mobile and a remote IO server. Our preliminary per-
formance results based on a realistic mobility scenario indicate that
gains from mobility-based proactive multicast actions are relatively
higher compared to the cases of IO popularity-based and blind
proactive multicast. Our model decisions use fresh information
on user demand and mobility, hence allowing to adapt multicast
decisions to changes in temporal locality. This outcome largely
coincides with the conclusions of work [18, 21] in the literature on
proactive caching models, which relate the accuracy of proactive
actions in cellular networks to the latest mobility information in
urban environments.
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