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A B S T R A C T   

Brain tumors have become a severe medical complication in recent years due to their high fatality rate. Radi-
ologists segment the tumor manually, which is time-consuming, error-prone, and expensive. In recent years, 
automated segmentation based on deep learning has demonstrated promising results in solving computer vision 
problems such as image classification and segmentation. Brain tumor segmentation has recently become a 
prevalent task in medical imaging to determine the tumor location, size, and shape using automated methods. 
Many researchers have worked on various machine and deep learning approaches to determine the most optimal 
solution using the convolutional methodology. In this review paper, we discuss the most effective segmentation 
techniques based on the datasets that are widely used and publicly available. We also proposed a survey of 
federated learning methodologies to enhance global segmentation performance and ensure privacy. A compre-
hensive literature review is suggested after studying more than 100 papers to generalize the most recent tech-
niques in segmentation and multi-modality information. Finally, we concentrated on unsolved problems in brain 
tumor segmentation and a client-based federated model training strategy. Based on this review, future re-
searchers will understand the optimal solution path to solve these issues.   

1. Introduction 

The brain is called the central processing unit, which controls sen-
sory information, blood pressure, respiratory system, releasing hor-
mones, etc. There can be some abnormality due to behavioral action, 
which can be abnormal due to an accident, high blood pressure, or 
abnormal cells or tissues. Strokes, brain hemorrhages, and brain tumors 
are examples of prevalent disorders that occur nowadays. An estimated 
251,329 persons died from primary malignant brain and CNS (Central 
Nervous System) tumors globally in 2020 (Brain Tumor: Statistics and 
Cancer, 2023). The tumor is formed when an unregulated cell appears, 
and there is no way to control this growth. In the central nervous system, 
abnormal cell respiration and proliferation lead to brain tumors. As a 
result, this cell rapidly multiplies and takes on the size of the brain area, 
essentially causing pressure and unconsciousness problems. If this tumor 
is not identified correctly, it might be fatal for patients. On the other 
hand, not all brain tumors are cancerous, but only malignant tumors. It 

has been estimated that around 80% of them are malignant and 20%ares 
benign (Louis et al., 2016). Brain tumors have an impact on the 
neurological system’s function based on their growth rate and location. 
Depending on the severity and location of a brain tumor, several treat-
ment options are available. The size of aberrant cells and tissues is 
extensive in the metastatic group, which might create any form of dis-
ease in the body. Recently, oligodendrocyte-based gliomas have 
attracted the attention of researchers (Abd-Ellah et al., 2016). 

An image analysis technique is used in machine learning research to 
construct a system to classify the tumor’s type. For research purposes, 
two paths are taken: classification and segmentation (Bauer et al., 
2013). The segmentation approach may identify the tumor from picto-
rial data (pixel level). Segmentation is becoming an increasingly popular 
study topic in medical imaging analysis. Tumor or glioma diagnosis and 
therapy both heavily rely on image segmentation. Astrocytomas and 
oligodendrogliomas are the least aggressive and common gliomas, but 
HGG (GBM grade IV) is among the most destructive. High-grade gliomas 
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cause more damage than lower-grade glioblastomas (Menze et al., 
2015). Usually, gliomas are treated with surgery, chemotherapy, and 
radiotherapy. Early detection can help improve patient medical di-
agnoses and treatment policies. First and foremost, imaging data from 
the patient must be collected. There are numerous types of scanning 
available to detect abnormalities. Such methods are known as computed 
tomography (CT), X-ray, SPECT, PET, MRS, and MRI (Woźniak et al., 
2023; Pfeiffer et al., 2007; Sebastian and Gnana King, 2022; Fink et al., 
2015). Strong magnetism, electromagnetic radiation, and a computer 
are used in the MRI examination to produce a precise image (Jayade-
vappa et al., 2011). 

An MRI imaging system analyzes four types of inputs to diagnose 
gliomas, including T1-weighted (T1), T2-weighted (T2), gadolinium- 
based contrast intensification (T1-Gd), and Fluid-Attenuated Inversion 
Recovery (FLAIR) shown in Fig. 1. It is also crucial to remember that the 
dataset is incredibly thick and intricate when the proper standard 
paradigm slices are joined for diagnostic purposes. T2 imaging is 
frequently employed to outline the inflammatory regions and provides a 
robust signal mainly on the image, whereas T1 imaging is typically 
utilized to differentiate endothelium (healthy tissues). It is easy to 
identify the tumor boundary with T1-Gd images because of the strong 
signal of the accumulating imaging technique (gadolinium ions). 
Necrotic cells can be distinguished from active cells in the same 
sequence because necrotic cells do not involve contrast material and can 
show up in hypo-intense tumor centers (Wadhwa et al., 2019; Menze 
et al., 2010). It is possible to discriminate between edema and cerebral 
edema in cerebrospinal fluid (CSF) using FLAIR images because the 
signal from water molecules is muted. A split tumor is essential before 

beginning any treatment. Hence, good tissues are protected while ma-
lignant cells are destroyed. Finding, identifying, and isolating the active 
components of a brain tumor from healthy brain areas, such as the gray 
matter (GM), white matter (WM), and CSF, are all necessary steps in the 
segmenting process (Lau et al., 2019). 

Based on this knowledge, many researchers worked on segmenting 
brain tumors, and the number of papers identified is displayed in Fig. 2. 
Deep learning approaches have recently demonstrated exceptional 
performance in brain tumor segmentation and classification (Lunder-
vold and Lundervold, 2019). With the implementation of AI technology 
in the e-healthcare industry, there have been significant improvements 
in medical research, allowing domain specialists to give more effective 
medical services to the public. The development of deep learning, which 
combines AI and machine learning, has aided in the development of 
numerous state-of-the-art methods for identifying brain tumors and 
enabling the early detection of malignant tumors so that preventative 
measures can be implemented to save lives (Hinton, 2018). Deep 
learning produces less accurate findings when the training and testing 
datasets are smaller. To solve this problem, federated learning is utilized 
to train the shared global model with data from various organizations 
while maintaining data privacy (Ng et al., 2021; KhoKhar et al., 2022). 

In a precise sense, the term "deep learning" refers to the imple-
mentation of artificial neural networks that incorporate multiple func-
tional layers. Neural networks possess the capability to acquire complex 
hierarchical features in high dimensions and provide an approximation 
of continuous functions (Faysal Ahamed et al., 2023). Several surveys 
have discussed deep learning strategies developed in light of deep neural 
network accomplishments and new enhancements. Artificial 

Fig. 1. This figure contains the four modality of MRI images (middle slice) such as T1, T1-Gd, T2, FLAIR, and mask categories.  

Fig. 2. The number of published papers on brain tumor segmentation using artificial intelligence in the corresponding year.  
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intelligence has been largely successful in the diagnostic realm, but it 
remains challenging to construct an efficient model with small datasets 
in specific settings (Cui et al., 2018). To solve this problem, federated 
learning was used to train the global model at multiple sites simulta-
neously. Federated learning creates a global model by combining 
training results from multiple sites without direct data exchange. This 
paper focuses on the issues of federated learning in segmentation. 

This research looks at the state-of-the-art segmenting of brain malig-
nancies with MRI data, concentrating on foundational deep learning and 
federated learning algorithms. In addition, it offers a comprehensive re-
view of the research on brain tumor detection and segmentation utilizing 
federated and deep learning methods. Recently, much research has been 
performed on deep learning for automated brain tumor diagnosis, but 
relatively few studies have been done on federated learning (Nazir et al., 
2021; Zhou et al., 2023a). In this study, we present a systematic review of 
categories by combining deep learning and federated learning ap-
proaches. The popular benchmarking dataset is discussed here where the 
previous researcher worked and future researchers will get the proper 
direction. This research analyzes a wide variety of publicly available and 
privately held datasets to shed light on the outstanding problems and 
obstacles in the field of brain tumor segmentation. 

The paper is divided into a total of seven sections. Section 2 presents 
a review of some relevant literature. Section 3 and Section 4 discuss 

recent research challenges and advancements, respectively. Section 5 
summarizes the study plan with the appropriate article identification, 
screening, and selection methods. Section 6 seeks to answer the research 
questions generated. Current clinical applications are discussed in Sec-
tion 7. Finally, the main findings from this review are summarized in 
Section 8. 

2. Literature Review 

2.1. Survey of recent review papers 

Recent relevant review papers are presented in Table 1, along with 
their respective details and highlights. 

Nalepa et al (Nalepa et al., 2019). explored the advancements in data 
augmentation techniques for MRI on the BraTS 2018 dataset. The work 
highlights the potential for improving the effectiveness of algorithms for 
supervised learning through various data augmentation strategies. 
Additionally, it identifies exciting future research areas for synthesizing 
high-quality artificial brain tumor instances, which could enhance deep 
four models’ generalization skills. The study focused on the BraTS 
dataset and explored the promising possibilities of the suggested tech-
nique. One potential positive aspect of this study is that it includes 
published image information. 

Table 1 
The current literature on the subject of "brain tumor segmentation and Federated Learning" is listed here with limitations.  

Paper Title Publishing Journals Contribution Limitations 

“Data Augmentation for Brain-Tumor 
Segmentation: A Review” (Nalepa 
et al., 2019) 

Frontier Computational Neuroscience 
(2019) 

Based on the impact of data augmentation, 
they proposed future research directions for 
generating high-quality artificial brain tumor 
examples to improve deep model 
generalization. 

Focused only on augmentation technique 
and not provided any comprehensive 
analysis. 

“A review on brain tumor diagnosis from 
MRI images: Practical implications, key 
achievements, and lessons learned” ( 
Abd-Ellah et al., 2019) 

Elsevier (Magnetic Resonance 
Imaging) (2019) 

Explored the principal accomplishments by 
scrutinizing the efficiency evaluation of the 
implemented algorithms. 

Other emerging methodologies or 
alternative imaging modalities were not 
evaluated. 

“Brain tumor segmentation of MRI 
images: A comprehensive review on the 
application of artificial intelligence 
tools” (Ranjbarzadeh et al., 2023) 

Elsevier (Computers in Biology and 
Medicine) (2023) 

Data augmentation were employed and how 
those methods impacted underlying 
supervised learners. 

Multi-modality and federated learning 
analysis were not presented. 

“An artificial intelligence framework and 
its bias for brain tumor segmentation: A 
narrative review” (Das et al., 2022) 

Elsevier (Computers in Biology and 
Medicine) (2022) 

Different architectures were examined, and 
performance matrices were measured by 
utilizing benchmarking performance bias. 

Focused on risk-of-bias (RoB) in artificial 
intelligence (AI) architectures without 
analyzing the broader challenges and 
limitations of AI-based brain tumor 
segmentation techniques. 

“A Review of Medical Federated 
Learning: Applications in 
Oncology and Cancer Research” ( 
Chowdhury et al., 2022) 

Springer (Lecture Notes in Computer 
Science (including subseries Lecture 
Notes in Artificial Intelligence and 
Lecture Notes in Bioinformatics) 
(2022) 

Provided a complete overview of federated 
learning, with a focus on cancer applications 
and methods. 

Did not discuss about brain tumor 
segmentation on federated learning issues, 
and did not provide systematic direction on 
privacy analysis. 

“Automated Brain Tumor Segmentation 
Using Multimodal Brain Scans: A 
Survey Based on Models Submitted to 
the BraTS 2012–2018 Challenges” ( 
Ghaffari et al., 2020) 

IEEE Reviews in Biomedical 
Engineering (2020) 

Examined the development of an automated 
model through the utilization of multimodal 
MR images and proposed a benchmark by 
comparing others’ work. 

Discussed only a limited range of the dataset 
and missing modality information was not 
presented. 

“A survey on brain tumor detection using 
image processing techniques” (Kapoor 
and Thakur, 2017) 

IEEE Explore (Data Science & 
Engineering) (2017) 

Broke down the process of locating 
malignancies into four phases (pre- 
processing, segmentation, optimization, and 
feature extraction) from existing research 
from biomedical images. 

Multiclass segmentation was not analyzed 
and state-of-the-art methodology was not 
presented clearly. 

“A Survey of Brain Tumor Segmentation 
and Classification Algorithms” (Biratu 
et al., 2021) 

MDPI (Journal of Imaging) (2021) Provided an overview on segmentation and 
classification, three major techniques (region 
growing, shallow machine learning, and deep 
learning), various technical aspects such as 
strengths and weaknesses, pre- and post- 
processing techniques. 

The section on architecture and multiclass 
segmentation was barely discussed and 
model performance degradation challenges 
did not analyzed. 

“A review on federated learning towards 
image processing” (KhoKhar et al., 
2022) 

Elsevier (Computers and Electrical 
Engineering) (2022) 

Highlighted federated learning architectures 
and emphasized its role in enhancing data 
security and privacy in image processing 
applications. 

The privacy of medical data was not 
adequately addressed, the appropriate 
image processing algorithm was not 
thoroughly analyzed, and deep learning 
with federated learning was not directed 
properly.  
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To diagnose brain tumors, Abd-Ellah et al (Abd-Ellah et al., 2019). 
assessed both conventional and deep machine-learning techniques. They 
also examined significant accomplishments based on performance 
measurement metrics of the implemented algorithms in the three diag-
nosis stages. Furthermore, it highlighted the acquired knowledge as a 
guide for prospective investigations on the BraTS 2018 dataset. This 
review identified the significant accomplishments evidenced in the 
performance measurement metrics of the applied algorithms in the three 
diagnostic processes. 

Ranjbarzadeh et al (Ranjbarzadeh et al., 2023). analyzed recent 
developments in data-augmentation methods used on brain tumor 
magnetic resonance images. It examined papers submitted to the 
Multimodal Brain Tumor Segmentation Challenge (BraTS 2018 edition) 
to see which approaches to data augmentation were used and how they 
affected underlying supervised learners. In order to improve the 
generalization capabilities of deep models, it suggests prospective 
research approaches for synthesizing high-quality artificial brain tumor 
cases. 

Das et al (Das et al., 2022). employed a PRISMA methodology to 
classify 75 pertinent research works into four categories, namely con-
volutional neural network (CNN), encoder-decoder (ED), transfer 
learning (TL), and hybrid DL (HDL)-based architectures. This study 
analyzed 32 attributes related to artificial intelligence. It established a 
threshold for bias detection to categorize studies as having low, mod-
erate, or high levels of bias. According to the performance ranking, TL 
architecture is superior, followed by ED, CNN, and HDL in descending 
order. 

To determine the cutting-edge Federated Learning applications for 
oncology research and clinical analysis, Chowdhury et al (Chowdhury 
et al., 2022). conducted a systematic literature study. The study aims to 
present a comprehensive analysis of the developing Federated Learning 
field, with a specific emphasis on the employment of applications and 
algorithms in the field of oncology. Additionally, it will assist the readers 
in recognizing prospective requirements and forthcoming pathways for 
investigation and advancement. 

The authors, Ghaffari et al (Ghaffari et al., 2020). conducted a 
comprehensive analysis of the development of automated models uti-
lized for brain tumor segmentation through the integration of multi-
modal MR images. The study involved a comparison of various methods, 
and the proposed models were evaluated through their application to 
the well-known benchmark BraTS 2012–2018 challenges. Kapoor et al 
(Kapoor and Thakur, 2017). and Biratu et al (Biratu et al., 2021). 
directed their attention toward summarizing conventional techniques 
for brain tumor segmentation. Nevertheless, it was noteworthy that 
neither of them provided a comprehensive technical analysis or 
discourse on segmentation techniques based on deep learning. 

KhoKhar et al (KhoKhar et al., 2022). provided an overview of the 
frameworks utilized in federated learning and examined their applica-
tions in machine learning, deep learning, and data mining. The study 
centered on how to use image processing techniques to safeguard and 
preserve the confidentiality of data trained on the model. 

2.2. Scope of this survey 

In this review, the findings from over a hundred scholarly papers 
have been compiled and summarized from renowned scientific data-
bases like IEEE, Springer, Elsevier, MDPI, and Wiley. To ensure the 
preservation of high-quality research results in medical imaging, we 
reviewed the proceedings of major conferences such as ISBI, MICCAI, 
IPMI, MIDL, CVPR, ECCV, and ICCV. Many tasks and associated 
competition entries, such as the “Multimodal Brain Tumor Segmentation 
Challenge (BraTS)” were examined. In addition, the arXiv library was 
included for better information retrieval. 

The primary objective of this review is to provide an in-depth study 
of brain tumor segmentation using a combination of deep learning and 
federated learning models. More research must be carried out on 

federated-based segmentation to enhance its effectiveness. Any errors in 
spelling, grammar, and punctuation have been corrected. Therefore, it is 
essential to make a systematic and strategic review to obtain a suitable 
novel research direction. This study is intended to find out how different 
architectures affect the segmentation of brain images and give a direc-
tion on patient data handling by utilizing federated learning concepts in 
a wide range of brain image datasets. Advanced topics, including dataset 
benchmarks, segmentation of techniques, and multimodal procedures, 
are also addressed. Finally, the review presents unresolved issues and 
potential paths for further study. 

2.3. Contribution of this survey 

The main contributions of this study are as follows.  

• According to our knowledge, this is the first comprehensive survey 
paper that combines the categorization of federated learning algo-
rithms and deep learning models to segment multiclass brain tumors. 

• A systematic review is presented in which various recent method-
ologies for brain tumor segmentation are discussed.  

• The best deep learning segmentation methodologies are identified 
through multiclass tumor recognition comparison. 

• The process flow, beginning with the planning phase, is briefly dis-
cussed, as are challenging segmentation data issues. 

• We thoroughly compare various modality issues with effective so-
lutions to extract features from both modality and missing modality 
information.  

• A federated learning process is designed to keep data private on both 
client-side and server-side systems. These systems can keep both 
small and large datasets to improve the model’s performance. 

3. Research challenges 

Numerous scholars have attempted to identify the optimal approach 
for image segmentation. Based on current research, it is evident that 
deep learning-based models exhibit superior performance compared to 
the others. However, it should be noted that there are some challenges to 
achieve improved results in both research and clinical implementation 
(Havaei et al., 2017). Several researchers tried to remove those anom-
alies and achieve greater accuracy. Based on the constraints, the chal-
lenges are categorized as follows. 

3.1. Location Uncertainty 

Location confusion means that it is hard or impossible to know where 
a tumor is exactly in brain. Brain tumor segmentation is a difficult job 
that requires pinpointing the exact location of the tumor because of 
differences in tumor size, shape, and location, as well as differences in 
the quality and clarity of imaging data (Kao et al., 2020). This confusion 
can affect how well segmentation and treatment planning work. 
Different ways have been suggested to deal with location uncertainty in 
brain tumor segmentation, such as using multimodality data can help to 
find the shape and position of the tumor. 

3.2. Morphological Uncertainty 

The inability to precisely define the boundaries of tumors is known as 
morphological uncertainty. Due to the prevalence of HGG and LGG cases 
and their penetration into neighboring tissues, it may be challenging to 
distinguish tumor tissue from normal brain tissue (Jungo et al., 2018). 
The outer layer of a brain tumor is composed of edema tissues, which 
exhibit a variety of fluid configurations that make it difficult to establish 
a baseline for describing the tumor’s contours. Due to this uncertainty, 
tumors may be incorrectly segmented, which might impede diagnosis 
and treatment. 
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3.3. Low Contrast 

Low-contrast pictures are those in which the contrast between the 
tumor location and the surrounding normal brain tissue is so low that 
radiologists or computer algorithms struggle to detect and segment the 
tumor appropriately. This may happen because of the MRI scan’s im-
aging settings or the tumor’s size, location, or type (Dubey et al., 2011). 
Low-quality and low-contrast MRI images might result from the pro-
jection and tomography procedures. Imaging abnormalities, such as 
noise or motion artifacts, can also contribute to low contrast, masking 
crucial elements in the picture. 

3.4. Annotation Bias 

The term "Annotation Bias" relates to the challenge of manually 
segmenting tumor locations when the annotations supplied by different 
radiologists or medical professionals differ. Variations in individual 
backgrounds, comprehension, or subjective predispositions may explain 
the observed phenomenon. The generated annotations may contain in-
consistencies or mistakes, offering potential issues in the training and 
evaluation of deep-learning models for tumor segmentation (Kim et al., 
2023). To address this issue, it is critical to get a diverse and compre-
hensive collection of annotations from various specialists, as well as to 
painstakingly authenticate and correct the annotations to ensure their 
precision and uniformity. 

3.5. Imbalanced Issue 

An uneven number of pixels or voxels in the dataset that belong to 
the different classes causes "imbalance issues" in peritumoral edema, 
GD-enhanced, and NCR/ECT region segmentation. It is common in 
medical image analysis to discover that one class (such as the backdrop) 
has far more pixels or voxels than the classes of interest (such as tumor 
patches) (Rezaei et al., 2019). Large tumor regions may have a consid-
erable impact on the retrieved characteristics, which influence the 
data-driven learning technique. It leads to a bias in training for the 
majority class and poor performance in recognizing the minority class. 
To overcome this issue, several strategies have been proposed in the 
literature, including oversampling, under-sampling, and class 
weighting. 

3.6. Lack of clinical implementation 

Despite rapid development in medical imaging and AI, there is a 
noticeable absence of software engineering in the healthcare industry, 
especially regarding cutting-edge software development dedicated to 
disease diagnosis (Kernbach et al., 2022). Although modern ML and DL 
methods have shown high accuracy in detecting brain tumors, medical 
professionals such as doctors, radiologists and clinicians exhibit a degree 
of skepticism towards using the modern technology due to their lack of 
understanding on the black box prediction process involved in the dis-
ease diagnosis. This forces them relying more on their astute observa-
tions and traditional manual methods (Verdicchio and Perin, 2022). 
Explainable AI (XAI) has showed considerable potential in healthcare, 
allowing the clinicians and other relevant stakeholders to gain trans-
parent insights into intricate decision-making processes (Borys et al., 
2023). This, in turn, can lead to improved patient outcomes and 
contribute to the overall effectiveness and ethicality of the healthcare 
system. Furthermore, the communication gap exists between the soft-
ware engineers and medical professionals. have yet to be bridged to 
properly implement AI technology in the medical IT infrastructure. 

4. Progress in the past decades 

Fig. 3 displays significant scientific progress in brain tumor segmen-
tation and federated learning. This progress is represented based on the 
topmost work of the concurrent years to get a proper direction for 
improvement in this field. This representation is split into two parts: the 
first uses traditional machine learning, and the second uses deep learning 
algorithms. Zhu et al (Zhu and Yan, 1997). (1997) created a Hopfield 
neural network alongside active contoured shapes to extract the boundary 
of a tumor and outline the corresponding region. The limitations of 
computational capacity significantly restricted the training process. Since 
1998, scholars have directed their attention toward conventional 
machine-learning models in order to achieve improved outcomes in the 
process of tumor segmentation. Clark et al (Clark et al., 1998). conducted 
a multispectral histogram analysis to differentiate the potentially malig-
nant tumor from the surrounding intracranial area. A technique known as 
ATmC (Adaptive Template Moderated Classification), developed in 1999 
by Kaus et al (Kaus et al., 1999)., was used to design surgical procedures 
integrating computers. In 2003, a study conducted by Resnick et al 
(Resnick et al., 2003). aimed to investigate the longitudinal MRI scan data 
of older people in order to determine regional pattern behavior. Prastawa 

Fig. 3. The process flow, beginning with the planning stage and continuing up to the present, along with the year that corresponds to each stage.  
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et al (Prastawa et al., 2004). developed a framework with the intention of 
determining the outlier region based on the segmentation results. The 
results obtained from the latent atlas indicated superior outcomes in 
terms of intensity variation analysis through the histogram (Corso et al., 
2008), geometric visualization (Wels et al., 2008), and detection of tumor 
regions (Menze et al., 2010). The initial work was at the forefront of 
utilizing machine learning techniques to address the segmentation chal-
lenge. Nevertheless, the initial studies exhibit noteworthy limitations. 
Initially, most early works concentrated solely on segmenting the entire 
tumor region, resulting in a segmentation outcome comprising a single 
category. Previous studies were based on stringent constraints and 
impractical assumptions. The process of manually devising characteristics 
is constrained by incompletely generalizable prior knowledge. Lastly, it 
should be noted that initial research efforts did not adequately address 
specific challenges, such as ambiguity in appearance and inconsistent 
data distribution. 

Researchers started concentrating on employing deep neural net-
works to tackle numerous practical challenges when deep learning 
technology made a breakthrough. The principal benefit of deep learning 
resides in its capacity to acquire intricate, non-linear associations be-
tween input and output variables. Deep learning models can acquire 
features and patterns from unprocessed data in an automated manner, 
thereby eliminating the requirement for manual feature engineering. 
The capacity of deep learning to scale with larger data sets is another 
advantage (Krizhevsky et al., 2017). To accomplish precise brain tumor 
segmentation, state-of-the-art research efforts aim to develop special-
ized deep convolutional neural networks (Havaei et al., 2017; Zikic 
et al., 2014; Pereira et al., 2016). Recent methods for brain tumor seg-
mentation take advantage of the improvements made possible by fully 
convolutional networks (FCNs) (Long et al., 2015) and U-Nets (Ronne-
berger et al., 2015) by building encoder-decoder relationships without 
fully connected layers. 

Data imbalance is a problem resulting in a decline in the model 
performance. To deal with this problem, the researcher attempts to 
implement a cascaded-based network and ensemble process. Multitask 
learning, customized model layers, customized loss functions, and uti-
lizing the information from multimodality help to overcome this. Mo-
dality fusion is also an effective process which deals with the missing 
values of modality. To describe 3D brain tumor semantic segmentation, 
Jiang et al (Jiang et al., 2022). developed an advanced model by 
combining with transformer, CNN, and encoder–decoder structure to 
define the 3D brain tumor semantic segmentation. Lin et al (Lin et al., 
2023). designed a clinical knowledge-based segmentation model where 
dual branch autoencoder is used to reconstruct the brain tumor image. 
The model’s efficacy deteriorated due to a problem with the data 
imbalance. Researchers are experimenting with cascade-based networks 
and ensemble procedures to address this issue (Kamnitsas et al., 2018; 
Jiang et al., 2020). To get around this, multitasking learning, modified 
successive layers, adapted loss functions, and making use of multi-
modality’s information are all found to be helpful (Zhang et al., 2021a; 
Zhou et al., 2020a). Another efficient method for addressing the 
modality’s missing values is called "modality fusion" (Zhou et al., 2021). 

The restrictions from the governing rules on protecting medical data 
make it frequently impossible to gather and distribute information about 
patients. The challenge of accessing patient data is circumvented 
through the implementation of federated learning, which involves the 
deployment of programs that exchange only partial updates of the model 
training process among them. On the BraTS dataset, Li et al (Li et al., 
2019a). constructed and evaluated the realistic federated learning al-
gorithms for brain tumor segmentation. The SU-Net model for federated 
learning demonstrated improved efficiency (Yi et al., 2020). Xu et al (Xu 
et al., 2022). introduced the FedCross approach to counteract the 
decline in model aggregation performance during non-IID (non--
Independent and Identically Distributed) data training. The perfor-
mance and privacy of a federated-based model are improved by using a 
cascaded transformer in this paper (Nalawade et al., 2021). 

5. Review strategy 

This systematic literature review (SLR) aims to classify the recent 
approaches to segmenting the tumor as outlined in Fig. 4. 

5.1. Research questions 

One of the most essential parts of a review paper is developing a 
research question. This is because the question helps determine the 
scope and focus of the literature review. A well-written research ques-
tion ensures that the review is structured, comprehensive, and pertinent 
to the subject under investigation. The creation of a well-defined 
research question can help with the identification and selection of 
pertinent articles for a review paper. This can help reduce the chance of 
bias in the selection process and ensure the review is a complete and fair 
summary of the available literature. Furthermore, formulating a 
research inquiry serves to structure the literature review and furnish the 
audience with a background. It can help the reader understand why the 
review is being done, how much of the literature is being looked at, and 
what the most important results and conclusions are. Zou et al (Zou 
et al., 2022)., presented a strategy to identify solutions to specific in-
quiries employing published research. The main objective of this 
research is to provide a comprehensive overview of contemporary brain 
tumor segmentation techniques utilizing deep learning and federated 
learning. Table 2 presents the formulated research questions regarding 
the critical objectives. 

5.2. Searching Strategy 

A well-organized research study is required to efficiently extricate 
pertinent information while excluding irrelevant studies via a meticu-
lously crafted search strategy. Only articles that presented novel tech-
niques for segmenting brain tumors using deep learning were considered 

Fig. 4. Primary steps for systematic literature review.  
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for inclusion in this systematic review. From January 1, 2016, through 
December 30, 2022, we combed the digital archives of Elsevier, ACM, 
IEEE, Springer, MDPI, Wiley, and MICCAI for papers that fit our criteria. 
Table 3 presents the search strings that were employed for the re-
positories, encompassing primary, secondary, and supplementary 
keywords. 

5.3. Study screening criteria 

This article highlights a subset of the research literature in keeping 
with the study’s aims while ignoring the large body of literature that 
does not contribute to those aims. To filter relevant publications, Naeem 
et al (Naeem et al., 2020). ’s search strategy was utilized. This technique 
required the use of precise search terms in order to locate articles that 
met a set of criteria. Based on precise screening criteria, articles that did 
not match the requirements were eliminated. Through screening, only 
the most relevant publications were selected for inclusion in the study. 
Using credible and pertinent sources, the study’s quality was validated. 
We did not include some study articles because they did not meet the 
following rules:  

• Research papers that do not use or look at datasets that are available 
to the public for brain tumor segmentation  

• Research studies without performance measures like dice score, 
jaccard score, specificity, and sensitivity.  

• Research papers that do not explain how deep learning or federated 
learning works.  

• Articles on segmentation that are unrelated to medical imaging or 
brain tumors.  

• Research papers that have not gone through peer review. 

5.4. Selection process 

This section describes how relevant publications were identified for 
this survey inquiry. The preceding section supplies the keyword string 
used to perform the search. After collecting many papers, a filtering 
process was conducted to ensure that only the most pertinent articles 
were extracted. The filtering procedure considered several parameters. 
In the initial stage, publications that matched the keywords were 
searched. In the second stage, only articles with acceptable names for 
segmenting brain tumors were selected. In cases where multiple titles 
were identified, the most recent article was selected based on the state of 
the art—the final step involved evaluating the development of the 
selected papers based on their abstracts and datasets. In the fourth step, 
a full-text-based analysis was conducted that provided insight into the 
advancement in this field. Attention was then concentrated on the ref-
erences and contributions to ensure that no essential research publica-
tion was missed. A careful review of the references resulted in the 
addition of three more publications, bringing the total number to 73, as 
seen in Fig. 5. 

5.5. Data analysis and results 

This section provides a concise summary of each study and a detailed 
analysis of its advantages and disadvantages. A summary of each study is 
also provided in a tabular format to provide a quick overview of the 
investigations and aid the reader in quickly comprehending the most 
essential aspects of each study. Examining the strengths and weaknesses 

Table 2 
The primary research questions and objectives that are analyzed in this review paper.  

RQ Statement of Research Question Objective 

1 Which techniques are now thought to be the most effective for 
segmenting brain tumor? 

The objective of this investigation is to analysis a technique by deep learning and federated learning 
methodologies. 

2 What are the performance matrices utilized to assess the effectiveness of 
different diagnostic methods for brain tumors? 

The aim of this investigation is to evaluate the efficacy of current state of the art approach. 

3 What are the standard datasets that have been used in recent academic 
efforts to find ways to spot tumors? 

This investigation’s goal is to identify the benchmark datasets, together with available non-public 
and public datasets. 

4 What is the impact on multi-modality information? The primary objective is to enrich existing datasets by incorporating multiple sensory modalities in 
order to facilitate a more comprehensive understanding of the data. 

5 What is the impact of privacy and performance on federated learning? The main goal is to deal with the effects of privacy issues and performance problems by allowing 
joint model training on decentralized data.  

Table 3 
The keywords were used to find out the more relevant paper.  

Digital 
Library 

Searching keywords 

IEEE Xplore ((“deep learning” OR “machine learning” OR “artificial intelligence” OR “federated learning”) AND (“glioblastoma,” OR “astrocytoma,” OR “brain cancer,” OR “brain 
tumor”) AND (“Segmentation” OR “Modality”)) 
Publication Year: 2016–2022 

Science 
Direct 

((“deep learning” OR “machine learning” OR “artificial intelligence” OR “federated learning”) AND (“glioblastoma,” OR “astrocytoma,” OR “brain cancer,” OR “brain 
tumor”) AND (“Segmentation” OR “Modality”)) 
Publication Year: 2016–2022 

Nature ((“deep learning” OR “machine learning” OR “artificial intelligence” OR “federated learning”) AND (“glioblastoma,” OR “astrocytoma,” OR “brain cancer,” OR “brain 
tumor”) AND (“Segmentation” OR “Modality”)) 
Publication Year: 2016–2022 

MDPI ((“deep learning” OR “machine learning” OR “artificial intelligence” OR “federated learning”) AND (“glioblastoma,” OR “astrocytoma,” OR “brain cancer,” OR “brain 
tumor”) AND (“Segmentation” OR “Modality”)) 
Publication Year: 2016–2022 

Springer ((“deep learning” OR “machine learning” OR “artificial intelligence” OR “federated learning”) AND (“glioblastoma,” OR “astrocytoma,” OR “brain cancer,” OR “brain 
tumor”) AND (“Segmentation” OR “Modality”)) 
Publication Year: 2016–2022 

ACM ((“deep learning” OR “machine learning” OR “artificial intelligence” OR “federated learning”) AND (“glioblastoma,” OR “astrocytoma,” OR “brain cancer,” OR “brain 
tumor”) AND (“Segmentation” OR “Modality”)) 
Publication Year: 2016–2022 

Wiley ((“deep learning” OR “machine learning” OR “artificial intelligence” OR “federated learning”) AND (“glioblastoma,” OR “astrocytoma,” OR “brain cancer,” OR “brain 
tumor”) AND (“Segmentation” OR “Modality”)) 
Publication Year: 2016–2022  
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of each study provides a deeper understanding of the research discipline. 
Tables 4 to 11 provide a comprehensive overview of the research, 
including its objectives, methods, and results, enabling readers to 
compare and evaluate it with other studies. This review analysis selected 
73 publications from diverse sources, including journals and confer-
ences. Using bar graphs, Fig. 6a illustrates the various repositories 
(IEEE, ACM, Springer, Wiley, Science Direct, etc.) from which the 
collected papers originated. Fig. 6b depicts the distribution of articles 
from various archives. These diagrams provide a graphical representa-
tion of the data that assists in understanding the distribution of the 
paper’s sources. 

6. Evaluation of research questions 

The findings of the research questions set in Section 5.1. are analyzed 
here. 

6.1. Most effective technique for classifying brain tumor 

The main goal of image segmentation is to divide a picture into 
coherent parts based on criteria already set. The primary objective of 
brain tumor segmentation is to differentiate between the various types of 
tumor tissue, such as edema, necrosis, active tumors, and normal brain 
tissue. This study looked at individual questions by combining informa-
tion from different studies. The goal was to discover how deep learning 
and federated learning are used to identify tumors. Convolutional neural 
networks (CNNs), the U-Net, and the Mask R-CNN are some of the most 
robust deep-learning methods for segmenting brain tumors (Milletari 

et al., 2016). For optimal analysis, the papers were separated into four 
categories: pre-trained architecture, cascaded architecture, ensemble 
techniques, and federated learning. In addition, medical imaging research 
initially utilized conventional machine learning techniques, such as 
threshold leveling for local global regions, supervised segmentation 
methods, or pixel-to-pixel based techniques, such as artificial neural 
networks, K nearest neighbor techniques, random forests, support vector 
machines, super pixel-based segmentation, etc. Unsupervised techniques 
are also widely used, with clustering-based, density-based, K-means, and 
FCM clustering being the most common traditional approaches. For 
improved outcomes, hybrid techniques such as multi-modal fusion, deep 
learning with traditional algorithms, multi-scale and multi-resolution 
methods, and ensembling processes are utilized. Recently, deep learning 
models have generated significant results and enhanced performance. 
These deep learning methods consist of CNN, FCN, and U-Net, as well as 
top-down and bottom-up approaches. Significant research initiatives that 
employ innovative techniques are discussed below. 

6.1.1. Pre-trained architecture 
Nodirov et al (Nodirov et al., 2022). used 3D medical imaging data to 

develop more precise brain tumor segmentation models than 2D. They 
focused on prevalent 3D segmentation models such as 3D U-Net and 
V-Net. They employed 3D imaging data and devised a novel framework 
utilizing a 3D U-Net model that integrates cost-effective pre-trained 3D 
MobileNetV2 blocks and attention modules. The utilization of skip 
connections and attention modules facilitated the preservation of 
feasible model size and enhanced precision by optimizing feature 
extraction and eliminating extraneous features. 

Fig. 5. The number of identifications, screening, eligibility, and selection processes are presented here.  
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Wang et al (Wang et al., 2019a). employed deep convolutional 
neural networks (CNNs) and used data augmentation at both training 
and test time to get satisfactory results. The purpose of this research was 
to examine how various network architectures and image augmenta-
tions, such as 3D rotation, flipping, scaling, and adding random noise, 
might improve the accuracy of CNNs during test-time augmentation. 
Experiments performed on the BraTS 2018 training and validation set 
show that test-time enhancement improves segmentation accuracy and 
uncertainty estimates. 

Dong et al (Dong et al., 2017). created an autonomous approach for 
segmenting brain tumors via deep convolutional networks that were 
based on the U-Net. They discovered that their technique delivered 
correct segmentation efficiently. They tested it on the BRATS 2015 
dataset, which contains both high-grade and low-grade tumors. 

Laukamp et al (Laukamp et al., 2019). aimed to evaluate the efficacy 
of a multipara metric deep-learning model (DLM) for the automated 
detection and segmentation of meningiomas in routine MRI data from 
various sources. The results of the study indicated that the DLM 
exhibited high levels of accuracy, thereby suggesting its potential utility 
in facilitating therapy planning and monitoring of meningiomas. 

Gumaei et al (Gumaei et al., 2019). proposed a novel approach for 
classifying brain tumors by combining an integrated feature collection 
technique with a regularized extreme learning machine (RELM). They 
employed the hybrid model to extract tumor features from the pre-
processed brain pictures, followed by RELM to classify the tumors. On a 
public dataset of brain scans, their suggested method was tried, and it 
was discovered to be more successful than current state-of-the-art ap-
proaches, with increased classification accuracy. 

Kotowski et al (Kotowski et al., 2020). employed a cascaded U-Net 
framework to identify and segment brain tumors, specifically low- and 
high-grade gliomas, from magnetic resonance imaging scans. Initial 
experiments conducted on the BraTS’19 validation dataset indicate that 
this methodology produces precise tumor demarcation and prompt 
segmentation. In Table 4 showed the contribution and the major limi-
tation of pretrained architecture. 

6.1.2. Cascaded Methods 
In order to enhance the segmentation of MRI brain pictures, Ara-

nguren et al (Aranguren et al., 2021). suggested a new method known as 
the LSHADE optimization algorithm. As a result of the significant 
unpredictability and complexity of brain pictures, the proposed method 
aimed to increase the segmentation accuracy of existing approaches. 
They used intensity normalization and skull stripping on the brain im-
ages as the first processing steps toward this end. The brain scans were 
then segmented into several tissue types using a fuzzy C-means 

clustering technique. These tissue types include gray matter, white 
matter, and cerebrospinal fluid. They used Web (synthetic 
T1-weighted), IBSR18 (18 T1-weighted), and LPBA40 (40 T1-weighted) 
datasets. 

In order to maximize the multi-level thresholding procedure, Tar-
khaneh et al (Tarkhaneh and Shen, 2019). devised a novel method for 
segmenting MRI brain images. This method uses an ADE, or adaptive 
differential evolution algorithm. The authors tested their method using 
multiple open-source benchmark datasets and compared the results to 
existing state-of-the-art approaches. The outcomes demonstrated that 
their method obtained greater segmentation precision and robustness 
than thresholding-based methods. The authors also proposed an adap-
tive mechanism to enhance the performance of the ADE algorithm by 
adjusting the mutation and crossover rates based on population diversity 
and convergence status. Medical diagnosis and treatment planning may 
benefit from the proposed method. 

Ozyurt et al (Özyurt et al., 2020). came up with a way to find brain 
tumors that uses fuzzy C-means (FCM) clustering with super-resolution 
(SR) and a convolutional neural network (CNN) with an extreme 
learning machine (ELM). The first stage of the proposed system seg-
ments the MRI images and enhances their resolution using FCM clus-
tering and SR. The segmented regions are then classified as tumors or 
non-tumors using a CNN with ELM in the second step. The authors 
tested their system on two open-source datasets and compared the re-
sults to those obtained using multiple state-of-the-art techniques. Their 
findings demonstrated that their proposed system was more accurate 
and efficient than competing approaches. 

Amin et al (Amin et al., 2019). proposed a method for improving 
lesion scaling with the Weiner filter and several wavelet bands, as well 
as a method for brain tumor segmentation that employs various statis-
tical methods. Comparisons between pixel-based and feature-based 
segmentation methods were performed. The pixel-based method 
involved identifying and comparing ground-truth annotations with ex-
amples of foreground and background pixels, as well as calculating error 
rate and quality. The local binary pattern (LBP) and Gabor wavelet 
transform (GWF) are extracted from each segmented image in the 
feature-based technique. The two texture traits were then combined to 
increase classification precision. 

A novel deep learning technique for brain tumor segmentation that 
combined multiple kernel support vector machines (M-SVM) and kernel- 
based convolutional neural networks (KCNN) has been suggested by 
Thillaikkarasi et al (Thillaikkarasi and Saravanan, 2019). The suggested 
procedure entailed multiple phases, including tumor segmentation, 
feature extraction, classification, and image preprocessing. The MRI 
picture was initially improved and smoothed using adaptive histogram 

Table 4 
The contribution, training algorithm, datasets and limitations of the most used segmentation methods for brain tumor MR images utilizing pre-trained method.  

Contribution Training 
Algorithm 

Datasets Limitations Ref. 

A power-efficient computing model that uses the 
MobileNetV2 backbone and attention modules to get 
the fastest and most accurate reasoning time. 

3D U-Net +
MobileNetV2 

BraTS 2020 The testing results had some quality problems, like missing parts of 
the label and lower quality because the MobileNetV2 backbone 
was used, which needs a lighter network structure. For future 
development, the authors plan to look into other power-efficient 
architectures. 

(Nodirov 
et al., 2022) 

Using test-time enhancement to improve automated 
segmentation from various classes of brain tumors 

DCNN BraTS 2018 They did not explain how model is designed and implemented and 
qualitative performance is not mentioned properly. 

(Wang et al., 
2019a) 

On the foundation of the U-Net design, an effective 2D 
convoluted network is created. 

U-Net +
Resnet50 

BraTS 2015 Only cross-validation has been used to test the segmentation 
approach, and numerous network parameters still need to be fine- 
tuned. 

(Dong et al., 
2017) 

Evaluated the deep learning model on various BraTS 
datasets. 

DLM BraTS 
benchmark 

Only known meningiomas are used in segmentation studies; 
unknown testing sets are not considered. 

(Laukamp 
et al., 2019) 

Reduce overfitting, speed up training, and optimize 
parameters with the RELM classifier and a grid search 
method. 

EL CE-MRI They did not perform any tumor regional extraction. (Gumaei 
et al., 2019) 

Designed a U-Net architecture with two sequentially 
connected network 

U-Net BraTS 2019 Model is not tested on multiple sources and mask prediction only 
showed for HGG samples. 

(Kotowski 
et al., 2020)  
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equalization with contrast limitation (CLAHE) and Laplacian Gaussian 
filtering, respectively. Then, depending on the tumor’s size, shape, 
epidermal attributes, and other parameters, feature extraction was 
carried out. The M-SVM was utilized for analyzing images based on the 
specified characteristics. 

Myronenko et al (Myronenko and Hatamizadeh, 2020). used BraTS 
2019 to investigate 3D semantic segmentation of brain tumors. They 
concentrated on optimizing automated approaches and investigated 
traditional encoder-decoder designs with incorporated loss functions to 
improve segmentation accuracy. 

Pathak et al (Pathak et al., 2019). proposed a deep learning-based 
method for the automatic detection and segmentation of brain tumors. 
A convolutional neural network (CNN) classified a brain MRI image to 
ascertain the presence of a tumor as the system’s input. If a tumor is 
detected, the proposed method segments and calculates its area using 
marker-based watershed segmentation and morphological operations. 
The experimental results indicate that the proposed method achieves a 
98% accuracy rate with minimal computational complexity. Table 5 
shows the contribution and the major limitation of cascaded methods. 

6.1.3. Ensemble Networks 
The goal of the machine learning technique known as ensemble 

classification is to improve the accuracy and resilience of the model by 
combining the predictions of several different classifiers into a single set. 
The core idea behind ensemble classification is to leverage the unique 
capabilities of several different models and use them in such a way that 
they exploit each other’s weaknesses. Table 6 shows the contribution 
and the major limitation of ensemble networks. 

Madhupriya et al (Madhupriya et al., 2019). presented a solution 
utilizing deep learning methodologies. The goal was to customize the 
treatment for both high and low-level tumor grades. Uncertainty in 
tumor characteristics, including size, shape, and contrast, presented a 
problem that required creative thinking to solve. The study employed 
convolutional neural networks (CNN) and probabilistic neural networks 
(PNN) architectures as a means of segmenting abnormal tissues within 
the brain. The CNN architecture proposed in this study utilized 3 × 3 
and 7 × 7 overlapped convolutional layers. 

Additionally, a cascaded architecture was devised to attain precise 
and efficient tumor segmentation. The PNN architecture was employed 
in tumor detection, and a comparative analysis was conducted between 
the outcomes of the CNN and PNN architectures. The researchers 
devised distinct convolutional neural network (CNN) and probabilistic 
neural network (PNN) structures to address local and global character-
istics. The Brats13 image dataset was utilized to assess the efficacy of the 
proposed solution. 

Vijh et al (Vijh et al., 2020). utilized adaptive particle swarm opti-
mization and the OTSU thresholding method to determine the optimal 
threshold value. Anisotropic diffusion filtering is applied to the brain 
MRI images to improve image quality and remove noise. 101 MR pic-
tures were used to test the suggested approach, which was confirmed to 
be trustworthy. The extracted features are used to train a convolutional 
neural network (CNN) for feature extraction. According to the results, 
ensemble classifiers performed better on large datasets since additional 
data increased the precision of the model. 

For reliable segmentation of brain tumors, Kamnitsas et al (Kam-
nitsas et al., 2018). investigated the use of Ensembles of Multiple Models 

Table 5 
The contribution, training procedure, datasets and limitations of the most used segmentation methods for brain tumor MR images utilizing cascaded methods.  

Contribution Training Algorithm Datasets Limitations Ref. 

Searching for the optimal values of the 
clustering parameters, which included the 
number of clusters and the fuzzifier 
parameter. 

Local Search 
Differential 
Evolution (LSDE) 

BrainWeb, 
IBSR18, 
LPBA40 

These characteristics include a lack of generality, 
interpretability, computational intensity, and reliance on 
preprocessing processes. The method might not be 
appropriate for real-time or high-throughput processing and 
might suffer from artifacts or poor image quality. 

(Aranguren et al., 
2021) 

The proposed method can successfully partition 
brain tissues in MRI images and could be used 
in medical diagnosis and therapy planning. 

ADE + multi-level 
thresholding 

ABIDE ADE algorithm may not always converge to optimal solution, 
leading to overfitting or underfitting in some cases. 

(Tarkhaneh and 
Shen, 2019) 

help to detect and diagnose brain cancers early, 
improving patient outcomes. 

FCM+SR 
CNN+EL 

BraTS 2015 It takes a lot of computing power and time to process, which 
may make it hard to use in real-time clinical situations. 

(Özyurt et al., 2020) 

Applying triangular fuzzy median filters helped 
achieve accurate segmentation, while the 
ELM algorithm was utilized to classify the 
data. 

Fuzzy + ELM BraTS 2012, 
2013, 2014, 
2015 

Manual feature selection is required, which can be time- 
consuming and may reduce the method’s repeatability. 

(Amin et al., 2019) 

To improve efficiency, a method is provided 
that integrates CNN, M SVM, and Kernel. 

CNN + SVM Local 40 MRI 
data 

lack of explanation regarding the feature extraction process, 
and the model is not tested on benchmark datasets. 

(Thillaikkarasi and 
Saravanan, 2019) 

Semantic segmentation on 3D brain tumor 
input by following encoder and decoder 
approach. 

3D CNN with 
encode decoder 

BraTS 2019 Computational complexity is not discussed. (Myronenko and 
Hatamizadeh, 2020) 

CNN is used for classification, and the 
watershed method is used for segmentation. 

CNN + watershed Private dataset Benchmark datasets that are open to the public are not used 
to evaluate the performance of the model, and multiclass 
results are not determined. 

(Pathak et al., 2019)  

Table 6 
The contribution, training procedure, datasets, and limitations of the most used segmentation methods for brain tumor MR images utilizing ensemble techniques.  

Contribution Training 
Algorithm 

Datasets Limitations Ref. 

The tumor areas are effectively detected by the CNN and 
PNN models. 

CNN + PNN BraTS 2013 Model ensembles are not evaluated for multiclass 
segmentation. 

(Madhupriya 
et al., 2019) 

CNN with a diffusion filter removes noise, and OTSU finds 
out the appropriate threshold value for adaptive swarm 
optimization. 

CNN + OTSU IBSR + MS 
dataset 

The suggested strategy was not thoroughly compared in the 
research with the most recent techniques for segmenting 
brain tumors. 

(Vijh et al., 2020) 

EMMA improves the multiclass segmentation results both 
quantity and qualitatively. 

EMMA BraTS 2017 The paper lacks clinical validation and does not provide 
insight into how the proposed technique performs in real 
clinical situations 

(Kamnitsas et al., 
2018)  
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and Architectures (EMMA). They explained how convolutional neural 
networks (CNNs) have repeatedly outperformed older techniques on 
complex tasks like dense semantic segmentation. However, the various 
proposed networks all operate differently, and architectural choices and 
training environments have a significant impact on their behavior. This 
research suggests utilizing EMMA to combine predictions from 
numerous approaches to solve this problem. The method lessens the risk 
of overfitting the configuration to a specific database and the impact of 
the meta-parameters of individual models. 

6.1.4. Federated Learning Strategy 
Federated learning (FL) revolutionizes healthcare by distributing the 

process of machine learning, enabling joint model development without 
the need to exchange raw data. Medical centers enhance models using 
their MRI scans and contribute only the learned information to a shared, 
more robust model. This approach promotes unbiased medical decisions 
and a better understanding of infrequent diseases through a broader 
spectrum of data. Globally, it promises consistent and superior clinical 
judgments, beneficial for isolated regions and uncommon illnesses. 
Initiatives like Health Chain and the Federated Tumor Segmentation are 
already harnessing FL for more accurate medical predictions and 
enhanced tumor identification (KhoKhar et al., 2022). 

Despite the challenges of data privacy and scarcity in medicine, Yi et 
al (Yi et al., 2020). could segregate brain tumors using a federated 
learning model. The proposed SU-Net model integrated multi-scale 
receptive fields and information reuse using an inception module and 
dense blocks. Results show that SU-Net outperformed both the con-
ventional U-Net and the cutting-edge semantic segmentation model 
DeepLabv3 + regarding AUC and DSC. The tests were conducted using 
the "Brain MRI Segmentation" dataset from the LGG segmentation at 
Kaggle. Even compared to baselines in the scenario of federated 
learning, SU-Net performed better. 

Without exchanging patient data, Sheller et al (Sheller et al., 2019). 
suggested a method of cooperative deep learning for medical imaging. 
The authors addressed the ethical, technical, and legal issues sur-
rounding the centralization of medical data sharing by using a federated 
learning strategy for multi-institutional collaboration. They found that 
federated learning performed better than two other collaborative 
learning methods when compared to their own. The performance of 
federated semantic segmentation models was comparable to that of 
models trained via sharing data, which assessed the performance of the 
proposed method on multimodal brain scans. This work showed that 
deep learning modeling is feasible for medical image segmentation 
without revealing patient data, which is helpful for cross-institutional 
research collaboration. 

Li et al (Li et al., 2019a). directed their attention toward the issue of 
safeguarding privacy during the training of deep convolutional networks 
to segment cancerous tumors. The authors suggested using federated 
learning, in which the model training time intermediate model param-
eters were shared. However, sharing a model that was learned from 
patient data could indirectly reveal the local examples that were used to 

train it. To solve this problem, the authors looked into whether or not 
differential privacy methods can protect patient data in a federated 
learning setup. They developed and assessed workable federated 
learning systems for segmenting brain tumors using the BraTS dataset, 
and they demonstrated a trade-off between model effectiveness and 
privacy protection expenses. 

To speed up and improve the quality of MRI image reconstruction, 
Guo et al (Guo et al., 2021). proposed a deep learning-based approach. 
The suggested method used federated learning to take advantage of MR 
data available at different institutes while protecting patients’ privacy. 
This is not very easy because of the enormous amounts of data involved. 
However, models trained with this method may only be able to be used 
in other places if the data was collected at different institutions using 
different acquisition methods. The authors developed cross-site 
modeling for MR image reconstruction to solve this problem. This 
technique aligned latent features at the intermediate level learned from 
several source sites with the distribution of latent features at the tar-
geted site. The authors did many experiments to learn more about the 
federated learning approach to MR image reconstruction. Table 7 shows 
the contribution and the major limitation of the federated learning 
strategy. 

6.2. Performance metrics used for assessing brain tumor identification 

6.2.1. Multi-Class Tumor segmentation 
There are many ways to figure out how well tumor segmentation 

occurs using different performance metrics. For instance, the researchers 
prioritized the dice coefficient score (Nazar et al., 2020). Some of the 
experts also figured out the Hausdorff scores (Bahadure et al., 2018). 
These are the primary evaluation criteria to figure out how well or 
accurately the model gets the tumor lesion. In tumor segmentation, it is 
usual to divide brain tumors into different regions. The WT, TC, and ET 
classes are often used. The above groups describe different sub-regions 
of the tumor that have different characteristics and are clinically 
important. 

Whole Tumor (WT): The term "WT" refers to a kind of tumor that 
includes the tumor core and any edema around it. It provides a complete 
picture of the tumor’s extent by including active tumor cells and cells 
infiltrating neighboring tissues. 

Tumor Core (TC): The "TC" class denotes the center and most 
aggressive region of the tumor. It frequently contains the enhancing 
region, which corresponds to regions of aggressive tumor growth and 
increased vascularity. This classification is crucial for locating the 
cancerous cells most aggressive and resistant to treatment. 

Enhancing Tumor (ET): The term "ET" refers specifically to a tumor’s 
internal region that appears enhanced on contrast-enhanced magnetic 
resonance imaging (MRI). This area, which often represents the tumor’s 
most rapidly reproducing portion, is crucial for therapy planning and 
monitoring. 

In order to better characterize and understand the tumor, it must be 
segmented into three distinct classes. Treatment planning, evaluating 

Table 7 
The contribution, training procedure, datasets, and limitations of the most used segmentation methods for brain tumor MR images utilizing federated learning strategy.  

Contribution Training 
Algorithm 

Datasets Limitations Ref. 

With federated learning models, the SU-Net provides a fast 
and private way to do segmentation tasks. 

Su-Net 
+ FedAvg 

TCGA-GBM 
Dataset 

Model evaluation at testing set and multiclass segmentation was 
not performed. 

(Yi et al., 
2020) 

This study demonstrates a deep learning model’s capacity to 
achieve good performance in federated semantic 
segmentation while protecting patient data privacy. 

DL + FL Multiple 
organization 

They didn’t look into how changing the number of institutions 
that took part affected how well the model worked, and it’s not 
clear if the proposed method would work as well for other kinds of 
medical imaging employment. 

(Sheller 
et al., 
2019) 

Analyzing the privacy of patient’s data using deep learning 
by combining federated approach 

DL + FL BraTS 2018 One problem with this study is that the methods used to protect 
privacy could make the model less accurate. 

(Li et al., 
2019a) 

Proposed framework is a promising way to use data from 
multiple institutions to improve MR image reconstruction 
without putting patients’ privacy at risk. 

DL+ FL Multiple 
Dataset 

Access to the target site’s data is required for the suggested cross- 
site modeling approach, which may not always be possible. 

(Guo et al., 
2021)  

Md.F. Ahamed et al.                                                                                                                                                                                                                           



ComputerizedMedicalImagingandGraphics110(2023)102313

12

Table 8 
Comparison of recent deep learning methods for brain tumor segmentation on various BraTS datasets, MRI modalities, dimensions, model architectures, evaluation metrics including loss function, dice coefficient (DSC), 
Hausdorff distance, mean sensitivity, mean specificity, and segmentation targets ("ET – Enhancing tumor; WT – Whole tumor; TC – Tumor core; and ‘-’ Not available").  

Papers Dataset Dim Type Method Loss Dice Scores Hausdorff Scores Mean 
Sensitivity 

Mean 
Specificity 

ET TC WT ET TC WT 

Cascaded Methods 
Sun et al. (2021) (Sun et al., 2021) BraTS 

2019 
3D V 3D FCN CCE 0.76 0.78 0.89 - - - 0.80 0.99 

BraTS 
2018 

3D V 3D FCN CCE 0.77 0.79 0.90 - - - 0.81 0.99 

Havaei et al. (2017) (Havaei et al., 2017) BraTS 
2013 

2D V Cascaded CNN SGD 0.73 0.79 0.88 - - - 0.82 0.79 

Hussain et al. (2017) (Hussain et al., 2017) BraTS 
2013 

2D V Combined DCNN Softmax 0.85 0.67 0.80 - - - 0.76 0.85 

Ranjbarzadeh et al. (2021) (Ranjbarzadeh et al., 
2021) 

BraTS 
2018 

3D V Cascaded CNN and FCN CE 0.91 0.87 0.92 - - - 0.94 - 

Wang et al. (2021) (Wang et al., 2021) BraTS 
2018 

3D V DFP-ResUNet CCE 0.84 0.91 0.89 2.19 6.37 5.23 0.89 0.99 

BraTS 
2019 

0.79 0.85 0.90 3.39 5.98 5.18 0.86 0.99 

Jiang et al. (2020) (Jiang et al., 2020) BraTS 
2019 

3D V Cascaded 
U-Net 

Dice 0.80 0.86 0.90 3.14 5.43 4.26 - - 

Chen et al. (2019) (Chen et al., 2019a) BraTS 
2018 

3D V DMF-Net Dice 0.80 0.84 0.90 3.06 6.44 4.66 - - 

Yang et al. (2020) (Yang et al., 2020) BraTS 
2020 

3D V DCU-Net CE 0.83 0.78 0.91 - - - 0.85 0.99 

Wang et al. (2019) (Wang et al., 2019b) BraTS 
2018 

3D V ND-Net Dice 0.72 0.59 0.70 - - - - - 

Zhang et al. (2021) (Zhang et al., 2021a) BraTS 
2020 

3D V ME-Net CD 0.70 0.74 0.88 38.6 30.18 6.95 0.79 0.99 

Guan et al. (2022) (Guan et al., 2022) BraTS 
2020 

3D V AGSE-VNet CD 0.68 0.69 0.85 47.40 31.60 8.44 0.72 0.99 

Rehman et al. (2021) (Rehman et al., 2021) BraTS 
2017 

3D V Brain-SegNet Custom 0.75 0.79 0.90 - - - - - 

BraTS 
2018 

0.77 0.83 0.89 

BraTS 
2019 

0.71 0.78 0.87 

Rehman et al. (2020) (Rehman et al., 2020) BraTS 
2017 

3D V BU-Net Custom 0.74 0.78 0.89 - - - - - 

BraTS 
2018 

0.79 0.84 0.90 

Myronenko et al. (2020) (Myronenko and 
Hatamizadeh, 2020) 

BraTS 
2019 

3D V 3D CNN Dice 
+ Focal 

0.80 0.83 0.89 3.921 6.56 5.89 - - 

Cirilio et al. (2021) (Cirillo et al., 2020) BraTS 
2020 

3D V 3D GAN D+G 0.75 0.79 0.89 36 14.07 6.39 - - 

Jiang et al. (2022) (Jiang et al., 2022) BraTS 
2019 

3D T Swin-BTS Dice + CE 0.74±
0.00294 

0.79±
0.00234 

0.89±
0.0007 

0.66±
0.00296 

0.70±
0.00216 

0.83±
0.00104 

- - 

BraTS 
2020 

V 0.77±
0.0024 

0.80±
0.0079 

0.89±
0.0013 

0.26 0.15 0.86 

BraTS 
2021 

V 0.83±
0.0022 

0.84±
0.00227 

0.91±
0.078 

0.16 0.14 0.03 

Ensemble Methods 
Kamnitsas et al. (2018) (Kamnitsas et al., 2018) BraTS 

2017 
3D T EMMA 

(Unet + FCN) 
CE 0.73 0.79 0.90 4.5 6.56 4.23 0.81 - 

(continued on next page) 
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Table 8 (continued ) 

Papers Dataset Dim Type Method Loss Dice Scores Hausdorff Scores Mean 
Sensitivity 

Mean 
Specificity 

ET TC WT ET TC WT 

McKinley et al. (2019) (McKinley et al., 2020) BraTS 
2019 

3D V Triplanar CNN BCE 0.77 0.83 0.91 3.92 6.27 4.52 - - 

McKinley et al. (2019) (McKinley et al., 2019) BraTS 
2018 

3D V D-CNN Custom 0.79 0.85 0.90 3.55 4.93 4.17 - - 

Feng et al. (2020) (Feng et al., 2020) BraTS 
2018 

3D V 3D UNet Uniformed 0.79 0.83 0.91 3.97 6.52 3.72 - - 

Ali et al. 
(2020) (Ali et al., 2020) 

BraTS 
2019 

3D V 3D CNN + UNet GDL +
Focal 

0.75 0.85 0.90 - - - - - 

Rosas-Gonzalez et al. (2021) (Rosas-Gonzalez 
et al., 2021) 

BraTS 
2019 

3D V AE AU-Net Dice 0.68 
± 0.0032 

0.77 ±

0.0008 
0.88 
±

0.0008 

6.74 
± 13.19 

9.49 
± 14.66 

9.08 
± 15.16 

- - 

Zhang et al. (2021) (Zhang et al., 2021b) BraTS 
2020 

3D CV 3D+ 2D MI-Unet - 0.82 0.88 0.92 22.94 4.55 4.67 - - 

Krieg et al. (2023) (Guan et al., 2023) BraTS 
2020 

3D V MVKS-Net 
(lightweight) 

GDL 0.78 0.83 0.89 24.58 10.04 7.62 - - 

MVKS-Net (Non- 
lightweight) 

0.78 0.83 0.90 24.58 10.04 7.62 

BraTS 
2018 

MVKS-Net 0.80 0.83 0.90 2.31 7.63 3.95 

Pre-trained Methods 
Lefkovits et al. (2022) (Lefkovits et al., 2022) BraTS 

2020 
3D V FCN-ResNet50 Jaccard 

+ Tversky 
+ Dice 

0.80 0.84 0.91 - - - - - 
FCN-ResNet101 0.79 0.85 0.90 
PSP-ResNet50 0.78 0.84 0.90 
PSP-ResNet101 0.76 0.84 0.89 
DeepL-ResNet50 0.80 0.83 0.89 
DeepL-ResNet101 0.79 0.85 0.90 

Ali et al. (2022) (Ali et al., 2022a) BraTS 
2020 

3D V Unet + VGG19 - 0.83 0.86 0.90 - - - - -  

M
d.F. A

ham
ed et al.                                                                                                                                                                                                                           



Computerized Medical Imaging and Graphics 110 (2023) 102313

14

the therapeutic response, and predicting patient results can all benefit 
from this tumor dissection. Brain tumors can be studied in greater detail 
as well as treated more specifically for individual patients if they are 
divided into discrete groups, as is now achievable with the use of 
genomic sequencing (Westphal and Lamszus, 2011). 

6.2.2. Evaluation metrics 
The dice coefficient is widely used to assess the similarity between 

expected and ground truth segmentations. It is defined as follows (Ber-
tels et al., 2019): 

Dice (X, Y) =
2|X ∩ Y|
|X| + |Y|

Here, x and y are the sets of segmented voxels in the expected and 
ground truth segmentations, respectively. X ∩ Y stands for the point 
where, x and y meet. The dice coefficient goes from 0 to 1, and a value of 
1 means that the predicted segmentation and the ground truth seg-
mentation match perfectly. 

Hausdorff distance is a metric for determining the similarity of two 
sets of points. It is frequently used to assess segmentation accuracy by 
evaluating the maximum gap between predicted and ground truth seg-
mentations. This is how the Hausdorff distance is defined (Karimi and 
Salcudean, 2020): 

dH(X, Y) = max
{

sup
xϵX

inf
yϵY d(X, Y), sup

yϵY
inf
yϵX d(X,Y)

}

Here, x and y stand for the sets of voxels for predicted and ground 
truth segmentations, respectively. The segmentation’s points x and y are 
represented by the function d(x, y) and the terms sup and inf stand for the 

supremum and infimum functions, respectively. The maximum opera-
tion’s first term determines the most significant separation between 
each point in x and its closest point in y while the second term de-
termines the largest separation between each point in sup and its closest 
point in x. A smaller Hausdorff distance between x and y denotes a more 
precise segmentation, and it ranges from 0 to infinity. 

Sensitivity: Sensitivity measures the proportion of true positives that 
are correctly identified, and is given by (Ilhan and Ilhan, 2017): 

Sensitivity =
True Positives

True Positives + False Negatives 

Here, true positives are the number of tumor voxels correctly iden-
tified as such, and false negatives are the number of tumor voxels that 
were incorrectly classified as non-tumor voxels. A higher sensitivity 
indicates a better ability to detect tumor voxels. 

Specificity: Specificity measures the proportion of true negatives that 
are correctly identified, and is given by (Ilhan and Ilhan, 2017): 

Specificity =
True Negatives

True Negatives + False Positives 

Here, true negatives are the number of non-tumor voxels correctly 
identified as such, and false positives are the number of non-tumor 
voxels that were incorrectly classified as tumor voxels. A higher speci-
ficity indicates a better ability to distinguish between tumor and non- 
tumor voxels. 

6.2.3. Performance Evaluation of cascaded methods 
Sun et al (Sun et al., 2021). suggested a method for extracting distinct 

receptive fields of features using a multi-pathway design and 3D dilated 

Table 9 
Open-source projects focused on the segmentation of brain tumors using deep-learning methodologies have been made available. In the present context, the term ’3rd 
Party’ pertains to the code that is being re-implemented by an external entity by following the guidelines specified in the corresponding research paper (accessed on 
27/10/2023).  

Reference Year Project Link 

(Sun et al., 2021)  2020 https://github.com/JalexDooo/BrainstormTS 
(Havaei et al., 2017)  2017 https://github.com/naldeborgh7575/brain_segmentation (3rd Party) 
(Wang et al., 2021)  2021 https://github.com/Gaojun211/DFP-ResUnet (3rd party) 
(Chen et al., 2019a)  2019 https://github.com/China-LiuXiaopeng/BraTS-DMFNet 
(Yang et al., 2020)  2020 https://github.com/pheepa/DCUnet (3rd party) 
(Rehman et al., 2020)  2020 https://github.com/nilsec/BUNet (3rd party) 
(Rehman et al., 2021)  2021 https://github.com/perronea/BrainSegNet3D (3rd party) 
(Cirillo et al., 2020)  2020 https://github.com/mdciri/Vox2Vox 
(Jiang et al., 2022)  2022 https://github.com/langwangdezhexue/Swin_BTS 
(McKinley et al., 2020)  2020 https://github.com/neuronflow/BraTS-Toolkit/blob/master/README.md 
(Feng et al., 2020)  2020 https://github.com/xf4j/brats18 
(Ali et al., 2022a)  2022 https://github.com/alinawazT/Brain-Tumor-Segmentation 
(Hatamizadeh et al., 2021)  2021 https://github.com/Project-MONAI/research-contributions/tree/main/SwinUNETR/BRATS21 
(Roy et al., 2023)  2023 https://github.com/MIC-DKFZ/MedNeXt 
(Pinetz et al., 2023)  2023 https://github.com/tpinetz/low-dose-gadolinium-mri-synthesis 
(Luu and Park, 2022)  2022 https://github.com/rixez/Brats21_KAIST_MRI_Lab 
(Kamnitsas et al., 2016)  2016 https://github.com/deepmedic/deepmedic 
(Andermatt et al., 2016)  2016 https://github.com/zubata88/mdgru 
(Castillo et al., 2017)  2017 https://github.com/BCV-Uniandes/BCVbrats 
(Isensee et al., 2018)  2017 https://github.com/pykao/Modified-3D-UNet-Pytorch (3rd party) 
(Pawar et al., 2018)  2017 https://github.com/kamleshpawar17/BratsNet-2017 
(Wang et al., 2018)  2018 https://github.com/taigw/brats18_docker 
(Isensee et al., 2019)  2019 https://github.com/MIC-DKFZ/nnUNet 
(Myronenko, 2019)  2019 https://github.com/IAmSuyogJadhav/3d-mri-brain-tumor-segmentation-using-autoencoder-regularization (3rd party) 
(Nuechterlein and Mehta, 2019)  2019 https://github.com/sacmehta/3D-ESPNet 
(Zhou et al., 2020a)  2020 https://github.com/chenhong-zhou/OM-Net 
(Li et al., 2020)  2020 https://github.com/JohnleeHIT/Brats2019 
(Pawar et al., 2020)  2020 https://github.com/kamleshpawar17/Brats19 
(Lachinov et al., 2020)  2020 https://github.com/lachinov/brats2019 
(Iwasawa et al., 2021)  2021 https://github.com/pfnet-research/label-efficient-brain-tumor-segmentation 
(Sundaresan et al., 2021)  2021 https://git.fmrib.ox.ac.uk/vaanathi/truenet_tumseg 
(Chen et al., 2019a)  2019 https://github.com/China-LiuXiaopeng/BraTS-DMFNet 
(Wang, C. Chen et al., 2021)  2021 https://github.com/Rubics-Xuan/TransBTS 
(Lyu and Shu, 2021)  2021 https://github.com/shu-hai/two-stage-VAE-Attention-gate-BraTS2020 
(Luo et al., 2021)  2020 https://github.com/luozhengrong/HDC-Net  
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convolution. On the BraTS 2018 and 2019 datasets, the model achieved 
high dice similarity coefficient metrics for the entire, core, and 
enhancing tumor regions. They found a higher score in the wt class and 
used categorical cross-entropy as a loss function. The proposed approach 
by Havaei et al (Havaei et al., 2017). uses a flexible, high-capacity DNN 
while remaining exceedingly efficient. The research covered many 
model options required for competitive performance, including a unique 
CNN architecture that uses both local and global contextual variables at 
the same time. The primary significance was that this model was perfect 
for real-time analysis. But the score in the ET class was not so high. To 
overcome that issue, Hussain et al (Hussain et al., 2017). proposed a 
combined CNN model. This model is developed by combining many 
convolutional layers. They trained similarly to the previously used 
BraTS 2013 dataset. They improved the result for ET class, but the other 
classes’ performances were degraded. Ranjbarzadeh et al (Ranjbarzadeh 
et al., 2021). proposed a major technique that was lightweight and 
generated superior outcomes. They integrated the CNN and FCN layers. 
They presented C-ConvNet/C-CNN for each layer’s detailed learning, 

where the Distance-Wise Attention (DWA) technique was implemented. 
The outcomes for both ET and WT classes were above 90%. This 
cascaded CNN concept was developed by Wang et al (Wang et al., 2021). 
where dilated convolution technique extracted better features. The au-
thors suggested using a spatial DFP component that consists of numerous 
parallel dilated convolution layers to extract multiscale characteristics 
of images. However, these methods were found to be challenging 
regarding feature extraction. Zhang et al (Zhang et al., 2021a). intro-
duced a model that simplifies feature extraction and significantly en-
hances model performance. The study’s authors also proposed a novel 
loss function called "Categorical Dice" and implemented a strategy of 
assigning varying weights to distinct segmented regions concurrently. 
This approach effectively addressed the issue of voxel imbalance. The 
primary issue with cascaded CNNs is that they might need help to handle 
large images well. Since CNNs combine filters across the whole image, 
high-resolution images can take much memory. Jiang et al (Jiang et al., 
2020). devised a cascaded Unet design to solve this problem. Cascading 
U-Nets are better than cascading CNNs at processing big images because 

Table 10 
Comparison of recently accessible datasets for segmentation of brain tumors, including the dataset’s name, total samples, dimensions, classes, input modalities, type, 
file category, image shape, and location.  

Dataset 
name 

Samples Dim Classes Input 
modalities 

Image 
type 

File Type Image size Locations 

Figshare (brain tumor dataset, 2023; Deepak and 
Ameer, 2019; Talukder et al., 2023; Soumik and 
Hossain, 2020; Polat and Güngen, 2021) 

233 2D  3 T1 MRI mat - https://ndownloader. 
figshare.com/articles 
/1512427/versions/5 

TCGA-GBM (Clark et al., 2013; Rios Velazquez 
et al., 2015; Kim et al., 2013; Al Mamlook et al., 
2023) 

500 2D  3 T1, T2 MRI DICOM, 
NIFTI 

256 × 256 or 
512 × 512 

https://portal.gdc. 
cancer.gov/ 
projects/TCGA-GBM 

BraTS 2012 (BRATS - SICAS Medical Image 
Repository, 2023a; Menze et al., 2015; Havaei 
et al., 2017) 

40 3D  3 T1, T1 
contrast, T2, 
FLAIR 

MRI NIFTI 240 × 240 × 155 https://www.smir.ch/ 
BRATS/Start2012 

BraTs 2013 (BRATS - SICAS Medical Image 
Repository, 2023a; Menze et al., 2015; Pereira 
et al., 2016; Havaei et al., 2017; Hussain et al., 
2017) 

40 3D  3 T1, T1 
contrast, T2, 
FLAIR 

MRI NIFTI 240 × 240 × 155 https://www.smir.ch/ 
BRATS/Start2013 

BraTs 2014 (BRATS - SICAS Medical Image 
Repository, 2023b; Sharif et al., 2020; Amin 
et al., 2018) 

274 3D  3 T1, T1 
contrast, T2, 
FLAIR 

MRI NIFTI 240 × 240 × 155 https://www.smir.ch/ 
BRATS/Start2014 

BraTs 2015 (BRATS - SICAS Medical Image 
Repository, 2023c; Dong et al., 2017; Kamnitsas 
et al., 2016) 

484 3D  3 T1, T1 
contrast, T2, 
FLAIR 

MRI NIFTI 240 × 240 × 155 https://www.smir.ch/ 
BRATS/Start2015 

BraTs 2016 (BRATS - SICAS Medical Image 
Repository, 2023d; Kamnitsas et al., 2016; Li 
et al., 2019b) 

285 3D  3 T1, T1 
contrast, T2, 
FLAIR 

MRI NIFTI 240 × 240 × 155 https://www.smir.ch/ 
BRATS/Start2016 

BraTs 2017 (MICCAI BraTS, 2017; Rehman et al., 
2021, 2020; Kamnitsas et al., 2018) 

285 3D  3 T1, T1 
contrast, T2, 
FLAIR 

MRI NIFTI 240 × 240 × 155 https://www.med.upenn. 
edu/sbia/brats2017 /data. 
html 

BraTs 2018 (Zhao et al., 2018; Sun et al., 2021; 
Ranjbarzadeh et al., 2021; Wang et al., 2021; 
Chen et al., 2019a; Wang et al., 2019b; Rehman 
et al., 2021, 2020; McKinley et al., 2019; Guan 
et al., 2023) 

285 3D  3 T1, T1 
contrast, T2, 
FLAIR 

MRI NIFTI 240 × 240 × 155 https://www.med.upenn. 
edu/sbia/brats2018 /data. 
html 

BraTs 2019 (Multimodal Brain Tumor 
Segmentation Challenge, 2019; Sun et al., 2021; 
Wang et al., 2021; Jiang et al., 2020; Rehman 
et al., 2021; Myronenko and Hatamizadeh, 2020; 
Jiang et al., 2022; McKinley et al., 2020; Ali 
et al., 2020) 

460 3D  3 T1, T1 
contrast, T2, 
FLAIR 

MRI NIFTI 240 × 240 × 155 https://www.med.upenn. 
edu/cbica/brats-2019/ 

BraTs 2020 (Multimodal Brain Tumor 
Segmentation Challenge, 2020; Yang et al., 2020; 
Zhang et al., 2021a; Guan et al., 2022; Cirillo 
et al., 2020; Jiang et al., 2022; Zhang et al., 
2021b; Guan et al., 2023; Lefkovits et al., 2022; 
Ali et al., 2022a) 

693 3D  3 T1, T1 
contrast, T2, 
FLAIR 

MRI NIFTI 240 × 240 × 155 https://www.med.upenn. 
edu/cbica/brats2020 
/data.html 

BraTs 2021 (Baid et al., 2021; Jiang et al., 2022) 602 3D  3 T1, T1 
contrast, T2, 
FLAIR 

MRI NIFTI 240 × 240 × 155 http://braintumorsegm 
entation.org/ 

ISLES 2015 (ISLES, 2015; Amin et al., 2020; Maier 
et al., 2016) 

28 2D  3 T1, T2, 
DWI 

MRI DICOM 512 × 512 http://www.isles- 
challenge.org/ISLES2015/ 

ISLES 2016–2017 (ISLES, 2016; Hu et al., 2020) 43, 55 2D  3 FLAIR, T1, 
T1Gd, or T2 

MRI DICOM 512 × 512 http://www.isles- 
challenge.org/ISLES2016/  
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they work faster. U-Nets work on smaller pieces of an image to process 
big images with less memory use. Also, the skip links in U-Nets help to 
keep the image’s spatial information, which can help improve the results 
of segmentation. In multimodal BraTS 2020 analysis, it showed an 
outstanding performance. Chen et al (Chen et al., 2019a). presented a 
proficient architecture of a 3D convolutional neural network to segment 
brain tumors in MRI volumes. The architecture that has been suggested 
utilizes a 3D multi-fiber unit that incorporates lightweight 3D con-
volutional networks and 3D dilated convolutions to construct 
multi-scale feature representations. The experiment’s findings indicate 
that the suggested framework effectively minimizes computational ex-
penses while preserving a notable level of precision for segmenting brain 
tumors. The authors, Yang et al (Yang et al., 2020)., introduced a novel 
multiscale efficiency network, which they have named dilated convo-
lution U-Net, to enhance efficiency. The present model undertook pre-
processing of the input image at a foundational level. The effectiveness 
of skip connections in the training networks is improved by adding a 
dilated convolution residual block. This makes it easier for the network 
to identify tumor details correctly. The performance of the BraTS 2020 
dataset was assessed, revealing excellent results for the ET and WT 
classes. The ResU-Net model is a fusion of the U-Net architecture and 
residual connections. Using residual connections facilitates the unob-
structed transmission of information from the input to the output of a 
block of layers. This mechanism simplifies the learning process of the 
network in capturing information from broader contextual regions. The 
method employed by Wang et al (Wang et al., 2019b)., resulted in 

improving quantitative and qualitative scores. Their applied model 
worked on residual block level where an extra 1 × 1 × 1 convolution 
layer is concatenated from input to output. Nevertheless, this model will 
be helpful if the data post-processing is performed flawlessly. In order to 
enhance the processing of multiscale images, namely T2, T1-ce, T1, and 
FLAIR, Zhang et al (Zhang et al., 2021a). were integrated into the 
encoder section. The encoded input is subsequently transmitted to the 
decoder layer, where the features of each layer are concatenated. The 
authors introduced a new network architecture called ME-Net, which 
primarily consists of down-sampling and up-sampling operations. 
However, the implementation of this model resulted in an improvement 
in the WT class outcome while causing a decline in the outcome of the 
other class. Guan et al (Guan et al., 2022). utilized comparable meth-
odologies and presented an alternative AGSE-VNet architecture. The 
encoder is equipped with the Squeeze and Excite (SE) module, while the 
decoder is equipped with the Attention Guide Filter (AG) module. These 
modules utilize the channel relationship to enhance relevant informa-
tion and suppress irrelevant information. Additionally, the attention 
mechanism is employed to guide edge information and eliminate the 
impact of extraneous factors, such as noise. But in this case, the WT 
class’s performance is better than others. However, there were still 
drawbacks to using residual block layers, such as incorrect projections 
for noisy images. To solve this issue, Rehman et al (Rehman et al., 2020). 
presented the BU-Network, which combined wide context with a re-
sidual extended skip. The ET and TC dice outcomes improved when their 
models were tested on the BraTS 2017 and 2018. Even so, the most 

Table 11 
Comparison of recent strategy to handle the modality and missing modality information on various BraTS datasets, MRI modalities, dimensions, modality strategy, 
evaluation metrics including loss function, dice coefficient (DSC), Hausdorff distance, mean sensitivity, mean specificity, and segmentation targets ("ET – Enhancing 
tumor; WT – Whole tumor; TC – Tumor core; and ‘-’ Not available").  

Papers Dataset Dim Type Learning Method Loss Dice Scores Hausdorff Scores Mean 
Sensitivity 

Mean 
Specificity 

ET TC WT ET TC WT 

With Modality Information 
Zhang et al. (2022) ( 

Zhang et al., 2021a) 
BraTS 
2017 

3D V Rank + Pair 
+ Fuse 

Adv+CC 0.76 0.83 0.9 3.170 6.999 5.155 0.817 - 

BraTS 
2018 

3D V Rank + Pair 
+ Fuse 

Adv+CC 0.79 0.84 0.9 3.99 6.37 5 0.867 - 

Islam et al. (2021) ( 
Islam et al., 2020) 

BraTS 
2019 

3D V Fuse - 0.7 0.79 0.9 7.05 8.76 6.29 0.82 0.996 

Wang et al. (2019) ( 
Wang et al., 2020) 

BraTS 
2018 

2D - Fuse Dice 0.893 + _ 0.055 - - - - - 

Liu et al. (2020) (Liu 
et al., 2021) 

BraTS 
2020 

2D V Fusion Dice 0.76 0.8 0.88 21.39 6.68 6.49 - - 

Zhou et al. (2020) ( 
Zhou et al., 2020b) 

BraTS 
2017 

3D CV Fusion - 0.74 0.79 0.87 6.1 7.68 7.54 - - 

Rao et al. (2015) 
Rao et al. (2015) 

BraTS 
2015 

2D - Rank + Fusion - - - - - - - - - 

Fang et al. (2018) (Fang 
and He, 2018) 

BraTS 
2018 

2D V Fuse - 0.72 0.73 0.86 5.7 9.5 7.5 - - 

Tseng et al. (2018) ( 
Tseng et al., 2017) 

BraTS 
2015 

2D V Fuse CE 0.69 0.68 0.85 - - - 0.77 - 

Zhang et al. (2020) ( 
Zhang et al., 2020) 

BraTS 
2018 

3D V Rank + Fusion Dice + T- 
Tset 

0.78 0.82 0.9 3.57 9.27 5.73 - - 

Li et al. (2018) (Li and 
Shen, 2018) 

BraTS 
2017 

2D V Pair + Fusion Focal 0.75 0.71 0.88 - - - - - 

Handling Missing Modalities 
Zhou et al. (2021) 

Zhou et al. (2021) 
BraTS 
2018 

3D V Fuse with Missing 
Modality 

Dice 
+ MAE 

0.71 0.78 0.87 7.1 9.9 6.5 0.83 - 

BraTS 
2019 

3D V Fuse with Missing 
Modality 

Dice 
+ MAE 

0.73 0.72 0.87 6.3 9.3 6.7 0.76 - 

Yu et al. (2018) 
Yu et al. (2018) 

BraTS 
2015 

3D Sub Generate Missing 
Modality 

L1 0.68 0.72 - - - - - - 

Zhou et al. (2020) 
Zhou et al. (2020c) 

BraTS 
2018 

3D CV Generate Missing 
Modality 

Dice 
+ MAE 

0.69 0.79 0.88 - - - - - 

Havaei et al. (2016) 
Havaei et al. (2016) 

BraTS 
2018 

3D V Generate Missing 
Modality 

L1 0.61 0.55 0.74 - - - - - 

Dorent et al. (2019} 
Dorent et al. (2019) 

BraTS 
2018 

3D V Generate Missing 
Modality 

L1 0.69 0.79 0.88 - - - - - 

ikYu et al. (2021) 
Yu et al. (2021) 

BraTS 
2019  

V Generate Missing 
Modality 

- 0.78 0.85 0.91 3.69 5.26 4.46 - -  
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significant challenge was that location information and spatial details 
frequently became lost in the deeper layers. To solve this issue, the 
BrainSeg-Net (Rehman et al., 2021) model was proposed, which used an 
encoder-decoder structure. A Feature Enhancer (FE) block was included 
in the model to collect and distribute intermediate-level features from 
empty to deep layers. Data from BraTS 2017, 2018, and 2019 were used 
to test the model’s efficacy. Myronenko et al (Myronenko and Hatami-
zadeh, 2020). suggested a lightweight three-dimensional CNN frame-
work. In the previous study, the computational complexity was lowered, 
and the segmentation performance was enhanced. The primary factors 
of significant improvement were optimization and regularization. Dice 
and Hausdorff’s scores improved significantly. Cirilio et al (Cirillo et al., 
2020). proposed a generative associate network to segment multiclass 
tumors, but the Hausdorff score needed to be improved, and ET and TC 
dice scores decreased. Jiang et al (Jiang et al., 2022). recently suggested 
a transformer-based technique for multimodal segmentation compara-
ble with the state of the art. Because of their self-attention mechanism, 
transformers can work adequately on semantically encoded data, mak-
ing them suited for challenging prediction tasks such as 3D medical 
image segmentation. The dice and cross-entropy loss functions were 
utilized. Their model found a balanced result in the BraTS 2021 dataset. 
The performance scores on the cascaded model are briefly presented in 
Table 8. 

Cascaded models have shown proficiency in multi-scale feature 
representation, which is crucial for identifying the nuances of brain 
tumors in MRI imaging (Havaei et al., 2017; Sun et al., 2021; Yang et al., 
2020). To achieve this, intricate architectures such as parallel dilated 

convolutions and multi-fiber units capture features at various scales, 
improving segmentation accuracy (Myronenko and Hatamizadeh, 2020; 
Hussain et al., 2017; Ranjbarzadeh et al., 2021; Wang et al., 2021; Zhang 
et al., 2021a; Chen et al., 2019a). Additionally, these models are effi-
cient, with designs such as the dilated convolution U-Net and 
transformer-based network increasing processing speed, which is a 
critical factor in time-sensitive clinical environments (Jiang et al., 2022, 
2020). Furthermore, some models have demonstrated significant ad-
vancements in segmenting specific tumor regions, indicating their 
enhanced ability to acquire knowledge and adapt to subtle data. Inte-
grating local and global contextual information enhances the analytical 
capabilities of these models, allowing for a more comprehensive ex-
amination of tumors (Wang et al., 2019b; Guan et al., 2022; Rehman 
et al., 2020, 2021; Cirillo et al., 2020). These models effectively handle 
the hierarchical characteristics of tumors by utilizing inter-slice features 
and managing memory burden more efficiently than full 3D CNNs (Chen 
et al., 2019a). Their exceptional performance in challenging tasks, such 
as BraTS, demonstrates their effectiveness in clinical evaluation and 
treatment strategy development. 

Despite their effectiveness, these models have some significant lim-
itations. High-resolution image processing requires much computational 
power, which can be problematic in low-resource environments (Jiang 
et al., 2022, 2020; Myronenko and Hatamizadeh, 2020; Sun et al., 2021; 
Hussain et al., 2017; Ranjbarzadeh et al., 2021; Wang et al., 2021; Yang 
et al., 2020). Achieving a balance between performance across different 
tumor classes is also a challenge, as improvements in the segmentation 
of one class may result in a decline in performance for another (Zhang 
et al., 2021a; Chen et al., 2019a). Processing large images also requires 
much memory, partially alleviated by cascaded U-Nets. When training 
data is limited, these complex models may result in overfitting. Addi-
tionally, deeper network layers may result in the loss of critical spatial 
information, impairing segmentation accuracy. These limitations high-
light the need for careful model development and optimization meth-
odologies to ensure that the benefits are maximized while the 
constraints are minimized. 

6.2.4. Performance evaluation on ensemble methods 
According to the performance Table 8, multiclass balance perfor-

mance is achieved through ensemble technique, notably at ET class result. 
To improve the lower-class score, several researchers used ensembling 
multiple models and compared the results. Kamnitsas et al (Kamnitsas 
et al., 2018). introduced the EMMA approach in 2018, which implies 
ensembles of different models and architectures. They proposed the 
deepmedic ensemble model, which they created by combining FCN and 
U-Net. FCN combines regular and low-resolution routes to create an 
efficient lesion. Both models were trained independently. The BraTS 2017 
validation set was used to forecast the ensemble results. However, the 
FCN model had a limitation for segmentation due to its inability to cap-
ture fine-grained spatial details due to down-sampling operations, which 
resulted in a loss of resolution. McKinley et al (McKinley et al., 2019). 
developed a convolutional strategy that uses dilated convolutions in 
densely connected blocks within a shallow U-net structure that uses 
downsampling, up sampling, and skip connections. The researchers 
evaluated the model’s performance using the BraTS 2018 dataset. They 
also developed an attention technique for locally focusing CNNs and 
advocated, for instance normalization rather than batch normalization 
(McKinley et al., 2020). A previously disclosed BCE loss function was used 
to train the networks. The BraTS 2019 dataset was employed to test the 
results. In 2020, Feng et al (Feng et al., 2020). proposed an efficient but 
lightweight end-to-end model. The authors created an adaptation-based 
3D Unet model to address the primary issue with multimodal MRI im-
ages, like class imbalance. The random errors of individual models were 
reduced by using an ensemble of models trained with distinct hyper pa-
rameters, leading to better overall performance. On the BraTS 2018 LGG 
samples, ensemble models performed exceptionally well. Ali et al (Ali 
et al., 2020). also proposed an ensemble model based on CNN. 

Fig. 6. (a) The distribution of a specific set of papers with publication library, 
and (b) the distribution of the entire set of selected articles. 

Md.F. Ahamed et al.                                                                                                                                                                                                                           



Computerized Medical Imaging and Graphics 110 (2023) 102313

18

Generalized soft dice loss with focal loss was evaluated on the BraTS 2019 
dataset. Rosas-Gonzalez et al (Rosas-Gonzalez et al., 2021). proposed a 
modified ensemble UNet model in which 3D and 2.5D convolutional 
methods were maintained. For extracting low-level features, the 2.5D 
method yielded excellent results, while the 3D model was utilized for 
concatenation. In order to strike a balance between improving multi-scale 
and 3D contextual information extraction and maintaining low memory 
usage, the Asymmetric Ensemble of Asymmetric U-Net (AE AU-Net) was 
devised. Therefore, the ET class performed better on the 2019 BraTS 
evaluation set. Cross-validation is a technique used to evaluate how 
effectively a model generalizes to new, untested data. Zhang et al (Zhang 
et al., 2021b). employed cross-validation for the UNet model and main-
tained three UNets with distinct inputs. Before the segmented output, 
each image was processed. Using the most recent BraTS 2020 data, they 
achieved the highest feasible dice scores of 0.82 in the ET class, 0.88 in the 
TC class, and 0.92 in the WT class. The existing CNN models’ primary 
shortcoming was their use of a multi-branch structure with independently 
chosen convolution kernel sizes to accommodate a range of tumor sizes. 
The outcome was unreliable if calculated using kernels of varying sizes. 
Multilevel ensembling with shared kernels and the dilating convolution 
method were offered as potential solutions to the problem. Krieg et al 
(Guan et al., 2023). proposed a hierarchical multi-view convolution 
approach, which divides the regular 3D convolution into axial, coronal, 
and sagittal views to supply complementary-view characteristics. Their 
suggested lightweight and non-lightweight models performed almost the 
same, but the lightweight model took less time to process. 

Ensemble methods, including integrating multiple UNet models, 
present unique benefits and certain obstacles in segmentation tasks. 
Their primary advantages are their precision and resilience (Kamnitsas 
et al., 2018; McKinley et al., 2019, 2020). Securing accurate medical 
diagnosis requires segmentation results that are more precise and 
generalizable; this is achieved through the integration of various models 
and architectures (Feng et al., 2020; Ali et al., 2020). Additionally, they 
provide pixel-level accuracy, which enables a comprehensive examina-
tion that can be especially advantageous when the dataset is small. They 
aid medical professionals in comprehending concepts through visual 
representations (Rosas-Gonzalez et al., 2021; Zhang et al., 2021b; Guan 
et al., 2023). 

Nevertheless, the implementation and administration of these 
models are complicated, thereby presenting obstacles. They might 
necessitate substantial computational resources, which can pose a 
challenge, particularly in environments with constrained infrastructure 
(Kamnitsas et al., 2018; McKinley et al., 2019, 2020; Feng et al., 2020; 
Ali et al., 2020). Moreover, although ensemble methods may improve 
performance for certain classes of tumors, this improvement may not be 
uniform across all tumor varieties and sizes (McKinley et al., 2020; Feng 
et al., 2020; Guan et al., 2023). Additionally, processing time may be 
prolonged due to multiple models operating in concert. Despite these 
obstacles, the implementation of ensemble methods providing a 
harmonious equilibrium between enhanced performance and efficient 
utilization of resources (McKinley et al., 2020; Feng et al., 2020; Zhang 
et al., 2021b; Guan et al., 2023). Ongoing efforts are made to refine these 
methods as research advances to minimize their intricacy and resource 
demands while preserving or potentially enhancing their precision and 
applicability. 

6.2.5. Performance evaluation on pre-trained methods 
Since the ET class only represents a tiny percentage of the tumor and 

it might be challenging to discern its region from normal brain tissue, its 
performance in the segmentation of brain tumors is not always high. 
Some researchers explored sophisticated methodologies to solve the 
problem. Pretrained models can enhance the effectiveness of ET class 
segmentation by taking advantage of the extensive training data. Lef-
kovits et al (Lefkovits et al., 2022). suggested using several deep learning 
methods available through the AWS SageMaker framework. They 
modified and improved several CNN designs utilizing the backbone 

network. To establish the optimal parameters for the models, the ex-
periments were assessed and analyzed. In the segmentation, the back-
ground of healthy tissue, the whole tumor, the tumor core, and the 
enhanced tumor were separated. In order to further enhance the given 
designs, they also proposed a random search for parameter optimiza-
tion. Then, they calculated the ensemble performance. Resnet50 with 
FCN model showed the highest dice score for multiple class. Ali et al (Ali 
et al., 2022a). published an effective convolutional neural network 
model for segmenting brain tumors called an attention-based neural 
network. The authors employed a strategy that involved utilizing a 
pre-trained VGG19 network as the encoder component of the UNET. The 
decoder parts were positioned adjacent to the encoder and included an 
attention gate to minimize noise during segmentation, as well as a 
denoising mechanism to prevent overfitting. The authors evaluated their 
algorithm using the BraTS’20 dataset, which consisted of four distinct 
MRI modalities and a target mask file. The results of the proposed 
method indicate that it was successful in enhancing the dice similarity 
coefficient for the core and whole tumors, achieving values of 0.86 and 
0.90, respectively. Additionally, the method achieved a dice similarity 
coefficient of 0.83 for the enhanced tumors. The performance scores on 
pre-trained methods are briefly presented in Table 8. 

The use of pre-trained models utilized a vast amount of training data 
and the latest deep learning architectures shared within the community, 
models such as ResNet50 and VGG19 offer significant advantages (Lef-
kovits et al., 2022; Ali et al., 2022a). One of the most challenging tasks in 
this field is to distinguish small tumor regions from normal brain tissue, 
and these models are constructive for this. They enable classification 
without manual feature extraction and are particularly effective for the 
less common and hard-to-distinguish ET class. Moreover, these models 
can mitigate overfitting issues common with smaller datasets, as they 
bring in learned patterns from extensive prior training. However, there 
are challenges, too. The dependency on large pre-existing datasets for 
initial training might introduce biases or irrelevant feature recognition 
when applied to specific medical imaging tasks specifically on early and 
accurate diagnosis (Ali et al., 2022a). The complexities of deep learning 
models also demand substantial computational resources, which can be 
a bottleneck in specific clinical settings. Balancing these advantages and 
disadvantages is crucial for advancing computer-assisted diagnosis in 
neuro-oncology and improving patient outcomes through precise and 
timely medical interventions. 

Currently, no commercial software products are available for clinical 
examination of brain tumors. The available open source project links 
have been mentioned at Table 9. 

6.2.6. Summary 
Performance in brain tumor segmentation is influenced by diverse 

characteristics and techniques. After analyzing the performance of 
various models in Table 8, several key observations have been made.  

1. High-capacity, flexible DNNs with distinctive CNN architectures 
enable real-time analysis and improved flexibility. Cascaded CNN 
and FCN layers have achieved high dice similarity coefficients on 
distinct tumor classes while keeping the model lightweight. Multi- 
pathway configurations and dilated convolution U-Nets extract fea-
tures and preprocess input images, while cascaded U-Nets process 
large images and residual connections to improve feature learning.  

2. The process of downsampling can limit the capturing of detailed 
information. However, convolutional strategies that include atten-
tion mechanisms, and instance normalization have enhanced the 
performance. The implementation of lightweight and efficient 3D 
UNet models has effectively resolved concerns related to class 
imbalance. Additionally, CNN-based ensemble models utilizing soft 
dice loss have shown improved results but the model’s computa-
tional cost being high. Using hierarchical multiview convolutions 
techniques can improve complementary-view characteristics. By 
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integrating these methods, the precision, clarity, and resilience of 
tumor regions can be improved.  

3. Optimizing the efficacy of tumor, especially for the challenging ET 
class, requires implementing efficient strategies. Pretrained models 
utilize substantial training data to extract most features by opti-
mizing parameters and exhibiting distinct demarcation of different 
regions. Random parameter searches can further refine the models. 
Attention-based neural networks prevent overfitting issue and 
minimize noise. But those pre-trained methodologies increase the 
model weight and make it difficult to use in clinical applications. 

6.3. Standard datasets used for identification of spot tumors 

Publicly accessible to privately obtained datasets are included in this 
research. Machine learning techniques for medical image interpretation 
rely heavily on datasets for training and testing. The size, complexity, 
modality, and image quality of a dataset can have a considerable effect 
on the performance and generalizability of the algorithms. Researchers 
can find the best techniques for future research by examining numerous 
datasets and comparing the strengths and weaknesses of different ap-
proaches and datasets. Datasets can also help with findings’ repeat-
ability and benchmarking. Researchers may see how well their methods 
perform on publicly available datasets, and other researchers can 
replicate their studies and assess them against alternative approaches. 
This could improve our understanding of the state-of-the-art in federated 
learning and brain tumor segmentation, as well as accelerate the crea-
tion of novel techniques and algorithms. Finally, talking about datasets 
can help find research holes and open doors. Researchers can pinpoint 
the shortcomings of present methods and suggest novel avenues for 
exploration by examining existing datasets. Benchmark datasets have 
been used extensively in the chosen studies to figure out how to diagnose 
brain tumors. The following are some of the most common benchmark 
data sets. This review paper focuses on BraTS, which is a widely 
accepted benchmark dataset specifically designed for evaluating algo-
rithms and models for brain tumor segmentation in magnetic resonance 
imaging (MRI) scans. This dataset contains high-quality images and a 
variety of tumor types. Normal dose MRI provides the highest image 
quality and is better suited for detailed anatomical and pathological 
assessment of tumors. Low dose CT scans produce images with less 
detail, potentially missing critical diagnoses due to reduced radiation, 
while low dose MRI can have a lower signal-to-noise ratio, reduced 
image homogeneity, and impaired detection of calcifications (Ma et al., 
2011). This review paper focuses on the most used BraTS dataset, which 
contains normal-dose MRI samples, and the maximum number of re-
searchers who worked on this specific dataset. These attributes establish 
MRI as the most appropriate modality for precise and detailed tumor 
delineation in clinical practice and research. In Table 10, the dataset 
details are presented with the number of total samples, image size with 
modality information and the downloadable source link. 

6.3.1. Figshare dataset 
Figshare is an open directory (brain tumor dataset, 2023). It consists 

of 3064 T1-weighted enhanced magnetic resonance imaging (MRI) ob-
servations. The data from 233 patients was collected and analyzed from 
healthcare facilities and medical centers. The dataset includes three 
forms of brain tumors: gliomas, pituitary tumors, and meningiomas. 
Sagittal, axial, and coronal perspectives are used to capture datasets. 
There are 1426 glioma specimens, 930 pituitary specimens, and 708 
meningioma specimens. The images have a resolution of 512 × 512 and 
are stored in the ".mat" format. In a binary mask image, each tumor 
border, its corresponding reference locations, and the ground truth are 
presented. 

6.3.2. TCGA-GBM dataset 
Glioblastoma multiform is the most common and deadly primary 

brain tumor, and the TCGA-GBM dataset provides a publicly available 

database of molecular and clinical data for this disease. The National 
Cancer Institute’s dataset included the medical records of more than 500 
GBM patients (Clark et al., 2013). Imaging data, genetic data, and 
clinical data are all included in the dataset. MRI scans of various sorts, 
including T1- and T2-weighted images taken before and after surgery, 
make up the imaging data. Clinical information consists of patient 
characteristics, tumor characteristics, and therapy details. Brain tumor 
diagnostic, therapy, and prognosis studies, as well as machine learning 
algorithm development for brain tumor segmentation and classification, 
have all made heavy use of the TCGA-GBM dataset. The availability of 
such a vast and varied dataset to develop and test new approaches and 
algorithms has dramatically aided the progress of research in this area. 
The dataset is available for download in several forms (including 
DICOM, NIFTI, and CSV), and it also includes documentation and met-
adata to aid with data analysis. 

6.3.3. BraTS 2012 datasets 
The BRATS 2012 dataset is accessible to the public and comprises 

MRI scans of the brain that have been accurately segmented to identify 
gliomas. The dataset was generated for the Brain Tumor Image Seg-
mentation (BRATS) Challenge 2012 (BRATS - SICAS Medical Image 
Repository, 2023a). It comprises 40 cases, of which 30 are associated 
with high-grade gliomas, and the remaining 10 are associated with 
low-grade gliomas. Domain experts have meticulously annotated all of 
the cases in the dataset. Various MRI scan methods were used to capture 
the pictures; these included T1-weighted, T2-weighted, and 
contrast-enhanced T1-weighted scans. The dataset encompasses data on 
patient age, gender, and tumor location. Reports and software that make 
it easier to manipulate and evaluate data come with the dataset. 
Furthermore, it is publicly accessible for download. The data is stored in 
NIfTI format, a widely used format for medical image analysis. The 
dataset comprises the original image data along with ground truth 
segmentation labels. Researchers use this dataset to test and develop 
novel segmentation algorithms, assess their performance compared to 
current methods, and look into the relationship between tumor grades 
and imaging variables. 

6.3.4. BraTS 2013 dataset 
The 2013 BRATS dataset is freely accessible to the public. The 

dataset contains MRI images of the brain of 30 patients with glioblas-
toma multiform (GBM) and 10 patients with lower-grade gliomas, such 
as T1-weighted, T1-weighted contrast, T2-weighted, and FLAIR images 
(BRATS - SICAS Medical Image Repository, 2023a). These pictures are 
helpful for algorithm development and validation since they are labeled 
with ground truth segmentations of the tumor, including the necrotic 
core, the enhancing tumor, and the peritumoral edema. Images taken 
before and after surgery are also included in the collection to help 
analyze the tumor’s response to therapy. The segmentation, classifica-
tion, and prognosis of brain tumors have all been extensively studied 
using the BRATS 2013 dataset. 

6.3.5. BraTS 2014 and 2015 dataset 
They are both freely accessible datasets created to test automatic 

segmentation techniques in brain tumors. 274 brain MRI scans from the 
BraTs 2014 dataset, including 220 cases of high-grade and 54 cases of 
low-grade gliomas, are included (BRATS - SICAS Medical Image Re-
pository, 2023b). The 274 high-grade glioma patients in the BRATS 
2015 dataset had a total of 484 multi-modal MRI scans (BRATS - SICAS 
Medical Image Repository, 2023c). T1-weighted, T1-weighted 
contrast-enhanced, T2-weighted, and fluid-attenuated inversion recov-
ery (FLAIR) sequences were among the MRI modalities used to acquire 
the pictures. Each scan was manually divided into four sections: the core 
of the tumor that was not enhancing, the tumor that was enhancing, the 
edema, and the necrosis. Additionally, the dataset contains clinical in-
formation such as age, gender, and survival period. NIFTI is the file 
format. 
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6.3.6. BraTS 2016 and 2017 dataset 
The 2016 BRATS (Multimodal Brain Tumor Segmentation Chal-

lenge) dataset comprises 285 cases, 210 high-grade gliomas, and 75 low- 
grade gliomas, and uses 4 MRI modalities: T1, T1-contrast enhanced, T2, 
and FLAIR. 240 × 240 × 155 voxels of spatial resolution are provided 
for the images in NIFTI format (BRATS - SICAS Medical Image Re-
pository, 2023d). The dataset also has binary masks for segmenting tu-
mors and edema. The same 4 MRI modalities—T1, T1-contrast 
enhanced, T2, and FLAIR—were used in 285 cases in the BRATS 2017 
dataset, including 210 high-grade and 75 low-grade gliomas. 
240 × 240 × 155 voxels of spatial resolution are provided for the im-
ages in NIFTI format (MICCAI BraTS, 2017). The dataset also contains 
segmentation labels for the enhancing tumor, the entire tumor (which 
includes the enhancing tumor, non-enhancing tumor, and edema), and 
the tumor core (which includes the enhancing and non-enhancing 
tumor). Patient survival information is also included in the dataset. 

6.3.7. BraTS 2018 and 2019 dataset 
The dataset of BraTS 2018 comprises of a total of 285 cases of high- 

grade glioma (HGG) and 66 cases of low-grade glioma (LGG) (Zhao 
et al., 2018). The dataset known as BRATS 2019 comprises a total of 460 
cases, of which 335 are classified as HGG and 125 as LGG (Multimodal 
Brain Tumor Segmentation Challenge, 2019). The acquisition of these 
cases utilized identical MRI sequences as the dataset from the previous 
year. Data acquisition was performed utilizing various MRI sequences, 
comprising T1-weighted, T1-weighted with gadolinium contrast 
enhancement, T2-weighted, and fluid-attenuated inversion recovery 
(FLAIR). The voxel size of the images was standardized to 1 mm3 in an 
isotropic manner, while the dimensions of the images were 
240 × 240 × 155. The dataset incorporates segmentation masks for 
three distinct sub-regions of the tumor, namely the enhancing tumor, 
non-enhancing tumor, and edema, in addition to a comprehensive tumor 
region. The information is obtainable in the NIfTI format. 

6.3.8. BraTS 2020 and 2021 dataset 
Brain tumor MRI images (gliomas and meningiomas) are the focus of 

both the BraTS 2020 and 2021 datasets. Various modalities, including T1, 
T1-contrast, T2, and FLAIR, are present in the photos, which were gath-
ered from numerous institutions. There are 484 samples of high-grade 
glioma (HGG) and 209 samples of low-grade glioma (LGG) in the 2020 
dataset (Multimodal Brain Tumor Segmentation Challenge, 2020), and 
406 HGG and 196 LGG samples in the 2021 dataset (Baid et al., 2021), 
respectively. Each image contains 240 × 240 × 155 pixels. Accurate 
segmentation maps are included with the given photos, revealing the 
tumor core, the enhancing tumor, and the entire tumor. Furthermore, the 
datasets comprise clinical data encompassing patient age and tumor 
grade. The datasets, as mentioned earlier, have been utilized for diverse 
research objectives, such as creating machine-learning models for the 
segmentation and diagnosis of brain tumors. 

6.3.9. ISLES 2015 dataset 
ISLES 2015 is a publicly accessible dataset to assess algorithms for 

segmenting ischemic stroke lesions. There are 28 instances in the data-
set, and each case consists of MRI images obtained at various intervals 
following the commencement of the stroke. The images have a resolu-
tion of 256 or 512 × 512 pixels and are saved in the DICOM format. 
There are 20 photos in the training set and 8 in the testing set, both of 
which have been identified as such. T1-weighted, T2-weighted, and 
diffusion-weighted imaging (DWI) scans are all represented in the 
collection. The dataset includes a collection of expert segmentations of 
the ischemic lesion on the DWI scan for each case, which can be utilized 
as the benchmark for assessment (ISLES, 2015). 

6.3.10. ISLES 2016 and 2017 dataset 
The ISLES 2016 dataset consists of 43 3D MRI scans with 28 training 

examples and 15 test cases from 28 organizations. The resolutions and 

fields of view of the photos differ because different procedures and 
equipment were used to capture them. Two expert radiologists provided 
the ground truth labels for the lesions, and a decision-making consensus 
was reached. The ISLES 2017 dataset includes 55 cases analyzed using 
one of four distinct types of magnetic resonance imaging (MRI) mo-
dalities: FLAIR, T1, T1Gd, or T2. Every imaging modality has the exact 
picture resolution, which is 240 × 240 × 155 pixels, and the voxel size 
is 1 × 1 × 1 mm3 (ISLES, 2016). 

6.3.11. BRAINIX dataset 
More kinds of datasets can be used to make research more accurate. 

However, this BRAINIX dataset is only available to some. A particular 
DICOM library set maintains and manages this dataset privately. This 
dataset can only be accessed by those who have been granted unique 
permission (OsiriX DICOM, 2023,). 

6.4. Impact on multi-modality information 

Multimodality information is essential for brain tumor segmentation 
because it makes it possible to segment the tumor more completely and 
accurately. Brain tumors can show different features in different imag-
ing methods, such as T1-weighted, T2-weighted, contrast-enhanced T1- 
weighted, and FLAIR MRI sequences. Each method gives different in-
formation about the location, shape, size, intensity, and enhancement 
patterns of the tumor growth. After reading many research papers, we 
found that most researchers used the BraTS challenge datasets. With 
multi-multimodality data, the segmentation score improves and be-
comes more accurate. As a result, if the collected modality information is 
valid, the model with inferior performance can be ranked higher (Islam 
et al., 2021; Zhou et al., 2020a; Andrade-Miranda et al., 2023; Peng 
et al., 2022; Zhou et al., 2023b; Taghanaki et al., 2018; Liu et al., 2023; 
Njeh et al., 2015). This section is classified into two groups: using 
multi-modality information and missing modality information. The 
performance metrics after handling with complete modality and missing 
modality are briefly demonstrated in Table 11. 

6.4.1. Utilizing multimodality information 
Zhang et al (Zhang et al., 2021a). used multimodal MRI data to 

develop a new cross-modality deep feature learning method for sepa-
rating tumors. Cross-modality feature transition (CMFT) and 
cross-modality feature fusion (CMFF) were the two main learning 
methods in this framework. To make up for the small amount of data, the 
CMFT process focused on finding rich patterns in data from different 
sources. It involved learning how to represent features by moving in-
formation across different data types. The goal of the CMFF method was 
to bring together information from different types of data. A 
cross-modality at different types of A and B modalities feature transition 
and feature fusion is presented in Fig. 7. This made it easy to find pat-
terns in the collected data for each modality. 

6.4.1.1. Ranking the modalities. For each modality, a comparison func-
tion is used to determine the relative significance or relevance of the 
modality. The first study on learning to rank was done by (Rao et al., 
2015). This research laid the groundwork for learning to rank. The work 
converted each modality into a singular Network (CNN). Each feature 
was linked with a different modality. 

In another study (Zhang et al., 2021a), a similar method was fol-
lowed, and here, two different networks were used to process the model. 
The settings for each network were changed because of the different 
control losses. Using the BraTS 2015 dataset, the study looked at how 
different ways of embedding were used to pull out behaviors. The second 
method will only work if there are at most one or two modes. However, 
when only one modality is present, the outcomes are less excellent than 
a model trained only on that modality. 
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6.4.1.2. Pairwise multimodal task. The best way to get good results is to 
use modality-modality pairwise mixing. In (Li and Shen, 2018), it is the 
first attempt to build a model that shows how different forms interact 
with each other. The authors paired every pair of modes and then sent all 
possible combinations of pairings to the secondary network. The 
cross-modal attention module and the modal coupling module serve to 
strengthen the relationship between modalities (Zhang et al., 2020). The 
goal is to expedite the process of incorporating and shifting character-
istics across different modalities in order to acquire additional data and 
improve overall efficacy. 

6.4.1.3. Fusion mechanism of modalities. Modern multimodality tech-
niques have progressed significantly since the days of ranking and 
coupling modalities. Modality fusion is the process of combining 
different traits from different modalities in order to get more accurate 
segmentation. Early fusion is a relatively simple process that usually 
involves combining or incorporating features from different modes by 
stringing them together or adding them. Based on how they use the 
encoder-decoder structure, multi-modal feature fusion methods can be 
put into four different groups. Fig. 8 shows different types of fusion 
strategies indicating the fusion places. After the first few layers of each 

Fig. 7. The cross-modality feature learning architecture is presented for both cross-modality feature transition and cross-modality feature fusion.  

Fig. 8. Different points of fusion. The sequence of early, middle, and late fusion points is presented in a left-to-right orientation (Islam et al., 2020).  
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CNN, in the early form of the convolutional neural networks, those are 
combined. On the other hand, the CNNs in the later form are combined 
in the layers after that. How "early" and "late" are used depends on the 
Design (Aygün et al., 2018). 

The fusion of information from various modalities occurs at the 
initial stages of the learning pipeline in early fusion. Commonly, the 
process entailed merging or arranging the feature representations 
derived from individual modalities, followed by feeding them into a 
unified single stream of network (Isensee et al., 2021). In (Rao et al., 
2015), the authors employed four networks to extract modality-aware 
features and then combined them. 

In (Orbes-Arteaga et al., 2018), a combination of T1 and Flair fea-
tures was sent to the downstream network to segment the entire tumor. 
In (Zhang et al., 2020), feature extraction is performed while taking 
modalities into account, and the data is then passed on to a downstream 
network for training. 

In the middle fusion approach, the merging of phases at the net-
work’s input was avoided by employing a middle-fusion strategy. This 
strategy involves the independent processing of different modalities in 
their respective encoders while utilizing a shared decoder for feature 
fusion and final segmentation. This methodology had been previously 
proposed and documented in (Chen et al., 2019b). 

The late fusion approach involved the independent processing of 
each modality, with subsequent fusion of the representations or pre-
dictions from each modality at a later stage (Sun et al., 2017). The 
integration of multiple modalities took place at the level of 
decision-making through the amalgamation of the outcomes derived 
from distinct modality models. The integration of multiple modalities 
was achieved through late fusion, which involved concatenating or 
merging the extracted features at the feature level. 

6.4.1.4. Attention mechanisms. With this method, the model can focus 
on the most critical modalities based on the tasks and data available. In 
recent years, many studies have used attention strategies to reinforce the 
acquired skills. A spatial and channel attention-based fusion module was 
employed in (Islam et al., 2020; Zhou et al., 2020b; Liu et al., 2021; 
Wang et al., 2020). In order to achieve precise segmentation, the 

suggested attention mechanism emphasizes relevant traits while sup-
pressing irrelevant ones. 

6.4.2. Handling missing modalities 
In multimodal learning, "handling absent or unavailable modalities" 

means figuring out what to do when one or more modalities are not 
there or cannot be used in a particular situation. In actual application 
scenarios, however, it takes much work to acquire complete and high- 
quality multi-modality datasets. Two main strategies can be imple-
mented to handle this problem, such as synthesizing and learning mo-
dality invariant feature. 

6.4.2.1. Synthesizing missing modalities. It is possible to train a genera-
tive model to synthesize the absent modalities, followed by the execu-
tion of multi-modal segmentation. In reference to (Yu et al., 2018), the 
authors created the sole extant modal T1 and employed generative 
adversarial networks to produce the absent modalities. The study con-
ducted by the authors in reference (van Tulder and de Bruijne, 2015) 
demonstrated that the utilization of a synthesized modality results in an 
enhancement of the precision of brain tumor detection. 

6.4.2.2. Learning modality invariant feature. The second approach in-
volves acquiring a feature space invariant to modality, which captures 
the multi-modal information during the training phase and enables the 
utilization of all conceivable modal combinations during inference. 
HeMIS was proposed by Havaei et al (Havaei et al., 2016)., which 
involved the training of distinct feature extractors for each modality. 
Dorent et al (Dorent et al., 2019). developed a novel approach called 
U-HVED, which HeMIS influenced. The authors incorporated 
skip-connections regarding intermediate layers as a feature map before 
each down-sampling step. The network exhibited superior performance 
to HeMIS when evaluated on the BraTS 2018 dataset. 

In reference to sources (Zhou et al., 2020c) and (Zhou et al., 2021), 
the authors acquired knowledge of the implicit correlation between 
modalities and conducted a thorough analysis of all potential absent 
scenarios. The researchers utilized the pre-existing T1 modality as an 
input to produce the Flair modality. The supplementary Flair data is 

Fig. 9. The representation shows how to handle missing modalities utilizing correlational modeling (Zhou et al., 2021).  
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generated and transmitted alongside the primary T1 data to the subse-
quent segmentation network. This methodology acquired knowledge of 
the implicit correlation among modalities and scrutinized all conceiv-
able absent situations (Zhou et al., 2021). Fig. 9 represents the overall 
working approach to handle the missing modality. 

6.4.3. Summary 
Upon examining the effects of multi-modality information and the 

comparative performance from Table 11, a few key observations have 
been made.  

1. Task-modality modelling enables a network to improve its capacity 
to select the most relevant and supportive modality for accurate 
segmentation by acquiring the ability to rank modalities. In most 
research studies, the main objective is to model the implicit ranking 
of modalities as the network receives modality-aware features.  

2. Integrating multi-modality data can enhance the expressive capacity 
and generalizability of features. However, the existing fusion tech-

niques have their strengths and weaknesses. Additional fusion stra-
tegies do not introduce extra parameters but may require more 
physically manifesting characteristics. On the other hand, using a 
compact network with an attention module can fine-tune feature 
expression, but it comes with added parameters and increased 
computational overhead. 

3. In clinical imaging, it is expected to overlook situations where spe-
cific modalities are not available. Previous research has focused on 

generating missing modalities based on existing modality data. 
However, it is essential to note that the quality of the generated 
modalities largely depends on the quality of the available modality 
data. 

6.5. Impact of privacy and performance on federated learning 

Medical data privacy regulations often make it hard to gather and 
share patient data in a central data center. The Federated Stochastic 
Gradient Descent (FedSGD) technique is a straightforward translation of 
the traditional algorithm into a federated learning framework. This re-
quires the implementation of a client-side model training process and a 
server-side model aggregation procedure (Li et al., 2019a). Fig. 10 
represents the architecture of the learning strategy among the federated 
server and client-server area. 

At first, it is suggested that there are K clients, each of which is linked 
and has a fixed local dataset and enough computing power to run mini- 
batch SGD updates. All clients have the same design and loss function for 
their neural networks (Song et al., 2022). Algorithm 1 can be used to do 
the work described above. 

Algorithm 1. Federated Learning Stochastic Gradient Descent 
(FedSGD) Client Side. 

The server-side approach is essential for federated learning. It lets the 
models learn from a large data set, even if the data comes from many 
different people. Because of this, shared learning could help train ma-
chine learning models to work with private data. 

Algorithm 2. Federated Learning Stochastic Gradient Descent 
(FedSGD) Server Side.  

Servers initialize the global model first. This model can be pre- 
trained or randomly initialized. Federated averaging updates model 
parameters iteratively when client-side models update. Compiling local 
model modifications updates the global model. Server-side models 
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iterate until loss function convergence. Clients receive the server-side 
model after loss function convergence. 

A federated deep learning model, SU-Net, was proposed to operate 
multi-scale information more efficiently (Yi et al., 2020). Several studies 
were conducted to improve the federated learning (FL) process. Tulad-
har et al (Tuladhar et al., 2022). refined the learning process by 
ensembling the weight aggregation function. Mahlool et al (Mahlool 
et al., 2022). contextualized advancements to solve overhead limita-
tions. Nalawade et al (Nalawade et al., 2022). aimed to enhance model 
aggregation based on performance, while Khan et al (Khan et al., 2022). 
introduced regularization techniques. Developing standard protocols 
and data formats among healthcare institutions is crucial to optimize the 
clinical application and promote collaboration. 

FL is beneficial in the clinical field, as it effectively addresses data 
privacy concerns and enables collaborative model improvement (Rieke 
et al., 2020). Looking ahead, the field of FL aims to expand its capa-
bilities in real-time, collaborative disease monitoring and management 
across different geographies. With the help of advancements in 
privacy-preserving technologies, FL could enable the creation of global 
healthcare models that are more inclusive of diverse populations and 
rare conditions. It is also expected to see the integration of FL with other 
emerging technologies like the Internet of Medical Things (IoMT), which 
could enhance remote diagnosis and patient monitoring. Additionally, 
FL has the potential to drive personalized medicine by utilizing decen-
tralized data to tailor treatments to individual genetic and environ-
mental factors, all while ensuring data security. 

7. Clinical applications 

Computer-aided detection (CAD) systems are increasingly being used 
in clinical applications to expedite laborious processes. A CAD system 
using AI was developed by Chen et al (Chen et al., 2023). to identify, 
grade, segment, and gain knowledge about gliomas. Neuroimages are 
commonly depicted using a visual attribute called the histogram of 
gradients (HOG). The CAD system utilizes a two-tier classification 
framework to differentiate between healthy individuals and patients, as 
well as between various grades of glioma, based on HOG characteristics. 
The system also provides tumor visualization through a semi-automatic 

segmentation tool, which improves patient management and facilitates 
treatment monitoring. The two-level classification architecture achieved 
an area under the curve (AUC) of 0.921 and 0.806, respectively. This 
approach differs from other systems as it integrates diagnostic tools with 
a web-based interface to make it more adaptable for system imple-
mentation. To differentiate between brain MRI pictures with and 
without tumors, Saad et al (Saad et al., 2023). developed a graphical 
user interface (GUI). It not only displays the final classification result but 
also the results of each work step and each classifier’s classification 
independently. The interface also provides functions such as brightness 
contrast adjustment and tumor encirclement. Ali et al (Ali et al., 2022b). 
developed an intelligent system that uses a support vector machine 
(SVM) classifier for diagnosing brain tumors with the help of MRI im-
ages. The system is capable of identifying and diagnosing brain tumors 
while also providing relevant information by calculating the number of 
pixels within the segmented tumor region. If a tumor is detected in a 
brain scan, the following step would involve performing tumor seg-
mentation to determine the tumor’s geometrical properties. 

To effectively implement segmentation in clinical applications, 
several crucial steps must be considered. First and foremost, reliable and 
high-quality imaging is essential, particularly in reducing artifacts and 
maximizing the efficiency of image acquisition settings. It is also crucial 
to test these models on a wide range of real-world data to ensure that 
they can adapt to various scenarios. Additionally, the segmentation re-
sults should seamlessly integrate into the clinical workflow, providing 
healthcare providers with actionable data. 

Adopting brain tumor segmentation tools into clinical practice re-
quires regular validation, ongoing improvement, and adherence to 
ethical and regulatory standards. On the horizon, there are several 
exciting developments, including multi-modal data integration, better 
explainable AI, personalized medicine, and quantitative imaging diag-
nostic extraction. AI-driven surgical assistance and telemedicine will 
revolutionize patient care, while real-time processing, automated 
reporting, and improved data interoperability will streamline clinical 
processes. 

Fig. 10. The standard federated learning (FL) process involves a network of training nodes that receive a global model. These nodes then periodically submit their 
partially trained models to a central server for aggregation. The server returns a consensus model, which the nodes then use to continue their training (Long 
et al., 2015). 
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8. Conclusions 

In this study, a systematic literature review of the advancement of 
brain tumor segmentation in the context over the past few decades in 
terms of deep learning and federated learning has been presented. Upon 
conducting a thorough analysis of the existing literature, common 
methodologies, including pre-trained models, cascaded networks, en-
sembles, and multimodality are summarized. Focus was steered on CNN 
and its many structures and applications in medical imaging. Based on 
the investigation, the areas with existing research gaps were identified, 
allowing us to provide a path forward for this field. 

The principal findings of this review are summarized as follows.  

1. There are numerous segmentation techniques for brain tumors, but 
cascaded networks perform exceptionally well on tumor detection 
because of maximum feature extraction. In addition, ensembling 
techniques are more effective for accurate segmentation that yields 
balanced results. 

2. Researchers typically calculate dice coefficient metrics for perfor-
mance evaluation. Therefore, it is the primary evaluation criterion 
for comparing performance to others. 

3. The BraTS challenge dataset is utilized primarily by maximum re-
searchers. This dataset incorporates multimodal information for 
more efficient tumor segmentation. HGG and LGG samples are 
included in this dataset, along with the training and validation 
portions.  

4. Integrating information from different sources can make it easier to 
communicate and make features more general. Inclusion or aggre-
gation does not add new parameters, but it does not show how fea-
tures are utilized. An attention mechanism can optimize feature 
expression using a small network, but it will also add new parameters 
and increase the computation cost.  

5. Fusion and attention mechanisms can improve the segmentation 
performance more accurately on missing modalities. However, if any 
modality information is missing, then the invariant feature extrac-
tion helps to extract the info from current modality data. 

In situations where access to medical data for training purposes is 
restricted in order to maintain privacy, Federated Learning (FL) presents 
a promising solution for developing models that are effective, precise, 
secure, stable, and unbiased. Federated learning effectively addresses 
the challenge of limited datasets for both training and testing purposes 
while simultaneously preserving the privacy of sensitive data. Numerous 
researchers were drawn to this, and much research is being conducted. 
Accurate labeling is a crucial aspect of medical demographic images. 
Several benchmark datasets, including the BraTS challenge datasets 
from 2012 to 2021, have been made accessible to researchers in this 
field to validate their work on openly available datasets. It is anticipated 
that there will be a surge in the utilization of Federated Learning (FL) for 
medical applications in the coming years. This will lead to the devel-
oping of more sophisticated protocols that offer enhanced security and 
privacy assurances. Furthermore, implementing FL technology to 
address practical challenges in the healthcare sector is expected to 
become a reality. 
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