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Foreword 

Foreword by Professor Rob Aspin, Chair of the Council of Professors and Heads of 

Computing (CPHC), Head of Computing and Associate Dean, University of Central 

Lancashire. 

In this paper, Latham and Shardlow present a detailed and objective review of Large 

Language Models (LLM), such as ChatGPT. This work draws on both current research 

and their own workshop activity, funded by the Council of Professors and Heads of 

Computing (CPHC) 2023 Special Projects Fund. They seek to identify and normalise 

the place of LLMs in Higher Education teaching, specifically for computing, recognising 

the disruptive impact such technologies are likely to have and exploring how these can 

be positively integrated into teaching and assessment. The paper builds on previous 

work, through the use of a sponsored workshop, to assess the potential threat LLMs 

present in Computing Education, before exploring policy considerations that can be 

taken forward to inform how the positive benefits of the technology can be incorporated 

in, HE institutions.  

LLMs offer significant potential to revolutionise the ability to efficiently develop code 
and support associated processes such as documentation, review and information 
gathering that inform and reflect on the development of complex systems. For industry, 
where the majority of computing students will spend most of their working career, these 
techniques and tools are likely to become adopted and expected. These tools will be 
integrated into the professional software development process and will students offer 
a more strategic perspective on the crafting of solutions.  

However, in academia where students are forming their knowledge, skills and 
understanding and developing expertise in their ‘craft’, such tools could be considered 
inappropriate and raise concerns about unfair means, plagiarism and academic 
misconduct. In both academia and industry there are considerable concerns over the 
robustness and reliability of both code and text generated by LLMs which call into 
question the fidelity of their output against the task they have been set. The ability to 
critically evaluate the output of LLMs against the requirements set and context of the 
problem will be essential moving forward and our obligation is to ensure our students 
can use such technologies safely, critically, and responsibly. This is not massively 
dissimilar to concerns raised when search engines became more prevalent. At that 
time, there were concerns that the accessibility of readily available access to ‘open’ 
knowledge would impinge on academic integrity for students and adversely affect the 
reliability and robustness of the sources used to inform technical development and 
critical thinking. Time has shown responsible use and the education around criticality 
and appropriateness of sources has turned previous disruptive technologies into well 
integrated practices. The research here, navigated and presented in an objective 
study, shows potential for the similar incorporation of LLMs to support future 
opportunity and evolution of the computing domain.  
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Executive Summary 

On Monday 17 July 2023, 65 academics from 33 universities across the UK joined 
forces for a workshop to explore the affect of generative AI tools (such as ChatGPT) 
on Computing Higher Education, and to co-develop guidelines for university 
assessment policy. The ‘ChatGPT in Computing Education: A workshop to Co-
Develop Guidelines for Assessment Policy’ workshop was funded by a Council of 
Professors and Heads of Computing (CPHC) 2023 Special Project Fund grant, and 
hosted by Dr Annabel Latham and Dr Matthew Shardlow at Manchester Metropolitan 
University, UK. 

The day started with a talk on How Large Language Models (LLMs) work, to give 
context for the discussions. In the first workshop task, six different modes of 
assessment common in computing-related higher education courses were evaluated 
in terms of the threat level and opportunities for redesign in light of LLMs. A group 
feedback session explored findings and thoughts about the six traditional assessment 
types and ideas for future assessments. The group noted that assessment types are 
already evolving away from the traditional knowledge-based assessments (factual 
recall, closed exams) towards skills-based assessment (coursework, practical 
activities). Whilst knowledge-based assessment may be threatened by LLM-based 
plagiarism, skills-based assessments require the learner to demonstrate a practical 
ability. If this is assessed through a written piece, it may be vulnerable to academic 
misconduct, however there are many alternative ways of assessing skills such as 
practical exercises and Vivas. The group examined a number of forms of written 
assessments (knowledge recall, critical analysis, long essay, and experiential) as well 
two code-based assessment formats (code production and code analysis). The first 
part of this report gives a summary of the findings for each of these types of 
assessment. 

The final workshop activity was a World Cafe activity, whereby each table group was 

assigned a policy topic, and a host who remained with the table to lead discussions. 

Each group of attendees spent 10 minutes at each table discussing and shaping policy 

guidelines for universities. These groups discussed a wide range of policy topics 

including how to incorporate LLMs into HE practices, mitigation of academic 

misconduct, delivery strategies and appropriate timescales for adoption. These 

discussions, along with relevant policy points are summarised in the second section 

of this report. 

This report is intended for policy makers in Computing HE settings and beyond. Our 

findings demonstrate the need for informed decisions to be made within our university 

settings. LLMs are here and their power is increasing. As educators, we must stay at 

the forefront of this curve, incorporating this technology into our teaching practices to 

the benefit of our students’ education and future employment prospects.  
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1. Introduction 

1.1. Assessing the Outputs of Large Language Models 

Large Language Models (LLMs) can provide near-instantaneous responses to 

queries, written in fluent prose that gives a seductive veneer of authority. The human 

response to their abilities is a demonstration of ‘The ELIZA Effect’ – the projection of 

human traits, including empathy and authority into text generated by computational 

systems (Turkle, 2007). 

LLMs appear convincing and knowledgeable even though their underlying models 

contain no knowledge about the meaning of words and phrases – only their statistical 

relationships to one another in different contexts. Without at-least some knowledge of 

the workings of LLMs and an understanding of their inherent limitations, users can be 

tempted into unquestioningly accepting their outputs, treating these programs as 

infallible oracles rather than ‘stochastic parrots’ (Bender et al., 2021) churning out 

unaccountable, unverified and potentially dangerous text. 

1.2. Academic Literacy Skills 

A key set of skills taught at university level are those allowing students to perform 

independent research in order to collect, categorise, assess and verify information. 

Whilst introductory learning, concentrating on the knowledge and comprehension 

stages of Bloom’s model can often be satisfied from within supplied materials; higher 

levels of study require students to supplement provided learning with additional 

materials acquired through independent study. 

The PROMPT criteria developed by the Open University (Open University, 2020) is an 

approach to evaluating information recommended to the University’s higher-level 

students and has been adopted by other institutions. PROMPT encourages learners 

to consider the sources of information included in their work and to evaluate these 

sources in a critical manner. 

Approaches such as PROMPT are compatible with the use of LLMs in assessment. 

Designing assessment to award credit for choosing reliable, objective and authoritative 

searches encourages learners to develop academic literacy skills such as questioning 

the source of information. Learners should not expect to receive much, if any credit, if 

their solutions simply use material from a LLM; rather they should draw on a range of 

sources and reference them accordingly as well as demonstrating engagement with 

these resources rather than relying on the formidable summarisation skills of this 

technology. 
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Table 1, The PROMPT Criteria (Open University, 2020). 

Provenance 
Is the origin of the information clear? Are the authors or publisher identifiable? 

Do they have credibility and authority? 

Relevance Is the information relevant to the question being asked? 

Objectivity 
Is the article objective or does it come with a particular agenda? Is it written in 

a dispassionate manner, or is it inappropriately emotive or manipulative? 

Method How was the information acquired? Was the methodology appropriate? 

Presentation Is the information clearly presented without obvious omissions and distortions? 

Timeliness 
Can the material be dated? Does the age of the material have an impact on its 

usefulness? 

Any consideration that LLMs are acceptable in assessment requires that students 

have some awareness of the technologies used. There is no need for any deep 

understanding of the workings of LLMs, only the broad concept that they take a 

probabilistic approach to producing semantically and syntactically correct text – but 

have no inherent understanding of their outputs. Such information should serve to 

dissuade the unfortunately widespread view that LLMs are truly intelligent and can be 

trusted to produce meaningful responses. Students armed with the knowledge that 

LLMs are – by their very nature – unreliable and prone to falsification are more likely 

to critically appraise their outputs than those learners who trust them implicitly. 

1.3. Hallucinations 

Whilst the issue of ‘hallucinations’ has attracted a great deal of interest as a potential 

method of detecting improper use of LLMs, it should be remembered that falsification 

of references by ChatGPT is in good part a reflection of the sandbox environment 

within which early versions of the model functioned; the program having no access to 

academic libraries and other sources of factual information beyond those included in 

its training sets. 

The ‘opening up’ of LLMs through the development and deployment of Application 

Programming Interfaces (APIs) that allow for the exchange of information between 

LLMs, and other online services will effectively eliminate obvious fake references and 

this relatively straightforward method of identifying cheating. Instead, hallucinations 

will take the form of distorted outputs reflecting inherent biases and omissions in the 

underlying training that will be much harder to detect. 

We propose that all students should receive appropriate training into LLMs giving them 

a broad understanding of their operation, training, abilities and shortcomings in order 

that they can critically assess their outputs. 

1.4. Is This Really New? 

In the early 2000s, educators were concerned about the potential for Wikipedia to 

supply learners with misleading or erroneous material. The open-source nature of the 
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online encyclopaedia led to a perception that the encyclopaedia’s content would be of 

lower quality than conventional reference sources where material was checked and 

corrected by professional reviewing and editing teams. Furthermore, since Wikipedia 

pages could be edited by any user, content could be changed to reflect fringe points 

of view, omit inconvenient information, or be vandalised by malicious 

actions (D’Agostino, 2022). 

Rather than imposing an artificial ban on Wikipedia – and by doing so removing access 

to a huge volume of high-quality information; most institutions have developed policies 

that allow for limited use of Wikipedia as an information source. One approach is to 

allow students to draw on Wikipedia, so long as it is correctly referenced, as well as 

requiring evidence from other, authoritative sources. This method allows students to 

continue using their existing skills at finding online content but requires them to 

develop new academic skills in proving the validity of the source and finding supporting 

evidence. This approach is supported by studies (Meseguer-Artola et al., 2020; 

Sielicka-Barylka, 2021) showing that well-informed use of Wikipedia has a positive 

impact on university students due to the service having generally up-to-date material 

which is considered reliable and useful. 

Other approaches to incorporating Wikipedia in education combine the usefulness and 

familiarity of the online encyclopaedia with requirements for academic 

credibility (University of Edinburgh, 2020) as well as exposing learners to the creation 

and curation processes underpinning Wikipedia by having them create their own 

content for the encyclopaedia as part of their studies (Soler-Adillon, Pavlovic and 

Freixa, 2018). 

A corollary can be drawn with the use of calculators in mathematics assessment. 

Following their widespread availability in the mid-1970s, calculators have been 

incorporated into the mathematical curriculum, albeit frequently provoking controversy 

about their impact on basic mathematical skills. Adoption of calculators has often been 

followed by later restrictions on where and how they can be used. 

Critics of calculators in mathematics education frequently cite learners becoming 

reliant on the device without needing to understand the mathematical operations 

themselves, and in doing so, failing to demonstrate a step-by-step working of 

problems.  Research does not support these arguments (Cockcroft, 1982; McIntosh, 

1990; Sparrow, Kershaw and Jones, 1994; Ruthven, 2009) and more recent 

restrictions on the use of calculators in the UK SAT assessment has been criticised by 

mathematical educators: 

‘In fact, students who use calculators regularly in lessons score as high or higher in 

tests, taken without calculators, compared to those who do not. On the whole, the use 

of calculators as an integral mathematical tool has been shown to be beneficial, 

particularly in the development of mathematical problem solving. It is a pity that current 

policy is retrogressive in this respect.’ (Sellgren, 2014) 

Whilst a ban on the use of LLMs in assessment might seem a reasonable approach, 
experience with previous disruptive technologies suggests that engaging assessment 
models can be developed that will utilise the powers of LLMs to create more engaging, 
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richer learning. It may be necessary to put short-term bans on the use of LLMs for 
certain modules or topics until new assessment models and supporting learning 
materials are developed, but such is the pace of development that bans cannot be 
sustainable. We propose that educators perform a systematic review of the literature 
covering experiences of educators facing previous technological changes to learn 
lessons that could inform future assessment models incorporating LLMs. 

1.5. All This Will Pass  

Many of the concerns raised by educators about the improper use of LLMs in 
assessment reflect the current state-of-the-art where these tools exist as stand-alone 
services. Inevitably, LLMs and other forms of generative AI will be incorporated into 
other forms of software. 

Already, Microsoft has begun to use the GPT-4 model to provide enhanced search 

results in Bing (Mehdi, 2023) and will soon incorporate LLM functionality into the 

Microsoft Office suite of tools (Spataro, 2023). Other major software providers used in 

education; including Google (Google, 2023) and Adobe (Adobe Inc., 2023) have 

either introduced, or will shortly do so, AI tools as part of a standard workflow. 

Increasingly, AI will become just another tool – perhaps even an ‘invisible’ function – 

used to create a final piece of work. Arguably, this has already happened with the use 

of spell, style and grammar checkers not only being routine, but actively encouraged 

by educators to improve the quality of student submissions. Each of these tools uses 

AI technology to perform its task, but their adoption has not raised great concerns 

amongst educators. 

We suggest educators should develop assessment strategies concentrating on sound 

research methodologies emphasising the quality of sources and the requirement to 

find multiple lines of evidence rather than becoming distracted by the short-term 

disruption caused by LLMs. 

Despite their many flaws, LLM detection tools to provide opportunities for ensuring 
academic integrity. Recent studies investigating the prevalence of detection - without 
interpreting what a detection means - found that there was a significant increase in the 
number of scripts flagged as containing AI-generated material (Gooch et al., 2024). 
The paper goes on to present an analysis of the demographic profile of flagged scripts, 
finding that male students, students with lower prior educational attainment, and 
younger students are more likely to be flagged. It remains an open question as to how 
effective LLM detection tools will be in supporting academic. 
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Section 1 Assessment Threat Level and Redesign 
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2. Selection of Assessment Methodologies  

To better understand the impact of LLMs and particularly ChatGPT on our education 

practices, we have selected six forms of assessment that are typically given in a 

Computing Higher Education setting. These assessment types are not exclusive to the 

domain of the computational sciences and the findings that we give in the following 

sections may well be of value to readers from other domains who provide similar 

modes of assessment. We are also not seeking to limit the types of assessment that 

could possibly be given within a computing setting. Our selected modalities are an 

inexhaustive list, designed to cover a majority of computing assessments, prioritising 

those that are particularly vulnerable. For example, we do not consider video or oral-

based assignments, as it is obvious that these are low-risk settings for academic 

misconduct through LLMs (indeed, face-to-face direct oral assessment has been used 

since antiquity as a robust means of assessing an individual's knowledge). We have 

explicitly not considered future possible means of assessing students that may arise 

from the widespread use of LLMs in education. Whilst we will make recommendations 

for the integration of Language-based Generative AI into assessment, we cannot now 

comment or draw conclusion on what is not yet widespread or accepted as a valid 

means of assessment. 

When considering assessment styles, there are a number of factors that are important 

to take into account. Decisions around assessment modalities should be learner 

centric (Bloxham and Boyd, 2007), prioritising accessibility (Baker et al., 2020). The 

instructor must consider whether to deliver assessment material at an individual or 

group level (Lejk, Wyvill and Farrow, 1997). Assessment timing is key and both 

continuous and final assessments may be used in tandem to improve learner 

outcomes (Cox, Imrie and Miller, 2014). The skills to be assessed by an assessment 

type must be taken into consideration. As well as subject specific skills, a tutor may 

include assessment of general skills (Clanchy and Ballard, 1995) and (particularly for 

computing education) additional assessment of problem-solving tasks (Lu et al., 2022., 

Pérez et al., 2017). The delivery method of assessment must also be considered. 

Remote assessment is increasingly prevalent since the global pandemic of 2020, 

although left unchecked this may lead to further academic misconduct if mitigation is 

not given (Guangul et al., 2020), such as providing each learner with a bespoke, or 

watermarked problem set. 

2.1. Assessment Modalities 

We selected three categories of assessment type, which are further subdivided to give 

6 separate assessment modalities. The three categories and their subcategories are 

as follows. Firstly, recall/synthesis tasks. These are further subdivided into (1) 

Knowledge Recall, (2) Critical Analysis and (3) Long Essay format. This form of 

question requires students to draw on knowledge delivered in didactic settings and 

produce some written response reinterpreting and delivering that knowledge at various 

levels of criticality and word count. Secondly, we survey code based tasks, which are 

subdivided into (4) Code Analysis and (5) Code Production. These elements are 

particular to Computing education where we require students to fluently learn one or 



ChatGPT in Computing Education  A Policy White Paper 

11 
 

many programming languages and to fluently produce and interpret programming 

code. Finally, (6) Experiential assessments rely on a student's own personal 

experience through appropriate reflective practice of a task, event or circumstance. 

We have briefly overviewed each assessment modality below and provided some 

comparisons. Each assessment modality is analysed in detail throughout the rest of 

this report, considering the threat level with respect to LLM and appropriate mitigation 

strategies. 

2.1.1.  Knowledge Recall (KR) 
Knowledge recall questions seek factual answers on specific topics. Typically this 

would be knowledge that has been delivered as part of a prior taught session. These 

may be delivered as part of a take home exam, or within a piece of coursework 

2.1.2. Critical Analysis (CrA) 
Critical Analysis questions ask students to compare contrasting theories or viewpoints. 

They require the student to understand multiple perspectives and draw out differences 

and similarities between elements of learning. The intended responses to these 

questions are typically short-form and require conciseness. 

2.1.3.  Long Essay (LE) 
Long-form essay questions provide the student with a topic and expect them to write 

an extended discourse drawing on factual recall, critical analysis as well as soft skills 

such as discourse planning, argumentation and often institution or instructor specific 

structuring at the discourse level (introduction, definitions, argumentation, conclusion) 

and independent argument level (point, evidence, explanation). The intended 

responses to these questions are typically long-form and require verboseness. 

2.1.4. Code Analysis (CoA) 
Code analysis tasks start with a piece of code and require a student to understand the 

workings of the code structures that are given to them. Typical questions may range 

from debugging a broken piece of code to suggesting strategies to refactor or 

commenting on code efficiency. These questions typically form part of coursework 

tasks or exam questions. 

2.1.5.  Code Production (CP) 
At the heart of computer science education, we must teach our students to write their 

own code. Typically, this is assessed by asking the students to produce code and 

evaluating the quality of the results. This may range from answers to known tasks 

(fizzbuzz, sorting, etc.) to working within bespoke code frameworks. 

2.1.6.  Experiential (Ex) 
Experiential tasks draw on a student's lived experience of a learning event. Rather 
than communicating the knowledge that has been gained, a learner must instead 
reflect on their personal development as a result of the act of knowledge gaining. This 
assessment form may be delivered within a very focussed environment, e.g. reflection 
on a specific classroom learning event, or may be structured as a much more open 
ended reflection on a event spanning a wide time period (e.g., a course of learning or 
placement year). Reflections are typically written in the first person. 
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2.2. Discussion 

Regarding our three recall and synthesis modalities (Knowledge recall, Critical 

Analysis and Long Essay), we may observe that each of these requires a similar 

approach from the learner. The learner must engage in a subject, seeking and 

understanding new concepts from varied sources. Two key differences in the 

modalities are (1) the length of the required answer and (2) the skills being evaluated 

by the instructor. Firstly, there is a clear length difference in the required responses to 

the types of questions that would be posed. For knowledge recall the answer may be 

a single word or concept name, a bullet pointed list or a brief sentence. For Critical 

Analysis the student may write several sentences or paragraphs, briefly defining their 

terms and drawing comparisons. For long essays, A student is required to write at 

length. Forming critical arguments and drawing on multiple sources to convey a point. 

Secondly, the level of skill evaluated is also different across the modalities. Knowledge 

recall is exclusively testing low-level basic knowledge of a field. Critical Analysis 

requires a deeper understanding of each concept and appropriate lines of 

argumentation to distinguish them. Long essays require a student to not only 

regurgitate the opinions of others, but form convincing rhetoric for their own opinions 

on a topic. 

We have provided two separate analyses for Programming code based tasks. We felt 

that it was important to separate out the two tasks of producing code and analysing 

code. These two tasks are taught together in programming labs and progress in either 

is dependent on the other. Whereas a student cannot learn to program without 

knowing how to read and interpret code and they may find that their analysis skills 

outstrip their production skills. Although these two skills are typically taught together 

and exhibit some co-dependency, they are often assessed separately. A piece of 

coursework may ask a student to solve a task using a given language or framework 

according to the course, but never ask them to interpret and extend the function of a 

piece of code. We have therefore included both of these modalities separately to help 

academics delivering higher education computing assessments to consider the impact 

of LLMs from both angles. 

Our three categories (and six sub-categories thereof) allow us to analyse the threats 

to various forms of assessment in a holistic manner. Conclusions which are drawn 

throughout the rest of this report are intended to stimulate redevelopment of a wide 

set of assessments. We also hope that the findings of this report will allow academics 

to better understand how LLMs affect all assessment types differently. By identifying 

the assessment type, the specific threats and appropriate mitigation strategies, we can 

navigate a safe course through the LLM storm. 
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3. Knowledge Recall 

Bloom’s taxonomy is a widely adopted method of structuring learning outcomes across 

curricula using a series of hierarchical models developed in (Bloom and Krathwohl, 

1956). Of the three, the Cognitive (Knowledge-Based) is perhaps the most appropriate 

for designing assessment Table 2. Bloom divided his Cognitive model into six levels; 

ranging from foundational ‘knowledge’ skills that establish basic comprehension of a 

topic through to advanced ‘evaluation’ skills. The names and order of the levels were 

revised by (Anderson and Krathwohl, 2001). 

Table 2, Bloom’s Cognitive model in original (1956) and revised (2001) form. 

 Bloom (1956) 2001 revision 

Most advanced Evaluation Create 

 Synthesis Evaluate 

 Analysis Analyse 

 Application Apply 

 Comprehension Understand 

Least advanced Knowledge Remember 

According to Bloom’s model, assessment for introductory learners should emphasise 

acquiring the least advanced skills (knowledge and comprehension) in order to build 

a strong foundation for later assessment further in their academic journey which will 

develop and test higher-level skills. 

Common types of assessment for foundational level modules require learners to 

demonstrate recollection of basic facts and terminology even if their understanding is 

somewhat limited. Students are gently introduced to assessment by being asked to 

write short answers on tightly constrained topics; to define terms introduced in their 

learning materials and to apply specific techniques or knowledge to often artificially 

simple scenarios. 

This approach to learning is effective for most students and helps support learners 

who are unfamiliar with topics, lack confidence, struggle with language skills or those 

who are returning to learning. Students feel a genuine sense of accomplishment in 

being able to answer short questions that do not require too much depth of knowledge; 

this helps build confidence and encourages them to continue studying. However, the 

abbreviated level of knowledge required to answer such questions means that they 

are extremely vulnerable to mainstream, free-to-use LLMs; which through the inclusion 

of large factual knowledge sources during training, can generate correct, original 

solutions to typical introductory assignment questions without needing to have been 

trained on extremely specialist data sources. 
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(Chamberlain et al., 2011) argue that well-designed short questions can be used to 

assess a range of tightly focused competencies, including higher level academic skills; 

making it possible to identify areas requiring further development through teaching 

and other interventions. Eliminating short form questions may well be highly 

detrimental to learners. 

3.1. LLM Knowledge Recall Demonstration 

(Yeadon et al., 2022) outlined a study of ChatGPT’s performance in essay-based 

assessment for an undergraduate physics curriculum. ChatGPT was used to generate 

10 scripts for an exam comprised of five questions requiring short-form (300 word) 

answers. It was found that the AI responded in a more discursive manner when given 

richer prompts including limiting word counts or including a known historical figure or 

event in the question. Not only was ChatGPT capable of quickly generating synthetic 

solutions, but these solutions received an average mark of 71 ± 2% with grades more 

tightly grouped around the average than in student populations. The researchers 

report that students performing in the lower third of their cohort would improve their 

grade if they relied on ChatGPT for their solutions. 

A study at the Open University (Richards et al., 2023) blind marked a mixture of 

genuine student solutions and synthetic solutions generated by ChatGPT to two 

introductory computing modules. In this case, every single synthetic solution 

achieved at least a passing grade for an end-of-module assessment with multiple 

scripts achieving scores of 85% or higher. These results indicate that a student wishing 

to cheat by using ChatGPT to generate the entirety of their assignment solutions could 

expect to pass end assessments for introductory modules without any knowledge of 

the topic. 

We propose that there are substantial educational benefits to short-form assessment 

in establishing basic skills and knowledge; however, given the ability of LLMs to 

provide competent solutions to such questions, this form of assessment should not 

count towards classification. 

To illustrate the ability of generative AI tools to set and answer basic knowledge recall 

questions, the following two screenshots show Bard producing questions on 

interaction design, and ChatGPT 3.5 producing questions on SQL: 
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Such illustrative images highlight how the use of short-answer questions as summative 

assessment are now problematic, while there are possibilities in terms of supporting 

personalised formative skills development and self-checking. 
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3.2. Moving Forward on Knowledge Recall 

Returning to Bloom’s taxonomy (Table 1); higher levels of study develop the higher-

level skills categorised as Analysis, Synthesis and Evaluation. Here, students are 

expected to develop and demonstrate proficiencies such as comparing and 

contrasting disparate sources of information; applying existing knowledge to develop 

new information and performing critical reviews of information to make a judgement. 

Whilst LLMs can answer assessment questions designed to test these skills, their 

proficiency is greatly reduced compared to earlier levels of assessment. 

The Open University study mentioned above examined ChatGPT’s performance on 

one postgraduate computing module. Not only did this assessment obviously require 

deeper knowledge of topics than the undergraduate modules, but there is an 

expectation on students to demonstrate greater proficiency of high-level learning skills 

such as synthesis and application of knowledge. A key aspect of the module’s 

assessment is the expectation that students will apply (and reference) the theoretical 

knowledge found in the module materials to an organisation of their choosing as part 

of a module-long case study. This combination of deep subject-specific knowledge, 

high-level learning skills and intense personalisation of solutions proved challenging 

for ChatGPT which produced unsatisfactory superficial and generic answers to the 

assessment. None of the ChatGPT-generated solutions in the experiment received a 

passing grade, and the marker referred to the answers being formulaic, superficial, 

and blandly written. 

There are assessment modalities - such as in-class quizzes, proctored examinations, 

oral Vivas or portfolios and learning journeys - where there remains space for the use 

of knowledge recall skills, particularly if integrated with elements of critical analysis. 

Some questions which make explicit use of LLMs and that bridge the gap between 

knowledge recall and critical analysis include: 

1. “Can you use this tool” - use a MT generated prompt in a tool which is known to 

generate an incorrect, incomplete, or poor response which needs the student to 

review and improve the original answer. This could be done live through a tool, or 

in response to a MT-generated artefact from a tool. 

2. Compare and contrast the response to two different prompt formulations. 

3. If the module uses a particular framing of content, use prompt to generate generic 

text through a gen-AI tool, and ask the student to convert into the module framing. 

4. Reflect on the capabilities and limitations of tool X in the context of [module] 

5. Integrate use of a gen-AI tool into a learning journal, and document uses. 

6. Generate assessment questions using tool X and ask students to critique them. 

7. Ask students to write assessment questions which tool X cannot answer. 

8. Student writes an answer -> use a gen-AI to critique answer -> reflect on the 

critique. 

9. Simplify the explanation of X given in the module with support from tool Y. Note 

student vs tool changes.  
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4. Critical Analysis 

Critical Analysis questions ask students to compare contrasting theories or viewpoints. 

They require the student to understand multiple perspectives and draw out differences 

and similarities between elements of learning. In this case, we would expect the 

answers to these questions to be short form, i.e., 200-300 words. 

For computer science, critical analysis abilities are, as with other disciplines, essential, 

but also differentiated / specific to computer science. The sorts of abilities we want to 

promote include, for example: 

• Explaining code clearly and concisely. 

• Being aware of options and able to explain decisions and justify the approach taken: 

this could be choice of algorithms, AI or machine learning technique, data model, 

or software development approach or pattern. 

• Being aware and able to apply relevant social, legal, ethical and professional issues 

for a given problem space / piece of software. 

• Situating work against current state of the art, able to explain value and contribution. 

• Collegial criticality: the ability to work with others, helping shape and successfully 

participate in (for example) complex software development project. 

• Understanding what can and can’t be computed, and why. 

What follows is a series of critical analysis questions we asked ChatGPT together with 

its responses, to gauge how far and in what ways LLMs might plausibly emulate these 

skills. 

4.1. Question 1 

Compare the waterfall methodology with the agile methodology for software 

engineering. 

Result Produced by LLM (in Italics): 

The Waterfall methodology and the Agile methodology are two distinct approaches to 

software engineering project management, each with its own set of principles, 

practices, and advantages. Here's a comparison of the two methodologies: 

Approach to Development:  

o Waterfall: Waterfall is a sequential and linear approach. It follows a predefined 

sequence of phases, such as requirements, design, implementation, testing, 

deployment, and maintenance. Each phase must be completed before moving on to 

the next. 

o Agile: Agile is an iterative and incremental approach. It breaks the project into small 

increments or iterations, typically 2-4 weeks long, and focuses on delivering a 

working product at the end of each iteration. It allows for flexibility and adjustment 

throughout the project. 
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Flexibility:  

o Waterfall: Waterfall is less flexible when it comes to changing requirements. Once a 

phase is completed, it's challenging and costly to make significant changes. 

o Agile: Agile is highly adaptable. It welcomes changing requirements, even late in the 

development process. Changes can be incorporated in the next iteration. 

Client Involvement:  

o Waterfall: In Waterfall, client involvement is primarily at the beginning and the end 

of the project. Clients usually see the final product after a lengthy development cycle. 

o Agile: Agile encourages regular client involvement. Clients are part of the 

development team and provide feedback throughout the project, ensuring that the 

product meets their evolving needs. 

Testing:  

o Waterfall: Testing occurs at the end of the development cycle in Waterfall. This can 

lead to the discovery of major issues late in the project. 

o Agile: Testing is integrated into the development process in Agile, with continuous 

testing and quality assurance throughout each iteration. 

Risk Management:  

o Waterfall: Waterfall tends to have higher project risk because issues may not be 

identified until late in the process. 

o Agile: Agile reduces risk through regular inspection, adaptation, and client feedback, 

which helps in identifying and addressing problems early. 

Documentation:  

o Waterfall: Waterfall requires extensive documentation at each phase of 

development, which can be time-consuming. 

o Agile: Agile focuses on working software over comprehensive documentation, 

though it still maintains necessary documentation. 

Project Control:  

o Waterfall: Waterfall provides more control over project scope and requirements 

upfront but less flexibility as the project progresses. 

o Agile: Agile offers more flexibility but requires strong project management to control 

scope and ensure the project stays on track. 

Delivery Time:  

o Waterfall: Waterfall projects tend to have longer delivery times because the entire 

project is completed before delivery. 

o Agile: Agile allows for quicker delivery of incremental features or releases, which can 

be beneficial in rapidly changing markets. 

In summary, the choice between Waterfall and Agile depends on the specific project, 
its requirements, and the client's preferences. Waterfall is suitable for projects with 
well-defined and stable requirements, while Agile is more appropriate when flexibility, 
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client involvement, and adaptability is essential. Some teams also adopt hybrid 
approaches that combine elements of both methodologies to suit their project needs. 

4.1.1. Analysis 
This is a highly plausible answer neatly built around a series of criteria under which 

each approach is compared and evaluated. The selection of these criteria (and not 

others) is not explained, but if produced by a student the approach would be 

recognised as sophisticated. It could be criticised for not discussing some specific 

examples of software development to help ground and illustrate the points made, but 

this would also challenge many students. 

4.2. Question 2 

Analyse the efficiency and scalability of bubble sort and merge sort. Discuss their 

trade-offs in terms of time complexity and space complexity. 

Result Produced by LLM (in Italics): 

Bubble Sort and Merge Sort are two sorting algorithms that differ significantly in terms 

of efficiency, scalability, and trade-offs in time and space complexity. 

Bubble Sort: Bubble Sort is a simple comparison-based sorting algorithm that 

repeatedly steps through the list, compares adjacent elements, and swaps them if they 

are in the wrong order. The process continues until no more swaps are needed. 

Efficiency: Bubble Sort has a time complexity of O(n^2), where 'n' is the number of 

elements to be sorted. This makes it highly inefficient for large datasets because the 

number of comparisons and swaps increases quadratically with the input size. 

Scalability: Bubble Sort is not scalable for large datasets. Its performance degrades 

rapidly as the dataset size increases. 

• Trade-offs:  

o Time Complexity: The main trade-off with Bubble Sort is its time complexity. It is 

suitable for small datasets but becomes impractical for larger ones due to its 

quadratic time complexity. 

o Space Complexity: Bubble Sort has a space complexity of O(1), as it sorts the 

elements in place without requiring additional memory. 

Merge Sort: Merge Sort is a divide-and-conquer sorting algorithm that divides the 

unsorted list into 'n' subsists, each containing one element, and then repeatedly 

merges subsists to produce new sorted subsists until there is only one subsist 

remaining. 

• Efficiency: Merge Sort has a time complexity of O (n log n), which makes it much 

more efficient than Bubble Sort, especially for large datasets. It is a stable and 

reliable sorting algorithm. 

• Scalability: Merge Sort is highly scalable. Its performance remains relatively 

consistent even as the dataset size grows, thanks to its efficient divide-and-conquer 

approach. 
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• Trade-offs:  

o Time Complexity: Merge Sort's time complexity makes it a strong choice for larger 

datasets but might be overkill for very small lists due to the overhead of dividing and 

merging. 

o Space Complexity: Merge Sort has a space complexity of O(n) due to the need for 

auxiliary storage (an additional array) during the merging process. This can be a 

drawback for sorting large datasets with limited memory. 

Comparison: 

• Bubble Sort is easy to understand and implement, making it suitable for educational 

purposes or small datasets where its simplicity doesn't result in excessive execution 

time. 

• Merge Sort, on the other hand, is a much more efficient and scalable sorting 

algorithm, making it the preferred choice for sorting large datasets in real-world 

applications. 

• The primary trade-off between the two algorithms is that Bubble Sort sacrifices time 

complexity for simplicity and minimal space usage, while Merge Sort achieves better 

time complexity at the cost of higher space usage. 

In summary, Bubble Sort is inefficient and not scalable for large datasets, while Merge 

Sort is efficient and scalable but consumes more memory. The choice between these 

two algorithms depends on the specific requirements of the sorting task, particularly 

the size of the dataset and available memory. 

4.2.1. Analysis 
Again, this answer is built around criteria which support and scaffold the comparison, 

facilitating critical analysis on space and time complexity as well as efficiency and 

scalability. These are classic criteria for doing such a critical analysis. 

However, while the points made are accurate, the critical analysis feels abstract. 

Neither sort is explained. The analysis could be improved through the use of worked 

examples, perhaps as diagrams, to show how each sort processes the same input 

sequence of some plausible size. 

Such examples might also help establish why the space and time characteristics apply 

in the way that they do - in particular, that merge sort is usually implemented 

recursively so needs more memory (and if iteratively needs copies) - and why merge 

sort is preferred for large sorts. 

Similarly, while Big O analysis is used, the time difference between n and log(n) isn’t 

explained or illustrated. 

Some nuance is missing, for example what implementation of bubble sort is being 

considered - with or without a rightward lock, for example. 

However, this is still a very good answer. 

4.3. Question 3 

Highlight relevant similarities in code features between the object-oriented 

programming paradigm and the procedural programming paradigm. 
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Result Produced by LLM (in Italics): 

Object-oriented programming (OOP) and procedural programming are two different 

programming paradigms, but they do share some common code features. Here are 

some relevant similarities: 

• Variables and Data Types: Both paradigms use variables to store data and 
support common data types such as integers, floating-point numbers, 
characters, and arrays. These data types are often available in both OOP and 
procedural languages. 

• Control Structures: Both paradigms utilize control structures like loops (e.g., 
for, while, do-while) and conditional statements (e.g., if, else, switch) to control 
the flow of a program. These structures are fundamental in both approaches. 

• Functions/Methods: In procedural programming, functions or procedures are 
used to encapsulate a set of operations that can be reused. In OOP, methods 
are similar to functions in that they encapsulate behavior, and both paradigms 
rely on modularization to organize code. 

• Parameter Passing: Both paradigms allow passing parameters to functions or 
methods. Parameters can be passed by value or by reference, depending on the 
programming language. 

• Comments and Documentation: Comments and documentation are important 
in both paradigms to improve code readability and maintainability. Developers in 
both OOP and procedural programming use comments to explain the purpose of 
code segments. 

• Error Handling:  Error handling mechanisms, such as try-catch blocks or error 
codes, are used in both paradigms to handle exceptions and errors gracefully. 

• Libraries and Modules: Both OOP and procedural languages support the use 
of libraries or modules to organize and reuse code. These libraries often contain 
functions, classes, or procedures that can be imported and used in the main 
program. 

• Input and Output:  Both paradigms provide mechanisms for input (e.g., reading 
from the keyboard or a file) and output (e.g., printing to the console or writing to 
a file). 

• Scope and Visibility: Both paradigms define rules for variable scope and 
visibility. In both cases, variables can be local to a function or global, and access 
control modifiers (public, private, protected) are used to restrict access to certain 
parts of the code. 

• Modularity: Both paradigms emphasize code modularity and the organization of 
code into manageable, reusable units. In procedural programming, this is 
achieved through functions, while in OOP, it's achieved through classes and 
objects. 

It's important to note that while there are similarities in code features, the main 

difference between the two paradigms lies in their approach to organizing and 

structuring code. Procedural programming focuses on procedures and functions, while 

OOP emphasizes the use of objects and classes for modeling real-world entities and 

their interactions. The choice between these paradigms depends on the problem 

domain and the goals of the software being developed. 
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4.3.1. Analysis 
Again, this is a plausible answer built around relevant criteria which provide structure 

for comparison. And again, the issues are similar: the discussion misses some basic 

explanation, as well as examples. In particular, the explanation of what procedural and 

OOP programming are seems perfunctory and appears in the wrong place - at the 

end. The discussion seems broad and high level and perhaps if submitted by student 

feedback might suggest using fewer criteria, going into greater depth. 

4.4. Question 4 

Evaluate the role of machine learning algorithms in predicting user behaviour and 

discuss the ethical considerations and potential biases that may arise from their 

implementation. 

Result Produced by LLM (in Italics): 

Machine learning algorithms play a significant role in predicting user behavior across 

various applications, such as e-commerce, social media, advertising, and 

recommendation systems. These algorithms analyze user data to make predictions 

about future actions or preferences. While they offer numerous benefits, their 

implementation raises ethical considerations and potential biases that need careful 

attention. 

Role of Machine Learning Algorithms in Predicting User Behavior: 

• Personalization: Machine learning algorithms analyze historical user data to 

personalize user experiences. For instance, they can recommend products, 

content, or services tailored to individual preferences, leading to higher user 

engagement and satisfaction. 

• Targeted Advertising: Advertisers use machine learning to predict user interests 

and display relevant ads, improving ad relevance and increasing click-through 

rates. 

• Fraud Detection: Machine learning models can detect unusual patterns in user 

behavior to identify potential fraud or security threats, enhancing the security of 

online platforms. 

• Healthcare: Predictive analytics can assist in diagnosing and predicting medical 

conditions based on patient data, allowing for early intervention and better patient 

care. 

Ethical Considerations and Potential Biases: 

• Bias in Data: Machine learning models rely on historical data, and if the data used 

for training contains biases, the models can perpetuate those biases. For example, 

biased training data may lead to discriminatory predictions, such as biased 

recommendations or unfair treatment. 

• Privacy Concerns: Predicting user behavior often involves collecting and 

analyzing large amounts of personal data. Ensuring user privacy and obtaining 

informed consent are crucial ethical considerations. 



ChatGPT in Computing Education  A Policy White Paper 

23 
 

• Transparency and Explain ability: Many machine learning algorithms, particularly 

deep learning models, can be complex and difficult to interpret. This lack of 

transparency raises concerns about accountability and understanding how 

decisions are made. 

• Algorithmic Fairness:  Ensuring fairness in predictions is vital. Algorithms should 

not discriminate against certain user groups based on attributes such as race, 

gender, or age. Unintended biases must be identified and mitigated. 

• Filter Bubbles and Echo Chambers: Personalization algorithms can create filter 

bubbles, where users are only exposed to content that reinforces their existing 

beliefs. This can contribute to the spread of misinformation and limit exposure to 

diverse perspectives. 

• User Manipulation: Predictive algorithms are used to optimize user engagement, 

which can lead to addictive design patterns that manipulate user behavior, raising 

ethical concerns about user agency and well-being. 

• Security Risks: Machine learning models used for security may produce false 

positives or false negatives, potentially impacting individuals' security and privacy. 

• Mitigation Strategies: To address these ethical considerations and potential 
biases: 

• Data Quality: Ensure high-quality training data by identifying and mitigating biases 

in data sources. 

• Diversity in Teams: Create diverse development teams to consider various 

perspectives and minimize bias in algorithm design. 

• Bias Detection: Regularly audit and evaluate algorithms for bias using fairness 

metrics and tools. 

• Transparency and Explainability: Develop models that are more interpretable, 

and provide explanations for model predictions. 

• User Control: Give users control over their data and the ability to customize their 

experiences. 

• Ethical Guidelines: Adhere to ethical guidelines and regulations, such as GDPR 

and HIPAA, to protect user privacy and data. 

• Education and Awareness: Educate users about how predictive algorithms work 

and their implications. 

In summary, while machine learning algorithms are powerful tools for predicting user 

behavior, their use must be guided by strong ethical principles to mitigate potential 

biases and ensure fairness, transparency, and respect for user privacy and autonomy. 

4.4.1. Analysis  
Once again, this response has a by-now-familiar structure: the use of multiple criteria 

and points related to the question made under each. And again, the discussion seems 

high level and somewhat abstract, lacking depth, as well as examples. 

4.5. Conclusion 

While none of these critical analysis questions has been badly handled by ChatGPT, 

the responses are similar, with similar advantages - and similar problems.  

The advantages include: 
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• Strong structure with comparison and evaluation built around relevant criteria. 

• Generally accurate content 

• Readability and conciseness 

• Broad ranging 

The problems / issues include: 

• Lack of examples, especially explanations and worked examples of named 

algorithms (Question 2); examples of the named problems, and the types of 

machine learning involved (Question 4) or code showing how the same thing 

could be implemented in procedural or OOP (Question 2). 

• Breadth rather than depth 

• Lack of referencing 

• Lack of deep technical insight which examples and code discussion help 

establish. 

The main issue with the ChatGPT responses in this section is perhaps to do with level 

of abstraction. Excellent critical analysis will move between levels of abstraction, 

making general claims of the type provided in these ChatGPT response, and then 

grounding them in specifics. This can be done in reverse, too: specific examples can 

give rise to a general claim. There is a sense that these ChatGPT responses are not 

close enough to the issues they discuss, but trawl for commonality between the vast 

numbers of sources the technology uses, rather than the specificity that comes from 

zooming into the particular. 

When student work of this type is submitted, educators are likely to want to see 

grounding examples, and code (where relevant), to underpin and justify the general 

claims and points ChatGPT is good at generating. As others have pointed out, 

ChatGPT could work as an extra source to be used against others when researching 

and learning, but on the evidence given here, cannot substitute for the level of critical 

skills we want to see in our students. 
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5. Long Form Essay Questions 

Long-form essay questions provide the student with a topic and expect them to write 

an extended discourse drawing on factual recall, critical analysis as well as soft skills 

such as discourse planning, argumentation and often institution or instructor specific 

structuring at the discourse level (introduction, definitions, argumentation, conclusion) 

and independent argument level (point, evidence, explanation). The intended 

responses to these questions are typically long-form and require verboseness. 

For the purposes of this chapter, we will consider long-form essays to be those that 

require a word limit of 3,000+ words. This requires a student to form a rhetorical 

argument on the topic and provide their own interpretation of the facts, i.e., beyond 

basic knowledge generation. 

5.1. Analysis 

Sample questions for Long-form essays in the computing domain are as follows: 

1. How will current advances in the field of artificial intelligence shape the future of 

technology? 

2. What are the key principles to effective collaboration in a software development 

environment? 

3. What role does blockchain technology play in contemporary applications? 

4. How do virtual reality and augmented reality enhance user experiences? 

5. How does the Internet of Things (IoT) impact the development of smart cities? 

6. How have computer networks evolved from LAN to 5G? 

7. What are the challenges and opportunities in developing mobile applications? 

8. How does machine learning contribute to healthcare and medicine? 

A sample of prompting ChatGPT for a response to the first question is given below: 
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The output of the model appears to give a reasonable attempt at answering the 

question. It generates a new essay title 'The Future of Technology: Shaping Tomorrow 

with Artificial Intelligence', although this was not specified as a requirement. It then 

continues to give an introductory paragraph before continuing with a list of areas that 

are to be explored as follows: 

I. Current Advances in Artificial Intelligence  

II. Impact on Various Sectors  

A. Healthcare  

B. Finance:  

C. Education  

D. Transportation  

III. Ethical Considerations  

IV. Challenges and Opportunities  

A. Challenges  

B. Opportunities  

V. Conclusion 

Each point is completed with further bulleted lists of relevant topics. The essay length 

is 1,251 words (not all shown) - despite the prompt requesting 3,000. Whilst the subject 

matter of the essay is passable (it discusses a broad range of relevant topics and 

relates them back to the original question), the formatting and style of the response 



ChatGPT in Computing Education  A Policy White Paper 

28 
 

leaves a lot to be desired. The response is informative, but not discursive. It does not 

provide critical evaluation of the subject matter nor an appropriate rhetorical form to 

the argumentation. There is no referencing, and no attempt is made to link the work to 

external sources, or to give sensible critique of other's opinions. If this were submitted 

for examination, it would perform very poorly. A student may wish to take this as a 

preliminary outline for an essay, however significant work would be required to expand 

upon the given points, link them to appropriate sources and combine the bullet points 

to give a free-flowing discourse. 

5.2. Key Threats to Assessment Type 

• LLMs produce a viable essay prototype that can be submitted as is. 

• A student may further adapt the output of an LLM, obfuscating it's use. 

• Further prompting may be used to generate specific sections of an essay. 

• Students may request essay answers using a given style as promoted in university. 

5.3. Mitigation Strategies 

• Require students to submit essay plans, as well as the final essay. 

• Allow students to use LLMs to plan essays but be clear on evaluating documentation 

of essay plan as well as essay. 

• Enforce a specific structure on the students (e.g., Introduction, Topic, Evidence, 

Comparison, Conclusion) which the Language Model will not provide. 

• Set essay length at a limit beyond the output range of an AI chatbot. Chatbots 

typically provide a maximum of 1,000 words as a response. 

• Focus on hard to measure outcomes. e.g., problem-solving critical thinking Rolling 

assessment. 

• Requiring stylised references and placing a focus on the appropriate use and 

evaluation of external sources. References must be checked for correctness. 
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6. Code Analysis 

Code analysis tasks start with a piece of code and requires a student to understand 

the workings of the code structures that are given to them. Typical questions may 

range from debugging a broken piece of code to suggesting strategies to refactor or 

commenting on code efficiency. These questions typically form part of coursework 

tasks or exam questions. They are designed to test understanding of: 

• syntax (the characters, words, statements, and expressions that compose a 

program). 

• semantics (the meaning of these; what the program does); 

• correctness (does the program do what it is designed to do; does it work for all 

relevant cases); 

• efficiency and conciseness (does the program run according to expected time and 

space; is there redundancy that creates overheads);  

• code structure and integrity is the code free of redundancy and duplication; is it 

modular; can it be reused; how far will it generalise to relevant instances of the 

problem it is designed to solve.  

The ability to analyse code is often assumed to depend on the ability to write it. Hence, 

many introductory programming modules and courses begin by teaching programming 

concepts including (for procedural programming) variables, datatypes, sequence, 

selection and conditions, iteration; and / or, for object-oriented programming, objects, 

classes, instances, inheritance, methods, mutators and so on. Students are then given 

exercises, tasks, or challenges where they need to implement concepts in a given 

language to create a program for some purpose (could do with some refs).  

With the advent of LLMs, including ChatGPT, the danger is that such tasks can be 

delegated to the LLM, which may return acceptable solutions without the student 

necessarily understanding either the question or its answer: in that case, the ability to 

analyse code may not emerge.  

What follows is some samples of code analysis tasks which might be set for students 

to solve, which have been entered into ChatGPT, with the solutions ChatGPT then 

generates. We discuss the plausibility and usefulness of these solutions in terms the 

kinds of programming ability we want our students to develop.  
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Analysis - Sample Questions 

6.1. Debug The Following Code. Keep A log of All Errors that You 

Spot. 

Public Glass My Addition Programme 

[publi status avoid maine(string () argz] 

 { 

  System.out.println(‘1 + 1 is:" + 1 + “1”); 

 ) 

} 

Solution to (1) produced by ChatGPT Query:  

 

Result: 
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6.1.1. Analysis 

ChatGPT has successfully and comprehensively debugged the code it was given. The 

program is basically sound, and the bugs concern relatively trivial typing errors or, for 

example, brace-matching errors. This type of error is familiar to all coders, and the 

implication of this is that the question is asking the student to do some basic code 

‘housekeeping’ or clean-up, rather than spot more serious errors of syntax or logic. As 

a code analysis task, it is conceptually very simple.  

The solution offers real value to any coder, as trivial bugs like these can sometimes 

be difficult to spot, consuming time, especially for learner programmers who may be 

worried that their program is not running for more serious reasons. Using ChatGPT to 

do automated bug checking of this type seems perfectly acceptable assuming 

students know how to produce the code being checked. Indeed, automated cleanup 

frees up any coder to concentrate on more challenging issues of program design. 

Thus, while coders do in principle need the analysis skills to spot such bugs, they are 

perhaps of a similar order to typos, which (as with word processors) can and should 

be fixed automatically.  

At the same time, the ChatGPT response does not only correct the code; it also 

explains what the errors are, so providing some useful instruction and consolidation. 

The terminal image ChatGPT provides also correctly identifies the language: Java.  

This question seems a good one to ask an LLM and to provide real value. The value 

does depend, however, on the student having written / being able to write the code in 

the first place. 

 

6.2. Suggest Strategies to Refactor the Following Code to Avoid 
the Monolithic Design Principle. 

10 PRINT "Welcome to Basic User Interaction Program!" 

20 PRINT "Please enter your name: "; 

30 INPUT name$ 
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40 PRINT "Hello, " + name$ + "!" 

50 PRINT "Please enter your age: "; 

60 INPUT age 

70 PRINT "Your age is: " + STR$(age) 

80 PRINT "Please enter a number: "; 

90 INPUT num 

100 IF num > 10 THEN GOTO 120 

110 PRINT "The number you entered is less than or equal to 

10." 

115 GOTO 140 

120 PRINT "The number you entered is greater than 10." 

130 PRINT "Adding 5 to the number gives: " + STR$(num + 5) 

140 PRINT "Thank you for using the Basic User Interaction 

Program!" 

150 END 

 

Solution to (2) produced by ChatGPT 

Query:  

 

 

 

 

Result (1):  
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Result (2):  

 

6.2.1. Analysis 

In terms of code analysis, this question is at a higher level of challenge than Question 

(1) above. The ChatGPT response is much less satisfactory, and if a student were to 

submit something like this, it would be unlikely to score a very good grade. The main 

issues are:  

 

1. Too many functions, and related function call overheads 

2. Breaking the code into functions has been done arbitrarily  
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3. The programming language has changed from BASIC to Python 

4. ChatGPT does not explain what it has done or why 

5. ChatGPT has not answered the question 

The program is a very basic chatbot. While it makes some sense to encapsulate it as 

one or (at most) a few functions, ChatGPT has produced 9. This introduces an 

overhead, which is the number of (non-encapsulated) function calls, which also deal 

with return values then passed as arguments in subsequent calls.  

The breaking into functions seems arbitrary. For example, code to retrieve and display 

the user’s name has been split into two separate functions get_name() and 

greet_user(). A single function that both gets and displays the user’s name seems 

more plausible, and reusable. The same goes for get_age() and display_age(). Other 

functions which simply print lines, welcome_message() and farewell_message() seem 

unnecessary. However, the ChatGPT refactoring has recognised the decision in the 

code and neatly encapsulated it as the process_number() function. While the wider 

use of this seems doubtful (the chatbot is something of a toy program), it makes sense 

that this processing is separated in case re-use is required.  

One of the key issues with the solution is that ChatGPT has produced is that it has 

arbitrarily switched languages from BASIC to Python. If the question implies thinking 

about how refactoring should be applied to, or is affected by, a particular language; or 

is about improving existing code written in a given language for practical purposes, 

ChatGPT has not considered this, or explained the language switch.  

The question is, ‘Suggest strategies to refactor the following code to avoid the 

monolithic design principle’. However, while monolithic design is mentioned, it is not 

explained. Additionally, strategies are not suggested (although the solution implies a 

strategy or strategies). There are many strategies for refactoring, including red-green 

refactoring, refactoring by abstraction and composition (to remove duplication), 

simplifying (to improve readability), single responsibility (e.g., one function does one 

thing), moving features, or (for OOP) removing complex conditionals through 

polymorphism, and so on. One way to handle the question would be select and apply 

some of these to the code, then contrast and critique the results. But this is entirely 

missing. Thus, ChatGPT has not answered the question. While a strategy or strategies 

may have been used, this remains implicit / opaque.  

Additionally, a good answer would explain the monolithic design principle. This means 

‘composed in one piece’, which can be bad if code becomes overlong, complex and 

hard to read. A skill programming student are taught is how to separate functionality 

to enable readability and reusability, as well as (for example) the limitation and control 

of variables. If a program consists of one huge function, it can be hard to follow, or to 

locate and reuse specific functionality. The question implies that the given code is 

monolithic and needs to be refactored to address this, but students might question 

how far it really is monolithic and just how much refactoring is merited.  

This question has not been well handled by ChatGPT, which has two implications: (1) 

the uncritical use of ChatGPT to produce content for assessment purposes may not 
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produce the sought for outcome; and (2) the successful use of ChatGPT for this kind 

of question needs to take place against a background of knowledge and critical skills. 

ChatGPT could be be a valuable resource in the development of code analysis skills, 

in a similar way to the use of a range of bibliographic sources (see OU chapter - which 

one) but (at least on this evidence) cannot replace them. 
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7. Code Production 

At the heart of computer science education, we must teach our students to write their 

own code. This is an essential part of computing education. Ultimately, we must teach 

students how the machines that they will interact with are programmed. Typically, this 

is assessed by asking the students to produce their own code in a variety of settings. 

Exercises may range from small weekly tasks covering specific skills or fundamental 

programming concepts to large summative synoptic programming assignments 

requiring cross-sectional skills and the integration of external libraries and APIs. The 

quality of the resulting code is typically evaluated by an instructor who both runs the 

programme and reads the code to check for function and form. 

To use a LLM to produce code, a student must be able to describe the task in 

appropriate language. Indeed, a large part of computing education is to teach students 

how to rephrase and understand a task so as they are able to properly frame their 

thinking prior to developing the code for a task. A danger of the use of LLMs in code 

production is that it removes the need for the student to consider how to produce the 

code. In many cases the student can simply type in (or copy-paste) the instructor-

provided task description and receive some competent output without understanding 

the code. This may backfire on the student if the LLM fails to complete the task as they 

will have no way of knowing whether the generated code is correct or not. 

7.1. Analysis 

A sample programming question, and the response from ChatGPT are given in the 

screenshots below: 

 

In this question, the algorithm (bubble sort) and the programming language (python) 

are specified. Additionally, a brief description of how the algorithm should work is also 

provided. The language model correctly provides code in python to complete the 

bubble sort algorithm. It follows appropriate syntactic conventions; provides a 
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procedure and code to call it and augments the code with relevant comments 

describing each step of the programme. However, note that the algorithm provided 

does not match the one requested. The provided algorithm uses an optimisation 

technique specific to bubble sort, namely iterating n times, where n is the number of 

elements in the list, and not sorting the last 'i' items at each iteration as these will have 

been sorted. This is not clear from the original description, which asks for the algorithm 

to run indefinitely until the list is sorted. 

Additionally, the Language Model provided a brief explanation of each step in the code 

(not shown). This explanation does not refer to the optimisation step given above, and 

so a student may be unaware of why the algorithm is implemented in this way. Note 

that this is not some sign of intelligence on the model's behalf, rather the code-based 

training data it has seen will have contained examples of bubble sort that also 

leveraged this optimisation. 

It is important to note that there is a worthwhile debate around authenticity in 

programming assessments which has existed before the advent of generative AI. The 

key question is, should we allow our students access to the tools (Syntax Highlighters, 

Debuggers, Integrated Development Environments, Frameworks, Version Control, 

etc.) that they will have when they become developers. One side may argue that 

teaching in a closed environment limits distractions and allows the student and 

instructor to focus on learning the core concepts. The other side may argue that 

students are not typically workplace ready when leaving university as they are not 

exposed to an authentic development environment. In reality, computing educators 

have learnt to drip-feed toolchains throughout a programme. It may well be the case 

that an appropriate argument can be made that best practices for code-based 

Generative AI should also be taught to improve student's employment prospects. 

7.2. Key Threats to Assessment Type 

• ChatGPT and other LLMs can produce high-quality error-free code for a task. 

• Well-known tasks that are typically used in programming exercises will have formed 

part of the original training data. 

• The code that is produced usually contains well-written comments and an 

explanation of the functionality of the code. 

7.3. Mitigation Strategies 

• Require students to learn to code offline (pen and paper, CLI, sandboxed machines) 

• Teach students in a bespoke programming language, for which examples on the 

internet are not readily available. 

• focus assessment on problem solving and understanding, rather than code itself. 

• Teach best practices for using Generative AI in a coding environment (with industry 

participation). 

• Assess students on larger synoptic codebases, requiring the integration of bespoke 

APIs.  
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8. Experiential 

Experiential assessments emphasise student development. Typically students work 

on a real world problem over a period of time, often as a group, to experience the 

practical application of knowledge and develop employability skills such as group 

work, leadership and communication. Assessment can involve self-reflections, 

reflective journals, project reports, presentations, group discussions and peer 

evaluations. Self-reflections encourage critical thinking, self-awareness and the 

integration of theory and practice, and often follow a structured model, such as Gibbs 

Reflective Cycle (1988). 

8.1. Analysis 

Sample questions for assessing Experiential Learning in the computing domain are 

given below: 

1. Write a reflection on collaborating with peers on your presentation on the ethics of 

AI. 

2. Using a reflective model, write a reflection on your experience working on the group 

project. 

3. Using Gibbs model (1988), write a reflection on collaborating with peers on your 

analysis of the case study. 

4. Reflect on your choice of agile approach for developing your team project. 

5. Reflect on your experience of leadership during the group project. 

6. Write a reflective coding journal including your thoughts, challenges, and 

breakthroughs while working on coding assignments, and reflecting on your 

problem-solving approach, difficulties encountered, and your strategies for 

overcoming difficulties. 
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A sample of prompting ChatGPT for a response to the third question is given below: 

 

The output of the model gives a well-structured ‘personal reflection’ using the reflective 

model specified and using first person language as expected for this style of writing. 

At 498 words, the response would meet a common 500-word limit for a section of a 
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report. In terms of structure, the output is good, however it is not authentic and there 

is no evidence of deep reflection. The content is vague, the general ‘learnings’ are 

missing details, and the content of the sections is not clearly linked. For example:  

• ‘Regular meetings’ could include detail of how regular, format, how they were chaired 

or managed, whether action plans were developed. 

• ‘There were moments when we could have improved our time management and 

communication’ should have specific examples of issues and their consequences. 

• ‘We created a supportive environment’ needs detail of how this was done; 

• The action plan needs examples of how these actions might be achieved. 

On regenerating the response for the question, the new output wording is more direct 

and typical of a computer science student, but the themes and lack of detail remain 

the same. 

On re-prompting by asking for a 1000-word reflection, ChatGPT produced a response 

of 935 words that expanded the example shown above. The new response had added 

more aspects to reflect on and expanded the action plan as shown below. Despite this, 

the same issues with lack of detail remain. 

 

It is possible to adjust the prompt to get a better response, for example the reworded 

question below, specifying that the reflection should be about lack of effort from peers.  
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As many Computer Science students find it difficult to complete a reflective piece and 

perform poorly in experiential assessments, if the first example given above were 

submitted for assessment it would likely be graded around pass level. However, if 

students were to use the model’s output as a structured starting point and inspiration, 

by expanding and adding details this could assist them in reflecting on their learning. 

By rewording and adding detail to the prompt, students can produce much better 

answers, but the argument is whether this requires some actual reflection on behalf of 

the student first, and if so, are models such as ChatGPT just aiding their written 

communication as some parents might? 

8.2. Key Threats 

• Despite widely held beliefs that LLMs cannot tackle experiential reflections, they in 

fact produce a reasonable reflection that could be submitted without amendment. 

• Small changes that make the answer context specific produce a good reflection that 

may be undetectable as an LLM output, especially if the language used is adjusted. 

• Individual experiences cannot be verified. 

• Refining the output through student interactions can improve and vary the output, 

getting closer to actual student experiences - answers are infinitely reworkable. 

8.3. Mitigation Strategies 

• Assessors could triangulate and group member experiences, considering scalability. 

• Request the submission of lab diaries covering an extended period of time as 

evidence, carrying some of the assessment marks. 

• Request screenshots of documentation such as meeting minutes, action lists. 

• Require strong links to specific student/group work 

• Longer activities with reflective assessment, creating a consistent chain of evidence.  
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Section 2 Large Language Model Policy 
Considerations in Computing Higher Education and 
Beyond 
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9. Employability 

Students in technology-based degrees tend to be heavily motivated by the prospects 

of securing a job in tech, and (hopefully) the financial reward that comes with it. Higher 

Education is also heavily motivated toward producing “industry-ready” graduates given 

the impact that a focus on employability has on graduate outcomes. 

Recent changes to the early years curricula means that primary schools place greater 

focus on Computer Science and computational thinking. As this increase in knowledge 

feeds through to Higher Education, universities will need to adapt and evolve in order 

to build on this standard foundational knowledge. At the opposite end of Higher 

Education, generative AI tools which support industry practitioners are becoming more 

popular. Many practitioners in roles such as development, project management, and 

test engineering, have adopted such tooling as part of their standard workflow. For 

example, GitHub1 found that users of Co-pilot felt 88% more productive when 

developing, and 59% of respondents said that they were less frustrated when coding. 

In addition, 60% of respondents said that co-pilot made them feel more fulfilled in their 

job. 

There are a number of anticipated effects that increased adoption of generative AI will 

have on industry. For example, given that models tend to be trained on public content, 

we can expect content to become more similar internationally. Thus, leading to a 

globalisation of standards. The RedHat blog lists some clear benefits that generative 

AI will have on industry2: 

• Personalised customer experiences 

• Streamlining operations and efficiency 

• Enhancing decision making 

• Preserving privacy and security 

• Fraud detection and cyber security 

In the technology industry, there are a number of applications where generative AI 

tools are expected to have impact: 

• Automated unit test generation 

• Document summarisation (e.g., summarising reports/survey data) 

• Improvement of general writing (e.g., emails, references, technical documentation, 

client communications and marketing material) 

• Forecasting (e.g., financial, trend analysis) 

• Product design (e.g., software design, physical products) 

• Code generation 

• Architecture generation 

This adoption of tooling means that the proper use and application of such tools will 

become an expectation for prospective employees. In order to bridge the well 

documented gap between academia and industry, universities should train students in 

 
1 https://github.blog/2023-05-09-how-companies-are-boosting-productivity-with-generative-ai/ 
2 https://www.redhat.com/en/blog/generative-ai-business-applications 
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the proper usage of generative AI tools. However, it is imperative that universities 

discourage blind faith in generative AI tools and ultimately students need to understand 

the work that they produce, and that they have responsibility for the work that they 

produce. Some companies, such as JPMorgan, Chase, Amazon, and Accenture, have 

reportedly banned the use of ChatGPT within their workforce3. 

9.1. Policy Points 

• Higher Education should train students on how to properly use generative AI to 

support industry tasks. 

• Higher Education should train students on the risks of using generative AI, including 

issues surrounding copyright, data protection, and how they are ultimately 

responsible for the work which they produce. 

• Higher Education should accept and adopt the use of generative AI in assessments 

where appropriate i.e., Universities should incorporate generative AI tools into 

authentic assessment. 

• Higher Education should continue to emphasise the ‘soft skills’ required in industry 

and the value of a ‘human touch’ in projects. Automating everything is not always the 

answer. 

• Higher Education should continue to reduce the gap between academia and industry, 

with a focus on producing industry-relevant graduates. This is often done through 

industrial feedback on curricula (e.g., Industry Advisory Boards) 

• Higher Education should place higher emphasis on students’ understanding of 

security and secure software development practices. 

  

 
3 https://edition.cnn.com/2023/09/22/tech/generative-ai-corporate-policy/index.html 
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10. Academic Misconduct 

With the advent of multi-topic faithful text generation through the modern era of chat-

based AI systems, many in the HE sector are rightly concerned about the potential 

impact of this technology on academic misconduct during assessments. Indeed, since 

the introduction of ChatGPT several universities have prohibited access to this 

technology on their campuses (Duffy, 2023). A recent article, however, claimed that 

students are widely using ChatGPT and other similar AI chatbots in a variety of 

capacities to help with generating ideas, essay plans, and even submissible outputs 

for summative assessment (Terry, 2023). 

Academic misconduct existed before the advent of readily available artificial 

intelligence systems. Students have always had opportunities to copy shared work, 

ask friends for help, or even pay for a readymade answer from an essay mill. Every 

institution has academic misconduct policies that handle these scenarios, and in many 

cases the nefarious use of AI in student work is already covered. For example, if a 

student submits work that is wholly generated by an AI, then they should receive the 

same penalty as a student who (1) copies work from another, or (2) pays for an answer 

from an online service. However, using AI is different from these two scenarios and 

presents a lower barrier for the students to cross. If a student copies from a friend, 

then someone else knows of their transgression - they may reveal this at any time. If 

they are caught, the person whose work was copied may admit to sharing the work. 

Cheating with AI is hidden. A student can generate an answer with no external 

involvement. Worse, if they are questioned, they may deny having used AI. Unless the 

tutor has strong evidence, the transgression may go unpunished. Similarly, using an 

essay mill presents a high barrier of cost. Cheating with AI, however, is free. A student 

can generate multiple examples and submit the one they think will do best across 

multiple assessment points, with no financial outlay. 

Of course, many students will not directly use AI to create their final output, but may 

still use AI as part of the process of generating ideas, or as an initial knowledge base. 

We must develop sensible policies that allow students to engage with the technology 

in a constructive way, whilst remaining honest about what is representative of their 

own work, and what is generated by AI. The policies surrounding this in a HE is setting 

are likely to develop as AI regulation is developed at a national and international level. 

Whilst this may paint a bleak picture, there are many opportunities to overcome AI-

based academic misconduct. The first step in addressing this is to educate those in 

positions of power at all levels within our higher education institutions to the dangers, 

but also opportunities, of the integration of AI into education. There are many 

possibilities for students to constructively engage with AI technology as part of their 

learning journey. This is only possible if academics are able to curate valuable learning 

experiences that integrate AI technology. In the same way, modern degree courses 

integrate personal computing, the internet or smart devices as learning tools, we must 

also seek ways to integrate AI into our student's learning experiences. 
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10.1. AI Detection 

Since the release of ChatGPT, a number of pieces of AI detection software have been 

released for use by the public. Most notably, TurnItIn released a tool, which was 

integrated into their existing software to score a piece of writing according to its 

likelihood of being generated by AI. This software is developed by training a machine 

learning algorithm to distinguish between examples of AI written text and human 

written text, based on common patterns found in each. The machine learning algorithm 

does not get a perfect rate of classification and may exhibit false positives (human-

written work detected as generated by AI), as well as false negatives (AI-written work 

not detected). In fact, Turnitin aim for their tool to have a 1% false-positive rate: 

"We might flag a human-written document as AI-written for one out of every 100 fully 

human written documents." - (Turnitin, 2023) 

Ultimately, AI detection software is not sufficiently mature to be relied on at this point. 

Falsely accusing 1% of a cohort with allegations of AI-based academic misconduct is 

clearly not in the best interests of any institution. Whilst AI detection software may be 

useful as an indicator tool, it should not be relied on or used to make final judgments 

overriding those of a human. 

There are a number of strategies that educators can use to manually detect AI-

generated text. Whilst these may not give direct evidence of academic misconduct 

through AI, they may help to form a picture and allow an academic to build a case for 

an academic misconduct panel. 

• Mismatch to student style: If the work submitted by a student is particularly different 

than their usual style (i.e., overly formal, beyond their usual academic level), this may 

be an indicator of the use of AI. This may also occur within an assessment, where a 

student has written some areas themselves and generated other areas, with the style 

varying drastically. 

• Lack of depth: AI generated answers typically do not contain the level of depth or 

analysis that a human-generated answer may contain, and that is sought for at 

degree level. The answers are typically formulaic, consisting of a brief summary, a 

list of important topics and a summary/conclusion paragraph at the end. The answers 

typically contain heavy repetition and prioritise form over function. 

• AI artefacts: Students may not realise that the answer they have automatically 

generated contains both subtle and obvious clues to indicate that it was generated 

by AI. An obvious clue is the use of the phrase "As an AI language model", which 

ChatGPT has been trained to produce to indicate that its response is the result of a 

machine generation. A more subtle clue is the use of the second person in answering 

the question. Chatbots are designed for conversation and often answer in a 

discursive manner (your question, etc.). Finally, in the UK context, tutors may notice 

Americanisms introduced into their student’s work. The major chatbots are trained 

on web-based text, which typically uses American-English spelling, so the text they 

produce also follows this convention. 
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• Hallucinations: Chatbots are not grounded in factuality. Whilst generating a response 

to a question, there is no check to determine whether the answer is truthful or not. 

This can lead to invented references and facts. References that cannot be resolved 

to texts, or are a recombination of authors, journals and titles from valid sources are 

a strong indicator of the use of AI. 

10.2. Policy Points 

• Include an element of assessment that is less vulnerable to misconduct (i.e., 

image/data-based analysis) 

• Use automated detection software as a 'first-flag', but not as a 'final-flag'. 

• Train staff to be aware of signs of LLM-based misconduct. 

• Train students to be aware of how to (and how not to) use LLMs. 

• Consider invigilated assessments, or elements thereof where text-based 

submissions are necessary. 
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11. New Assessments 

If the basic problem of the use of LLMs in assessments is that students may be 

tempted to pass off (uncritically) the output of LLMs as their own, then the policy should 

be to look to ways that prevent that action and incorporate the use of LLMs in the 

assessment work itself. 

There are a few areas where the temptation to use LLMs uncritically exists – code 

production and long essays. The policy for assessment should match a policy that 

prevents the use of essay mills and other forms of contract cheating. 

11.1. Policy 

• In all cases, ensure that a session on risks associated with the use of AI tools is 

included, with specific attention paid to areas where there is an ethical, privacy, 

security, or legal concern. 

• Ensure a regulation around the citation of AI use.  

o This needs to match the institution’s citation policy for general referencing. 

• Make it clear which elements of an assessment may permit the use of LLM material 

but that the student must make it clear which parts are created by LLM and for there 

to be a defined maximum amount of content to come from AI tools. 

• For project work where the use of AI tools might be encouraged (such as coding 

examples), ask for the input parameters, prompts, and preferences to be provided 

as appendices or part of the assignment response. 

• Create assessments that actively develop and assess AI literacy.  

o This should be amongst the first assignments that students encounter and will 

prevent poor practice later in the course. 

• Consider the use of live, in-person assessment events. This can include oral 

presentations, interviews, vivas or observed discussions.  

o Asking students to present or respond to questions will separate authentic 

learning from assessment responses that merely take output from AI tools. 

• Develop assessments where there is an ongoing ‘development’ element with 

milestones.  

o Milestones can be used to test the development of a student’s response over 

time. 

• Develop assessments where students need to submit reference material at 

milestones.  

o Reference material submission can be used to see the development of a 

student’s learning over time. 

• Create submissions where students must complete a journal of time and/or activities 

involved in the completion of an assessment.  
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o This can be useful where AI tools are used and required in the work. Students 

can report regularly on their progress and is useful when combined with 

reflection. 

• Develop assessments based on action-learning cycles.  

o Action learning cycles rely on periodic reflection of an experimental process of 

intervention, which would be unique for each student. 

• Develop just-in-time assignments where the task is made available for an in-person 

day-long assessment centre.  

o Just-in-time assessments can be used to test immediate responses from 

students to a particular problem, such as through a hackathon. 

• Develop assessments where the grading is focused on a critical reflection and 

introspection element rather than the production of assets.  

o Rather than ‘mark the work’, the grades are assigned to how the student reflects 

on results and the process. 

• Develop assessments that may test the student's ability to develop prompts to 

resolve problems and for the students to reflect on the relative success or failure of 

prompts to solve problems. 

• Make sure that submission deadlines are not bunched so that students are not 

tempted to use LLMs uncritically if they are struggling to manage several 

assignments submissions. 
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12. Adoption of LLMs 

Deciding whether to use LLMs is influenced by various factors, including the 

expectations of students, university management, employers, regulatory bodies, and 

professional associations. As we still need to have a detailed understanding of these 

groups' perspectives, there is uncertainty about the extent to which LLMs should be 

adopted for individual use and integration into curricula. Concerns were expressed 

about the fear held by many regarding artificial intelligence more generally (such as 

the impact on jobs), which was attributed to press and social media coverage. Risks 

and uncertainty about accountability are factors in LLM adoption. 

A range of issues were discussed relating to the current landscape of AI tools available 

and equitable access to them. The affordability of tools was highlighted, noting that 

the widely used freemium pricing model links access levels to payment. Issues related 

to the data used to train LLMs were also frequently raised, with calls for greater 

transparency from leading developers of these tools. More certainty about the source 

of training data is needed to evaluate quality and potential biases, as well as address 

concerns about copyright. There are also worries about the impact of increasing 

amounts of synthetic text generated by LLMs. Without reliable methods of 

distinguishing between human-authored and AI-generated text, information literacy 

skills will become increasingly important for students and educators. 

12.1. Developing AI Literacy 

Developing AI Literacy involves familiarity with the LLMs themselves, as well as the 

broader AI landscape. Knowledge of the specific AI terminology, techniques, and tools 

is necessary for making informed decisions about use. For some, a basic 

understanding of how LLMs work and their capabilities was sufficient, but others felt 

that using them confidently and competently was also required. Writing effective 

prompts was noted as a specific skill needing development, with parallels drawn to 

performing an effective internet search. Individuals should be aware of the tools 

available and understand their limitations and ethical considerations to make informed 

choices about using them. 

Building staff and student AI literacy will require adequate time, space, and support. 

Having opportunities to interact with these new technologies and forums to discuss 

implications was seen as important. Guidance and training should be differentiated 

based on needs and confidence levels. There were differing perspectives on whether 

developing AI literacy should be part of broader digital skills initiatives or a separate 

focus and whether to use existing or new support teams. Sensitivity is needed 

regarding the wider impacts of LLMs, as some may need to reskill, and there are 

varying comfort levels with new technologies. 

12.2. Policy Points: 

• Develop guidelines for responsible use of LLMs in educational settings that consider 

equity, transparency, copyright, fact-checking, and ethical implications. Engage 
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stakeholders like students, staff, management, and regulatory bodies in drafting 

guidelines. 

• Provide training and support for educators on AI literacy, including LLM capabilities, 

limitations, terminology, prompt writing, and ethical use cases. Give time and space 

for hands-on experience and discussions. Offer differentiation based on educator 

needs and confidence. 

• Advocate for transparency from LLM developers regarding training data sources, 

potential biases, and ownership. Educators need this information to evaluate 

suitability. 

• Consider affordability issues with widely used freemium pricing models. 

• Offer opportunities to develop information literacy skills, such as fact-checking. 

• Amend academic integrity policies to address the use of generative AI expressly. 

Define appropriate vs. inappropriate use cases. 

• Foster broad awareness of the broader AI landscape among staff and students, not 

just LLMs. 
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13. Timescales 

Academia can be very slow to adopt and adapt to new technologies and it is likely that 

LLMs will be similar. One of the main causes for slow adoption of changes is the 

regulations and restrictions that are in place regarding making changes to unit 

specifications, learning outcomes, assessments etc. Some of these are internal 

regulations designed to provide more certainty to students and ensure adequate 

oversight. Others are external regulations pertaining to consumer protection laws and 

other relevant legislation and guidance from governmental bodies such as the Office 

for Students (Protecting students as consumers, 2023). 

Nevertheless, there are uses of LLMs that can be adopted in the very short term and 

others that can be prepared for now to take effect over the course of a few years. 

13.1. For Immediate Adoption 

One immediate use of LLMs that could prove extremely valuable is the testing of 

assessments. This falls into a few different areas. In some cases, particularly around 

coursework, LLMs can be fed assignment briefs and tasked with producing a 

submission. An expert marker can glean important information from these submissions 

in terms of understanding the level of difficult of the assignment and whether it is 

assessing all the knowledge and skills intended. Another use of LLMs in this context 

is to help the assessor check the readability and possible ambiguities of the 

assignment brief itself. An LLM can be asked questions regarding an assignment brief 

to ensure that it has been understood correctly and this can serve as a proxy to ensure, 

ahead of release, that an assignment brief is clear in its requirements and instructions. 

A more general use of LLMs in the area of assessment is in actually generating 

components of an assessment. For example, LLMs can be tasked with generating 

example scenarios and/or assessment questions related to those or other scenarios. 

LLMs can also be tasked with generating potential project prompts for students for 

more open-ended project units. For formative work, LLMs can certainly be used to 

generate lab exercises. For example, an existing lab exercise could be used as the 

basis for generating new exercises that are similar in terms of the skills and knowledge 

they cover but use different scenarios or ask different questions. This can allow a unit 

to retain a freshness of content without the teaching team needing to spend a lot of 

time redesigning the exercises that have worked well previously. 

LLMs can also be used in the initial teaching as well. Where there is scope within a 

unit, LLMs can be used to help plan entire lecture courses by suggesting topics to 

cover. These can be based on prompts or even a list of required learning outcomes. 

LLMs would be able to propose appropriate topics matching the number of teaching 

sessions. This kind of co-generation can be extended to other areas. For example, 

one use of LLMs is to generate texts or scripts from existing lecture slide decks. These 

scripts can be made available to students as additional sources of information and 

with LLMs they can be generated at very little extra cost. 

However, there remain some concerns over whether the content generated by LLMs 

may be subject to copyright restrictions from the original owners of the data. The owner 
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of the LLM may pass on responsibility for the copyright status of the generated text to 

the user who must then consider whether or not their use is in breach of copyright laws 

but could, under UK law, become the copyright holder of the generated text (Sekhon, 

Ozcan and Ozcan, 2023). It should be noted in this context that exceptions to copyright 

law exist for the purposes of teaching under UK law (Exceptions to Copyright, 2021). 

Another possible use of LLMs which can be immediately adopted and with some 

important impact is the ability of LLMs to rewrite text changing its tone and feel. For 

example, LLMs have been used successfully by academics to mellow the tone of an 

email to a student who has not performed at the required level. This additional step in 

the emailing process can also help bridge language gaps between lecturers and 

students. One use, for example, may be to tailor text to or from non-native English 

speakers to avoid or adopt certain idioms and phrasings. 

Whether or not LLMs are used in the generation of assessments or teaching, the 

existence and usefulness of LLMs must be recognised. It is therefore important that, 

with immediate effect, its existence is acknowledged during teaching and students are 

taught how to make proper and appropriate use of such systems. Universities and 

individual lecturers should not ignore them but should embrace them. Much as we may 

routinely advise students to Google for help when they are stuck on some particular 

syntax, we can now also advise them to ask an LLM for help. However, care must be 

taken to ensure that the LLMs output is carefully considered and not accepted 

uncritically by students. Unfortunately, this is a problem that still exists with search 

engine results where the first result’s contents may be adopted uncritically and 

unthinkingly by students leading to detrimental effects. 

13.2. Longer-Term Changes 

In the longer term, LLMs may become more integrated and central to our teaching. 

Over the next 1 or 2 years, some learning outcomes may have to change to either 

explicitly or implicitly acknowledge and incorporate the use of LLMs. Changes to 

learning outcomes must follow due processes to ensure compliance with both internal 

and external regulations and therefore they will require a longer lead-in time. It is also 

important that changes are not too rigid given the fast pace of change at the moment 

in this area. 

Over an even longer period, changes at the overall course level should be 

implemented. Courses must be taught in a way that does not fight against LLMs but 

embraces them as helpful tools and teaches students how to make proper use of them. 

Whilst the majority of students will not need to understand how LLMs work, students 

will need to understand enough to ensure they can make the best use of them as tools. 

Unlike search engines which students are assumed to have grown up with and know 

how to use, LLMs being new and more complex will likely require some explicit 

instruction.  
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14. Conclusion 

When we were invited to host a workshop on the use of ChatGPT in Computing 

Education for the Council of Professors and Heads of Computing, we did not anticipate 

the interest that we would receive, nor the scale of the task that we had committed to. 

As we planned for the workshop, we realised that so little policy currently existed, and 

that we were able to meet a timely gap in the market by producing this report. The 

experiences in preparing, hosting and participating in the workshop, have allowed us 

to develop valuable insights into the AI future of higher education. 

In this white paper, we have explored two key areas concerning the use of Large 

Language Models in Computing Higher Education. Firstly, we considered the threat 

level to a number of potential assessment modalities. Educators must consider the 

ways in which they assess students and the types of questions that they use. Students 

are already using Large Language Models in their learning and educators must 

address this to stay ahead of the curve. Secondly, we considered timely policy 

considerations across four key areas of concerns for decision makers in higher 

education institutions. By considering these policy areas we hope to be able to add to 

and shape the existing narrative around the use of this technology within our 

institutions. 

We do not consider this report to be the last word on the matter, but rather the first – 

opening up the future conversation within the HE sector. We stand at an unfolding 

moment in the history of education, where rapidly evolving technology is changing the 

way we work and learn. We must make wise and conscious decisions today, to the 

benefit of our future practice and that of the learners and educators that will follow in 

our paths. 
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