
Please cite the Published Version

Shardlow, Matthew and Latham, Annabel (2023) ChatGPT in computing education: a policy
whitepaper. Discussion Paper. Council of Professors and Heads of Computing, UK.

Publisher: Council of Professors and Heads of Computing

Version: Published Version

Downloaded from: https://e-space.mmu.ac.uk/633469/

Usage rights: In Copyright

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0000-0003-1129-2750
https://orcid.org/0000-0002-8410-7950
https://e-space.mmu.ac.uk/633469/
https://rightsstatements.org/page/InC/1.0/?language=en
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines

ChatGPT in Computing Education A Policy White Paper

1

 ChatGPT
in Computing Education

A Policy White Paper

Editors:
Matthew Shardlow, Annabel Latham

Contributing Authors:

Matthew Shardlow, Annabel Latham, Daniel
Gooch, Kevin Waugh, Mike Richards, Mark
Slaymaker, Alistair Willis, John Halloran, Da-
vid Edmundson-Bird, Leanne Fitton, Antho-
ny Kleerekoper, Ashley Williams

ChatGPT in Computing Education A Policy White Paper

2

Foreword

Foreword by Professor Rob Aspin, Chair of the Council of Professors and Heads of

Computing (CPHC), Head of Computing and Associate Dean, University of Central

Lancashire.

In this paper, Latham and Shardlow present a detailed and objective review of Large

Language Models (LLM), such as ChatGPT. This work draws on both current research

and their own workshop activity, funded by the Council of Professors and Heads of

Computing (CPHC) 2023 Special Projects Fund. They seek to identify and normalise

the place of LLMs in Higher Education teaching, specifically for computing, recognising

the disruptive impact such technologies are likely to have and exploring how these can

be positively integrated into teaching and assessment. The paper builds on previous

work, through the use of a sponsored workshop, to assess the potential threat LLMs

present in Computing Education, before exploring policy considerations that can be

taken forward to inform how the positive benefits of the technology can be incorporated

in, HE institutions.

LLMs offer significant potential to revolutionise the ability to efficiently develop code
and support associated processes such as documentation, review and information
gathering that inform and reflect on the development of complex systems. For industry,
where the majority of computing students will spend most of their working career, these
techniques and tools are likely to become adopted and expected. These tools will be
integrated into the professional software development process and will students offer
a more strategic perspective on the crafting of solutions.

However, in academia where students are forming their knowledge, skills and
understanding and developing expertise in their ‘craft’, such tools could be considered
inappropriate and raise concerns about unfair means, plagiarism and academic
misconduct. In both academia and industry there are considerable concerns over the
robustness and reliability of both code and text generated by LLMs which call into
question the fidelity of their output against the task they have been set. The ability to
critically evaluate the output of LLMs against the requirements set and context of the
problem will be essential moving forward and our obligation is to ensure our students
can use such technologies safely, critically, and responsibly. This is not massively
dissimilar to concerns raised when search engines became more prevalent. At that
time, there were concerns that the accessibility of readily available access to ‘open’
knowledge would impinge on academic integrity for students and adversely affect the
reliability and robustness of the sources used to inform technical development and
critical thinking. Time has shown responsible use and the education around criticality
and appropriateness of sources has turned previous disruptive technologies into well
integrated practices. The research here, navigated and presented in an objective
study, shows potential for the similar incorporation of LLMs to support future
opportunity and evolution of the computing domain.

ChatGPT in Computing Education A Policy White Paper

3

Executive Summary

On Monday 17 July 2023, 65 academics from 33 universities across the UK joined
forces for a workshop to explore the affect of generative AI tools (such as ChatGPT)
on Computing Higher Education, and to co-develop guidelines for university
assessment policy. The ‘ChatGPT in Computing Education: A workshop to Co-
Develop Guidelines for Assessment Policy’ workshop was funded by a Council of
Professors and Heads of Computing (CPHC) 2023 Special Project Fund grant, and
hosted by Dr Annabel Latham and Dr Matthew Shardlow at Manchester Metropolitan
University, UK.

The day started with a talk on How Large Language Models (LLMs) work, to give
context for the discussions. In the first workshop task, six different modes of
assessment common in computing-related higher education courses were evaluated
in terms of the threat level and opportunities for redesign in light of LLMs. A group
feedback session explored findings and thoughts about the six traditional assessment
types and ideas for future assessments. The group noted that assessment types are
already evolving away from the traditional knowledge-based assessments (factual
recall, closed exams) towards skills-based assessment (coursework, practical
activities). Whilst knowledge-based assessment may be threatened by LLM-based
plagiarism, skills-based assessments require the learner to demonstrate a practical
ability. If this is assessed through a written piece, it may be vulnerable to academic
misconduct, however there are many alternative ways of assessing skills such as
practical exercises and Vivas. The group examined a number of forms of written
assessments (knowledge recall, critical analysis, long essay, and experiential) as well
two code-based assessment formats (code production and code analysis). The first
part of this report gives a summary of the findings for each of these types of
assessment.

The final workshop activity was a World Cafe activity, whereby each table group was

assigned a policy topic, and a host who remained with the table to lead discussions.

Each group of attendees spent 10 minutes at each table discussing and shaping policy

guidelines for universities. These groups discussed a wide range of policy topics

including how to incorporate LLMs into HE practices, mitigation of academic

misconduct, delivery strategies and appropriate timescales for adoption. These

discussions, along with relevant policy points are summarised in the second section

of this report.

This report is intended for policy makers in Computing HE settings and beyond. Our

findings demonstrate the need for informed decisions to be made within our university

settings. LLMs are here and their power is increasing. As educators, we must stay at

the forefront of this curve, incorporating this technology into our teaching practices to

the benefit of our students’ education and future employment prospects.

ChatGPT in Computing Education A Policy White Paper

4

Table of Contents

1. Introduction ... 5

Section 1 Assessment Threat Level and Redesign .. 9

2. Selection of Assessment Methodologies .. 10

3. Knowledge Recall ... 13

4. Critical Analysis .. 17

5. Long Form Essay Questions .. 25

6. Code Analysis ... 29

7. Code Production ... 36

8. Experiential.. 38

Section 2 Large Language Model Policy Considerations in Computing
Higher Education and Beyond .. 42

9. Employability .. 43

10. Academic Misconduct ... 45

11. New Assessments .. 48

12. Timescales... 52

13. Longer-Term Changes ... 53

14. Conclusion .. 54

Acknowledgments .. 55

Workshop Participants ... 56

References ... 57

Terminology

AI………………………..……….Artificial Intelligence

LLM…….……………………..... Large Language Model

GPT…………………………….. Generative Pre-trained Transformer

HE………………………………. Higher Education

ChatGPT in Computing Education A Policy White Paper

5

1. Introduction

1.1. Assessing the Outputs of Large Language Models

Large Language Models (LLMs) can provide near-instantaneous responses to

queries, written in fluent prose that gives a seductive veneer of authority. The human

response to their abilities is a demonstration of ‘The ELIZA Effect’ – the projection of

human traits, including empathy and authority into text generated by computational

systems (Turkle, 2007).

LLMs appear convincing and knowledgeable even though their underlying models

contain no knowledge about the meaning of words and phrases – only their statistical

relationships to one another in different contexts. Without at-least some knowledge of

the workings of LLMs and an understanding of their inherent limitations, users can be

tempted into unquestioningly accepting their outputs, treating these programs as

infallible oracles rather than ‘stochastic parrots’ (Bender et al., 2021) churning out

unaccountable, unverified and potentially dangerous text.

1.2. Academic Literacy Skills

A key set of skills taught at university level are those allowing students to perform

independent research in order to collect, categorise, assess and verify information.

Whilst introductory learning, concentrating on the knowledge and comprehension

stages of Bloom’s model can often be satisfied from within supplied materials; higher

levels of study require students to supplement provided learning with additional

materials acquired through independent study.

The PROMPT criteria developed by the Open University (Open University, 2020) is an

approach to evaluating information recommended to the University’s higher-level

students and has been adopted by other institutions. PROMPT encourages learners

to consider the sources of information included in their work and to evaluate these

sources in a critical manner.

Approaches such as PROMPT are compatible with the use of LLMs in assessment.

Designing assessment to award credit for choosing reliable, objective and authoritative

searches encourages learners to develop academic literacy skills such as questioning

the source of information. Learners should not expect to receive much, if any credit, if

their solutions simply use material from a LLM; rather they should draw on a range of

sources and reference them accordingly as well as demonstrating engagement with

these resources rather than relying on the formidable summarisation skills of this

technology.

ChatGPT in Computing Education A Policy White Paper

6

Table 1, The PROMPT Criteria (Open University, 2020).

Provenance
Is the origin of the information clear? Are the authors or publisher identifiable?

Do they have credibility and authority?

Relevance Is the information relevant to the question being asked?

Objectivity
Is the article objective or does it come with a particular agenda? Is it written in

a dispassionate manner, or is it inappropriately emotive or manipulative?

Method How was the information acquired? Was the methodology appropriate?

Presentation Is the information clearly presented without obvious omissions and distortions?

Timeliness
Can the material be dated? Does the age of the material have an impact on its

usefulness?

Any consideration that LLMs are acceptable in assessment requires that students

have some awareness of the technologies used. There is no need for any deep

understanding of the workings of LLMs, only the broad concept that they take a

probabilistic approach to producing semantically and syntactically correct text – but

have no inherent understanding of their outputs. Such information should serve to

dissuade the unfortunately widespread view that LLMs are truly intelligent and can be

trusted to produce meaningful responses. Students armed with the knowledge that

LLMs are – by their very nature – unreliable and prone to falsification are more likely

to critically appraise their outputs than those learners who trust them implicitly.

1.3. Hallucinations

Whilst the issue of ‘hallucinations’ has attracted a great deal of interest as a potential

method of detecting improper use of LLMs, it should be remembered that falsification

of references by ChatGPT is in good part a reflection of the sandbox environment

within which early versions of the model functioned; the program having no access to

academic libraries and other sources of factual information beyond those included in

its training sets.

The ‘opening up’ of LLMs through the development and deployment of Application

Programming Interfaces (APIs) that allow for the exchange of information between

LLMs, and other online services will effectively eliminate obvious fake references and

this relatively straightforward method of identifying cheating. Instead, hallucinations

will take the form of distorted outputs reflecting inherent biases and omissions in the

underlying training that will be much harder to detect.

We propose that all students should receive appropriate training into LLMs giving them

a broad understanding of their operation, training, abilities and shortcomings in order

that they can critically assess their outputs.

1.4. Is This Really New?

In the early 2000s, educators were concerned about the potential for Wikipedia to

supply learners with misleading or erroneous material. The open-source nature of the

ChatGPT in Computing Education A Policy White Paper

7

online encyclopaedia led to a perception that the encyclopaedia’s content would be of

lower quality than conventional reference sources where material was checked and

corrected by professional reviewing and editing teams. Furthermore, since Wikipedia

pages could be edited by any user, content could be changed to reflect fringe points

of view, omit inconvenient information, or be vandalised by malicious

actions (D’Agostino, 2022).

Rather than imposing an artificial ban on Wikipedia – and by doing so removing access

to a huge volume of high-quality information; most institutions have developed policies

that allow for limited use of Wikipedia as an information source. One approach is to

allow students to draw on Wikipedia, so long as it is correctly referenced, as well as

requiring evidence from other, authoritative sources. This method allows students to

continue using their existing skills at finding online content but requires them to

develop new academic skills in proving the validity of the source and finding supporting

evidence. This approach is supported by studies (Meseguer-Artola et al., 2020;

Sielicka-Barylka, 2021) showing that well-informed use of Wikipedia has a positive

impact on university students due to the service having generally up-to-date material

which is considered reliable and useful.

Other approaches to incorporating Wikipedia in education combine the usefulness and

familiarity of the online encyclopaedia with requirements for academic

credibility (University of Edinburgh, 2020) as well as exposing learners to the creation

and curation processes underpinning Wikipedia by having them create their own

content for the encyclopaedia as part of their studies (Soler-Adillon, Pavlovic and

Freixa, 2018).

A corollary can be drawn with the use of calculators in mathematics assessment.

Following their widespread availability in the mid-1970s, calculators have been

incorporated into the mathematical curriculum, albeit frequently provoking controversy

about their impact on basic mathematical skills. Adoption of calculators has often been

followed by later restrictions on where and how they can be used.

Critics of calculators in mathematics education frequently cite learners becoming

reliant on the device without needing to understand the mathematical operations

themselves, and in doing so, failing to demonstrate a step-by-step working of

problems. Research does not support these arguments (Cockcroft, 1982; McIntosh,

1990; Sparrow, Kershaw and Jones, 1994; Ruthven, 2009) and more recent

restrictions on the use of calculators in the UK SAT assessment has been criticised by

mathematical educators:

‘In fact, students who use calculators regularly in lessons score as high or higher in

tests, taken without calculators, compared to those who do not. On the whole, the use

of calculators as an integral mathematical tool has been shown to be beneficial,

particularly in the development of mathematical problem solving. It is a pity that current

policy is retrogressive in this respect.’ (Sellgren, 2014)

Whilst a ban on the use of LLMs in assessment might seem a reasonable approach,
experience with previous disruptive technologies suggests that engaging assessment
models can be developed that will utilise the powers of LLMs to create more engaging,

ChatGPT in Computing Education A Policy White Paper

8

richer learning. It may be necessary to put short-term bans on the use of LLMs for
certain modules or topics until new assessment models and supporting learning
materials are developed, but such is the pace of development that bans cannot be
sustainable. We propose that educators perform a systematic review of the literature
covering experiences of educators facing previous technological changes to learn
lessons that could inform future assessment models incorporating LLMs.

1.5. All This Will Pass

Many of the concerns raised by educators about the improper use of LLMs in
assessment reflect the current state-of-the-art where these tools exist as stand-alone
services. Inevitably, LLMs and other forms of generative AI will be incorporated into
other forms of software.

Already, Microsoft has begun to use the GPT-4 model to provide enhanced search

results in Bing (Mehdi, 2023) and will soon incorporate LLM functionality into the

Microsoft Office suite of tools (Spataro, 2023). Other major software providers used in

education; including Google (Google, 2023) and Adobe (Adobe Inc., 2023) have

either introduced, or will shortly do so, AI tools as part of a standard workflow.

Increasingly, AI will become just another tool – perhaps even an ‘invisible’ function –

used to create a final piece of work. Arguably, this has already happened with the use

of spell, style and grammar checkers not only being routine, but actively encouraged

by educators to improve the quality of student submissions. Each of these tools uses

AI technology to perform its task, but their adoption has not raised great concerns

amongst educators.

We suggest educators should develop assessment strategies concentrating on sound

research methodologies emphasising the quality of sources and the requirement to

find multiple lines of evidence rather than becoming distracted by the short-term

disruption caused by LLMs.

Despite their many flaws, LLM detection tools to provide opportunities for ensuring
academic integrity. Recent studies investigating the prevalence of detection - without
interpreting what a detection means - found that there was a significant increase in the
number of scripts flagged as containing AI-generated material (Gooch et al., 2024).
The paper goes on to present an analysis of the demographic profile of flagged scripts,
finding that male students, students with lower prior educational attainment, and
younger students are more likely to be flagged. It remains an open question as to how
effective LLM detection tools will be in supporting academic.

ChatGPT in Computing Education A Policy White Paper

9

Section 1 Assessment Threat Level and Redesign

ChatGPT in Computing Education A Policy White Paper

10

2. Selection of Assessment Methodologies

To better understand the impact of LLMs and particularly ChatGPT on our education

practices, we have selected six forms of assessment that are typically given in a

Computing Higher Education setting. These assessment types are not exclusive to the

domain of the computational sciences and the findings that we give in the following

sections may well be of value to readers from other domains who provide similar

modes of assessment. We are also not seeking to limit the types of assessment that

could possibly be given within a computing setting. Our selected modalities are an

inexhaustive list, designed to cover a majority of computing assessments, prioritising

those that are particularly vulnerable. For example, we do not consider video or oral-

based assignments, as it is obvious that these are low-risk settings for academic

misconduct through LLMs (indeed, face-to-face direct oral assessment has been used

since antiquity as a robust means of assessing an individual's knowledge). We have

explicitly not considered future possible means of assessing students that may arise

from the widespread use of LLMs in education. Whilst we will make recommendations

for the integration of Language-based Generative AI into assessment, we cannot now

comment or draw conclusion on what is not yet widespread or accepted as a valid

means of assessment.

When considering assessment styles, there are a number of factors that are important

to take into account. Decisions around assessment modalities should be learner

centric (Bloxham and Boyd, 2007), prioritising accessibility (Baker et al., 2020). The

instructor must consider whether to deliver assessment material at an individual or

group level (Lejk, Wyvill and Farrow, 1997). Assessment timing is key and both

continuous and final assessments may be used in tandem to improve learner

outcomes (Cox, Imrie and Miller, 2014). The skills to be assessed by an assessment

type must be taken into consideration. As well as subject specific skills, a tutor may

include assessment of general skills (Clanchy and Ballard, 1995) and (particularly for

computing education) additional assessment of problem-solving tasks (Lu et al., 2022.,

Pérez et al., 2017). The delivery method of assessment must also be considered.

Remote assessment is increasingly prevalent since the global pandemic of 2020,

although left unchecked this may lead to further academic misconduct if mitigation is

not given (Guangul et al., 2020), such as providing each learner with a bespoke, or

watermarked problem set.

2.1. Assessment Modalities

We selected three categories of assessment type, which are further subdivided to give

6 separate assessment modalities. The three categories and their subcategories are

as follows. Firstly, recall/synthesis tasks. These are further subdivided into (1)

Knowledge Recall, (2) Critical Analysis and (3) Long Essay format. This form of

question requires students to draw on knowledge delivered in didactic settings and

produce some written response reinterpreting and delivering that knowledge at various

levels of criticality and word count. Secondly, we survey code based tasks, which are

subdivided into (4) Code Analysis and (5) Code Production. These elements are

particular to Computing education where we require students to fluently learn one or

ChatGPT in Computing Education A Policy White Paper

11

many programming languages and to fluently produce and interpret programming

code. Finally, (6) Experiential assessments rely on a student's own personal

experience through appropriate reflective practice of a task, event or circumstance.

We have briefly overviewed each assessment modality below and provided some

comparisons. Each assessment modality is analysed in detail throughout the rest of

this report, considering the threat level with respect to LLM and appropriate mitigation

strategies.

2.1.1. Knowledge Recall (KR)
Knowledge recall questions seek factual answers on specific topics. Typically this

would be knowledge that has been delivered as part of a prior taught session. These

may be delivered as part of a take home exam, or within a piece of coursework

2.1.2. Critical Analysis (CrA)
Critical Analysis questions ask students to compare contrasting theories or viewpoints.

They require the student to understand multiple perspectives and draw out differences

and similarities between elements of learning. The intended responses to these

questions are typically short-form and require conciseness.

2.1.3. Long Essay (LE)
Long-form essay questions provide the student with a topic and expect them to write

an extended discourse drawing on factual recall, critical analysis as well as soft skills

such as discourse planning, argumentation and often institution or instructor specific

structuring at the discourse level (introduction, definitions, argumentation, conclusion)

and independent argument level (point, evidence, explanation). The intended

responses to these questions are typically long-form and require verboseness.

2.1.4. Code Analysis (CoA)
Code analysis tasks start with a piece of code and require a student to understand the

workings of the code structures that are given to them. Typical questions may range

from debugging a broken piece of code to suggesting strategies to refactor or

commenting on code efficiency. These questions typically form part of coursework

tasks or exam questions.

2.1.5. Code Production (CP)
At the heart of computer science education, we must teach our students to write their

own code. Typically, this is assessed by asking the students to produce code and

evaluating the quality of the results. This may range from answers to known tasks

(fizzbuzz, sorting, etc.) to working within bespoke code frameworks.

2.1.6. Experiential (Ex)
Experiential tasks draw on a student's lived experience of a learning event. Rather
than communicating the knowledge that has been gained, a learner must instead
reflect on their personal development as a result of the act of knowledge gaining. This
assessment form may be delivered within a very focussed environment, e.g. reflection
on a specific classroom learning event, or may be structured as a much more open
ended reflection on a event spanning a wide time period (e.g., a course of learning or
placement year). Reflections are typically written in the first person.

ChatGPT in Computing Education A Policy White Paper

12

2.2. Discussion

Regarding our three recall and synthesis modalities (Knowledge recall, Critical

Analysis and Long Essay), we may observe that each of these requires a similar

approach from the learner. The learner must engage in a subject, seeking and

understanding new concepts from varied sources. Two key differences in the

modalities are (1) the length of the required answer and (2) the skills being evaluated

by the instructor. Firstly, there is a clear length difference in the required responses to

the types of questions that would be posed. For knowledge recall the answer may be

a single word or concept name, a bullet pointed list or a brief sentence. For Critical

Analysis the student may write several sentences or paragraphs, briefly defining their

terms and drawing comparisons. For long essays, A student is required to write at

length. Forming critical arguments and drawing on multiple sources to convey a point.

Secondly, the level of skill evaluated is also different across the modalities. Knowledge

recall is exclusively testing low-level basic knowledge of a field. Critical Analysis

requires a deeper understanding of each concept and appropriate lines of

argumentation to distinguish them. Long essays require a student to not only

regurgitate the opinions of others, but form convincing rhetoric for their own opinions

on a topic.

We have provided two separate analyses for Programming code based tasks. We felt

that it was important to separate out the two tasks of producing code and analysing

code. These two tasks are taught together in programming labs and progress in either

is dependent on the other. Whereas a student cannot learn to program without

knowing how to read and interpret code and they may find that their analysis skills

outstrip their production skills. Although these two skills are typically taught together

and exhibit some co-dependency, they are often assessed separately. A piece of

coursework may ask a student to solve a task using a given language or framework

according to the course, but never ask them to interpret and extend the function of a

piece of code. We have therefore included both of these modalities separately to help

academics delivering higher education computing assessments to consider the impact

of LLMs from both angles.

Our three categories (and six sub-categories thereof) allow us to analyse the threats

to various forms of assessment in a holistic manner. Conclusions which are drawn

throughout the rest of this report are intended to stimulate redevelopment of a wide

set of assessments. We also hope that the findings of this report will allow academics

to better understand how LLMs affect all assessment types differently. By identifying

the assessment type, the specific threats and appropriate mitigation strategies, we can

navigate a safe course through the LLM storm.

ChatGPT in Computing Education A Policy White Paper

13

3. Knowledge Recall

Bloom’s taxonomy is a widely adopted method of structuring learning outcomes across

curricula using a series of hierarchical models developed in (Bloom and Krathwohl,

1956). Of the three, the Cognitive (Knowledge-Based) is perhaps the most appropriate

for designing assessment Table 2. Bloom divided his Cognitive model into six levels;

ranging from foundational ‘knowledge’ skills that establish basic comprehension of a

topic through to advanced ‘evaluation’ skills. The names and order of the levels were

revised by (Anderson and Krathwohl, 2001).

Table 2, Bloom’s Cognitive model in original (1956) and revised (2001) form.

 Bloom (1956) 2001 revision

Most advanced Evaluation Create

 Synthesis Evaluate

 Analysis Analyse

 Application Apply

 Comprehension Understand

Least advanced Knowledge Remember

According to Bloom’s model, assessment for introductory learners should emphasise

acquiring the least advanced skills (knowledge and comprehension) in order to build

a strong foundation for later assessment further in their academic journey which will

develop and test higher-level skills.

Common types of assessment for foundational level modules require learners to

demonstrate recollection of basic facts and terminology even if their understanding is

somewhat limited. Students are gently introduced to assessment by being asked to

write short answers on tightly constrained topics; to define terms introduced in their

learning materials and to apply specific techniques or knowledge to often artificially

simple scenarios.

This approach to learning is effective for most students and helps support learners

who are unfamiliar with topics, lack confidence, struggle with language skills or those

who are returning to learning. Students feel a genuine sense of accomplishment in

being able to answer short questions that do not require too much depth of knowledge;

this helps build confidence and encourages them to continue studying. However, the

abbreviated level of knowledge required to answer such questions means that they

are extremely vulnerable to mainstream, free-to-use LLMs; which through the inclusion

of large factual knowledge sources during training, can generate correct, original

solutions to typical introductory assignment questions without needing to have been

trained on extremely specialist data sources.

ChatGPT in Computing Education A Policy White Paper

14

(Chamberlain et al., 2011) argue that well-designed short questions can be used to

assess a range of tightly focused competencies, including higher level academic skills;

making it possible to identify areas requiring further development through teaching

and other interventions. Eliminating short form questions may well be highly

detrimental to learners.

3.1. LLM Knowledge Recall Demonstration

(Yeadon et al., 2022) outlined a study of ChatGPT’s performance in essay-based

assessment for an undergraduate physics curriculum. ChatGPT was used to generate

10 scripts for an exam comprised of five questions requiring short-form (300 word)

answers. It was found that the AI responded in a more discursive manner when given

richer prompts including limiting word counts or including a known historical figure or

event in the question. Not only was ChatGPT capable of quickly generating synthetic

solutions, but these solutions received an average mark of 71 ± 2% with grades more

tightly grouped around the average than in student populations. The researchers

report that students performing in the lower third of their cohort would improve their

grade if they relied on ChatGPT for their solutions.

A study at the Open University (Richards et al., 2023) blind marked a mixture of

genuine student solutions and synthetic solutions generated by ChatGPT to two

introductory computing modules. In this case, every single synthetic solution

achieved at least a passing grade for an end-of-module assessment with multiple

scripts achieving scores of 85% or higher. These results indicate that a student wishing

to cheat by using ChatGPT to generate the entirety of their assignment solutions could

expect to pass end assessments for introductory modules without any knowledge of

the topic.

We propose that there are substantial educational benefits to short-form assessment

in establishing basic skills and knowledge; however, given the ability of LLMs to

provide competent solutions to such questions, this form of assessment should not

count towards classification.

To illustrate the ability of generative AI tools to set and answer basic knowledge recall

questions, the following two screenshots show Bard producing questions on

interaction design, and ChatGPT 3.5 producing questions on SQL:

ChatGPT in Computing Education A Policy White Paper

15

Such illustrative images highlight how the use of short-answer questions as summative

assessment are now problematic, while there are possibilities in terms of supporting

personalised formative skills development and self-checking.

ChatGPT in Computing Education A Policy White Paper

16

3.2. Moving Forward on Knowledge Recall

Returning to Bloom’s taxonomy (Table 1); higher levels of study develop the higher-

level skills categorised as Analysis, Synthesis and Evaluation. Here, students are

expected to develop and demonstrate proficiencies such as comparing and

contrasting disparate sources of information; applying existing knowledge to develop

new information and performing critical reviews of information to make a judgement.

Whilst LLMs can answer assessment questions designed to test these skills, their

proficiency is greatly reduced compared to earlier levels of assessment.

The Open University study mentioned above examined ChatGPT’s performance on

one postgraduate computing module. Not only did this assessment obviously require

deeper knowledge of topics than the undergraduate modules, but there is an

expectation on students to demonstrate greater proficiency of high-level learning skills

such as synthesis and application of knowledge. A key aspect of the module’s

assessment is the expectation that students will apply (and reference) the theoretical

knowledge found in the module materials to an organisation of their choosing as part

of a module-long case study. This combination of deep subject-specific knowledge,

high-level learning skills and intense personalisation of solutions proved challenging

for ChatGPT which produced unsatisfactory superficial and generic answers to the

assessment. None of the ChatGPT-generated solutions in the experiment received a

passing grade, and the marker referred to the answers being formulaic, superficial,

and blandly written.

There are assessment modalities - such as in-class quizzes, proctored examinations,

oral Vivas or portfolios and learning journeys - where there remains space for the use

of knowledge recall skills, particularly if integrated with elements of critical analysis.

Some questions which make explicit use of LLMs and that bridge the gap between

knowledge recall and critical analysis include:

1. “Can you use this tool” - use a MT generated prompt in a tool which is known to

generate an incorrect, incomplete, or poor response which needs the student to

review and improve the original answer. This could be done live through a tool, or

in response to a MT-generated artefact from a tool.

2. Compare and contrast the response to two different prompt formulations.

3. If the module uses a particular framing of content, use prompt to generate generic

text through a gen-AI tool, and ask the student to convert into the module framing.

4. Reflect on the capabilities and limitations of tool X in the context of [module]

5. Integrate use of a gen-AI tool into a learning journal, and document uses.

6. Generate assessment questions using tool X and ask students to critique them.

7. Ask students to write assessment questions which tool X cannot answer.

8. Student writes an answer -> use a gen-AI to critique answer -> reflect on the

critique.

9. Simplify the explanation of X given in the module with support from tool Y. Note

student vs tool changes.

ChatGPT in Computing Education A Policy White Paper

17

4. Critical Analysis

Critical Analysis questions ask students to compare contrasting theories or viewpoints.

They require the student to understand multiple perspectives and draw out differences

and similarities between elements of learning. In this case, we would expect the

answers to these questions to be short form, i.e., 200-300 words.

For computer science, critical analysis abilities are, as with other disciplines, essential,

but also differentiated / specific to computer science. The sorts of abilities we want to

promote include, for example:

• Explaining code clearly and concisely.

• Being aware of options and able to explain decisions and justify the approach taken:

this could be choice of algorithms, AI or machine learning technique, data model,

or software development approach or pattern.

• Being aware and able to apply relevant social, legal, ethical and professional issues

for a given problem space / piece of software.

• Situating work against current state of the art, able to explain value and contribution.

• Collegial criticality: the ability to work with others, helping shape and successfully

participate in (for example) complex software development project.

• Understanding what can and can’t be computed, and why.

What follows is a series of critical analysis questions we asked ChatGPT together with

its responses, to gauge how far and in what ways LLMs might plausibly emulate these

skills.

4.1. Question 1

Compare the waterfall methodology with the agile methodology for software

engineering.

Result Produced by LLM (in Italics):

The Waterfall methodology and the Agile methodology are two distinct approaches to

software engineering project management, each with its own set of principles,

practices, and advantages. Here's a comparison of the two methodologies:

Approach to Development:

o Waterfall: Waterfall is a sequential and linear approach. It follows a predefined

sequence of phases, such as requirements, design, implementation, testing,

deployment, and maintenance. Each phase must be completed before moving on to

the next.

o Agile: Agile is an iterative and incremental approach. It breaks the project into small

increments or iterations, typically 2-4 weeks long, and focuses on delivering a

working product at the end of each iteration. It allows for flexibility and adjustment

throughout the project.

ChatGPT in Computing Education A Policy White Paper

18

Flexibility:

o Waterfall: Waterfall is less flexible when it comes to changing requirements. Once a

phase is completed, it's challenging and costly to make significant changes.

o Agile: Agile is highly adaptable. It welcomes changing requirements, even late in the

development process. Changes can be incorporated in the next iteration.

Client Involvement:

o Waterfall: In Waterfall, client involvement is primarily at the beginning and the end

of the project. Clients usually see the final product after a lengthy development cycle.

o Agile: Agile encourages regular client involvement. Clients are part of the

development team and provide feedback throughout the project, ensuring that the

product meets their evolving needs.

Testing:

o Waterfall: Testing occurs at the end of the development cycle in Waterfall. This can

lead to the discovery of major issues late in the project.

o Agile: Testing is integrated into the development process in Agile, with continuous

testing and quality assurance throughout each iteration.

Risk Management:

o Waterfall: Waterfall tends to have higher project risk because issues may not be

identified until late in the process.

o Agile: Agile reduces risk through regular inspection, adaptation, and client feedback,

which helps in identifying and addressing problems early.

Documentation:

o Waterfall: Waterfall requires extensive documentation at each phase of

development, which can be time-consuming.

o Agile: Agile focuses on working software over comprehensive documentation,

though it still maintains necessary documentation.

Project Control:

o Waterfall: Waterfall provides more control over project scope and requirements

upfront but less flexibility as the project progresses.

o Agile: Agile offers more flexibility but requires strong project management to control

scope and ensure the project stays on track.

Delivery Time:

o Waterfall: Waterfall projects tend to have longer delivery times because the entire

project is completed before delivery.

o Agile: Agile allows for quicker delivery of incremental features or releases, which can

be beneficial in rapidly changing markets.

In summary, the choice between Waterfall and Agile depends on the specific project,
its requirements, and the client's preferences. Waterfall is suitable for projects with
well-defined and stable requirements, while Agile is more appropriate when flexibility,

ChatGPT in Computing Education A Policy White Paper

19

client involvement, and adaptability is essential. Some teams also adopt hybrid
approaches that combine elements of both methodologies to suit their project needs.

4.1.1. Analysis
This is a highly plausible answer neatly built around a series of criteria under which

each approach is compared and evaluated. The selection of these criteria (and not

others) is not explained, but if produced by a student the approach would be

recognised as sophisticated. It could be criticised for not discussing some specific

examples of software development to help ground and illustrate the points made, but

this would also challenge many students.

4.2. Question 2

Analyse the efficiency and scalability of bubble sort and merge sort. Discuss their

trade-offs in terms of time complexity and space complexity.

Result Produced by LLM (in Italics):

Bubble Sort and Merge Sort are two sorting algorithms that differ significantly in terms

of efficiency, scalability, and trade-offs in time and space complexity.

Bubble Sort: Bubble Sort is a simple comparison-based sorting algorithm that

repeatedly steps through the list, compares adjacent elements, and swaps them if they

are in the wrong order. The process continues until no more swaps are needed.

Efficiency: Bubble Sort has a time complexity of O(n^2), where 'n' is the number of

elements to be sorted. This makes it highly inefficient for large datasets because the

number of comparisons and swaps increases quadratically with the input size.

Scalability: Bubble Sort is not scalable for large datasets. Its performance degrades

rapidly as the dataset size increases.

• Trade-offs:

o Time Complexity: The main trade-off with Bubble Sort is its time complexity. It is

suitable for small datasets but becomes impractical for larger ones due to its

quadratic time complexity.

o Space Complexity: Bubble Sort has a space complexity of O(1), as it sorts the

elements in place without requiring additional memory.

Merge Sort: Merge Sort is a divide-and-conquer sorting algorithm that divides the

unsorted list into 'n' subsists, each containing one element, and then repeatedly

merges subsists to produce new sorted subsists until there is only one subsist

remaining.

• Efficiency: Merge Sort has a time complexity of O (n log n), which makes it much

more efficient than Bubble Sort, especially for large datasets. It is a stable and

reliable sorting algorithm.

• Scalability: Merge Sort is highly scalable. Its performance remains relatively

consistent even as the dataset size grows, thanks to its efficient divide-and-conquer

approach.

ChatGPT in Computing Education A Policy White Paper

20

• Trade-offs:

o Time Complexity: Merge Sort's time complexity makes it a strong choice for larger

datasets but might be overkill for very small lists due to the overhead of dividing and

merging.

o Space Complexity: Merge Sort has a space complexity of O(n) due to the need for

auxiliary storage (an additional array) during the merging process. This can be a

drawback for sorting large datasets with limited memory.

Comparison:

• Bubble Sort is easy to understand and implement, making it suitable for educational

purposes or small datasets where its simplicity doesn't result in excessive execution

time.

• Merge Sort, on the other hand, is a much more efficient and scalable sorting

algorithm, making it the preferred choice for sorting large datasets in real-world

applications.

• The primary trade-off between the two algorithms is that Bubble Sort sacrifices time

complexity for simplicity and minimal space usage, while Merge Sort achieves better

time complexity at the cost of higher space usage.

In summary, Bubble Sort is inefficient and not scalable for large datasets, while Merge

Sort is efficient and scalable but consumes more memory. The choice between these

two algorithms depends on the specific requirements of the sorting task, particularly

the size of the dataset and available memory.

4.2.1. Analysis
Again, this answer is built around criteria which support and scaffold the comparison,

facilitating critical analysis on space and time complexity as well as efficiency and

scalability. These are classic criteria for doing such a critical analysis.

However, while the points made are accurate, the critical analysis feels abstract.

Neither sort is explained. The analysis could be improved through the use of worked

examples, perhaps as diagrams, to show how each sort processes the same input

sequence of some plausible size.

Such examples might also help establish why the space and time characteristics apply

in the way that they do - in particular, that merge sort is usually implemented

recursively so needs more memory (and if iteratively needs copies) - and why merge

sort is preferred for large sorts.

Similarly, while Big O analysis is used, the time difference between n and log(n) isn’t

explained or illustrated.

Some nuance is missing, for example what implementation of bubble sort is being

considered - with or without a rightward lock, for example.

However, this is still a very good answer.

4.3. Question 3

Highlight relevant similarities in code features between the object-oriented

programming paradigm and the procedural programming paradigm.

ChatGPT in Computing Education A Policy White Paper

21

Result Produced by LLM (in Italics):

Object-oriented programming (OOP) and procedural programming are two different

programming paradigms, but they do share some common code features. Here are

some relevant similarities:

• Variables and Data Types: Both paradigms use variables to store data and
support common data types such as integers, floating-point numbers,
characters, and arrays. These data types are often available in both OOP and
procedural languages.

• Control Structures: Both paradigms utilize control structures like loops (e.g.,
for, while, do-while) and conditional statements (e.g., if, else, switch) to control
the flow of a program. These structures are fundamental in both approaches.

• Functions/Methods: In procedural programming, functions or procedures are
used to encapsulate a set of operations that can be reused. In OOP, methods
are similar to functions in that they encapsulate behavior, and both paradigms
rely on modularization to organize code.

• Parameter Passing: Both paradigms allow passing parameters to functions or
methods. Parameters can be passed by value or by reference, depending on the
programming language.

• Comments and Documentation: Comments and documentation are important
in both paradigms to improve code readability and maintainability. Developers in
both OOP and procedural programming use comments to explain the purpose of
code segments.

• Error Handling: Error handling mechanisms, such as try-catch blocks or error
codes, are used in both paradigms to handle exceptions and errors gracefully.

• Libraries and Modules: Both OOP and procedural languages support the use
of libraries or modules to organize and reuse code. These libraries often contain
functions, classes, or procedures that can be imported and used in the main
program.

• Input and Output: Both paradigms provide mechanisms for input (e.g., reading
from the keyboard or a file) and output (e.g., printing to the console or writing to
a file).

• Scope and Visibility: Both paradigms define rules for variable scope and
visibility. In both cases, variables can be local to a function or global, and access
control modifiers (public, private, protected) are used to restrict access to certain
parts of the code.

• Modularity: Both paradigms emphasize code modularity and the organization of
code into manageable, reusable units. In procedural programming, this is
achieved through functions, while in OOP, it's achieved through classes and
objects.

It's important to note that while there are similarities in code features, the main

difference between the two paradigms lies in their approach to organizing and

structuring code. Procedural programming focuses on procedures and functions, while

OOP emphasizes the use of objects and classes for modeling real-world entities and

their interactions. The choice between these paradigms depends on the problem

domain and the goals of the software being developed.

ChatGPT in Computing Education A Policy White Paper

22

4.3.1. Analysis
Again, this is a plausible answer built around relevant criteria which provide structure

for comparison. And again, the issues are similar: the discussion misses some basic

explanation, as well as examples. In particular, the explanation of what procedural and

OOP programming are seems perfunctory and appears in the wrong place - at the

end. The discussion seems broad and high level and perhaps if submitted by student

feedback might suggest using fewer criteria, going into greater depth.

4.4. Question 4

Evaluate the role of machine learning algorithms in predicting user behaviour and

discuss the ethical considerations and potential biases that may arise from their

implementation.

Result Produced by LLM (in Italics):

Machine learning algorithms play a significant role in predicting user behavior across

various applications, such as e-commerce, social media, advertising, and

recommendation systems. These algorithms analyze user data to make predictions

about future actions or preferences. While they offer numerous benefits, their

implementation raises ethical considerations and potential biases that need careful

attention.

Role of Machine Learning Algorithms in Predicting User Behavior:

• Personalization: Machine learning algorithms analyze historical user data to

personalize user experiences. For instance, they can recommend products,

content, or services tailored to individual preferences, leading to higher user

engagement and satisfaction.

• Targeted Advertising: Advertisers use machine learning to predict user interests

and display relevant ads, improving ad relevance and increasing click-through

rates.

• Fraud Detection: Machine learning models can detect unusual patterns in user

behavior to identify potential fraud or security threats, enhancing the security of

online platforms.

• Healthcare: Predictive analytics can assist in diagnosing and predicting medical

conditions based on patient data, allowing for early intervention and better patient

care.

Ethical Considerations and Potential Biases:

• Bias in Data: Machine learning models rely on historical data, and if the data used

for training contains biases, the models can perpetuate those biases. For example,

biased training data may lead to discriminatory predictions, such as biased

recommendations or unfair treatment.

• Privacy Concerns: Predicting user behavior often involves collecting and

analyzing large amounts of personal data. Ensuring user privacy and obtaining

informed consent are crucial ethical considerations.

ChatGPT in Computing Education A Policy White Paper

23

• Transparency and Explain ability: Many machine learning algorithms, particularly

deep learning models, can be complex and difficult to interpret. This lack of

transparency raises concerns about accountability and understanding how

decisions are made.

• Algorithmic Fairness: Ensuring fairness in predictions is vital. Algorithms should

not discriminate against certain user groups based on attributes such as race,

gender, or age. Unintended biases must be identified and mitigated.

• Filter Bubbles and Echo Chambers: Personalization algorithms can create filter

bubbles, where users are only exposed to content that reinforces their existing

beliefs. This can contribute to the spread of misinformation and limit exposure to

diverse perspectives.

• User Manipulation: Predictive algorithms are used to optimize user engagement,

which can lead to addictive design patterns that manipulate user behavior, raising

ethical concerns about user agency and well-being.

• Security Risks: Machine learning models used for security may produce false

positives or false negatives, potentially impacting individuals' security and privacy.

• Mitigation Strategies: To address these ethical considerations and potential
biases:

• Data Quality: Ensure high-quality training data by identifying and mitigating biases

in data sources.

• Diversity in Teams: Create diverse development teams to consider various

perspectives and minimize bias in algorithm design.

• Bias Detection: Regularly audit and evaluate algorithms for bias using fairness

metrics and tools.

• Transparency and Explainability: Develop models that are more interpretable,

and provide explanations for model predictions.

• User Control: Give users control over their data and the ability to customize their

experiences.

• Ethical Guidelines: Adhere to ethical guidelines and regulations, such as GDPR

and HIPAA, to protect user privacy and data.

• Education and Awareness: Educate users about how predictive algorithms work

and their implications.

In summary, while machine learning algorithms are powerful tools for predicting user

behavior, their use must be guided by strong ethical principles to mitigate potential

biases and ensure fairness, transparency, and respect for user privacy and autonomy.

4.4.1. Analysis
Once again, this response has a by-now-familiar structure: the use of multiple criteria

and points related to the question made under each. And again, the discussion seems

high level and somewhat abstract, lacking depth, as well as examples.

4.5. Conclusion

While none of these critical analysis questions has been badly handled by ChatGPT,

the responses are similar, with similar advantages - and similar problems.

The advantages include:

ChatGPT in Computing Education A Policy White Paper

24

• Strong structure with comparison and evaluation built around relevant criteria.

• Generally accurate content

• Readability and conciseness

• Broad ranging

The problems / issues include:

• Lack of examples, especially explanations and worked examples of named

algorithms (Question 2); examples of the named problems, and the types of

machine learning involved (Question 4) or code showing how the same thing

could be implemented in procedural or OOP (Question 2).

• Breadth rather than depth

• Lack of referencing

• Lack of deep technical insight which examples and code discussion help

establish.

The main issue with the ChatGPT responses in this section is perhaps to do with level

of abstraction. Excellent critical analysis will move between levels of abstraction,

making general claims of the type provided in these ChatGPT response, and then

grounding them in specifics. This can be done in reverse, too: specific examples can

give rise to a general claim. There is a sense that these ChatGPT responses are not

close enough to the issues they discuss, but trawl for commonality between the vast

numbers of sources the technology uses, rather than the specificity that comes from

zooming into the particular.

When student work of this type is submitted, educators are likely to want to see

grounding examples, and code (where relevant), to underpin and justify the general

claims and points ChatGPT is good at generating. As others have pointed out,

ChatGPT could work as an extra source to be used against others when researching

and learning, but on the evidence given here, cannot substitute for the level of critical

skills we want to see in our students.

ChatGPT in Computing Education A Policy White Paper

25

5. Long Form Essay Questions

Long-form essay questions provide the student with a topic and expect them to write

an extended discourse drawing on factual recall, critical analysis as well as soft skills

such as discourse planning, argumentation and often institution or instructor specific

structuring at the discourse level (introduction, definitions, argumentation, conclusion)

and independent argument level (point, evidence, explanation). The intended

responses to these questions are typically long-form and require verboseness.

For the purposes of this chapter, we will consider long-form essays to be those that

require a word limit of 3,000+ words. This requires a student to form a rhetorical

argument on the topic and provide their own interpretation of the facts, i.e., beyond

basic knowledge generation.

5.1. Analysis

Sample questions for Long-form essays in the computing domain are as follows:

1. How will current advances in the field of artificial intelligence shape the future of

technology?

2. What are the key principles to effective collaboration in a software development

environment?

3. What role does blockchain technology play in contemporary applications?

4. How do virtual reality and augmented reality enhance user experiences?

5. How does the Internet of Things (IoT) impact the development of smart cities?

6. How have computer networks evolved from LAN to 5G?

7. What are the challenges and opportunities in developing mobile applications?

8. How does machine learning contribute to healthcare and medicine?

A sample of prompting ChatGPT for a response to the first question is given below:

ChatGPT in Computing Education A Policy White Paper

26

ChatGPT in Computing Education A Policy White Paper

27

The output of the model appears to give a reasonable attempt at answering the

question. It generates a new essay title 'The Future of Technology: Shaping Tomorrow

with Artificial Intelligence', although this was not specified as a requirement. It then

continues to give an introductory paragraph before continuing with a list of areas that

are to be explored as follows:

I. Current Advances in Artificial Intelligence

II. Impact on Various Sectors

A. Healthcare

B. Finance:

C. Education

D. Transportation

III. Ethical Considerations

IV. Challenges and Opportunities

A. Challenges

B. Opportunities

V. Conclusion

Each point is completed with further bulleted lists of relevant topics. The essay length

is 1,251 words (not all shown) - despite the prompt requesting 3,000. Whilst the subject

matter of the essay is passable (it discusses a broad range of relevant topics and

relates them back to the original question), the formatting and style of the response

ChatGPT in Computing Education A Policy White Paper

28

leaves a lot to be desired. The response is informative, but not discursive. It does not

provide critical evaluation of the subject matter nor an appropriate rhetorical form to

the argumentation. There is no referencing, and no attempt is made to link the work to

external sources, or to give sensible critique of other's opinions. If this were submitted

for examination, it would perform very poorly. A student may wish to take this as a

preliminary outline for an essay, however significant work would be required to expand

upon the given points, link them to appropriate sources and combine the bullet points

to give a free-flowing discourse.

5.2. Key Threats to Assessment Type

• LLMs produce a viable essay prototype that can be submitted as is.

• A student may further adapt the output of an LLM, obfuscating it's use.

• Further prompting may be used to generate specific sections of an essay.

• Students may request essay answers using a given style as promoted in university.

5.3. Mitigation Strategies

• Require students to submit essay plans, as well as the final essay.

• Allow students to use LLMs to plan essays but be clear on evaluating documentation

of essay plan as well as essay.

• Enforce a specific structure on the students (e.g., Introduction, Topic, Evidence,

Comparison, Conclusion) which the Language Model will not provide.

• Set essay length at a limit beyond the output range of an AI chatbot. Chatbots

typically provide a maximum of 1,000 words as a response.

• Focus on hard to measure outcomes. e.g., problem-solving critical thinking Rolling

assessment.

• Requiring stylised references and placing a focus on the appropriate use and

evaluation of external sources. References must be checked for correctness.

ChatGPT in Computing Education A Policy White Paper

29

6. Code Analysis

Code analysis tasks start with a piece of code and requires a student to understand

the workings of the code structures that are given to them. Typical questions may

range from debugging a broken piece of code to suggesting strategies to refactor or

commenting on code efficiency. These questions typically form part of coursework

tasks or exam questions. They are designed to test understanding of:

• syntax (the characters, words, statements, and expressions that compose a

program).

• semantics (the meaning of these; what the program does);

• correctness (does the program do what it is designed to do; does it work for all

relevant cases);

• efficiency and conciseness (does the program run according to expected time and

space; is there redundancy that creates overheads);

• code structure and integrity is the code free of redundancy and duplication; is it

modular; can it be reused; how far will it generalise to relevant instances of the

problem it is designed to solve.

The ability to analyse code is often assumed to depend on the ability to write it. Hence,

many introductory programming modules and courses begin by teaching programming

concepts including (for procedural programming) variables, datatypes, sequence,

selection and conditions, iteration; and / or, for object-oriented programming, objects,

classes, instances, inheritance, methods, mutators and so on. Students are then given

exercises, tasks, or challenges where they need to implement concepts in a given

language to create a program for some purpose (could do with some refs).

With the advent of LLMs, including ChatGPT, the danger is that such tasks can be

delegated to the LLM, which may return acceptable solutions without the student

necessarily understanding either the question or its answer: in that case, the ability to

analyse code may not emerge.

What follows is some samples of code analysis tasks which might be set for students

to solve, which have been entered into ChatGPT, with the solutions ChatGPT then

generates. We discuss the plausibility and usefulness of these solutions in terms the

kinds of programming ability we want our students to develop.

ChatGPT in Computing Education A Policy White Paper

30

Analysis - Sample Questions

6.1. Debug The Following Code. Keep A log of All Errors that You

Spot.

Public Glass My Addition Programme

[publi status avoid maine(string () argz]

 {

 System.out.println(‘1 + 1 is:" + 1 + “1”);

)

}

Solution to (1) produced by ChatGPT Query:

Result:

ChatGPT in Computing Education A Policy White Paper

31

6.1.1. Analysis

ChatGPT has successfully and comprehensively debugged the code it was given. The

program is basically sound, and the bugs concern relatively trivial typing errors or, for

example, brace-matching errors. This type of error is familiar to all coders, and the

implication of this is that the question is asking the student to do some basic code

‘housekeeping’ or clean-up, rather than spot more serious errors of syntax or logic. As

a code analysis task, it is conceptually very simple.

The solution offers real value to any coder, as trivial bugs like these can sometimes

be difficult to spot, consuming time, especially for learner programmers who may be

worried that their program is not running for more serious reasons. Using ChatGPT to

do automated bug checking of this type seems perfectly acceptable assuming

students know how to produce the code being checked. Indeed, automated cleanup

frees up any coder to concentrate on more challenging issues of program design.

Thus, while coders do in principle need the analysis skills to spot such bugs, they are

perhaps of a similar order to typos, which (as with word processors) can and should

be fixed automatically.

At the same time, the ChatGPT response does not only correct the code; it also

explains what the errors are, so providing some useful instruction and consolidation.

The terminal image ChatGPT provides also correctly identifies the language: Java.

This question seems a good one to ask an LLM and to provide real value. The value

does depend, however, on the student having written / being able to write the code in

the first place.

6.2. Suggest Strategies to Refactor the Following Code to Avoid
the Monolithic Design Principle.

10 PRINT "Welcome to Basic User Interaction Program!"

20 PRINT "Please enter your name: ";

30 INPUT name$

ChatGPT in Computing Education A Policy White Paper

32

40 PRINT "Hello, " + name$ + "!"

50 PRINT "Please enter your age: ";

60 INPUT age

70 PRINT "Your age is: " + STR$(age)

80 PRINT "Please enter a number: ";

90 INPUT num

100 IF num > 10 THEN GOTO 120

110 PRINT "The number you entered is less than or equal to

10."

115 GOTO 140

120 PRINT "The number you entered is greater than 10."

130 PRINT "Adding 5 to the number gives: " + STR$(num + 5)

140 PRINT "Thank you for using the Basic User Interaction

Program!"

150 END

Solution to (2) produced by ChatGPT

Query:

Result (1):

ChatGPT in Computing Education A Policy White Paper

33

Result (2):

6.2.1. Analysis

In terms of code analysis, this question is at a higher level of challenge than Question

(1) above. The ChatGPT response is much less satisfactory, and if a student were to

submit something like this, it would be unlikely to score a very good grade. The main

issues are:

1. Too many functions, and related function call overheads

2. Breaking the code into functions has been done arbitrarily

ChatGPT in Computing Education A Policy White Paper

34

3. The programming language has changed from BASIC to Python

4. ChatGPT does not explain what it has done or why

5. ChatGPT has not answered the question

The program is a very basic chatbot. While it makes some sense to encapsulate it as

one or (at most) a few functions, ChatGPT has produced 9. This introduces an

overhead, which is the number of (non-encapsulated) function calls, which also deal

with return values then passed as arguments in subsequent calls.

The breaking into functions seems arbitrary. For example, code to retrieve and display

the user’s name has been split into two separate functions get_name() and

greet_user(). A single function that both gets and displays the user’s name seems

more plausible, and reusable. The same goes for get_age() and display_age(). Other

functions which simply print lines, welcome_message() and farewell_message() seem

unnecessary. However, the ChatGPT refactoring has recognised the decision in the

code and neatly encapsulated it as the process_number() function. While the wider

use of this seems doubtful (the chatbot is something of a toy program), it makes sense

that this processing is separated in case re-use is required.

One of the key issues with the solution is that ChatGPT has produced is that it has

arbitrarily switched languages from BASIC to Python. If the question implies thinking

about how refactoring should be applied to, or is affected by, a particular language; or

is about improving existing code written in a given language for practical purposes,

ChatGPT has not considered this, or explained the language switch.

The question is, ‘Suggest strategies to refactor the following code to avoid the

monolithic design principle’. However, while monolithic design is mentioned, it is not

explained. Additionally, strategies are not suggested (although the solution implies a

strategy or strategies). There are many strategies for refactoring, including red-green

refactoring, refactoring by abstraction and composition (to remove duplication),

simplifying (to improve readability), single responsibility (e.g., one function does one

thing), moving features, or (for OOP) removing complex conditionals through

polymorphism, and so on. One way to handle the question would be select and apply

some of these to the code, then contrast and critique the results. But this is entirely

missing. Thus, ChatGPT has not answered the question. While a strategy or strategies

may have been used, this remains implicit / opaque.

Additionally, a good answer would explain the monolithic design principle. This means

‘composed in one piece’, which can be bad if code becomes overlong, complex and

hard to read. A skill programming student are taught is how to separate functionality

to enable readability and reusability, as well as (for example) the limitation and control

of variables. If a program consists of one huge function, it can be hard to follow, or to

locate and reuse specific functionality. The question implies that the given code is

monolithic and needs to be refactored to address this, but students might question

how far it really is monolithic and just how much refactoring is merited.

This question has not been well handled by ChatGPT, which has two implications: (1)

the uncritical use of ChatGPT to produce content for assessment purposes may not

ChatGPT in Computing Education A Policy White Paper

35

produce the sought for outcome; and (2) the successful use of ChatGPT for this kind

of question needs to take place against a background of knowledge and critical skills.

ChatGPT could be be a valuable resource in the development of code analysis skills,

in a similar way to the use of a range of bibliographic sources (see OU chapter - which

one) but (at least on this evidence) cannot replace them.

ChatGPT in Computing Education A Policy White Paper

36

7. Code Production

At the heart of computer science education, we must teach our students to write their

own code. This is an essential part of computing education. Ultimately, we must teach

students how the machines that they will interact with are programmed. Typically, this

is assessed by asking the students to produce their own code in a variety of settings.

Exercises may range from small weekly tasks covering specific skills or fundamental

programming concepts to large summative synoptic programming assignments

requiring cross-sectional skills and the integration of external libraries and APIs. The

quality of the resulting code is typically evaluated by an instructor who both runs the

programme and reads the code to check for function and form.

To use a LLM to produce code, a student must be able to describe the task in

appropriate language. Indeed, a large part of computing education is to teach students

how to rephrase and understand a task so as they are able to properly frame their

thinking prior to developing the code for a task. A danger of the use of LLMs in code

production is that it removes the need for the student to consider how to produce the

code. In many cases the student can simply type in (or copy-paste) the instructor-

provided task description and receive some competent output without understanding

the code. This may backfire on the student if the LLM fails to complete the task as they

will have no way of knowing whether the generated code is correct or not.

7.1. Analysis

A sample programming question, and the response from ChatGPT are given in the

screenshots below:

In this question, the algorithm (bubble sort) and the programming language (python)

are specified. Additionally, a brief description of how the algorithm should work is also

provided. The language model correctly provides code in python to complete the

bubble sort algorithm. It follows appropriate syntactic conventions; provides a

ChatGPT in Computing Education A Policy White Paper

37

procedure and code to call it and augments the code with relevant comments

describing each step of the programme. However, note that the algorithm provided

does not match the one requested. The provided algorithm uses an optimisation

technique specific to bubble sort, namely iterating n times, where n is the number of

elements in the list, and not sorting the last 'i' items at each iteration as these will have

been sorted. This is not clear from the original description, which asks for the algorithm

to run indefinitely until the list is sorted.

Additionally, the Language Model provided a brief explanation of each step in the code

(not shown). This explanation does not refer to the optimisation step given above, and

so a student may be unaware of why the algorithm is implemented in this way. Note

that this is not some sign of intelligence on the model's behalf, rather the code-based

training data it has seen will have contained examples of bubble sort that also

leveraged this optimisation.

It is important to note that there is a worthwhile debate around authenticity in

programming assessments which has existed before the advent of generative AI. The

key question is, should we allow our students access to the tools (Syntax Highlighters,

Debuggers, Integrated Development Environments, Frameworks, Version Control,

etc.) that they will have when they become developers. One side may argue that

teaching in a closed environment limits distractions and allows the student and

instructor to focus on learning the core concepts. The other side may argue that

students are not typically workplace ready when leaving university as they are not

exposed to an authentic development environment. In reality, computing educators

have learnt to drip-feed toolchains throughout a programme. It may well be the case

that an appropriate argument can be made that best practices for code-based

Generative AI should also be taught to improve student's employment prospects.

7.2. Key Threats to Assessment Type

• ChatGPT and other LLMs can produce high-quality error-free code for a task.

• Well-known tasks that are typically used in programming exercises will have formed

part of the original training data.

• The code that is produced usually contains well-written comments and an

explanation of the functionality of the code.

7.3. Mitigation Strategies

• Require students to learn to code offline (pen and paper, CLI, sandboxed machines)

• Teach students in a bespoke programming language, for which examples on the

internet are not readily available.

• focus assessment on problem solving and understanding, rather than code itself.

• Teach best practices for using Generative AI in a coding environment (with industry

participation).

• Assess students on larger synoptic codebases, requiring the integration of bespoke

APIs.

ChatGPT in Computing Education A Policy White Paper

38

8. Experiential

Experiential assessments emphasise student development. Typically students work

on a real world problem over a period of time, often as a group, to experience the

practical application of knowledge and develop employability skills such as group

work, leadership and communication. Assessment can involve self-reflections,

reflective journals, project reports, presentations, group discussions and peer

evaluations. Self-reflections encourage critical thinking, self-awareness and the

integration of theory and practice, and often follow a structured model, such as Gibbs

Reflective Cycle (1988).

8.1. Analysis

Sample questions for assessing Experiential Learning in the computing domain are

given below:

1. Write a reflection on collaborating with peers on your presentation on the ethics of

AI.

2. Using a reflective model, write a reflection on your experience working on the group

project.

3. Using Gibbs model (1988), write a reflection on collaborating with peers on your

analysis of the case study.

4. Reflect on your choice of agile approach for developing your team project.

5. Reflect on your experience of leadership during the group project.

6. Write a reflective coding journal including your thoughts, challenges, and

breakthroughs while working on coding assignments, and reflecting on your

problem-solving approach, difficulties encountered, and your strategies for

overcoming difficulties.

ChatGPT in Computing Education A Policy White Paper

39

A sample of prompting ChatGPT for a response to the third question is given below:

The output of the model gives a well-structured ‘personal reflection’ using the reflective

model specified and using first person language as expected for this style of writing.

At 498 words, the response would meet a common 500-word limit for a section of a

ChatGPT in Computing Education A Policy White Paper

40

report. In terms of structure, the output is good, however it is not authentic and there

is no evidence of deep reflection. The content is vague, the general ‘learnings’ are

missing details, and the content of the sections is not clearly linked. For example:

• ‘Regular meetings’ could include detail of how regular, format, how they were chaired

or managed, whether action plans were developed.

• ‘There were moments when we could have improved our time management and

communication’ should have specific examples of issues and their consequences.

• ‘We created a supportive environment’ needs detail of how this was done;

• The action plan needs examples of how these actions might be achieved.

On regenerating the response for the question, the new output wording is more direct

and typical of a computer science student, but the themes and lack of detail remain

the same.

On re-prompting by asking for a 1000-word reflection, ChatGPT produced a response

of 935 words that expanded the example shown above. The new response had added

more aspects to reflect on and expanded the action plan as shown below. Despite this,

the same issues with lack of detail remain.

It is possible to adjust the prompt to get a better response, for example the reworded

question below, specifying that the reflection should be about lack of effort from peers.

ChatGPT in Computing Education A Policy White Paper

41

As many Computer Science students find it difficult to complete a reflective piece and

perform poorly in experiential assessments, if the first example given above were

submitted for assessment it would likely be graded around pass level. However, if

students were to use the model’s output as a structured starting point and inspiration,

by expanding and adding details this could assist them in reflecting on their learning.

By rewording and adding detail to the prompt, students can produce much better

answers, but the argument is whether this requires some actual reflection on behalf of

the student first, and if so, are models such as ChatGPT just aiding their written

communication as some parents might?

8.2. Key Threats

• Despite widely held beliefs that LLMs cannot tackle experiential reflections, they in

fact produce a reasonable reflection that could be submitted without amendment.

• Small changes that make the answer context specific produce a good reflection that

may be undetectable as an LLM output, especially if the language used is adjusted.

• Individual experiences cannot be verified.

• Refining the output through student interactions can improve and vary the output,

getting closer to actual student experiences - answers are infinitely reworkable.

8.3. Mitigation Strategies

• Assessors could triangulate and group member experiences, considering scalability.

• Request the submission of lab diaries covering an extended period of time as

evidence, carrying some of the assessment marks.

• Request screenshots of documentation such as meeting minutes, action lists.

• Require strong links to specific student/group work

• Longer activities with reflective assessment, creating a consistent chain of evidence.

ChatGPT in Computing Education A Policy White Paper

42

Section 2 Large Language Model Policy
Considerations in Computing Higher Education and
Beyond

ChatGPT in Computing Education A Policy White Paper

43

9. Employability

Students in technology-based degrees tend to be heavily motivated by the prospects

of securing a job in tech, and (hopefully) the financial reward that comes with it. Higher

Education is also heavily motivated toward producing “industry-ready” graduates given

the impact that a focus on employability has on graduate outcomes.

Recent changes to the early years curricula means that primary schools place greater

focus on Computer Science and computational thinking. As this increase in knowledge

feeds through to Higher Education, universities will need to adapt and evolve in order

to build on this standard foundational knowledge. At the opposite end of Higher

Education, generative AI tools which support industry practitioners are becoming more

popular. Many practitioners in roles such as development, project management, and

test engineering, have adopted such tooling as part of their standard workflow. For

example, GitHub1 found that users of Co-pilot felt 88% more productive when

developing, and 59% of respondents said that they were less frustrated when coding.

In addition, 60% of respondents said that co-pilot made them feel more fulfilled in their

job.

There are a number of anticipated effects that increased adoption of generative AI will

have on industry. For example, given that models tend to be trained on public content,

we can expect content to become more similar internationally. Thus, leading to a

globalisation of standards. The RedHat blog lists some clear benefits that generative

AI will have on industry2:

• Personalised customer experiences

• Streamlining operations and efficiency

• Enhancing decision making

• Preserving privacy and security

• Fraud detection and cyber security

In the technology industry, there are a number of applications where generative AI

tools are expected to have impact:

• Automated unit test generation

• Document summarisation (e.g., summarising reports/survey data)

• Improvement of general writing (e.g., emails, references, technical documentation,

client communications and marketing material)

• Forecasting (e.g., financial, trend analysis)

• Product design (e.g., software design, physical products)

• Code generation

• Architecture generation

This adoption of tooling means that the proper use and application of such tools will

become an expectation for prospective employees. In order to bridge the well

documented gap between academia and industry, universities should train students in

1 https://github.blog/2023-05-09-how-companies-are-boosting-productivity-with-generative-ai/
2 https://www.redhat.com/en/blog/generative-ai-business-applications

ChatGPT in Computing Education A Policy White Paper

44

the proper usage of generative AI tools. However, it is imperative that universities

discourage blind faith in generative AI tools and ultimately students need to understand

the work that they produce, and that they have responsibility for the work that they

produce. Some companies, such as JPMorgan, Chase, Amazon, and Accenture, have

reportedly banned the use of ChatGPT within their workforce3.

9.1. Policy Points

• Higher Education should train students on how to properly use generative AI to

support industry tasks.

• Higher Education should train students on the risks of using generative AI, including

issues surrounding copyright, data protection, and how they are ultimately

responsible for the work which they produce.

• Higher Education should accept and adopt the use of generative AI in assessments

where appropriate i.e., Universities should incorporate generative AI tools into

authentic assessment.

• Higher Education should continue to emphasise the ‘soft skills’ required in industry

and the value of a ‘human touch’ in projects. Automating everything is not always the

answer.

• Higher Education should continue to reduce the gap between academia and industry,

with a focus on producing industry-relevant graduates. This is often done through

industrial feedback on curricula (e.g., Industry Advisory Boards)

• Higher Education should place higher emphasis on students’ understanding of

security and secure software development practices.

3 https://edition.cnn.com/2023/09/22/tech/generative-ai-corporate-policy/index.html

ChatGPT in Computing Education A Policy White Paper

45

10. Academic Misconduct

With the advent of multi-topic faithful text generation through the modern era of chat-

based AI systems, many in the HE sector are rightly concerned about the potential

impact of this technology on academic misconduct during assessments. Indeed, since

the introduction of ChatGPT several universities have prohibited access to this

technology on their campuses (Duffy, 2023). A recent article, however, claimed that

students are widely using ChatGPT and other similar AI chatbots in a variety of

capacities to help with generating ideas, essay plans, and even submissible outputs

for summative assessment (Terry, 2023).

Academic misconduct existed before the advent of readily available artificial

intelligence systems. Students have always had opportunities to copy shared work,

ask friends for help, or even pay for a readymade answer from an essay mill. Every

institution has academic misconduct policies that handle these scenarios, and in many

cases the nefarious use of AI in student work is already covered. For example, if a

student submits work that is wholly generated by an AI, then they should receive the

same penalty as a student who (1) copies work from another, or (2) pays for an answer

from an online service. However, using AI is different from these two scenarios and

presents a lower barrier for the students to cross. If a student copies from a friend,

then someone else knows of their transgression - they may reveal this at any time. If

they are caught, the person whose work was copied may admit to sharing the work.

Cheating with AI is hidden. A student can generate an answer with no external

involvement. Worse, if they are questioned, they may deny having used AI. Unless the

tutor has strong evidence, the transgression may go unpunished. Similarly, using an

essay mill presents a high barrier of cost. Cheating with AI, however, is free. A student

can generate multiple examples and submit the one they think will do best across

multiple assessment points, with no financial outlay.

Of course, many students will not directly use AI to create their final output, but may

still use AI as part of the process of generating ideas, or as an initial knowledge base.

We must develop sensible policies that allow students to engage with the technology

in a constructive way, whilst remaining honest about what is representative of their

own work, and what is generated by AI. The policies surrounding this in a HE is setting

are likely to develop as AI regulation is developed at a national and international level.

Whilst this may paint a bleak picture, there are many opportunities to overcome AI-

based academic misconduct. The first step in addressing this is to educate those in

positions of power at all levels within our higher education institutions to the dangers,

but also opportunities, of the integration of AI into education. There are many

possibilities for students to constructively engage with AI technology as part of their

learning journey. This is only possible if academics are able to curate valuable learning

experiences that integrate AI technology. In the same way, modern degree courses

integrate personal computing, the internet or smart devices as learning tools, we must

also seek ways to integrate AI into our student's learning experiences.

ChatGPT in Computing Education A Policy White Paper

46

10.1. AI Detection

Since the release of ChatGPT, a number of pieces of AI detection software have been

released for use by the public. Most notably, TurnItIn released a tool, which was

integrated into their existing software to score a piece of writing according to its

likelihood of being generated by AI. This software is developed by training a machine

learning algorithm to distinguish between examples of AI written text and human

written text, based on common patterns found in each. The machine learning algorithm

does not get a perfect rate of classification and may exhibit false positives (human-

written work detected as generated by AI), as well as false negatives (AI-written work

not detected). In fact, Turnitin aim for their tool to have a 1% false-positive rate:

"We might flag a human-written document as AI-written for one out of every 100 fully

human written documents." - (Turnitin, 2023)

Ultimately, AI detection software is not sufficiently mature to be relied on at this point.

Falsely accusing 1% of a cohort with allegations of AI-based academic misconduct is

clearly not in the best interests of any institution. Whilst AI detection software may be

useful as an indicator tool, it should not be relied on or used to make final judgments

overriding those of a human.

There are a number of strategies that educators can use to manually detect AI-

generated text. Whilst these may not give direct evidence of academic misconduct

through AI, they may help to form a picture and allow an academic to build a case for

an academic misconduct panel.

• Mismatch to student style: If the work submitted by a student is particularly different

than their usual style (i.e., overly formal, beyond their usual academic level), this may

be an indicator of the use of AI. This may also occur within an assessment, where a

student has written some areas themselves and generated other areas, with the style

varying drastically.

• Lack of depth: AI generated answers typically do not contain the level of depth or

analysis that a human-generated answer may contain, and that is sought for at

degree level. The answers are typically formulaic, consisting of a brief summary, a

list of important topics and a summary/conclusion paragraph at the end. The answers

typically contain heavy repetition and prioritise form over function.

• AI artefacts: Students may not realise that the answer they have automatically

generated contains both subtle and obvious clues to indicate that it was generated

by AI. An obvious clue is the use of the phrase "As an AI language model", which

ChatGPT has been trained to produce to indicate that its response is the result of a

machine generation. A more subtle clue is the use of the second person in answering

the question. Chatbots are designed for conversation and often answer in a

discursive manner (your question, etc.). Finally, in the UK context, tutors may notice

Americanisms introduced into their student’s work. The major chatbots are trained

on web-based text, which typically uses American-English spelling, so the text they

produce also follows this convention.

ChatGPT in Computing Education A Policy White Paper

47

• Hallucinations: Chatbots are not grounded in factuality. Whilst generating a response

to a question, there is no check to determine whether the answer is truthful or not.

This can lead to invented references and facts. References that cannot be resolved

to texts, or are a recombination of authors, journals and titles from valid sources are

a strong indicator of the use of AI.

10.2. Policy Points

• Include an element of assessment that is less vulnerable to misconduct (i.e.,

image/data-based analysis)

• Use automated detection software as a 'first-flag', but not as a 'final-flag'.

• Train staff to be aware of signs of LLM-based misconduct.

• Train students to be aware of how to (and how not to) use LLMs.

• Consider invigilated assessments, or elements thereof where text-based

submissions are necessary.

ChatGPT in Computing Education A Policy White Paper

48

11. New Assessments

If the basic problem of the use of LLMs in assessments is that students may be

tempted to pass off (uncritically) the output of LLMs as their own, then the policy should

be to look to ways that prevent that action and incorporate the use of LLMs in the

assessment work itself.

There are a few areas where the temptation to use LLMs uncritically exists – code

production and long essays. The policy for assessment should match a policy that

prevents the use of essay mills and other forms of contract cheating.

11.1. Policy

• In all cases, ensure that a session on risks associated with the use of AI tools is

included, with specific attention paid to areas where there is an ethical, privacy,

security, or legal concern.

• Ensure a regulation around the citation of AI use.

o This needs to match the institution’s citation policy for general referencing.

• Make it clear which elements of an assessment may permit the use of LLM material

but that the student must make it clear which parts are created by LLM and for there

to be a defined maximum amount of content to come from AI tools.

• For project work where the use of AI tools might be encouraged (such as coding

examples), ask for the input parameters, prompts, and preferences to be provided

as appendices or part of the assignment response.

• Create assessments that actively develop and assess AI literacy.

o This should be amongst the first assignments that students encounter and will

prevent poor practice later in the course.

• Consider the use of live, in-person assessment events. This can include oral

presentations, interviews, vivas or observed discussions.

o Asking students to present or respond to questions will separate authentic

learning from assessment responses that merely take output from AI tools.

• Develop assessments where there is an ongoing ‘development’ element with

milestones.

o Milestones can be used to test the development of a student’s response over

time.

• Develop assessments where students need to submit reference material at

milestones.

o Reference material submission can be used to see the development of a

student’s learning over time.

• Create submissions where students must complete a journal of time and/or activities

involved in the completion of an assessment.

ChatGPT in Computing Education A Policy White Paper

49

o This can be useful where AI tools are used and required in the work. Students

can report regularly on their progress and is useful when combined with

reflection.

• Develop assessments based on action-learning cycles.

o Action learning cycles rely on periodic reflection of an experimental process of

intervention, which would be unique for each student.

• Develop just-in-time assignments where the task is made available for an in-person

day-long assessment centre.

o Just-in-time assessments can be used to test immediate responses from

students to a particular problem, such as through a hackathon.

• Develop assessments where the grading is focused on a critical reflection and

introspection element rather than the production of assets.

o Rather than ‘mark the work’, the grades are assigned to how the student reflects

on results and the process.

• Develop assessments that may test the student's ability to develop prompts to

resolve problems and for the students to reflect on the relative success or failure of

prompts to solve problems.

• Make sure that submission deadlines are not bunched so that students are not

tempted to use LLMs uncritically if they are struggling to manage several

assignments submissions.

ChatGPT in Computing Education A Policy White Paper

50

12. Adoption of LLMs

Deciding whether to use LLMs is influenced by various factors, including the

expectations of students, university management, employers, regulatory bodies, and

professional associations. As we still need to have a detailed understanding of these

groups' perspectives, there is uncertainty about the extent to which LLMs should be

adopted for individual use and integration into curricula. Concerns were expressed

about the fear held by many regarding artificial intelligence more generally (such as

the impact on jobs), which was attributed to press and social media coverage. Risks

and uncertainty about accountability are factors in LLM adoption.

A range of issues were discussed relating to the current landscape of AI tools available

and equitable access to them. The affordability of tools was highlighted, noting that

the widely used freemium pricing model links access levels to payment. Issues related

to the data used to train LLMs were also frequently raised, with calls for greater

transparency from leading developers of these tools. More certainty about the source

of training data is needed to evaluate quality and potential biases, as well as address

concerns about copyright. There are also worries about the impact of increasing

amounts of synthetic text generated by LLMs. Without reliable methods of

distinguishing between human-authored and AI-generated text, information literacy

skills will become increasingly important for students and educators.

12.1. Developing AI Literacy

Developing AI Literacy involves familiarity with the LLMs themselves, as well as the

broader AI landscape. Knowledge of the specific AI terminology, techniques, and tools

is necessary for making informed decisions about use. For some, a basic

understanding of how LLMs work and their capabilities was sufficient, but others felt

that using them confidently and competently was also required. Writing effective

prompts was noted as a specific skill needing development, with parallels drawn to

performing an effective internet search. Individuals should be aware of the tools

available and understand their limitations and ethical considerations to make informed

choices about using them.

Building staff and student AI literacy will require adequate time, space, and support.

Having opportunities to interact with these new technologies and forums to discuss

implications was seen as important. Guidance and training should be differentiated

based on needs and confidence levels. There were differing perspectives on whether

developing AI literacy should be part of broader digital skills initiatives or a separate

focus and whether to use existing or new support teams. Sensitivity is needed

regarding the wider impacts of LLMs, as some may need to reskill, and there are

varying comfort levels with new technologies.

12.2. Policy Points:

• Develop guidelines for responsible use of LLMs in educational settings that consider

equity, transparency, copyright, fact-checking, and ethical implications. Engage

ChatGPT in Computing Education A Policy White Paper

51

stakeholders like students, staff, management, and regulatory bodies in drafting

guidelines.

• Provide training and support for educators on AI literacy, including LLM capabilities,

limitations, terminology, prompt writing, and ethical use cases. Give time and space

for hands-on experience and discussions. Offer differentiation based on educator

needs and confidence.

• Advocate for transparency from LLM developers regarding training data sources,

potential biases, and ownership. Educators need this information to evaluate

suitability.

• Consider affordability issues with widely used freemium pricing models.

• Offer opportunities to develop information literacy skills, such as fact-checking.

• Amend academic integrity policies to address the use of generative AI expressly.

Define appropriate vs. inappropriate use cases.

• Foster broad awareness of the broader AI landscape among staff and students, not

just LLMs.

ChatGPT in Computing Education A Policy White Paper

52

13. Timescales

Academia can be very slow to adopt and adapt to new technologies and it is likely that

LLMs will be similar. One of the main causes for slow adoption of changes is the

regulations and restrictions that are in place regarding making changes to unit

specifications, learning outcomes, assessments etc. Some of these are internal

regulations designed to provide more certainty to students and ensure adequate

oversight. Others are external regulations pertaining to consumer protection laws and

other relevant legislation and guidance from governmental bodies such as the Office

for Students (Protecting students as consumers, 2023).

Nevertheless, there are uses of LLMs that can be adopted in the very short term and

others that can be prepared for now to take effect over the course of a few years.

13.1. For Immediate Adoption

One immediate use of LLMs that could prove extremely valuable is the testing of

assessments. This falls into a few different areas. In some cases, particularly around

coursework, LLMs can be fed assignment briefs and tasked with producing a

submission. An expert marker can glean important information from these submissions

in terms of understanding the level of difficult of the assignment and whether it is

assessing all the knowledge and skills intended. Another use of LLMs in this context

is to help the assessor check the readability and possible ambiguities of the

assignment brief itself. An LLM can be asked questions regarding an assignment brief

to ensure that it has been understood correctly and this can serve as a proxy to ensure,

ahead of release, that an assignment brief is clear in its requirements and instructions.

A more general use of LLMs in the area of assessment is in actually generating

components of an assessment. For example, LLMs can be tasked with generating

example scenarios and/or assessment questions related to those or other scenarios.

LLMs can also be tasked with generating potential project prompts for students for

more open-ended project units. For formative work, LLMs can certainly be used to

generate lab exercises. For example, an existing lab exercise could be used as the

basis for generating new exercises that are similar in terms of the skills and knowledge

they cover but use different scenarios or ask different questions. This can allow a unit

to retain a freshness of content without the teaching team needing to spend a lot of

time redesigning the exercises that have worked well previously.

LLMs can also be used in the initial teaching as well. Where there is scope within a

unit, LLMs can be used to help plan entire lecture courses by suggesting topics to

cover. These can be based on prompts or even a list of required learning outcomes.

LLMs would be able to propose appropriate topics matching the number of teaching

sessions. This kind of co-generation can be extended to other areas. For example,

one use of LLMs is to generate texts or scripts from existing lecture slide decks. These

scripts can be made available to students as additional sources of information and

with LLMs they can be generated at very little extra cost.

However, there remain some concerns over whether the content generated by LLMs

may be subject to copyright restrictions from the original owners of the data. The owner

ChatGPT in Computing Education A Policy White Paper

53

of the LLM may pass on responsibility for the copyright status of the generated text to

the user who must then consider whether or not their use is in breach of copyright laws

but could, under UK law, become the copyright holder of the generated text (Sekhon,

Ozcan and Ozcan, 2023). It should be noted in this context that exceptions to copyright

law exist for the purposes of teaching under UK law (Exceptions to Copyright, 2021).

Another possible use of LLMs which can be immediately adopted and with some

important impact is the ability of LLMs to rewrite text changing its tone and feel. For

example, LLMs have been used successfully by academics to mellow the tone of an

email to a student who has not performed at the required level. This additional step in

the emailing process can also help bridge language gaps between lecturers and

students. One use, for example, may be to tailor text to or from non-native English

speakers to avoid or adopt certain idioms and phrasings.

Whether or not LLMs are used in the generation of assessments or teaching, the

existence and usefulness of LLMs must be recognised. It is therefore important that,

with immediate effect, its existence is acknowledged during teaching and students are

taught how to make proper and appropriate use of such systems. Universities and

individual lecturers should not ignore them but should embrace them. Much as we may

routinely advise students to Google for help when they are stuck on some particular

syntax, we can now also advise them to ask an LLM for help. However, care must be

taken to ensure that the LLMs output is carefully considered and not accepted

uncritically by students. Unfortunately, this is a problem that still exists with search

engine results where the first result’s contents may be adopted uncritically and

unthinkingly by students leading to detrimental effects.

13.2. Longer-Term Changes

In the longer term, LLMs may become more integrated and central to our teaching.

Over the next 1 or 2 years, some learning outcomes may have to change to either

explicitly or implicitly acknowledge and incorporate the use of LLMs. Changes to

learning outcomes must follow due processes to ensure compliance with both internal

and external regulations and therefore they will require a longer lead-in time. It is also

important that changes are not too rigid given the fast pace of change at the moment

in this area.

Over an even longer period, changes at the overall course level should be

implemented. Courses must be taught in a way that does not fight against LLMs but

embraces them as helpful tools and teaches students how to make proper use of them.

Whilst the majority of students will not need to understand how LLMs work, students

will need to understand enough to ensure they can make the best use of them as tools.

Unlike search engines which students are assumed to have grown up with and know

how to use, LLMs being new and more complex will likely require some explicit

instruction.

ChatGPT in Computing Education A Policy White Paper

54

14. Conclusion

When we were invited to host a workshop on the use of ChatGPT in Computing

Education for the Council of Professors and Heads of Computing, we did not anticipate

the interest that we would receive, nor the scale of the task that we had committed to.

As we planned for the workshop, we realised that so little policy currently existed, and

that we were able to meet a timely gap in the market by producing this report. The

experiences in preparing, hosting and participating in the workshop, have allowed us

to develop valuable insights into the AI future of higher education.

In this white paper, we have explored two key areas concerning the use of Large

Language Models in Computing Higher Education. Firstly, we considered the threat

level to a number of potential assessment modalities. Educators must consider the

ways in which they assess students and the types of questions that they use. Students

are already using Large Language Models in their learning and educators must

address this to stay ahead of the curve. Secondly, we considered timely policy

considerations across four key areas of concerns for decision makers in higher

education institutions. By considering these policy areas we hope to be able to add to

and shape the existing narrative around the use of this technology within our

institutions.

We do not consider this report to be the last word on the matter, but rather the first –

opening up the future conversation within the HE sector. We stand at an unfolding

moment in the history of education, where rapidly evolving technology is changing the

way we work and learn. We must make wise and conscious decisions today, to the

benefit of our future practice and that of the learners and educators that will follow in

our paths.

ChatGPT in Computing Education A Policy White Paper

55

Acknowledgments

The ‘ChatGPT in Computing Education: A workshop to Co-Develop Guidelines
for Assessment Policy’ was supported by funding from the Council of Professors
and Heads of Computing (CPHC) via a 2023 Special Project Fund grant and by the
Department of Computing and Mathematics at Manchester Metropolitan University.

The editors would like to thank all the participants of the workshop, whose valuable
contributions helped shape the work in this report. Particularly we thank the
contributing authors named below.

Authors:

Matthew Shardlow, Manchester Metropolitan University, Long Essay, Code
Production, Academic Misconduct

Annabel Latham, Manchester Metropolitan University, Executive Summary,
Experiential

Daniel Gooch, Open University, Introduction, Knowledge Recall

Kevin Waugh, Open University, Introduction, Knowledge Recall

Mike Richards, Open University, Introduction, Knowledge Recall

Mark Slaymaker, Open University, Introduction, Knowledge Recall

Alistair Willis, Open University, Introduction, Knowledge Recall

John Halloran, Coventry University, Critical Analysis, Code Analysis

David Edmundson-Bird, Manchester Metropolitan University, New Assessments

Leanne Fitton, Manchester Metropolitan University, Adoption of LLMs

Anthony Kleerekoper, Manchester Metropolitan University, Timescales

Ashley Williams, Manchester Metropolitan University, Employability

ChatGPT in Computing Education A Policy White Paper

56

Workshop Participants

This white paper reports and extends the discussions of participants who took part in
the ‘ChatGPT in Computing Education: A workshop to Co-Develop Guidelines
for Assessment Policy’ on 17 July 2023. Participants from the following universities
and organisations took part.

Abertay University Northumbria University

Aberystwyth University Open University

ARC, UCL Sheffield Hallam University

BCS The Open University

Bournemouth University The University of Sheffield

City, University of London UEA

Coventry University Umm Al-Qura University

Durham University University Academy 92

Edge Hill University of Chester

King's College London University of Derby

Lancaster University University of East Anglia

Liverpool Hope University University of Hertfordshire

Liverpool John Moores University University of Hull

Loughborough University University of Manchester

Manchester Metropolitan University University of Sheffield

MIT Academy of Engineering University of Southampton

Northeastern University

ChatGPT in Computing Education A Policy White Paper

57

References

Adobe Inc. (2023) Generative AI – Adobe Sensei. Available at:
https://www.adobe.com/sensei/generative-ai.html (Accessed: 21 August 2023).

Anderson, L.W. and Krathwohl, D. (2001) A Taxonomy For Learning, Teaching, And
Assessing, A Revision Of Bloom’s Taxonomy Of Educational Objectives. New York,
NY, US: Addison Wesley Longman, Inc.

Baker, Catherine M., Yasmine N. El-Glaly, and Kristen Shinohara. 2020. A Systematic
Analysis of Accessibility in Computing Education Research. In Proceedings of the 51st
ACM Technical Symposium on Computer Science Education (SIGCSE '20).
Association for Computing Machinery, New York, NY, USA, 107–113.
https://doi.org/10.1145/3328778.3366843

Bender, E.M. et al. (2021) ‘On the Dangers of Stochastic Parrots: Can Language
Models Be Too Big? 🦜’, in Proceedings of the 2021 ACM Conference on Fairness,
Accountability, and Transparency. New York, NY, USA: Association for Computing
Machinery (FAccT ’21), pp. 610–623. Available at:
https://doi.org/10.1145/3442188.3445922.

Bergmans, L. et al. (2021) ‘On the Efficacy of Online Proctoring using Proctorio.’, in.
CSEDU (1), pp. 279–290. Available at:
https://ris.utwente.nl/ws/files/275927505/3e2a9e5b2fad237a3d35f36fa2c5f44552f2.p
df (Accessed: 16 March 2023).

Bloom, B.S. and Krathwohl, D.R. (1956) Taxonomy of educational objectives: The
classification of educational goals. Book 1, Cognitive domain. New York, NY, US:
Longmans. Bolin, A.U.,

Bloxham, S., Boyd, P. (2007). Developing Assessment in Higher Education: A
Practical Guide. United Kingdom: McGraw-Hill Education.

Bowman, E. (2022) ‘Scanning students’ rooms during remote tests is unconstitutional,
judge rules’, NPR, 26 August. Available at:
https://www.npr.org/2022/08/25/1119337956/test-proctoring-room-scans-
unconstitutional-cleveland-state-university (Accessed: 17 March 2023).

Chamberlain, C. et al. (2011) ‘The role of short answer questions in developing higher-
order thinking’, Per Linguam, 20(2), pp. 28–45. Available at:
https://doi.org/10.5785/20-2-83.

John Clanchy & Brigid Ballard (1995) Generic Skills in the Context of Higher
Education, Higher Education Research & Development, 14:2, 155-166, DOI:
10.1080/0729436950140202

Cockcroft, W.H. (1982) Mathematics counts Report of the Committee of Inquiry into
the Teaching of Mathematics in Schools under the Chairmanship of Dr WH Cockcroft.
London: Her Majesty’s Stationery Office. Available at:
https://trulscronberg.se/teacherstudies/1982_Mathematics_Counts.pdf (Accessed: 21
August 2023).

Cox, K., Imrie, B. and Miller, A., 2014. Student assessment in higher education: a
handbook for assessing performance. Routledge.

https://www.adobe.com/sensei/generative-ai.html
https://doi.org/10.1145/3328778.3366843
https://doi.org/10.1145/3442188.3445922
https://ris.utwente.nl/ws/files/275927505/3e2a9e5b2fad237a3d35f36fa2c5f44552f2.pdf
https://ris.utwente.nl/ws/files/275927505/3e2a9e5b2fad237a3d35f36fa2c5f44552f2.pdf
https://www.npr.org/2022/08/25/1119337956/test-proctoring-room-scans-unconstitutional-cleveland-state-university
https://www.npr.org/2022/08/25/1119337956/test-proctoring-room-scans-unconstitutional-cleveland-state-university
https://doi.org/10.5785/20-2-83
https://trulscronberg.se/teacherstudies/1982_Mathematics_Counts.pdf

ChatGPT in Computing Education A Policy White Paper

58

D’Agostino, S. (2022) Wikipedia, Once Shunned, Now Embraced in the Classroom,
Inside Higher Ed. Available at:
https://www.insidehighered.com/news/2022/11/09/more-professors-now-embrace-
wikipedia-classroom (Accessed: 21 August 2023).

Dick, M. (2005) ‘Student interviews as a tool for assessment and learning in a systems
analysis and design course’, in Proceedings of the 10th annual SIGCSE conference
on Innovation and technology in computer science education. New York, NY, USA:
Association for Computing Machinery (ITiCSE ’05), pp. 24–28. Available at:
https://doi.org/10.1145/1067445.1067456.

Duffy, C., “Public school bans on AI tools like ChatGPT raise fears private school
kids are gaining an unfair edge and widening a digital divide”, ABC News, Jan
2023. Retrieved from: https://www.abc.net.au/news/2023-05-26/artificial-intelligence-
chatgpt-classrooms-schools/102356926 on 15/09/2023.

East, J.P. and Schafer, J.B. (2005) ‘In-person grading: an evaluative experiment’, in
Proceedings of the 36th SIGCSE technical symposium on Computer science
education. New York, NY, USA: Association for Computing Machinery (SIGCSE ’05),
pp. 378–382. Available at: https://doi.org/10.1145/1047344.1047472. Gibbs, G.
(1988). Learning by doing: A guide to teaching and learning methods. London: Further
Education Unit.

Gibbs, G. (1988). Learning by doing: A guide to teaching and learning
methods. London: Further Education Unit.

Gilson, A. et al. (2022) ‘How Does ChatGPT Perform on the Medical Licensing Exams?
The Implications of Large Language Models for Medical Education and Knowledge
Assessment’. medRxiv, p. 2022.12.23.22283901. Available at:
https://doi.org/10.1101/2022.12.23.22283901. Google (2023) Try Bard, an AI
experiment by Google. Available at: https://bard.google.com (Accessed: 21 August
2023).

Gooch, Daniel. Kevin Waugh, Mike Richards, Mark Slaymaker and John Woodthorpe.
Exploring the rate and demographic profile of university assessments flagged as
containing AI-generated material. ACM SIGCSE under review.

Guangul, F.M., Suhail, A.H., Khalit, M.I. et al. Challenges of remote assessment in
higher education in the context of COVID-19: a case study of Middle East College.
Educ Asse Eval Acc 32, 519–535 (2020). https://doi.org/10.1007/s11092-020-09340-
w

Haigh, M.J. (2001) ‘Constructing Gaia: Using journals to foster reflective learning’,
Journal of geography in higher education, 25(2), pp. 167–189. Hussein, M.J. et al.
(2020) ‘An Intellectual Property Office. Exceptions to Copyright. (2021). [online].
Available at: https://www.gov.uk/guidance/exceptions-to-copyright#full-publication-
update-history [Accessed 12 Sep. 2023].

Joint Council for Qualifications (2023) ‘AI Use in Assessments: Protecting the Integrity
of Qualifications’, JCQ Joint Council for Qualifications. Available at:
https://www.jcq.org.uk/exams-office/malpractice/artificial-intelligence/ (Accessed: 22
August 2023).

https://www.insidehighered.com/news/2022/11/09/more-professors-now-embrace-wikipedia-classroom
https://www.insidehighered.com/news/2022/11/09/more-professors-now-embrace-wikipedia-classroom
https://doi.org/10.1145/1067445.1067456
https://www.abc.net.au/news/2023-05-26/artificial-intelligence-chatgpt-classrooms-schools/102356926
https://www.abc.net.au/news/2023-05-26/artificial-intelligence-chatgpt-classrooms-schools/102356926
https://doi.org/10.1145/1047344.1047472
https://doi.org/10.1101/2022.12.23.22283901
https://bard.google.com/
http://www.danielgooch.co.uk/
https://doi.org/10.1007/s11092-020-09340-w
https://doi.org/10.1007/s11092-020-09340-w
https://www.gov.uk/guidance/exceptions-to-copyright#full-publication-update-history
https://www.gov.uk/guidance/exceptions-to-copyright#full-publication-update-history
https://www.jcq.org.uk/exams-office/malpractice/artificial-intelligence/

ChatGPT in Computing Education A Policy White Paper

59

Khramtsova, I. and Saarnio, D. (2005) ‘Using student journals to stimulate authentic
learning: Balancing Bloom’s cognitive and affective domains’, Teaching of Psychology,
32(3), pp. 154–159.

Lee, N.T.S., Kurniawan, O. and Choo, K.T.W. (2021) ‘Assessing Programming Skills
and Knowledge During the COVID-19 Pandemic: An Experience Report’, in
Proceedings of the 26th ACM Conference on Innovation and Technology in Computer
Science Education V. 1. New York, NY, USA: Association for Computing Machinery
(ITiCSE ’21), pp. 352–358. Available at: https://doi.org/10.1145/3430665.3456323.

Lejk, Mark., Michael Wyvill & Stephen Farrow (1997) Group Learning and Group
Assessment on Undergraduate Computing Courses in Higher Education in the UK:
results of a survey, Assessment & Evaluation in Higher Education, 22:1, 81-91, DOI:
10.1080/0260293970220106

Lu, C., Macdonald, R., Odell, B. et al. A scoping review of computational thinking
assessments in higher education. J Comput High Educ 34, 416–461 (2022).
https://doi.org/10.1007/s12528-021-09305-y

McIntosh, A. (1990) ‘Becoming numerate: Developing number sense’, in Being
numerate: What counts? A Fresh Look at the Basics. ACER, pp. 24–43.

Mehdi, Y. (2023) Reinventing search with a new AI-powered Microsoft Bing and Edge,
your copilot for the web, The Official Microsoft Blog. Available at:
https://blogs.microsoft.com/blog/2023/02/07/reinventing-search-with-a-new-ai-
powered-microsoft-bing-and-edge-your-copilot-for-the-web/ (Accessed: 20 March
2023).

Meseguer-Artola, A. et al. (2020) ‘Academic impact and perceived value of Wikipedia
as a primary learning resource in higher education’, 39, p. e290329. Available at:
https://doi.org/10.3145/epi.2020.may.29.

Office for Students. Protecting students as consumers. (2023). [online] Available at:
https://www.officeforstudents.org.uk/publications/protecting-students-as-consumers/
[Accessed 12 Sep. 2023].

Ohmann, P. (2019) ‘An assessment of oral exams in introductory cs’, in. Proceedings
of the 50th ACM Technical Symposium on Computer Science Education, pp. 613–619.
Open University (2020) ‘The PROMPT Criteria’, The Open University Library. Available
at: https://www.open.ac.uk/libraryservices/beingdigital/activity/XK1087#page1
(Accessed: 21 August 2023).

Open Praxis. Evaluation of Online Proctoring Tools’, 12(4), p. 509. Available at:
https://doi.org/10.5944/openpraxis.12.4.1113.

Pérez, J., C. Vizcarro, J. García, A. Bermúdez and R. Cobos, "Development of
Procedures to Assess Problem-Solving Competence in Computing Engineering," in
IEEE Transactions on Education, vol. 60, no. 1, pp. 22-28, Feb. 2017, doi:
10.1109/TE.2016.2582736.

Richards, Mike; Waugh, Kevin; Slaymaker, Mark; Petre, Marian and Gooch, Daniel
(2023). Bob or Bot: Exploring ChatGPT’s answers to University Computer Science
Assessment. ACM Pre-Print. https://oro.open.ac.uk/89325/1/chatGPT_pre-print.pdf

https://doi.org/10.1145/3430665.3456323
https://doi.org/10.1007/s12528-021-09305-y
https://blogs.microsoft.com/blog/2023/02/07/reinventing-search-with-a-new-ai-powered-microsoft-bing-and-edge-your-copilot-for-the-web/
https://blogs.microsoft.com/blog/2023/02/07/reinventing-search-with-a-new-ai-powered-microsoft-bing-and-edge-your-copilot-for-the-web/
https://doi.org/10.3145/epi.2020.may.29
https://www.officeforstudents.org.uk/publications/protecting-students-as-consumers/
https://www.open.ac.uk/libraryservices/beingdigital/activity/XK1087#page1
https://doi.org/10.5944/openpraxis.12.4.1113
https://oro.open.ac.uk/89325/1/chatGPT_pre-print.pdf

ChatGPT in Computing Education A Policy White Paper

60

Ruthven, K. (2009) ‘Towards a calculator-aware number curriculum’, Mediterranean
Journal of Mathematics Education, 8(1), pp. 111–124.

Sabin, M., Jin, K.H. and Smith, A. (2021) ‘Oral Exams in Shift to Remote Learning’, in
Proceedings of the 52nd ACM Technical Symposium on Computer Science Education.
New York, NY, USA: Association for Computing Machinery (SIGCSE ’21), pp. 666–
672. Available at: https://doi.org/10.1145/3408877.3432511.

Schultz, M.C., Schultz, J.T. and Gallogly, J. (2007) ‘The Management of Testing in
Distance Learning Environments’, Journal of College Teaching & Learning, 4(9), pp.
19–26. Sellgren, K. (2014) Calculator test ban ‘backward step’, claim academics, BBC
News. Available at: https://www.bbc.com/news/education-27391683 (Accessed: 21
August 2023).

Sekhon, J., Ozcan, O. and Ozcan, S. (2023). ChatGPT: what the law says about who
owns the copyright of AI-generated content. [online] The Conversation. Available at:
https://theconversation.com/chatgpt-what-the-law-says-about-who-owns-the-
copyright-of-ai-generated-content-200597 [Accessed 22 Apr. 2023].

Sielicka-Barylka, K. (2021) ‘A Cross-cultural Review of the Impact of Wiki Education
in Learning and Teaching’, Diff, 3 February. Available at:
https://diff.wikimedia.org/2021/02/03/a-cross-cultural-review-of-the-impact-of-wiki-
education-in-learning-and-teaching/ (Accessed: 21 August 2023).

Soler-Adillon, J., Pavlovic, D. and Freixa, P. (2018) ‘Wikipedia in Higher Education:
Changes in Perceived Value through Content Contribution’, Comunicar: Media
Education Research Journal, 26(54), pp. 39–48.

Sparrow, L., Kershaw, L. and Jones, K. (1994) Issues in primary mathematics
education: calculators: Research and curriculum implications. Perth, Australia:
Mathematics, Science & Technology Education Centre, Edith Cowan University.
Available at: https://ro.ecu.edu.au/ecuworks/6812 (Accessed: 21 August 2023).

Spataro, J. (2023) Introducing Microsoft 365 Copilot – your copilot for work, The
Official Microsoft Blog. Available at:
https://blogs.microsoft.com/blog/2023/03/16/introducing-microsoft-365-copilot-your-
copilot-for-work/ (Accessed: 21 August 2023).

Swauger, S. (2020) Software that monitors students during tests perpetuates
inequality and violates their privacy, MIT Technology Review. Available at:
https://www.technologyreview.com/2020/08/07/1006132/software-algorithms-
proctoring-online-tests-ai-ethics/ (Accessed: 17 March 2023).

Terry, O., “I’m a student you have no idea how much we’re using chatgpt”, The
Chronicle of Higher Education, May 2023. Retrieved from:
”https://www.chronicle.com/article/im-a-student-you-have-no-idea-how-much-were-
using-chatgpt on 15/09/2023.

Turkle, S. (2007) ‘Authenticity in the age of digital companions’, Interaction studies,
8(3), pp. 501–517. University of Edinburgh (2020) New case studies publication on
using Wikipedia in education, The University of Edinburgh. Available at:
https://www.ed.ac.uk/information-services/about/news/2020/using-wikipedia-in-
education (Accessed: 21 August 2023).

https://doi.org/10.1145/3408877.3432511
https://www.bbc.com/news/education-27391683
https://theconversation.com/chatgpt-what-the-law-says-about-who-owns-the-copyright-of-ai-generated-content-200597
https://theconversation.com/chatgpt-what-the-law-says-about-who-owns-the-copyright-of-ai-generated-content-200597
https://diff.wikimedia.org/2021/02/03/a-cross-cultural-review-of-the-impact-of-wiki-education-in-learning-and-teaching/
https://diff.wikimedia.org/2021/02/03/a-cross-cultural-review-of-the-impact-of-wiki-education-in-learning-and-teaching/
https://ro.ecu.edu.au/ecuworks/6812
https://blogs.microsoft.com/blog/2023/03/16/introducing-microsoft-365-copilot-your-copilot-for-work/
https://blogs.microsoft.com/blog/2023/03/16/introducing-microsoft-365-copilot-your-copilot-for-work/
https://www.technologyreview.com/2020/08/07/1006132/software-algorithms-proctoring-online-tests-ai-ethics/
https://www.technologyreview.com/2020/08/07/1006132/software-algorithms-proctoring-online-tests-ai-ethics/
https://www.chronicle.com/article/im-a-student-you-have-no-idea-how-much-were-using-chatgpt
https://www.chronicle.com/article/im-a-student-you-have-no-idea-how-much-were-using-chatgpt
https://www.ed.ac.uk/information-services/about/news/2020/using-wikipedia-in-education
https://www.ed.ac.uk/information-services/about/news/2020/using-wikipedia-in-education

ChatGPT in Computing Education A Policy White Paper

61

Turnitin, “AI Writing Detection Capabilities - Frequently Asked Questions”,
Turnitin, 2023. Retrieved from: https://www.turnitin.com/products/features/ai-writing-
detection/faq on 15/09/2023.

Yeadon, W. et al. (2022) ‘The Death of the Short-Form Physics Essay in the Coming
AI Revolution’. arXiv. Available at: https://doi.org/10.48550/ARXIV.2212.11661.

https://www.turnitin.com/products/features/ai-writing-detection/faq
https://www.turnitin.com/products/features/ai-writing-detection/faq
https://doi.org/10.48550/ARXIV.2212.11661

ChatGPT in Computing Education A Policy White Paper

62

	1. Introduction 5
	Section 1 Assessment Threat Level and Redesign 9
	2. Selection of Assessment Methodologies 10
	3. Knowledge Recall 13
	4. Critical Analysis 17
	5. Long Form Essay Questions 25
	6. Code Analysis 29
	7. Code Production 36
	8. Experiential 38
	Section 2 Large Language Model Policy Considerations in Computing Higher Education and Beyond 42
	9. Employability 43
	10. Academic Misconduct 45
	11. New Assessments 48
	12. Timescales 52
	13. Longer-Term Changes 53
	14. Conclusion 54
	Acknowledgments 55
	Workshop Participants 56
	References 57
	1. Introduction
	1.1. Assessing the Outputs of Large Language Models
	1.2. Academic Literacy Skills
	1.3. Hallucinations
	1.4. Is This Really New?
	1.5. All This Will Pass

	Section 1 Assessment Threat Level and Redesign
	2. Selection of Assessment Methodologies
	2.1. Assessment Modalities
	2.1.1. Knowledge Recall (KR)
	2.1.2. Critical Analysis (CrA)
	2.1.3. Long Essay (LE)
	2.1.4. Code Analysis (CoA)
	2.1.5. Code Production (CP)
	2.1.6. Experiential (Ex)

	2.2. Discussion

	3. Knowledge Recall
	3.1. LLM Knowledge Recall Demonstration
	3.2. Moving Forward on Knowledge Recall

	4. Critical Analysis
	4.1. Question 1
	4.1.1. Analysis

	4.2. Question 2
	4.2.1. Analysis

	4.3. Question 3
	4.3.1. Analysis

	4.4. Question 4
	4.4.1. Analysis

	4.5. Conclusion

	5. Long Form Essay Questions
	5.1. Analysis
	5.2. Key Threats to Assessment Type
	5.3. Mitigation Strategies

	6. Code Analysis
	6.1. Debug The Following Code. Keep A log of All Errors that You Spot.
	6.1.1. Analysis

	6.2. Suggest Strategies to Refactor the Following Code to Avoid the Monolithic Design Principle.
	6.2.1. Analysis

	7. Code Production
	7.1. Analysis
	7.2. Key Threats to Assessment Type
	7.3. Mitigation Strategies

	8. Experiential
	8.1. Analysis
	8.2. Key Threats
	8.3. Mitigation Strategies

	Section 2 Large Language Model Policy Considerations in Computing Higher Education and Beyond
	9. Employability
	9.1. Policy Points

	10. Academic Misconduct
	10.1. AI Detection
	10.2. Policy Points

	11. New Assessments
	11.1. Policy

	12. Adoption of LLMs
	12.1. Developing AI Literacy
	12.2. Policy Points:

	13. Timescales
	13.1. For Immediate Adoption
	13.2. Longer-Term Changes

	14. Conclusion

	Acknowledgments
	Workshop Participants
	References

